JP3642232B2 - Fluid pressure molding method, fluid pressure molding apparatus, and body member - Google Patents

Fluid pressure molding method, fluid pressure molding apparatus, and body member Download PDF

Info

Publication number
JP3642232B2
JP3642232B2 JP18392099A JP18392099A JP3642232B2 JP 3642232 B2 JP3642232 B2 JP 3642232B2 JP 18392099 A JP18392099 A JP 18392099A JP 18392099 A JP18392099 A JP 18392099A JP 3642232 B2 JP3642232 B2 JP 3642232B2
Authority
JP
Japan
Prior art keywords
workpiece
punch
thickness
die
hydraulic forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18392099A
Other languages
Japanese (ja)
Other versions
JP2001009529A (en
Inventor
井 寛 桜
江 伸 史 大
坂 順 信 早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP18392099A priority Critical patent/JP3642232B2/en
Priority to DE10014619A priority patent/DE10014619B4/en
Priority to US09/534,261 priority patent/US6415638B1/en
Publication of JP2001009529A publication Critical patent/JP2001009529A/en
Application granted granted Critical
Publication of JP3642232B2 publication Critical patent/JP3642232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、パイプ状をなすワークの中空部に加工液を注入して液圧を加えながら、ダイおよびポンチによって車体用部材を成形するのに利用される液圧成形方法および液圧成形装置に関し、また、この液圧成形方法および液圧成形装置によって成形されるサイドルーフレールなどの車体用部材に関するものである。
【0002】
【従来の技術】
従来、上記した液圧成形方法としては、例えば、ハイドロフォームによって成形するためにパイプ状をなすワークに施す曲げ加工に続いて行われる予備加工があり、このハイドロフォーム予備加工では、低液圧をワークの中空部に加えながら型締めを行うことによって、ワークを大まかな部品形状に成形するようにしている。
【0003】
また、他の液圧成形方法としては、バルジ加工方法がある。このバルジ加工方法において、型内にセットしたパイプ状をなすワークを軸方向に押し込みながら、液圧により拡管させて所定形状に成形するようにしており、このバルジ加工方法では、液圧成形中にワークを軸方向に押し込むので、拡管する際の肉厚減少が抑制されて、成形性が良好に保たれることとなる。
【0004】
【発明が解決しようとする課題】
ところが、上記した従来の液圧成形方法では、ハイドロフォーム予備加工の場合、拡管を前提にした液圧成形方法であるため、肉厚減少が生じて高強度板材やアルミニウム板材では割れが発生しやすいこと、ワークの中心から離れた部位で肉厚減少が生じる肉厚分布になること、といった問題があり、一方、バルジ加工方法の場合、ワークを軸方向に押し込む都合上、ワーク全体の肉厚増加には有効であるものの断面内の特定部位の肉厚を増加させることができないこと、成形品の重量軽減に寄与することができないこと、といった問題を有しており、これらの問題を解決することが従来の課題となっていた。
【0005】
【発明の目的】
本発明は、上述した従来の課題に着目してなされたもので、高強度板材やアルミニウム板材を用いた場合であったとしても、割れを生じさせることなく成形することができ、加えて、断面内の特定部位の成形品肉厚を増加させることが可能であり、その結果、軽量化を実現したうえで、成形品の曲げ強度を増加させることができる液圧成形方法および液圧成形装置を提供すると共に、軽量でかつ曲げ強度に優れた車体用部材を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の請求項1に係わる発明は、パイプ状をなすワークの中空部に加工液を注入して加圧しつつ、ダイおよびポンチによってワークを所定形状に成形する液圧成形方法において、少なくともワークのポンチ側に丸みを有するコーナー部が成形されるまでの間、拡管が生じない液圧{(ワークの肉厚(mm)×降伏点応力(MPa)×0.6)MPaの圧力}を保ちつつ、断面が四角形以上の多角形状をなしかつ断面周長がワーク初期断面周長を越えない形状に成形して、少なくとも特定した一辺の成形品肉厚をワーク初期肉厚よりも増加させる構成としたことを特徴としており、この液圧成形方法の構成を上記した従来の課題を解決するための手段としている。
【0007】
本発明の請求項2に係わる液圧成形方法は、ポンチによって形成される辺と隣接する辺の肉厚をワーク初期肉厚よりも増加させる構成としている。
【0008】
本発明の請求項3に係わる液圧成形装置は、請求項1および2に記載の液圧成形方法に用いる液圧成形装置であって、ダイと、両端がシールされた状態でダイに固定されるパイプ状をなすワークの中空部に対して加工液の注入排出を行う加工液供給部と、加工液供給部による加工液の注入によって中空部に液圧を加えたワークを押圧するポンチを備え、中空部の内圧が拡管を生じさせない液圧に保たれた状態のワークをポンチで押圧することで、断面が四角形以上の多角形状をなしかつ断面周長がワーク初期断面周長を越えない形状に成形し、少なくとも特定した一辺の成形品肉厚をワーク初期肉厚よりも増加可能とした構成としたことを特徴としており、この液圧成形装置の構成を上記した従来の課題を解決するための手段としている。
【0009】
本発明の請求項4に係わる液圧成形装置において、ポンチはダイのダイキャビティ内を移動してワークを押圧する構成とし、本発明の請求項5に係わる液圧成形装置において、ダイのダイキャビティは凹状をなし、ダイキャビティのポンチが摺接する縦壁と、ダイキャビティの底部との間に、ワークの肉厚よりも小さくかつワークの肉厚の1/10よりも大きな段差を設けた構成としており、この場合、段差の大きさは、ワークの中空部に作用させる液圧の高さ、あるいは、ポンチに押圧されることによって上昇する中空部の内圧の高さと、加工液を排出して中空部の内圧を下げる速度とのバランスとを考慮して設定され、座屈を生じにくくするためにワークの肉厚よりも小さくし、そして、肉厚を効率よく増加させるためにワークの肉厚の1/10よりも大きく設定している。
【0010】
本発明の請求項6に係わる液圧成形装置において、ダイのダイキャビティは凹状をなし、ダイキャビティのポンチが摺接する縦壁と、ポンチの移動方向とがなす角度を0〜45゜の範囲内に設定してある構成とし、本発明の請求項7に係わる液圧成形装置は、ダイのダイキャビティの縦壁と摺接するポンチのワーク押圧面の両端に、ワーク側に突出しかつダイキャビティの縦壁と略直角をなす張り出し部を設けた構成とし、本発明の請求項8に係わる液圧成形装置は、ワークを間にして対向配置した2個のポンチを備え、両ポンチ側に開口するダイのダイキャビティ内にセットしたワークを両側から押圧する構成としている。
【0011】
本発明の請求項9に係わる車体用部材は、請求項3ないし8に記載の液圧成形装置によって成形された車体用部材であって、ポンチによって形成される辺に隣接してワーク初期肉厚よりも1.03倍以上増加させた肉厚の辺を備えている構成としており、本発明の請求項10に係わる車体用部材は、ポンチによって形成される辺の両端にワーク初期肉厚よりも1.1倍以上増加させた肉厚のコーナー部を備えている構成としている。
【0012】
【発明の作用】
本発明の請求項1に係わる液圧成形方法では、上記した構成としたから、ワークの素材に高強度板材やアルミニウム板材を採用した場合であったとしても、割れの発生を阻止し得ることとなり、加えて、断面内の特定した辺の成形品肉厚のみが増加することから、軽量でかつ高い曲げ強度の成形品が成形されることとなる。
【0013】
本発明の請求項2に係わる液圧成形方法において、上記した構成としているので、例えば、サイドルーフレールなどの車体用部材を成形する際には、高い曲げ強度を得るために必要とされる部位の肉厚が確保されることとなる。
【0014】
一方、本発明の請求項3に係わる液圧成形装置では、パイプ状をなすワークの中空部に加工液を注入して加圧しつつ、ダイおよびポンチによってワークを所定形状に成形するに際して、断面が四角形以上の多角形状をなしかつ断面周長がワーク初期断面周長を越えない形状にワークを成形するので、例え、ワークの素材に高強度板材やアルミニウム板材を用いても、割れが生じる恐れがないうえ、断面内の特定した辺の成形品肉厚のみを増加させ得るので、軽量でかつ高い曲げ強度の成形品が得られることとなる。
【0015】
本発明の請求項4に係わる液圧成形装置では、ポンチによる圧縮力がワークに対して有効に働くこととなり、本発明の請求項5に係わる液圧成形装置では、短いポンチストロークで断面内の特定した辺の成形品肉厚が増加することとなる、すなわち、特定した辺の成形品肉厚の増加が効率よくなされることとなる。
【0016】
本発明の請求項6および7に係わる液圧成形装置では、ダイのダイキャビティやポンチの押圧面の設計の自由度が広がることとなり、本発明の請求項8に係わる液圧成形装置では、コーナー部の肉厚減少および割れが生じることなく、断面内の特定した辺の成形品肉厚がより一層増加することとなり、加えて、この液圧成形装置によって、ワークのセット角度を変えて再び成形加工を行えば、断面が略正方形状をなす成形品も成形し得ることとなる。
【0017】
本発明の請求項9および10に係わる車体用部材は、いずれも高い曲げ強度が要求される部位に用い得ることとなる。
【0018】
【発明の効果】
本発明の請求項1に係わる液圧成形方法では、上記した構成としたから、ワークの素材に高強度板材やアルミニウム板材を用いた場合であったとしても、肉厚減少を抑えて割れのない製品を成形することができるのに加えて、断面内の特定した辺の成形品肉厚のみを増加させることが可能であり、その結果、軽量でかつ高い曲げ強度を有する製品を成形することができるという著しく優れた効果がもたらされる。
【0019】
本発明の請求項2に係わる液圧成形方法では、上記した構成としたため、例えば、サイドルーフレールなどの車体用部材を成形する際には、高い曲げ強度を得るために必要とされる部位の肉厚を確保することが可能であるという著しく優れた効果がもたらされる。
【0020】
本発明の請求項3に係わる液圧成形装置では、上記した構成としているので、ワークの素材に高強度板材やアルミニウム板材を採用したとしても、割れを生じさせることなく成形することができ、加えて、断面内の特定した辺の成形品肉厚のみを増加させ得るので、軽量でかつ高い曲げ強度の製品を成形することが可能であるという著しく優れた効果がもたらされる。
【0021】
本発明の請求項4に係わる液圧成形装置では、上記した構成としたため、ポンチによる圧縮力をワークに対して有効に作用させることができ、本発明の請求項5に係わる液圧成形装置では、上記した構成としていることから、短いポンチストロークで断面内の特定した辺の成形品肉厚を増加させることができ、すなわち、特定した辺の成形品肉厚を効率よく増加させることが可能であるという著しく優れた効果がもたらされる。
【0022】
本発明の請求項6および7に係わる液圧成形装置では、ダイのダイキャビティやポンチの押圧面の設計の自由度を広げることができ、本発明の請求項8に係わる液圧成形装置では、コーナー部の肉厚減少および割れを生じさせることなく、断面内の特定した辺の成形品肉厚をより一層増やすことが可能であり、加えて、この液圧成形装置によって、ワークのセット角度を変えて再び成形加工を行うことで、断面が略正方形状をなす製品をも成形することが可能であるという著しく優れた効果がもたらされる。
【0023】
本発明の請求項9および10に係わる車体用部材は、上記した構成としているので、いずれも軽量でかつ高い曲げ強度が要求される部位に用いることができるという著しく優れた効果がもたらされる。
【0024】
【実施例】
以下、本発明を図面に基づいて説明する。
【0025】
[第1実施例]
図1〜図6は、本発明の一実施例による液圧成形方法に用いる液圧成形装置、すなわち、本発明の一実施例による液圧成形装置を示しており、この実施例では本発明に係わる液圧成形方法および液圧成形装置により、サイドルーフレール(車体用部材)を成形する場合を示す。
【0026】
図1および図2に示すように、この液圧成形装置1は、凹状をなすダイキャビティ2aを有するダイ2と、パイプ状をなす肉厚2.2mmのワーク(370MPa級の鋼材からなるワーク、本実施例ではJIS G 3445で規定されたSTKM11Aの機械構造用炭素鋼鋼管)Wの両端をシールするシール治具3と、ワークWの両端部をダイ2に挟み込み状態で固定する支持部4と、シール治具3でシールされたワークWの中空部Waに対して加工液の注入排出を行う加工液供給部5と、この加工液供給部5による加工液の注入によって中空部Waに液圧Pを加えたワークWを押圧するポンチ6を備えており、ダイキャビティ2aは、図3にも示すように、互いに対向する縦壁2bと、底壁2cと、両壁2b,2c間に位置する斜壁2dを具備している。
【0027】
この場合、ポンチ6は、ダイ2のダイキャビティ2a内を上下方向に移動してワークWを押圧するようになっており、このポンチ6のダイキャビティ2aの縦壁2bと摺接するワーク押圧面6aの両端には、ワークW側に突出しかつダイキャビティ2aの縦壁2bと略直角をなす張り出し部6bが設けてある。
【0028】
この液圧成形装置1によりワークWに対して液圧成形を施してサイドルーフレール(車体用部材)Sを製作する場合には、まず、ワークWをダイ2のダイキャビティ2a内にセットして、支持部4によりワークWの両端部をダイ2に挟み込み状態で固定する。
【0029】
続いて、ワークWの両端にシール治具3をそれぞれ挿入してシールした後、加工液供給部5からワークWの中空部Waに対して加工液の注入を行う。
【0030】
次いで、ワークWの中空部Waの内圧Pを50MPa(拡管を生じさせない液圧)に保ちつつ、図1(b)に示すように、ポンチ6を下降させてそのワーク押圧面6aでワークWを押圧すると、図4に示すように、断面が変則六角形状をなすサイドルーフレールSが成形されることとなる。
【0031】
このとき、成形品であるサイドルーフレールSの断面周長はワークWの初期断面周長よりも減少している。一方、肉厚は、サイドルーフレールSの底辺Scおよびその両端近傍を除いて増加しており、ポンチ6によって形成される横辺Saと隣接する縦辺Sbの成形品肉厚はワークWの初期肉厚よりも約9%増加し、横辺Saと縦辺Sbとの間のコーナー部Seの成形品肉厚は25%以上増加していると共に、縦辺Sbと斜辺Sdとの間の丸み部Sfにおいても成形品肉厚は僅かながら増加している。
【0032】
そこで、この液圧成形装置1により、肉厚2.0mmの590MPa級の鋼材からなるワークに対しても上記と同じ成形を施したところ、縦辺Sbと斜辺Sdとの間の丸み部Sfには肉厚の減少が発生せず、むしろ増加していたことから、伸びの少ない鋼管に対しても本発明に係わる液圧成形方法が有効であることが実証できた。
【0033】
また、図5のグラフとともに示すように、切り出したサイドルーフレールSの両端をI型鋼7に溶接し、500mmの間隔をおいて配置した支持部8,8間にセットして、中心をR50の押し子9で変形させる静的な3点曲げ実験を行って、荷重とストロークの関係を調べたところ、図5のグラフに示す結果を得た。
【0034】
図5のグラフに示すように、断面周長をワークWの初期断面周長に合わせて成形した肉厚増加のない成形品と比べて、本発明に係わる液圧成形方法および液圧成形装置1により成形したサイドルーフレールSが、最大曲げ荷重値において約64%増加することが判り、この効果は、図6のグラフに示すように、縦辺Sbの成形品肉厚増加が3%以上となったときに顕著である。
【0035】
したがって、高強度板材やアルミニウム板材を用いて、割れのない、しかも、軽量でかつ高い曲げ強度の製品を成形し得ることが立証できた。
【0036】
また、この液圧成形装置1では、ポンチ6がダイ2のダイキャビティ2a内を移動してワークWを押圧するようにしているので、ポンチ6による圧縮力がワークWに対して有効に働くこととなり、さらに、この液圧成形装置1では、ポンチ6のダイキャビティ2aの縦壁2bと摺接するワーク押圧面6aの両端に、ダイキャビティ2aの縦壁2bと略直角をなす張り出し部6bを設けているので、ポンチ6の押圧面6aの設計の自由度が広がることとなる。
【0037】
そして、この液圧成形装置1を用いた液圧成形方法により成形されたサイドルーフレールSは、ワークWの初期肉厚よりも約9%厚みが増した縦辺Sbを備えていると共に、横辺Saと縦辺Sbとの間にワークWの初期肉厚よりも25%以上厚みが増したコーナー部Seを備えていることから、サイドルーフレールSに要求される高い曲げ強度をいずれも満足することとなる。
【0038】
[第2実施例]
図7は本発明に係わる液圧成形装置の他の実施例を示している。
【0039】
図7に部分的に示すように、この液圧成形装置21では、凹状をなすダイキャビティ22aのポンチ6が摺接する縦壁22bと、ダイキャビティ22aの底壁22cとの間に、ワークWの肉厚よりも小さくかつワークWの肉厚の1/10よりも大きな段差22gを設けており、他の構成は先の実施例における液圧成形装置1と同じである。
【0040】
この液圧成形装置21では、段差22bの大きさをワークWの中空部Waに作用させる液圧Pの高さ、あるいは、ポンチ6に押圧されることによって上昇する中空部Waの内圧Pの高さと、加工液を排出して中空部Waの内圧Pを下げる速度とのバランスとを考慮して設定してあるので、、成形時における座屈の発生がより一層少なく抑えれることとなり、加えて、短いポンチストロークで断面内の特定した辺の成形品肉厚が増加することとなる、すなわち、縦辺Sbの肉厚の増加が効率よくなされることとなる。
【0041】
[第3実施例]
図8は本発明に係わる液圧成形装置のさらに他の実施例を示している。
【0042】
図8に部分的に示すように、この液圧成形装置31では、凹状をなすダイキャビティ32aのポンチ6が摺接する縦壁32bと、ポンチ6の移動方向とがなす角度θを0〜45゜の範囲内に設定しており、他の構成は第1実施例における液圧成形装置1と同じである。
【0043】
この液圧成形装置31では、成形時にポンチ6とダイキャビティ32aの縦壁32bとの間に生じる摩擦力が小さく抑えられて、圧縮力が広範囲に有効に作用することとなり、加えて、ダイ32におけるダイキャビティ32aの設計の自由度を広げ得ることとなる。
【0044】
ここで、ポンチ6の移動方向に対するダイキャビティ32aの縦壁32bの角度θを変化させて、ワークWの初期周長を3%縮めて成形した場合におけるサイドルーフレールSの縦辺Sbの肉厚増加比を測定したところ、図9のグラフに示す結果を得た。
【0045】
図9のグラフに示すように、ポンチ6の移動方向に対するダイキャビティ32aの縦壁32bの角度θが約50゜を越えると、縦辺Sbの肉厚増加比が3%を下回ることが実証できた。
【0046】
[第4実施例]
図10および図11は本発明に係わる液圧成形装置のさらに他の実施例を示している。
【0047】
図10に示すように、この液圧成形装置41では、パイプ状をなす肉厚2.2mmのワーク(370MPa級の鋼材からなるワーク、本実施例においてもJIS G 3445で規定されたSTKM11Aの機械構造用炭素鋼鋼管)Wを間にして上下に対向配置した2個のポンチ46,46を備え、両ポンチ46,46側に開口するダイ42のダイキャビティ42a内にセットしたワークWを両側から押圧するようにしており、他の構成は第1実施例における液圧成形装置1と同じである。
【0048】
この液圧成形装置41により、第1実施例と同じようにしてワークWに対して液圧成形を行って、断面が四角形状をなす製品SAを成形したところ、図11に示すように、製品SAの断面周長はワークWの初期断面周長よりも減少している。一方、製品SAの縦辺SAbの成形品肉厚は、第1実施例の液圧成形装置1によって成形したサイドルーフレールSの縦辺Sbの成形品肉厚よりもさらに厚みが増しており、ワークWの初期肉厚に対する増加量は約20%に達している。また、コーナー部SAeの肉厚減少もなく、肉厚2.0mmの590MPa級の鋼材からなるワークの場合も、割れを生じさせることなく成形することができた。
【0049】
加えて、この液圧成形装置41では、上記成形の後、製品SAを90゜回転させてセットし直して再び成形加工を行えば、断面が正方形状ないしは略正方形状をなす製品も成形し得ることとなる。
【0050】
本発明に係わる液圧成形方法および液圧成形装置ならびに車体用部材の詳細な構成は上記した実施例に限定されるものではない。
【図面の簡単な説明】
【図1】本発明に係わる液圧成形方法および液圧成形装置の一実施例を示す断面説明図(a)および成形時における断面説明図(b)である。
【図2】図1に示した液圧成形装置の全体斜視説明図である。
【図3】図1における液圧成形装置のダイおよびポンチの断面説明図である。
【図4】図1に示した液圧成形装置により成形されたサイドルーフレールの断面説明図である。
【図5】サイドルーフレールに対して行った3点曲げ実験により得られた荷重とストロークとの関係を示すグラフである。
【図6】3点曲げ実験における最大曲げ荷重とサイドルーフレールの縦辺の肉厚比との関係を示すグラフである。
【図7】本発明に係わる液圧成形装置の他の実施例を示すダイのダイキャビティの斜視説明図である。
【図8】本発明に係わる液圧成形装置のさらに他の実施例を示すダイのダイキャビティの部分断面説明図である。
【図9】ポンチの移動方向に対するダイキャビティの縦壁の角度とサイドルーフレールの縦辺の肉厚増加比との関係を示すグラフである。
【図10】本発明に係わる液圧成形装置のさらに他の実施例を示す断面説明図(a)および成形時における断面説明図(b)である。
【図11】図10に示した液圧成形装置により成形された製品の断面説明図である。
【符号の説明】
1,21,31,41 液圧成形装置
2,22,32,42 ダイ
2a,22a,32a,42a ダイキャビティ
5 加工液供給部
6,46 ポンチ
6a ポンチのワーク押圧面
6b 張り出し部
22g 段差
32b ダイキャビティの縦壁
P 液圧
S サイドルーフレール(車体用部材)
Sa ポンチによって形成される辺
Sb 縦辺(ポンチによって形成される辺と隣接する辺)
Se コーナー部
W ワーク
Wa 中空部
θ ダイキャビティの縦壁とポンチの移動方向とがなす角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to, for example, a hydraulic molding method and a hydraulic molding that are used to mold a vehicle body member with a die and a punch while injecting a machining fluid into a hollow portion of a pipe-shaped workpiece and applying a hydraulic pressure. The present invention also relates to an apparatus, and also relates to a member for a vehicle body such as a side roof rail formed by the hydraulic forming method and the hydraulic forming apparatus.
[0002]
[Prior art]
Conventionally, as the above-described hydraulic forming method, for example, there is a preliminary processing performed subsequent to a bending process performed on a pipe-shaped workpiece for forming by hydroforming. In this hydroforming preliminary processing, a low hydraulic pressure is used. By clamping the mold while adding to the hollow part of the work, the work is formed into a rough part shape.
[0003]
As another hydraulic forming method, there is a bulge processing method. In this bulge processing method, the pipe-shaped workpiece set in the mold is pushed in the axial direction, and is expanded into a predetermined shape by hydraulic pressure. In this bulge processing method, Since the work is pushed in the axial direction, a reduction in wall thickness when the pipe is expanded is suppressed, and the moldability is kept good.
[0004]
[Problems to be solved by the invention]
However, in the conventional hydraulic forming method described above, in the case of hydroforming preliminary processing, since it is a hydraulic forming method on the premise of pipe expansion, the thickness is reduced and cracking is likely to occur in high-strength plate materials and aluminum plate materials. However, in the case of the bulge processing method, the thickness of the entire workpiece increases due to the fact that the workpiece is pushed in the axial direction. Although it is effective, there is a problem that the thickness of a specific part in the cross section cannot be increased and the weight of the molded product cannot be reduced.To solve these problems Has become a conventional problem.
[0005]
OBJECT OF THE INVENTION
The present invention has been made by paying attention to the above-described conventional problems, and even if a high-strength plate or aluminum plate is used, it can be formed without causing cracks, It is possible to increase the thickness of a molded product at a specific part in the interior, and as a result, a hydraulic molding method and a hydraulic molding device capable of increasing the bending strength of the molded product while realizing weight reduction. An object of the present invention is to provide a vehicle body member that is lightweight and excellent in bending strength.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a hydraulic forming method for forming a workpiece into a predetermined shape by a die and a punch while injecting a working fluid into a hollow portion of a pipe-shaped workpiece and pressurizing it. While the rounded corner portion is formed on the punch side, the fluid pressure ((work thickness (mm) × yield point stress (MPa) × 0.6) MPa) is maintained so that pipe expansion does not occur. In addition, the cross-section is formed into a polygonal shape having a quadrangle or more and the cross-section circumference is formed into a shape that does not exceed the work initial cross-section circumference, so that the thickness of the molded product on at least one specified side is increased more than the work initial wall thickness. The configuration of this hydraulic forming method is a means for solving the above-described conventional problems.
[0007]
In the hydraulic forming method according to claim 2 of the present invention, the thickness of the side adjacent to the side formed by the punch is increased more than the initial thickness of the workpiece.
[0008]
A hydroforming apparatus according to claim 3 of the present invention is a hydroforming apparatus used in the hydroforming method according to claims 1 and 2, and is fixed to the die in a state where both ends are sealed. A machining fluid supply part that injects and discharges the machining liquid to and from the hollow part of the pipe-shaped workpiece, and a punch that presses the workpiece that has been subjected to liquid pressure applied to the hollow part by the machining liquid injection by the machining liquid supply part. By pressing the work in a state where the internal pressure of the hollow part is maintained at a hydraulic pressure that does not cause expansion of the tube, the cross-section has a polygonal shape that is equal to or greater than a quadrangle, and the cross-sectional circumference does not exceed the initial cross-sectional circumference In order to solve the conventional problems described above, the configuration of this hydraulic forming apparatus is characterized in that the thickness of the molded product at least on one side specified can be increased from the initial thickness of the workpiece. As a means of.
[0009]
In the hydraulic forming apparatus according to claim 4 of the present invention, the punch moves in the die cavity of the die and presses the workpiece, and in the hydraulic forming apparatus according to claim 5 of the present invention, the die cavity of the die Has a concave shape, and a step is provided between the vertical wall where the punch of the die cavity comes into sliding contact with the bottom of the die cavity and smaller than the thickness of the workpiece and larger than 1/10 of the thickness of the workpiece. In this case, the size of the step is determined by the height of the hydraulic pressure that acts on the hollow portion of the workpiece, or the height of the internal pressure of the hollow portion that rises when pressed by the punch, and the processing liquid is discharged and hollowed. It is set in consideration of the balance with the speed to reduce the internal pressure of the part, it is made smaller than the workpiece thickness in order to make buckling less likely to occur, and the thickness of the workpiece is increased in order to increase the thickness efficiently. It is set to be larger than a / 10.
[0010]
In the hydroforming apparatus according to claim 6 of the present invention, the die cavity of the die has a concave shape, and the angle formed by the vertical wall in which the punch of the die cavity is in sliding contact with the moving direction of the punch is in the range of 0 to 45 °. The hydraulic forming apparatus according to claim 7 of the present invention projects to the workpiece side at both ends of the workpiece pressing surface of the punch that is in sliding contact with the vertical wall of the die cavity of the die and the vertical direction of the die cavity. The hydraulic forming apparatus according to claim 8 of the present invention is provided with two punches arranged opposite to each other with a workpiece interposed therebetween, and a die that opens to both punch sides. The work set in the die cavity is pressed from both sides.
[0011]
A vehicle body member according to claim 9 of the present invention is a vehicle body member formed by the hydraulic forming apparatus according to any one of claims 3 to 8, wherein the workpiece initial wall thickness is adjacent to a side formed by the punch. The vehicle body member according to claim 10 of the present invention has a thickness side increased by 1.03 times or more than the workpiece initial wall thickness at both ends of the side formed by the punch. It is set as the structure provided with the corner part of the wall thickness increased 1.1 times or more.
[0012]
[Effects of the Invention]
In the hydraulic forming method according to claim 1 of the present invention, since it has the above-described configuration, even if a high-strength plate or aluminum plate is used as the workpiece material, the occurrence of cracks can be prevented. In addition, since only the thickness of the molded product at the specified side in the cross section is increased, a molded product having a light weight and high bending strength is formed.
[0013]
In the hydraulic forming method according to claim 2 of the present invention, since the above-described configuration is adopted, for example, when a vehicle body member such as a side roof rail is formed, a portion required for obtaining a high bending strength is obtained. Wall thickness will be secured.
[0014]
On the other hand, in the hydraulic forming apparatus according to claim 3 of the present invention, when the workpiece is formed into a predetermined shape with a die and a punch while injecting the processing liquid into the hollow portion of the pipe-shaped workpiece and pressurizing it, the cross section is reduced. Since the workpiece is formed into a polygonal shape that is more than a quadrangle and the cross-sectional circumference does not exceed the initial cross-sectional circumference of the work, cracking may occur even if a high-strength plate or aluminum plate is used as the workpiece material. Moreover, since only the thickness of the molded product at the specified side in the cross section can be increased, a molded product having a light weight and high bending strength can be obtained.
[0015]
In the hydraulic forming apparatus according to the fourth aspect of the present invention, the compressive force by the punch works effectively on the workpiece, and in the hydraulic forming apparatus according to the fifth aspect of the present invention, the punching force is reduced within the cross section with a short punch stroke. The thickness of the molded product on the specified side is increased, that is, the thickness of the molded product on the specified side is efficiently increased.
[0016]
In the hydroforming apparatus according to claims 6 and 7 of the present invention, the degree of freedom in designing the die cavity of the die and the pressing surface of the punch is widened. The thickness of the molded product at the specified side in the cross section is further increased without reducing the thickness of the part and causing cracks. In addition, this hydraulic forming device changes the workpiece set angle and re-forms. If the processing is performed, a molded product having a substantially square cross section can be formed.
[0017]
Any of the vehicle body members according to claims 9 and 10 of the present invention can be used in a portion where high bending strength is required.
[0018]
【The invention's effect】
In the hydraulic forming method according to claim 1 of the present invention, since it is configured as described above, even if a high-strength plate or aluminum plate is used as the workpiece material, the thickness reduction is suppressed and there is no crack. In addition to being able to mold the product, it is possible to increase only the thickness of the molded part at the specified side in the cross section, so that it is possible to mold a product that is lightweight and has high bending strength The remarkable effect that it is possible is brought about.
[0019]
In the hydraulic forming method according to claim 2 of the present invention, since it has the above-described configuration, for example, when molding a vehicle body member such as a side roof rail, the portion of the meat required for obtaining high bending strength is obtained. A remarkably excellent effect that the thickness can be secured is brought about.
[0020]
Since the hydraulic forming apparatus according to claim 3 of the present invention has the above-described configuration, even if a high-strength plate or aluminum plate is adopted as the workpiece material, it can be formed without causing cracks. Thus, since only the thickness of the molded product at the specified side in the cross section can be increased, it is possible to produce a light and high bending strength product.
[0021]
Since the hydraulic forming apparatus according to claim 4 of the present invention has the above-described configuration, the compressive force by the punch can be effectively applied to the workpiece. In the hydraulic forming apparatus according to claim 5 of the present invention, Because of the configuration described above, it is possible to increase the thickness of the molded product at the specified side in the cross section with a short punch stroke, that is, it is possible to efficiently increase the thickness of the molded product at the specified side. There is a markedly superior effect.
[0022]
In the hydroforming apparatus according to claims 6 and 7 of the present invention, the degree of freedom in designing the die cavity of the die and the pressing surface of the punch can be expanded. In the hydroforming apparatus according to claim 8 of the present invention, It is possible to further increase the thickness of the molded product at the specified side in the cross section without causing a reduction in thickness and cracking at the corners. By changing and performing the molding process again, it is possible to produce a remarkably excellent effect that it is possible to mold a product having a substantially square cross section.
[0023]
Since the vehicle body member according to the ninth and tenth aspects of the present invention has the above-described configuration, it is possible to provide a remarkably excellent effect that both can be used for a portion that is lightweight and requires high bending strength.
[0024]
【Example】
The present invention will be described below with reference to the drawings.
[0025]
[First embodiment]
1 to 6 show a hydraulic forming apparatus used in a hydraulic forming method according to an embodiment of the present invention, that is, a hydraulic forming apparatus according to an embodiment of the present invention. The case where a side roof rail (vehicle body member) is formed by the related hydraulic forming method and hydraulic forming apparatus will be described.
[0026]
As shown in FIGS. 1 and 2, the hydroforming apparatus 1 includes a die 2 having a concave die cavity 2a, a pipe-shaped workpiece having a thickness of 2.2 mm (a workpiece made of a 370 MPa class steel material, In this embodiment, a sealing jig 3 for sealing both ends of STKM11A machine structural carbon steel pipe (W) defined by JIS G 3445, and a support 4 for fixing both ends of the workpiece W in a state of being sandwiched between the dies 2, The machining fluid supply unit 5 that injects and discharges the machining fluid to and from the hollow portion Wa of the workpiece W sealed by the sealing jig 3, and the hydraulic pressure is applied to the hollow portion Wa by the machining fluid injection by the machining fluid supply unit 5. As shown in FIG. 3, the die cavity 2a is provided between the vertical wall 2b, the bottom wall 2c, and both walls 2b, 2c facing each other. The sloping wall 2d It is Bei.
[0027]
In this case, the punch 6 moves up and down in the die cavity 2a of the die 2 to press the workpiece W, and the workpiece pressing surface 6a that is in sliding contact with the vertical wall 2b of the die cavity 2a of the punch 6 is used. At both ends, projecting portions 6b projecting toward the workpiece W and substantially perpendicular to the vertical wall 2b of the die cavity 2a are provided.
[0028]
When the side roof rail (vehicle body member) S is manufactured by performing hydraulic forming on the workpiece W by the hydraulic forming apparatus 1, first, the workpiece W is set in the die cavity 2a of the die 2, Both ends of the workpiece W are fixed in a state of being sandwiched between the dies 2 by the support portion 4.
[0029]
Subsequently, after the sealing jig 3 is inserted and sealed at both ends of the workpiece W, the machining fluid is injected into the hollow portion Wa of the workpiece W from the machining fluid supply unit 5.
[0030]
Next, while maintaining the internal pressure P of the hollow portion Wa of the workpiece W at 50 MPa (fluid pressure that does not cause tube expansion), as shown in FIG. 1B, the punch 6 is lowered and the workpiece W is moved by the workpiece pressing surface 6a. When pressed, as shown in FIG. 4, the side roof rail S whose cross section has an irregular hexagonal shape is formed.
[0031]
At this time, cross-sectional circumference of Sa id roof rail S a molded article is reduced from the initial cross-sectional circumference of the workpiece W. On the other hand, the thickness of the side roof rail S is increased except for the bottom side Sc and the vicinity of both ends thereof, and the thickness of the molded product on the vertical side Sb adjacent to the horizontal side Sa formed by the punch 6 is the initial thickness of the workpiece W. The thickness of the molded product of the corner portion Se between the horizontal side Sa and the vertical side Sb is increased by about 25% or more, and the rounded portion between the vertical side Sb and the hypotenuse Sd is increased by about 9%. Also in Sf, the thickness of the molded product is slightly increased.
[0032]
Therefore, when the same forming as described above is performed on a workpiece made of a 590 MPa class steel material having a thickness of 2.0 mm by this hydraulic forming device 1, a rounded portion Sf between the vertical side Sb and the hypotenuse Sd is formed. Since the wall thickness did not decrease but increased, it was proved that the hydroforming method according to the present invention is effective even for a steel pipe having a small elongation.
[0033]
Further, as shown together with the graph of FIG. 5, both ends of the cut-out side roof rail S are welded to the I-shaped steel 7 and set between the support portions 8 and 8 arranged at an interval of 500 mm, and the center is pushed by R50. A static three-point bending experiment in which the element 9 was deformed was conducted to examine the relationship between the load and the stroke, and the result shown in the graph of FIG. 5 was obtained.
[0034]
As shown in the graph of FIG. 5, compared with a molded product that does not increase in wall thickness, the hydraulic pressure forming method and the hydraulic pressure forming apparatus 1 according to the present invention are compared with the molded product that is formed with the cross-sectional peripheral length matching the initial cross-sectional peripheral length of the work W It can be seen that the side roof rail S formed by the process increases by about 64% at the maximum bending load value. This effect is obtained by increasing the thickness of the molded product on the vertical side Sb by 3% or more as shown in the graph of FIG. It is remarkable when.
[0035]
Therefore, it has been proved that a high-strength plate or aluminum plate can be used to form a product that is not cracked and that is lightweight and has high bending strength.
[0036]
Moreover, in this hydraulic forming apparatus 1, since the punch 6 moves in the die cavity 2a of the die 2 and presses the workpiece W, the compressive force by the punch 6 works effectively on the workpiece W. Furthermore, in this hydraulic forming apparatus 1, overhang portions 6b that are substantially perpendicular to the vertical wall 2b of the die cavity 2a are provided at both ends of the work pressing surface 6a that is in sliding contact with the vertical wall 2b of the die cavity 2a of the punch 6. Therefore, the degree of freedom in designing the pressing surface 6a of the punch 6 is expanded.
[0037]
And the side roof rail S shape | molded by the hydraulic forming method using this hydraulic forming apparatus 1 is provided with the vertical side Sb about 9% thicker than the initial thickness of the workpiece | work W, and a horizontal side Since the corner Se is 25% or more thicker than the initial thickness of the workpiece W between Sa and the vertical side Sb, the high bending strength required for the side roof rail S must be satisfied. It becomes.
[0038]
[Second Embodiment]
FIG. 7 shows another embodiment of the hydroforming apparatus according to the present invention.
[0039]
As shown partially in FIG. 7, in this hydraulic forming apparatus 21, the workpiece W is placed between the vertical wall 22b in which the punch 6 of the concave die cavity 22a is in sliding contact with the bottom wall 22c of the die cavity 22a. A step 22g smaller than the wall thickness and larger than 1/10 of the wall thickness of the workpiece W is provided, and the other configuration is the same as that of the hydraulic forming apparatus 1 in the previous embodiment.
[0040]
In this hydraulic forming device 21, the height of the step 22 b acts on the hollow portion Wa of the workpiece W, or the height of the internal pressure P of the hollow portion Wa that rises when pressed by the punch 6. And the balance with the speed at which the working fluid is discharged and the internal pressure P of the hollow portion Wa is lowered, the occurrence of buckling during molding can be further reduced. The thickness of the molded product at the specified side in the cross section is increased with a short punch stroke, that is, the thickness of the vertical side Sb is efficiently increased.
[0041]
[Third embodiment]
FIG. 8 shows still another embodiment of the hydroforming apparatus according to the present invention.
[0042]
As shown in part in FIG. 8, in this hydroforming apparatus 31, the angle θ formed by the vertical wall 32 b slidably in contact with the punch 6 of the concave die cavity 32 a and the moving direction of the punch 6 is 0 to 45 °. The other configuration is the same as that of the hydraulic forming apparatus 1 in the first embodiment.
[0043]
In the hydroforming apparatus 31, the frictional force generated between the punch 6 and the vertical wall 32b of the die cavity 32a during molding is suppressed to be small, and the compressive force acts effectively over a wide range. The degree of freedom in designing the die cavity 32a can be expanded.
[0044]
Here, when the angle θ of the vertical wall 32b of the die cavity 32a with respect to the moving direction of the punch 6 is changed and the initial circumferential length of the work W is reduced by 3%, the thickness of the vertical side Sb of the side roof rail S is increased. When the ratio was measured, the results shown in the graph of FIG. 9 were obtained.
[0045]
As shown in the graph of FIG. 9, when the angle θ of the vertical wall 32b of the die cavity 32a with respect to the moving direction of the punch 6 exceeds about 50 °, it can be demonstrated that the thickness increase ratio of the vertical side Sb is less than 3%. It was.
[0046]
[Fourth embodiment]
10 and 11 show still another embodiment of the hydroforming apparatus according to the present invention.
[0047]
As shown in FIG. 10, in this hydraulic forming apparatus 41, a pipe-shaped workpiece having a thickness of 2.2 mm (a workpiece made of a 370 MPa grade steel material, also in this embodiment, an STKM 11A machine defined by JIS G 3445) (Structural carbon steel pipe) W is provided with two punches 46, 46 facing each other in the vertical direction, and the workpiece W set in the die cavity 42a of the die 42 opened on both punches 46, 46 side is viewed from both sides. The other structure is the same as that of the hydraulic forming apparatus 1 in the first embodiment.
[0048]
With this hydraulic pressure forming device 41, the workpiece W was subjected to hydraulic pressure molding in the same manner as in the first embodiment, and a product SA having a square cross section was formed. As shown in FIG. The sectional circumferential length of SA is smaller than the initial sectional circumferential length of the workpiece W. On the other hand, the thickness of the molded product on the vertical side SAb of the product SA is further increased than the thickness of the molded product on the vertical side Sb of the side roof rail S formed by the hydraulic forming apparatus 1 of the first embodiment. The increase of W with respect to the initial thickness has reached about 20%. Further, there was no reduction in the thickness of the corner portion SAe, and even in the case of a workpiece made of a 590 MPa class steel material having a thickness of 2.0 mm, it was possible to form without causing cracks.
[0049]
In addition, in this hydraulic forming apparatus 41, if the product SA is rotated by 90 ° and set again after the above molding, a product having a square or substantially square cross section can be molded. It will be.
[0050]
The detailed configurations of the hydraulic forming method, the hydraulic forming apparatus, and the vehicle body member according to the present invention are not limited to the above-described embodiments.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view (a) showing an embodiment of a hydraulic forming method and a hydraulic forming apparatus according to the present invention and a cross-sectional explanatory view (b) at the time of forming.
2 is an overall perspective view of the hydraulic forming apparatus shown in FIG. 1. FIG.
FIG. 3 is a cross-sectional explanatory view of a die and a punch of the hydraulic forming apparatus in FIG.
4 is a cross-sectional explanatory view of a side roof rail formed by the hydraulic forming apparatus shown in FIG. 1. FIG.
FIG. 5 is a graph showing a relationship between a load and a stroke obtained by a three-point bending experiment performed on a side roof rail.
FIG. 6 is a graph showing the relationship between the maximum bending load and the thickness ratio of the vertical side of the side roof rail in a three-point bending experiment.
FIG. 7 is a perspective explanatory view of a die cavity of a die showing another embodiment of the hydroforming apparatus according to the present invention.
FIG. 8 is a partial cross-sectional explanatory view of a die cavity of a die showing still another embodiment of the hydraulic forming apparatus according to the present invention.
FIG. 9 is a graph showing the relationship between the angle of the vertical wall of the die cavity with respect to the movement direction of the punch and the thickness increase ratio of the vertical side of the side roof rail.
FIG. 10 is a cross-sectional explanatory view (a) showing still another embodiment of the hydraulic forming apparatus according to the present invention and a cross-sectional explanatory view (b) during molding.
11 is an explanatory cross-sectional view of a product molded by the hydraulic molding apparatus shown in FIG.
[Explanation of symbols]
1, 21, 31, 41 Hydraulic forming device 2, 22, 32, 42 Die 2a, 22a, 32a, 42a Die cavity 5 Work fluid supply unit 6, 46 Punch 6a Punch work pressing surface 6b Overhang portion 22g Step 32b Die Cavity vertical wall P Hydraulic pressure S Side roof rail (vehicle body member)
Side Sb formed by Sa punch Vertical side (side adjacent to side formed by punch)
Se Corner part W Work Wa Hollow part θ Angle formed by the vertical wall of the die cavity and the moving direction of the punch

Claims (10)

パイプ状をなすワークの中空部に加工液を注入して加圧しつつ、ダイおよびポンチによってワークを所定形状に成形する液圧成形方法において、少なくともワークのポンチ側に丸みを有するコーナー部が成形されるまでの間、拡管が生じない液圧を保ちつつ、断面が四角形以上の多角形状をなしかつ断面周長がワーク初期断面周長を越えない形状に成形して、少なくとも特定した一辺の成形品肉厚をワーク初期肉厚よりも増加させることを特徴とする液圧成形方法。In a hydraulic forming method in which a workpiece is molded into a predetermined shape by a die and a punch while injecting a working fluid into a hollow portion of a pipe-shaped workpiece and pressurizing, a corner portion having a roundness is formed at least on the punch side of the workpiece. Until then, forming a polygonal shape with a cross-section of a quadrangle or more and a cross-sectional circumference that does not exceed the initial cross-section circumference of the workpiece, while maintaining a hydraulic pressure that does not cause pipe expansion, and at least a specified one-side molded product hydroforming method characterized by increasing than the thickness workpiece initial thickness. ポンチによって形成される辺と隣接する辺の肉厚をワーク初期肉厚よりも増加させる請求項1に記載の液圧成形方法。  The hydraulic forming method according to claim 1, wherein the thickness of the side adjacent to the side formed by the punch is increased more than the initial thickness of the workpiece. 請求項1および2に記載の液圧成形方法に用いる液圧成形装置であって、ダイと、両端がシールされた状態でダイに固定されるパイプ状をなすワークの中空部に対して加工液の注入排出を行う加工液供給部と、加工液供給部による加工液の注入によって中空部に液圧を加えたワークを押圧するポンチを備え、中空部の内圧が拡管を生じさせない液圧に保たれた状態のワークをポンチで押圧することで、断面が四角形以上の多角形状をなしかつ断面周長がワーク初期断面周長を越えない形状に成形し、少なくとも特定した一辺の成形品肉厚をワーク初期肉厚よりも増加可能としたことを特徴とする液圧成形装置。It is a hydraulic forming apparatus used for the hydraulic forming method of Claim 1 and 2, Comprising: Work fluid with respect to the hollow part of the pipe | tube-like workpiece | work which makes a die | dye and the both ends sealed in the state sealed. And a punch that presses the workpiece with fluid pressure applied to the hollow portion by injecting the processing fluid from the machining fluid supply portion, and the internal pressure of the hollow portion is maintained at a fluid pressure that does not cause pipe expansion. a sauce state workpiece by pressing with a punch, and molded into a shape in cross-section forms a more polygonal square and cross the circumferential length does not exceed the workpiece initial sectional circumference, the molded article thickness of one side and at least a specific A hydraulic forming device characterized in that it can be increased beyond the initial thickness of the workpiece. ポンチはダイのダイキャビティ内を移動してワークを押圧する請求項3に記載の液圧成形装置。  The hydraulic forming apparatus according to claim 3, wherein the punch moves in the die cavity of the die and presses the workpiece. ダイのダイキャビティは凹状をなし、ダイキャビティのポンチが摺接する縦壁と、ダイキャビティの底部との間に、ワークの肉厚よりも小さくかつワークの肉厚の1/10よりも大きな段差を設けた請求項3または4に記載の液圧成形装置。  The die cavity of the die is concave, and there is a step smaller than the workpiece thickness and greater than 1/10 of the workpiece thickness between the vertical wall where the punch of the die cavity slides and the bottom of the die cavity. The hydraulic forming apparatus according to claim 3 or 4 provided. ダイのダイキャビティは凹状をなし、ダイキャビティのポンチが摺接する縦壁と、ポンチの移動方向とがなす角度を0〜45゜の範囲内に設定してある請求項3または4に記載の液圧成形装置。  The liquid according to claim 3 or 4, wherein the die cavity of the die has a concave shape, and an angle formed by a vertical wall with which the punch of the die cavity is slidably contacted and a moving direction of the punch is set in a range of 0 to 45 °. Pressure forming device. ダイのダイキャビティの縦壁と摺接するポンチのワーク押圧面の両端に、ワーク側に突出しかつダイキャビティの縦壁と略直角をなす張り出し部を設けた請求項3ないし6のいずれかに記載の液圧成形装置。  7. The projecting portion according to claim 3, wherein projecting portions projecting toward the workpiece and substantially perpendicular to the vertical wall of the die cavity are provided at both ends of the workpiece pressing surface of the punch that is in sliding contact with the vertical wall of the die cavity of the die. Hydraulic forming device. ワークを間にして対向配置した2個のポンチを備え、両ポンチ側に開口するダイのダイキャビティ内にセットしたワークを両側から押圧する請求項3,4,7のいずれかに記載の液圧成形装置。  The hydraulic pressure according to any one of claims 3, 4 and 7, comprising two punches arranged opposite to each other with the workpiece interposed therebetween, and pressing the workpiece set in the die cavity of the die opened to both punch sides from both sides. Molding equipment. 請求項3ないし8に記載の液圧成形装置によって成形された車体用部材であって、ポンチによって形成される辺に隣接してワーク初期肉厚よりも1.03倍以上増加させた肉厚の辺を備えていることを特徴とする車体用部材。  A member for a vehicle body formed by the hydraulic forming device according to claim 3, wherein the thickness is increased by 1.03 times or more from the initial thickness of the workpiece adjacent to the side formed by the punch. A vehicle body member comprising a side. ポンチによって形成される辺の両端にワーク初期肉厚よりも1.1倍以上増加させた肉厚のコーナー部を備えている請求項9に記載の車体用部材。  The vehicle body member according to claim 9, further comprising a corner portion having a thickness increased by 1.1 times or more than an initial workpiece thickness at both ends of a side formed by the punch.
JP18392099A 1999-03-26 1999-06-29 Fluid pressure molding method, fluid pressure molding apparatus, and body member Expired - Fee Related JP3642232B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18392099A JP3642232B2 (en) 1999-06-29 1999-06-29 Fluid pressure molding method, fluid pressure molding apparatus, and body member
DE10014619A DE10014619B4 (en) 1999-03-26 2000-03-24 A method and apparatus for forming a tubular workpiece into a shaped hollow product using tube hydroforming
US09/534,261 US6415638B1 (en) 1999-03-26 2000-03-24 Method and device for forming tubular work into shaped hollow product by using tubular hydroforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18392099A JP3642232B2 (en) 1999-06-29 1999-06-29 Fluid pressure molding method, fluid pressure molding apparatus, and body member

Publications (2)

Publication Number Publication Date
JP2001009529A JP2001009529A (en) 2001-01-16
JP3642232B2 true JP3642232B2 (en) 2005-04-27

Family

ID=16144135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18392099A Expired - Fee Related JP3642232B2 (en) 1999-03-26 1999-06-29 Fluid pressure molding method, fluid pressure molding apparatus, and body member

Country Status (1)

Country Link
JP (1) JP3642232B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854812B2 (en) * 2001-03-27 2006-12-06 新日本製鐵株式会社 Strength members for automobiles
EP2172285B1 (en) 2007-07-20 2014-04-30 Nippon Steel & Sumitomo Metal Corporation Hydroforming method
TWI530335B (en) * 2012-12-12 2016-04-21 和碩聯合科技股份有限公司 Pressing method and system thereof
JP6591252B2 (en) * 2015-10-07 2019-10-16 株式会社オティックス Manufacturing method of pipe material
JP2018167312A (en) * 2017-03-30 2018-11-01 住友重機械工業株式会社 Molding equipment and molding method
CN108856441B (en) * 2018-06-21 2020-01-14 哈尔滨工业大学 Pipe thermal medium internal pressure forming method based on molten glass
CN111451351B (en) * 2020-04-30 2022-08-09 初冠南 Forming and integrating method for tubular part

Also Published As

Publication number Publication date
JP2001009529A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
KR100236867B1 (en) Stretch controlled forming mechanism and method for forming multiple gauge welded blanks
JP6146483B2 (en) Press molding apparatus, method for manufacturing a press molded article using the molding apparatus, and press molded article
KR100286623B1 (en) Metal tube hydraulic bulging processing method and apparatus
KR101863469B1 (en) Steel plate material, method for producing same and device for producing same, and method for producing press molded article using said steel plate material
KR100472537B1 (en) Method of molding for hydro form and hydro form molding products formed by the method
KR102036062B1 (en) Press processing apparatus and press processing method
RU2668171C2 (en) Method of manufacturing stamped article and mold
KR101863482B1 (en) Press-molded article, automotive structural member provided with same, and manufacturing method and manufacturing device for said press-molded article
KR20180110042A (en) Method for manufacturing automobile parts and parts for automobile
JP3642232B2 (en) Fluid pressure molding method, fluid pressure molding apparatus, and body member
Liu et al. Analytical and experimental examination of tubular hydroforming limits
JPH091254A (en) Stretch control molding device and metal semiprocessed product molding method
JP4631130B2 (en) Modified tubular product and manufacturing method thereof
JPH10175027A (en) Metallic tube for hydro-form
JP2002143938A (en) Method and apparatus for expanding and forming pipe body
JP3972006B2 (en) Hydroform processing method and hydroform processing mold
JP3351331B2 (en) A method of manufacturing a deformed metal tube and a method of manufacturing a bent metal tube.
JP3601420B2 (en) Forming method of overhang by hydroforming method
JP4158028B2 (en) Metal plate pressing tool and processing method
JP3642404B2 (en) Hydroforming method and hydroforming mold
JP3642244B2 (en) Polygonal cross-section member hydraulic forming method, hydraulic forming mold and automobile polygon cross-section member
JP2003290845A (en) Method and die for hydroforming
JP2000126823A (en) Method for working of recessed part in hollow shape stock
JP5668698B2 (en) Tube forming apparatus and method
JP4436176B2 (en) Press mold having excellent shape freezing property and press molding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees