JP2004268076A - 自動溶接方法及び自動溶接装置 - Google Patents

自動溶接方法及び自動溶接装置 Download PDF

Info

Publication number
JP2004268076A
JP2004268076A JP2003060783A JP2003060783A JP2004268076A JP 2004268076 A JP2004268076 A JP 2004268076A JP 2003060783 A JP2003060783 A JP 2003060783A JP 2003060783 A JP2003060783 A JP 2003060783A JP 2004268076 A JP2004268076 A JP 2004268076A
Authority
JP
Japan
Prior art keywords
welding
voltage
pulse
current
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003060783A
Other languages
English (en)
Inventor
Akiyoshi Imanaga
昭慈 今永
Mitsuaki Haneda
光明 羽田
Tatsuro Seki
辰郎 関
Seiichi Toyoda
清一 豊田
Toshimi Sato
登志美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Kyowa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Kyowa Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003060783A priority Critical patent/JP2004268076A/ja
Publication of JP2004268076A publication Critical patent/JP2004268076A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

【課題】溶接ワイヤを電極にするアーク溶接で使用する給電ケーブルの長さ変更に適した溶接方法及び装置を提供する。
【解決手段】給電ケーブルの長さ変更が必要な継手部材の溶接作業を対象に、所望の平均溶接電流Iaの大きさに対応した平均アーク電圧Vaと、変更した給電ケーブルの往復長さを流れる平均溶接電流Iaで消費する第1のケーブル電圧Vk1の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧V1 とを予め加算した平均溶接電圧Eをパルス溶接電源10に設定し、所望の平均アーク電圧Vaをアーク溶接部分で出力させる。また、変更した給電ケーブルの往復長さを流れるパルス電流Ipで消費する第2のケーブル電圧Vk2と、溶接回路内のリアクタで消費する第2のリアクタ電圧V2 とを補充可能なパルス電圧Vpまたはパルス電流Ipを設定し、所望のパルス電流Ia,パルスアーク電圧Vaを出力させて溶接する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、継手部材と溶接装置との距離が変化する溶接作業を対象に、給電ケーブルの長さを変更して自動溶接を行う溶接方法及び溶接装置に関する。特に、変更した給電ケーブルの往復長さに適した所望の平均溶接電流,適正な平均溶接電圧を出力させて溶接する自動溶接方法及び自動溶接装置に関する。
【0002】
【従来の技術】
発電プラントや化学プラントなどの大型構造物は、厚板長尺の継手部材が多く用いられている。これらの継手部材は大きさ,設置場所,作業場所が一様ではなく、溶接電源及び溶接装置の設置場所から近い場所で溶接する時もあれば、50m以上遠く離れた場所で溶接する時もあり、また、高さ10m以上の高い場所で溶接する時もある。
【0003】
これらの溶接作業を実施するためには、少なくとも溶接電源と、継手部材,溶接トーチとの間に給電ケーブルを各々接続して給電できる状態にすると共に、所望の溶接電流及びその溶接電流に適したアーク電圧を出力できるようにする必要がある。しかし、給電ケーブルの長さ変更をすると、ケーブル抵抗,リアクタが変化するために、初期設定の溶接条件のままでは、所望の溶接電流及びアーク電圧が出力できず、アーク溶接に悪影響を及ぼす結果になる。また、ワイヤ溶融式のパルス溶接電源を用いてパルスアーク溶接を実施する場合には、給電ケーブルの長さ変更によって、所望の溶接電流及びアーク電圧が出力できないばかりでなく、所望の高いパルス電流及びそのパルス電流に適したパルスアーク電圧が出力できない状態に至る。このため、給電ケーブルの長さ変更をして溶接する場合には、その都度、変更した給電ケーブル長さに合った溶接条件出しの実験が必要となり、溶接電流の大きさに適したアーク溶接電圧,適正なパルス溶接条件などを再度確立しなければならない。さらに、給電ケーブルが過剰に長過ぎる場合には、ケーブル抵抗の増大によって溶接電源の出力能力を超えてしまい、所望のアーク溶接ができない状態に至り、無茶をすると溶接電源を破損させることも有り得る。
【0004】
給電ケーブルの長さ変更をなくす1つの方法として、例えば、溶接すべき継手部材の近くに溶接電源及び溶接装置を運搬移設することが考えられる。しかし、クレーン作業による装置移設を必要とするばかりでなく、装置の移設場所や溶接作業範囲に限界がある。また、給電ケーブルを最長にした状態にしておくと、溶接電源及び溶接装置の近くで溶接作業が必要な時に、最長の給電ケーブルが厄介物となって整理整頓の障害になるばかりでなく、その給電ケーブルの置き方,巻き方の状態変化によってリアクタが変化し、アーク溶接の結果に悪影響を及ぼす可能性がある。
【0005】
さらに、溶接を自動化するためには、例えば、開先形状寸法や溶接線の位置を検出する視覚センサによる検出情報に基づいて、溶接条件パラメータの適応制御,溶接トーチ位置の修正制御を行う必要がある。
【0006】
従来技術として、特許文献1には、溶接電源装置に、負荷回路のインダクタンスL2の電気的特性値を演算する演算器を設け、その演算器の出力に基づいて制御回路の動作状態を切り換える制御手段を設けることが開示されている。
【0007】
また、特許文献2には、100V以上の直流電圧を出力する電源ユニットと溶接制御ユニットとを分割し、その電源ユニットの出力端子と溶接制御ユニットの入力端子との間に任意長さの給電ケーブルを接続することが開示されている。
【0008】
【特許文献1】
特開平8−103868号公報(要約,特許請求の範囲)
【特許文献2】
特開平9−271940号公報(要約,特許請求の範囲)
【0009】
【発明が解決しようとする課題】
特許文献1記載の溶接用電源装置では、長さ変更した給電ケーブルを流れる電流で消費するケーブル電圧が考慮されていない。このために、ケーブル長さが数倍変化するような長い給電ケーブルの交換には対応できていない。また、パルス電流の出力波形信号などは詳細に記載されているが、給電ケーブルの長さ変更に伴う溶接作業で必要な所望の平均溶接電流及びその平均溶接電流の大きさに適した平均アーク電圧,溶接電源に設定すべき平均溶接電圧については記載されていない。
【0010】
特許文献2記載のアーク溶接用電源は、給電ケーブルの小径化や長さ変更を容易にすること、電源ユニットから離れた場所にある継手部材の近くに溶接制御ユニットを簡単に移動するのに有効と考えられる。しかし、溶接回路内に接続されている給電ケーブルを流れる電流で消費するケーブル電圧,リアクタで消費するリアクタ電圧は、電源ユニット側が負担しており、これらの消費電圧を加算した溶接電圧を電源ユニット側に設定及び出力させる必要がある。給電ケーブルの長さ変更をすると、ケーブル抵抗,リアクタが変化するために、初期設定の溶接条件のままでは、所望の溶接電流及びアーク電圧が出力できず、アーク溶接に悪影響を及ぼす結果になる。パルスアーク溶接をする場合も、同様であり、長さや径を変更給電ケーブルに適したパルス溶接条件の設定が不可欠である。
【0011】
本発明の目的は、溶接ワイヤを電極にするアーク溶接で使用する給電ケーブルの長さ変更に適した所望の平均溶接電流,適正な平均溶接電圧,パルス電圧,パルス電流を出力させて溶接するのに好適な自動溶接方法及び自動溶接装置を提供することである。
【0012】
【課題を解決するための手段】
本発明は、溶接すべき継手部材の大きさ,設置場所,作業場所及び溶接箇所の相違によって前記継手部材と溶接装置との距離が変化する溶接作業を対象に、溶接ワイヤを電極にするアーク溶接で用いる定電流制御方式のパルス溶接電源と、継手部材,溶接台車に搭載された溶接トーチとの間に各々接続する給電ケーブルの往復長さを変更して前記継手部材を溶接する溶接方法において、給電ケーブルの長さ変更で生じるケーブル電圧及びリアクタ電圧の変化に対応可能なパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定し、所望の平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を前記定電流制御方式のパルス溶接電源に設定して溶接する溶接方法を提案する。
【0013】
特に、前記定電流制御方式のパルス溶接電源は、少なくとも給電ケーブルを最長にした溶接時に必要となる高い負荷電圧,所望のパルス電流が出力可能なパルス電流及びパルス時間の調整と、所望の平均溶接電圧,平均溶接電流またはワイヤ送り速度に連動した平均溶接電流の調整と、アーク長変化の補正制御とが可能なパルス溶接電源とし、溶接を実行する時には、給電ケーブルの長さ変更で生じるケーブル電圧及びリアクタ電圧の変化に対応可能なパルス電流またはそのパルス電流及びパルス時間を設定し、所望のパルス電流,パルスアーク電圧を出力させ、所望の平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を設定し、前記平均アーク電圧をアーク溶接部分で出力させるとよい。
【0014】
少なくとも変更した給電ケーブルの往復長さを流れる所望のパルス電流で消費する第2のケーブル電圧と、リアクタで消費する第2のリアクタ電圧とを補充可能なパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定し、溶接中に増減制御する前記平均溶接電流で消費する第1のケーブル電圧と、リアクタで消費する第1のリアクタ電圧とを補充可能な平均溶接電圧を前記定電流制御方式のパルス溶接電源に設定し、高電流の1パルスで1溶滴が低電流のベース時間中に移行可能なパルス電流,パルスアーク電圧を出力させ、ワイヤ溶滴の移行時に短絡移行が生じない程度のアーク長を保持し得る所望の平均アーク電圧をアーク溶接部分で出力させることもできる。
【0015】
また、少なくとも給電ケーブルの往復長さ別に予め定めたパルス電流またはそのパルス電流及びパルス時間と、平均溶接電圧を算出する電圧算出式を記載した条件テーブルを溶接制御装置に設け、溶接を実行する時には、給電ケーブル長さの選択で予め決定したパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定し、所望のパルス電流,パルスアーク電圧を出力させ、溶接中に増減制御する平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を前記定電流制御方式のパルス溶接電源に設定し、所望の平均アーク電圧をアーク溶接部分で出力させることもできる。
【0016】
ケーブル電圧の予測値は、少なくとも使用する給電ケーブルの単位長さ当りの抵抗または給電ケーブルの断面積に関係する単位長さ当りの抵抗と、その往復長さと、所望の電流との関係式で算出するとよい。
【0017】
さらに、開先部のギャップ,開先面積,開先肩幅,左右上下方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置を設け、溶接を実行する時には、ギャップ幅または開先肩幅または開先面積と開先肩幅の大きさに対応した平均溶接電流,その平均溶接電流に適した平均溶接電圧とワイヤ送り速度,溶接速度,ウィービング幅などの溶接条件パラメータを各々算出して増減制御し、溶接線左右及び上下の位置ずれをなくす方向にトーチ位置を修正制御するとよい。
【0018】
また、本発明は、上記目的を達成するために、溶接すべき継手部材の大きさ,設置場所,作業場所及び溶接箇所の相違によって前記継手部材と溶接装置との距離が変化する溶接作業を対象に、溶接ワイヤを電極にするアーク溶接で用いる定電流制御方式のパルス溶接電源と、継手部材,溶接台車に搭載された溶接トーチとの間に各々接続する給電ケーブルの往復長さを変更して前記継手部材を溶接する溶接装置において、変更した給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定するパルス電流設定手段と、平均溶接電流の大きさに適した平均アーク電圧,変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段とを備えた溶接装置を提案する。
【0019】
特に、前記定電流制御方式のパルス溶接電源は、給電ケーブルを最長にした溶接時に必要となる高い負荷電圧,所望のパルス電流が出力可能なパルス電流及びパルス時間の調整と、所望の平均溶接電圧,平均溶接電流またはワイヤ送り速度に連動した平均溶接電流の調整と、アーク長変化の補正制御とが可能なパルス溶接電源にするとよい。
【0020】
また、溶接トーチを左右上下方向に移動及び溶接線方向に移動可能な駆動機構,ワイヤ送り機構を搭載した溶接台車を制御する台車制御手段と、定電流制御方式のパルス溶接電源を制御する電源制御手段と、パルス溶接電源及び溶接装置から溶接対象の継手部材までの距離に応じて延長する複数の給電ケーブルと、同様に延長する制御ケーブルやガスホース類などを収納した予備の配線ケーブルと、給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を設定するパルス電流設定手段と、平均溶接電流の大きさに適した平均アーク電圧,変更した給電ケーブルの往復長さで消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段とを備えた溶接装置とすることもできる。
【0021】
さらに、溶接トーチを左右上下方向に移動及び溶接線方向に移動可能な駆動機構,ワイヤ送り機構を搭載した溶接台車を制御する台車制御手段と、定電流制御方式のパルス溶接電源を制御する電源制御手段と、パルス溶接電源及び溶接装置から溶接対象の継手部材までの距離に応じて延長する複数の給電ケーブルと、同様に延長する制御ケーブルやガスホース類などを収納した予備の配線ケーブルと、給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を設定するパルス電流設定手段と、平均溶接電流の大きさに適した平均アーク電圧,変更した給電ケーブルの往復長さで消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段と、平均溶接電流,その平均溶接電流に適した平均溶接電圧とワイヤ送り速度,溶接速度,ウィービング幅などの溶接条件パラメータの増減制御,溶接トーチ位置の修正制御に使用する開先部のギャップ,開先面積,開先肩幅,左右上下方向の開先中心ずれを検出する視覚センサ及び画像処理装置とを備えた溶接装置とすることもできる。
【0022】
すなわち、所望の平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を定電流制御方式のパルス溶接電源に設定して溶接すると、溶接すべき継手部材の大きさ,設置場所,作業場所及び溶接箇所の相違によって給電ケーブルの長さ変更が必要な場合でも、給電ケーブルの長さ変更で変化するケーブル電圧,リアクタで消費するリアクタ電圧を補充でき、平均溶接電流の大きさに適した所望の平均アーク電圧をアーク溶接部分で確実に出力でき、過剰なアーク電圧や電流の低下または上昇によって発生するアーク切れ,スパッタの多発,溶滴移行の乱れ,アーク溶接の乱れ,溶接ビードの悪化を防止することができる。
【0023】
定電流制御方式のパルス溶接電源は、少なくとも給電ケーブルを最長にした溶接時に必要となる高い負荷電圧,所望のパルス電流が出力可能なパルス電流及びパルス時間の調整と、所望の平均溶接電圧,平均溶接電流またはワイヤ送り速度に連動した平均溶接電流の調整と、アーク長変化の補正制御とが可能なパルス溶接電源にすると、給電ケーブルの長さを短くまたは長くした場合でも、変更した給電ケーブルの往復長さに対応した所望のパルス電流,パルス時間,所望の平均溶接電圧,平均溶接電流をそれぞれ正確に設定することができる。また、給電ケーブルの長さ変更で生じるケーブル電圧の変化に対応可能なパルス電流またはそのパルス電流及びパルス時間を設定して溶接すると、給電ケーブルの長さ変更で変化するケーブル電圧,リアクタで消費するリアクタ電圧を補充でき、予め設定したパルス電流を保持する方向に自己制御作用(電圧増減による電流回復作用)が働き、所望のパルス電流,パルスアーク電圧をアーク溶接部分で出力することができる。さらに、高電流の1パルスで1溶滴が低電流のベース時間中に移行でき、小電流(平均)領域から大電流領域まで、スパッタの発生がなく、融合不良やアンダーカットなど欠陥のない良好な溶接結果を得ることができる。溶接中に溶接トーチ高さやワイヤ送り速度の微小変動によって変化したアーク長を補正する制御で定常状態に回復することができる。
【0024】
また、給電ケーブルの往復長さ別に予め定めたパルス電流またはそのパルス電流及びパルス時間と、平均溶接電圧を算出する電圧算出式とを条件テーブルに設けると、操作画面から給電ケーブル長さを選択するだけで、所定のパルス電流,パルス時間,所望の平均溶接電流に対応可能な平均溶接電圧を定電流制御方式のパルス溶接電源に自動設定でき、給電ケーブルの長さ変更で必要な条件出し実験や面倒な計算を省略することができ、使い勝手を高めることができる。
【0025】
ケーブル電圧の予測値は、少なくとも使用する給電ケーブルの単位長さ当りの抵抗または給電ケーブルの断面積に関係する単位長さ当りの抵抗と、その往復長さと、所望の電流との関係式で算出すると、変更した給電ケーブルの往復長さで消費するケーブル電圧を正確に求めることができる。
【0026】
さらに、開先部のギャップ,開先面積,開先肩幅,左右上下方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置を設けると、溶接制御で必要な検出情報をリアルタイムで得ることができる。また、その検出情報に基づいて、ギャップ幅または開先肩幅または開先面積と開先肩幅の大きさに対応した平均溶接電流,その平均溶接電流に適した平均溶接電圧とワイヤ送り速度,溶接速度,ウィービング幅などの溶接条件パラメータを各々算出して増減制御し、溶接線左右及び上下の位置ずれをなくす方向にトーチ位置を修正制御すると、給電ケーブルの長さ変更をした場合でも、ギャップや開先面積が変化,溶接線の曲がりやずれがある開先継手であっても、適正な溶接条件パラメータの増減制御,トーチ位置の修正制御によって対応でき、良好な溶け込み形状の溶接結果を得ることができ、溶接を自動化することができる。
【0027】
また、本発明の溶接装置では、変更した給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定するパルス電流設定手段と、平均溶接電流の大きさに対応した平均アーク電圧,変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段とを備えているので、溶接すべき継手部材の大きさ,設置場所,作業場所及び溶接箇所の相違によって給電ケーブルの長さ変更をした場合でも、溶接時に変化するケーブル電圧,リアクタで消費するリアクタ電圧を補充可能になり、所望のパルス電流,パルスアーク電圧,平均アーク電圧をアーク溶接部分で確実に出力することができ、小電流(平均)領域から大電流領域まで、スパッタの発生がなく、融合不良やアンダーカットなど欠陥のない良好な溶接結果を得ることができる。
【0028】
また、定電流制御方式のパルス溶接電源及び溶接装置から溶接対象の継手部材までの距離に応じて延長する複数の給電ケーブル,配線ケーブルを備えているので、広い工場内のあちらこちらに配置された幾つかの継手部材を順次に溶接する場合、または工場外の現地で複数の継手部材を順次に組立溶接する場合でも、定電流制御方式のパルス溶接電源及び溶接装置を所定の場所に設置したままの状態で、給電ケーブル,配線ケーブルを継手部材及び溶接台車まで簡単に延長または短縮することができ、クレーン作業による装置移設を省略し、溶接台車の取り付けや装置立上げの時間を短縮することができる。
【0029】
さらに、溶接条件パラメータの増減制御,溶接トーチ位置の修正制御に使用する開先部のギャップ,開先面積,開先肩幅,左右上下方向の開先中心ずれを検出する視覚センサ及び画像処理装置とを備えることにより、ギャップや開先面積が変化、溶接線の曲がりやずれがある開先継手であっても、溶接パス毎にリアルタイムで検出する適正な検出情報に基づいて、平均溶接電流,その平均溶接電流に適した平均溶接電圧とワイヤ送り速度,溶接速度,ウィービング幅などの溶接条件パラメータの増減制御,左右上下方向のトーチ位置の修正制御を実行することができ、溶接の自動化による合理化,工数低減を図ることができる。
【0030】
【発明の実施の形態】
以下、本発明の溶接方法及び溶接装置について好ましい実施の形態を図面に基づいて説明する。図1は、本発明による溶接方法を採用した自動溶接装置の一実施形態の構成を示す斜視図である。溶接すべき一対の継手部材を突合わせた溶接ワーク1a,1bは、一組の溶接制御装置11及びパルス溶接電源10の近くに配置されており、その溶接ワーク1bの長手方向に設置されたガイドレール9a上を溶接台車3が走行する。また、前記溶接ワーク1a,1bと開先形状が同様または異なる別の継手部材の溶接ワーク1c,1dは、前記溶接制御装置11及びパルス溶接電源10から遠く離れた別の場所に配置されている。溶接台車3には、溶接ワイヤ18を電極にするアーク溶接で用いる溶接トーチ4と、その溶接トーチ4を左右・上下方向に移動可能な駆動機構と、ワイヤ送り機構と、開先継手部のギャップ,開先面積,開先肩幅,深さ,左右上下方向の開先中心ずれを検出する視覚センサ12及び画像処理装置とを搭載している。
【0031】
給電ケーブル5a,6aは、アーク溶接部分に給電するため、パルス溶接電源10と、継手部材の溶接ワーク1a,溶接台車3に搭載された溶接トーチ4とにそれぞれ接続しており、最小長さ(例えば15m×2本=30m)の給電ケーブルを使用している。また、溶接台車3と溶接制御装置11の間を結ぶ配線ケーブル7aは、溶接台車3を駆動する制御ケーブル,溶接トーチ4にシールドガスや冷却水を供給するガスホースや水ホース,視覚センサ12を駆動する制御ケーブルなどを収納したケーブルである。操作ペンダント8は、溶接台車3や溶接トーチ4の移動操作,溶接条件パラメータの設定や修正の操作に用い、溶接前に溶接トーチ4を開先部の溶接線2の開始点へ移動させてトーチ(ワイヤ)を位置決めし、溶接開始,溶接中に不具合が生じた時にトーチ位置や溶接条件の割込み修正,溶接停止などができるようにしている。溶接制御装置11は、自動溶接を実行する時に溶接台車3の駆動を制御し、パルス溶接電源10の出力を制御し、視覚センサ12と一対の画像処理装置に指令して検出データを情報処理し、溶接トーチ4位置や溶接条件パラメータを制御し、溶接の開始から終了に至る一連の動作及び構成機器を統括管理するものである。また、この溶接制御装置11には、アーク溶接部分で所望のパルス電流,パルスアーク電圧,平均溶接電流,平均アーク電圧を出力させるために、給電ケーブルの往復長さの違いによって消費するケーブル電圧の変化,溶接回路内のリアクタで消費するリアクタ電圧の変化を補充可能なパルス電圧,パルス時間,平均溶接電圧を設定する機能を具備している。
【0032】
一方、溶接制御装置11及びパルス溶接電源10から遠く離れた別の場所に配置された溶接ワーク1c,1dを溶接する場合には、パルス溶接電源10と溶接ワーク1c及び溶接台車3の溶接トーチ4の間を点線で示したように複数の給電ケーブル5a,5b,6a,6bをそれぞれ給電ジョイント13で結んで延長接続(例えば往復長さ:15m×8本=120m)している。同時に、溶接台車3と溶接制御装置11の間を結ぶ配線ケーブル7a,7bも配線コネクタ14を介して延長接続している。なお、溶接台車3が2台ある場合は、次に溶接すべき継手部材の溶接ワーク1d上に設置されたガイドレール9bに2台目の溶接台車3を予め取り付けでき、溶接前の段取り作業を高めることができる。溶接台車3が1台の場合には、溶接ワーク1a,1bの溶接作業が終了した後に、ガイドレール9aから取り外して、別の溶接ワーク1c,1d及びガイドレール9bまで搬送して取り付け、給電ケーブル5a,5b,6a,6b、配線ケーブル7a,7bをそれぞれ延長して接続すればよい。図中の給電ケーブル5a,5b,6a,6bは、単線ケーブルを接続して用いているが、極性の異なるケーブル2本を一体形成してリアクタを減少させた同軸ケーブルを用いてもよい。
【0033】
パルス溶接電源10は、給電ケーブルを最長(例えば往復長さが150m)にした溶接時に必要となる高い負荷電圧(例えば64〜74V程度),所望のパルス電流(例えば500〜600A程度)が出力可能なパルス電流及びパルス時間の調整と、所望の平均溶接電圧,平均溶接電流(100〜400A)またはワイヤ送り速度に連動した平均溶接電流の調整と、アーク長変化の補正制御とが可能な定電流制御方式のパルス溶接電源である。同時に、アーク溶接部で所望のパルス電流,パルスアーク電圧,平均溶接電流,平均アーク電圧を出力させるために、給電ケーブルの往復長さの違いによって消費するケーブル電圧の変化,溶接回路内のリアクタで消費するリアクタ電圧の変化を補充可能なパルス電流,パルス時間,平均溶接電圧を設定する機能を前記溶接制御装置に具備するとよい。
【0034】
ガスボンベ15から供給するシールドガスは、配線ケーブル7a内に収納しているガスホースを経て溶接トーチ4先端に流出してアーク溶接部分を大気から保護する。ガスボンベ15は、鋼材溶接の場合、Arガスを主成分とする10〜30%程度のCO ガス入りの混合ガスボンベである。Ar+CO 混合ガスの代わりに、例えば、数%のO を加えたAr+CO +O の混合ガスやAr+O の混合ガスを使用することも可能である。冷却水循環ポンプ16から供給する冷却水は、配線ケーブル7a内に収納している水ホースを経て溶接トーチ内を循環冷却するようにしている。
【0035】
図2は、本発明の溶接装置に採用した定電流制御方式のパルス溶接電源に関する電源回路の一実施形態を示す構成図である。インバータ回路41は、一次側端子から供給される商用交流電源を整流器40で変換した直流を高周波交流に再変換し、その高周波交流の電圧レベルを可変決定する変圧器42を制御する。整流器43は、変圧器42の出力を再度直流に変換し、スイッチング素子44,リアクタ45を経由して、直流パルス溶接で必要な所望の電圧及び電流を二次側端子に出力する。この定電流制御方式のパルス溶接電源10は、給電ケーブルを最長(例えば150m)にした溶接時に必要となる高い負荷電圧(例えば64〜74V程度)を有し、所望のパルス電流(例えば500〜600A程度)が出力可能なパルス電流Ip,パルス時間Tpなどの設定,所望の平均溶接電圧E,ワイヤ送り速度Wfに連動した平均溶接電流(例えば100〜400A)の設定を可能にしている。図示していないが、溶接中に電圧検出器51で検出する電圧値を処理してアーク長変化を補正するためのアーク長補正器を有している。
【0036】
パルス電流波形設定器59は、所望のパルス電流Ip,ベース電流Ib,平均溶接電流Ia,平均溶接電圧Eを設定するものであり、演算器47に接続され、制御器46を経由して、インバータ回路41やスイッチング素子44に伝達し、パルス溶接電源10の二次側端子に出力される。また、パルス時間設定器49は、パルス時間Tp,ベース時間Tb,パルス波形の周波数fを設定するものであり、演算器47に接続されている。また、電流検出器50bは、電流検出素子50aと一対で、出力中のパルス電流や平均溶接電流を検出し、その検出値を処理してパルス時間設定器49とパルス電流波形設定器59とに接続されており、検出値を処理してパルス電流Ip,ベース時間Tbの増減による平均溶接電流Iaの補正制御を可能にしている。溶接電圧設定器52は、定電流制御方式のパルス溶接電源10から出力すべき平均溶接電圧Eを設定するものであり、パルス電流波形設定器59とパルス時間設定器49とに接続されている。溶接電流設定器53は、所望の平均溶接電流Ia,ワイヤ送り速度Wfを設定するものであり、パルス電流波形設定器59とパルス時間設定器49,ワイヤ送りモータMを駆動するワイヤ送り設定器54にそれぞれ接続されている。
【0037】
溶接制御装置11の内部には、定電流制御方式のパルス溶接電源10を外部から遠隔制御する電源制御部61と、パルス電流Ip,パルス時間Tp,ベース電流Ibを設定するパルス電流波形設定器58と、溶接電流設定器56,溶接電圧設定器55とを設け、パルス溶接電源10側と配線して遠隔制御を可能にしている。また、アーク電圧検出器63にて検出されるアーク20溶接部分の検出電圧と指示電圧との偏差をなくすように平均溶接電圧Eの指令値を補正可能にしている。パルス電流Ipの設定については、アーク溶接部分で出力すべき所望のパルス電流Ip、パルスアーク電圧Vpaを確保する必要があり、給電ケーブルX の長さ変更で変化するケーブル電圧Vk2,リアクタで消費するリアクタ電圧V2 を補充可能なパルス電流Ipまたはそのパルス電流Ip及びパルス時間を設定する。省略しているが、溶接制御装置11の内部には、溶接台車3を駆動する各軸駆動装置,視覚センサ12に接続しているセンサ制御器及び画像処理装置,溶接条件パラメータの適応制御や溶接トーチ位置の修正制御を演算する演算制御部,溶接データファイル,給電ケーブルの長さ別に定めたパルス条件選択テーブル,構成機器を統括制御及び管理する溶接運転プログラムなどを備えている。
【0038】
このように構成して溶接すると、給電ケーブルの長さを短くまたは長くした場合でも、溶接時に変化するケーブル電圧,リアクタで消費するリアクタ電圧が補充できる。また、予め設定したパルス電流を保持する方向に自己制御作用(電圧増減による電流回復作用)が働き、所望のパルス電流,パルスアーク電圧及び平均溶接電流をアーク溶接部分で出力することができる。さらに、高電流の1パルスで1溶滴が低電流のベース時間中に移行でき、小電流(平均)領域から大電流領域まで、スパッタの発生がなく、融合不良やアンダーカットなど欠陥のない良好な溶接結果を得ることができる。溶接中に溶接トーチ高さやワイヤ送り速度の微小変動によって変化したアーク長を補正する制御で定常状態に回復することができる。
【0039】
図3は、図2に示した電源主要回路より給電される溶接回路の等価回路を示す一実施形態であり、R30〜R150は5種類に区分けした給電ケーブル長さ(最短で30m,最長で150m)に該当する各ケーブル抵抗、L30〜L150はケーブルのリアクタ、Lは電源内のリアクタ、Sはスイッチング素子、E,Vp,Vbは、パルス溶接電源より出力する平均電圧,パルス電圧,ベース電圧であり、Ia,Ip,Ibは、溶接回路を流れる平均電流,パルス電流,ベース電流である。また、Veは電源出力部の検出電圧、Vaは溶接トーチと継手部材間の検出電圧であり、アーク20溶接部分で生じるアーク電圧とワイヤ突き出し部で消費するワイヤ電圧とを含んだ電圧である。上記の等価回路でケーブル抵抗R30(給電ケーブルの往復長さ:30m)を実線のように接続した時の回路方程式は、概略下記の(1)(2)式で示される。Tpはパルス時間、Tbはベース時間である。また、高いパルス電流Ipを供給するのに必要な合計のパルス電圧Vpは、(3)式で示される。Vpaは、ワイヤ突き出しを含むアーク20アーク溶接部分で生じるパルスアーク電圧である。
【0040】
Figure 2004268076
交換する給電ケーブルの往復長さX が長く(最長で150m)なると、点線のようにケーブル抵抗(R150)の増加、リアクタ(L+L150)の増加によって、パルス電流Ip,平均電流Ia,平均アーク電圧Vaが減少するために、アーク溶接状態を悪化させることになる。したがって、アーク溶接状態を良好に保持するためには、所望のパルス電流Ip,平均電流Ia,平均アーク電圧Vaを確保する必要があり、給電ケーブルの長さ変更(最短で30m,最長で150m)で消費するケーブル電圧Vkの予測値と、リアクタで消費するリアクタ電圧V の予測値とを予め加算したパルス電圧Vp,平均溶接電圧Eをパルス溶接電源10より出力させる必要がある。
【0041】
図4は、本発明の溶接方法において、溶滴の安定移行及びスパッタの発生防止を図るためのパルスアーク溶接の電圧・電流波形及びワイヤ先端の溶滴移行の概要を示す説明図である。横軸の時間t(ms)に対する縦軸には、ワイヤ送り速度Wf,電源出力の電圧波形,アーク溶接部分のアーク電圧の波形,パルス電流とベース電流の波形,ワイヤ溶滴の形成と移行の概要を示している。パルス溶接電源10より高いパルス電圧Vp・電流Ipと低いベース電圧Vb・電流Ibを交互に出力させる。または直流の低いベース電圧Vb・電流Ibに高電流のパルス電圧Vp・電流Ipのパルス波形を重畳して出力させてもよい。
【0042】
このパルス電圧Vp・電流Ipの時間Tp中に、溶融させた溶接ワイヤ18先端にワイヤ溶滴19を形成させ、パルス時間Tp終了後のベース時間Tb前半に、ワイヤ溶滴19を溶接ワーク1a,1b側の溶融池21へ離脱移行させる1パルスで1溶滴移行が可能な適正パルス溶接波形を出力させている。例えば、鋼材用の1.2mm 径のソリッドワイヤを使用する場合、パルス電流Ipを高めの600A程度、そのパルス時間Tpを1.5〜2.0msの範囲に設定してパルス溶接すると、高電流の1パルスで1溶滴を低電流のベース時間前半に移行させることが可能である。平均溶接電流Iaは、ベース時間Tbの増減制御によって増減でき、同時にワイヤ送り速度Wfも同期させて増減するようにしている。
【0043】
ここでは、所望のパルス電流Ip,平均溶接電流Iaを確保するために、特に、給電ケーブルの往復長さを流れるパルス電流Ipで消費する第2のケーブル電圧Vk2と、リアクタで消費する第2のリアクタ電圧V2 との予測値を予め加算したパルス電圧Vpをパルス溶接電源10より出力させている。リアクタ電圧V2 は、主にパルス電流波形の立上り立下りを緩やかにする方向に働く。また、アーク溶接部分で必要な平均アーク電圧Vaを確保するために、平均溶接電流Iaで消費する第1のケーブル電圧Vk1の予測値と、リアクタで消費する第1のリアクタ電圧V1 の予測値とを加算した平均溶接電圧Eを出力させている。平均アーク電圧Vaは、ワイヤ溶滴19の移行時に短絡移行が生じない程度のアーク長が保持可能な適正アーク電圧である。
【0044】
このように、給電ケーブルの長さ変更をした場合でも、適正なパルス電流Ipとパルス時間Tp、平均溶接電流Iaの大きさに適した平均アーク電圧Vaを出力させて溶接すると、高電流の1パルスで1溶滴が低電流のベース時間中に移行でき、小電流(平均)領域から大電流領域の溶接まで、スパッタの発生がなく、融合不良やアンダーカットなど欠陥のない良好な溶接結果を得ることができる。
【0045】
図5は、給電ケーブルの断面Bと単位長さ当りのケーブル抵抗R1(Ω/m)の関係を示す特性図であり、断面Bが小さくなるに従ってケーブル抵抗R1が大きくなる様子を示している。単位長さ当りのケーブル抵抗R1は、下記の(4)式で示される。C1,C2はケーブル定数である。
【0046】
ケーブル抵抗:R1=C1/BC2(Ω/m) …(4)
図6は、断面が60mm の給電ケーブル長さ(X =10〜150m)を変化させた時にアーク溶接部分で出力すべきパルスアーク電圧Vpaと、給電ケーブルX を流れる所望のパルス電流(例えばIp=600A)で消費するケーブル電圧Vk2と、リアクタで消費するリアクタ電圧V2 と、パルス溶接電源から給電が必要な合計のパルス電圧Vpとの関係を示す特性図である。パルス電流600A(●印の線)の通電で消費すると予想されるケーブル電圧Vk2(△印の線)は、ケーブル長さX とパルス電流Ipの大きさに比例増加(Vk2=R1・X ・Ip)する。例えば、ケーブル長さX =30mの場合で約Vk2=5.6V、X =150mの場合で5倍の約Vk2=28Vにもなる。また、溶接回路内のリアクタで消費すると予想される平均的なリアクタ電圧V2(□印の線)もある。この平均的なリアクタ電圧すなわちV2=(L+L)・dIp/dtの値は、ケーブル電圧Vk2の値に比べると小さいが、ケーブル長さによってL のリアクタ成分(インダクタンス成分)が変化し、無視することができない。単線ケーブルの代わりに同軸ケーブルを用いた場合、L のリアクタ成分を小さくすることが可能である。
【0047】
パルス溶接電源より給電すべき合計のパルス電圧Vp(○印の線)は、下記の(5)式で示される。断面が80mm で少し太い給電ケーブルまたは40mm で細い給電ケーブルを使用する場合でも(4)(5)式よりパルス電圧Vpを算出することが可能である。また、ベース電流Ibの出力に必要なベース電圧Vbも同様な方法で算出可能である。なお、ベース電流Ibは、パルス電流Ipと比べて1/8〜1/10程度の低い値であり、ケーブル電圧,リアクタ電圧の変化によるベース電圧Vb及びベース電流Ibの変化量(ΔIb,ΔVb)が小さい。
【0048】
パルス電圧:Vp=Vpa+Vk2+V2 …(5)
このように、所望のパルスアーク電圧Vpaと、給電ケーブルの往復長さX を流れるパルス電流Ipで生じるケーブル電圧Vk2と、リアクタ電圧V とを加算したパルス電圧Vpを出力させて溶接すると、給電ケーブルの長さ変更をした場合でも、所望のパルス電流Ip及びパルスアーク電圧Vpaをアーク溶接部分で出力でき、小電流(平均)領域から大電流領域の溶接まで、スパッタの発生がなく、融合不良やアンダーカットなど欠陥のない良好な溶接結果を得ることができる。
【0049】
図7は、給電ケーブルの往復長さ(X )を30m使用時と150m使用時との溶接で必要な所望の平均溶接電流Ia(パルス電流Ipも同列記載)を変化させた時の適正な平均アーク電圧Vaと、ケーブル電圧Vk1と、リアクタ電圧V1 と、溶接電源より出力すべき平均溶接電圧Eとの関係を示す一実施形態の特性図である。平均溶接電流Iaの大きさに適した平均アーク電圧Vaをアーク溶接部分で正確に出力するためには、ケーブルを流れるIaで消費するケーブル電圧(Vk1=R1・X ・Ia)と、リアクタで消費するリアクタ電圧すなわちV1=(L+L)・dIa/dtとを加算した平均溶接電圧Eをパルス溶接電源より出力する必要がある。パルス溶接電源より出力すべき平均溶接電圧Eは、(1)式を変形した下記の(6)式で求められる。また、アーク溶接部分で確保すべき平均アーク電圧Vaは、アーク成分とワイヤ突き出し成分との合計電圧であり、平均溶接電流Iaにほぼ比例増加し、(7)式で求められる。C3,C5はアーク電圧定数であり、WxとC4はワイヤ突き出し長さと、使用するワイヤ径や材質などで決まるワイヤ定数である。
【0050】
平均溶接電圧:E=Va+Vk1+V1 …(6)
平均アーク電圧:Va=(C3+C4・Wx)・Ia+C5 …(7)
このように、平均溶接電流Iaの大きさに適した平均アーク電圧Vaと、給電ケーブルの往復長さを流れる平均溶接電流Iaで変化するケーブル電圧Vk1と、リアクタ電圧V1 とを加算した平均溶接電圧Vaを設定して溶接すると、給電ケーブルの長さ変更をした場合でも、溶接時に変化するケーブル電圧,リアクタで消費するリアクタ電圧が補充可能になり、平均溶接電流の大きさに適した所望の平均アーク電圧をアーク溶接部分で確実に出力でき、過剰なアーク電圧や電流の低下または上昇によって発生するアーク切れ,スパッタの多発,溶滴移行の乱れ,アーク溶接の乱れ,溶接ビードの悪化を防止することができる。
【0051】
表1は、定電流制御方式のパルス溶接電源によるパルス溶接で使用する給電ケーブル長さ別に定めた条件テーブルを示す一実施形態である。本条件テーブルには、5種類に区分けしたケーブル長さX ,所望のパルス電流Ip,そのパルス電流の出力に要するパルス電圧Vp,パルス時間Tp,ベース電流Ib,平均溶接電圧E,平均アーク電圧Vaを示している。
【0052】
【表1】
Figure 2004268076
【0053】
パルス電圧Vpは、給電ケーブルの長さ変更をした場合でも、約600Aのパルス電流Ipを定電流制御方式のパルス溶接電源より出力させるのに必要な概算値であり、上記の(5)式と図6より算出できる。パルス溶接電源の負荷出力電圧を抑制するために、例えば、パルス電流Ipの値を600Aから500A程度に減少させて設定することもできる。ベース電流Ibは、70A前後の値を出力させるようにしている。平均溶接電流Iaの大きさに適した平均溶接電圧Eは、上記の(6)式と図7より算出でき、また、平均アーク電圧Vaは、(7)式と図7より算出することができる。
【0054】
このように、給電ケーブルの往復長さ別に予め定めたパルス電流またはそのパルス電流及びパルス時間と、平均溶接電圧を算出する電圧算出式とを条件テーブルに設けると、操作画面から給電ケーブル長さを選択するだけで、所定のパルス電流,パルス時間,所望の平均溶接電流に対応可能な平均溶接電圧を定電流制御方式のパルス溶接電源に自動設定でき、給電ケーブルの長さ変更で必要な条件出し実験や面倒な計算を省略することができ、使い勝手を高めることができる。
【0055】
図8は、本発明の溶接方法において、視覚センサによる検出情報に基づいて初層溶接の条件パラメータを制御する一実施形態を示す説明図である。溶接すべき開先部のギャップ幅Gの検出画像と、ギャップ幅の大きさ(Gs=0,Gs=5mm)に応じて出力させるパルス電流波形と、溶着量S1を増減させて形成した溶接ビード断面と、平均溶接電流Ia,平均溶接電圧E,溶接速度Vpなどの溶接条件パラメータを増減制御する様子とを示している。給電ケーブルの往復長さX は30m(断面60mm )であり、そのケーブル長さに合った溶接条件を出力させている。
【0056】
深溶け込みが必要なギャップのない部分及びその近傍では、高めの平均溶接電流Iaとその平均溶接電流Iaに適した平均溶接電圧Eを定電流制御方式のパルス溶接電源に設定して出力させる。平均溶接電流Iaが高いと、ワイヤ送り速度Wf(溶融速度)が速くなるために、溶接すべき溶着量S1(ワイヤ溶着面積)が減少するように溶接速度Vpを速くしている。開先部のギャップ幅Gsが大きくなるに従って、平均溶接電流Iaを階段状に減少させてアーク力を弱めると共に、その平均溶接電流Ia適した平均アーク電圧Va及びワイヤ送り速度Wfをアーク溶接部分で出力させている。同時に、溶接すべき溶着量S1を増加させるために、溶接速度Vsを減少させると共に、開先両壁を溶融させるためにウィービング幅Uwを増加させる制御を実行している。省略しているが、開先中心ずれΔYs,ΔZsの検出情報を用いて、溶接線左右及び上下の位置ずれをなくす方向に溶接トーチ位置Y,Zを修正制御している。ギャップ幅の広い部分には、開先部の裏側に予め裏当て材(例えばセラミック性の裏当て材)を設置すると、溶け落ちを防止できる。
【0057】
図9は、充填層溶接の条件パラメータを制御する一実施形態を示す説明図である。初層後の充填層溶接では、開先肩幅Wsまたはビード幅Bs,開先面積Asの検出情報を用い、平均溶接電流Ia,その平均溶接電流Iaに適した平均溶接電圧Eとワイヤ送り速度Ws,溶接速度Vs,ウィービング幅Uwなどの溶接条件パラメータを各々算出して増減制御させている。平均溶接電流Ia及び平均溶接電圧Eは、初層の溶接時より低めであり、開先両壁を溶融させるために、開先肩幅Wsの大きさに応じてIa及びEを階段状に増加させ、ウィービング幅Uwも増加させている。溶接すべき溶着量S1を増加させるために、溶接速度Vsを減少させる制御を実行している。また、初層溶接の時と同様に、左右上下方向の溶接トーチ位置Y,Zを修正制御している。
【0058】
仕上層の溶接では、視覚センサによる開先形状検出が困難となるため、その検出動作を停止して、前層溶接で検出した記録データを再度用い、溶接すべき残存の溶着面積を算出し、その平均溶接電流Iaに適した平均溶接電圧Eとワイヤ送り速度Ws,溶接速度Vs,ウィービング幅Uwなどの溶接条件パラメータを各々算出して増減制御させるとよい。ここでは、V開先の溶接例を示したが、U開先,レ開先,X開先,すみ肉などの継手に対しても溶接が適用可能である。
【0059】
このように制御して溶接すると、給電ケーブルの長さ変更をした場合でも、ギャップや開先面積が変化,溶接線の曲がりやずれがある開先継手であっても、溶接パス毎に実行する適正な溶接条件パラメータの増減制御,トーチ位置の修正制御によって対応でき、良好な溶け込み形状の溶接結果を得ることができ、溶接を自動化することができる。
【0060】
【発明の効果】
本発明によれば、溶接すべき継手部材の大きさ,設置場所,作業場所及び溶接箇所の相違によって給電ケーブルの長さ変更をした場合でも、溶接時に変化するケーブル電圧,リアクタで消費するリアクタ電圧を補充可能になり、所望のパルス電流,パルスアーク電圧,平均溶接電流の大きさに適した平均アーク電圧をアーク溶接部分で確実に出力することができ、小電流(平均)領域から大電流領域まで、スパッタの発生がなく、融合不良やアンダーカットなど欠陥のない良好な溶接結果を得ることができる。また、溶接装置及び溶接電源を所定の場所に設置したままの状態で、給電ケーブル,配線ケーブルを継手部材及び溶接台車まで簡単に延長または短縮することができ、クレーン作業による装置移設を省略し、溶接台車の取り付けや装置立上げの時間を短縮でき、さらに自動の溶接化よる合理化,工数低減を図ることができる。
【図面の簡単な説明】
【図1】本発明による溶接方法を採用した自動溶接装置の一実施形態の構成を示す斜視図である。
【図2】本発明の溶接装置に採用した定電流制御方式のパルス溶接電源に関する電源回路の一実施形態を示すブロック図である。
【図3】図2に示した電源主要回路より給電される溶接回路の等価回路を示す一実施形態の回路図である。
【図4】溶滴の安定移行及びスパッタの発生防止を図るためのパルスアーク溶接の電圧・電流波形及びワイヤ先端の溶滴移行の概要を示す説明図である。
【図5】給電ケーブルの断面Bと単位長さ当りのケーブル抵抗r(Ω/m)の関係を示す特性図である。
【図6】断面が60mm の給電ケーブル長さ(X =10〜150m)を変化させた時にパルス溶接電源から給電が必要な合計のパルス電圧Vpの関係を示す特性図である。
【図7】給電ケーブルの往復長さ(X )を30m使用時と150m使用時との溶接で必要な所望の平均溶接電流Iaと平均溶接電圧Eとの関係を示す一実施形態の特性図である。
【図8】視覚センサによる検出情報に基づいて初層溶接の条件パラメータを制御する一実施形態を示す説明図である。
【図9】充填層溶接の条件パラメータを制御する一実施形態を示す説明図である。
【符号の説明】
1a,1b,1c,1d…溶接ワーク、2…開先部の溶接線、3…溶接台車、4…溶接トーチ、5a,5b,6a,6b…給電ケーブル、7a,7b…配線ケーブル、10…パルス溶接電源、11…溶接制御装置、12…視覚センサ、13…給電ジョイント、14…配線コネクタ、18…溶接ワイヤ、19…ワイヤ溶滴、20…アーク、21…溶融池、46…制御器、47…演算器、49…パルス時間設定器、50a…電流検出素子、50b…電流検出器、51…電圧検出器、52,55…溶接電圧設定器、53,56…溶接電流設定器、54…ワイヤ送り設定器、58,59…パルス電流波形設定器、61…電源制御部、63…アーク電圧検出器。

Claims (10)

  1. 溶接ワイヤを電極にするアーク溶接で用いる定電流制御方式のパルス溶接電源と、継手部材,溶接台車に搭載された溶接トーチとの間に各々接続する給電ケーブルの往復長さを変更して前記継手部材を溶接する自動溶接方法において、
    前記給電ケーブルの長さ変更で生じるケーブル電圧及びリアクタ電圧の変化に対応可能なパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定し、
    所望の平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を前記定電流制御方式のパルス溶接電源に設定して溶接することを特徴とする自動溶接方法。
  2. 請求項1に記載の溶接方法において、
    前記定電流制御方式のパルス溶接電源は、少なくとも給電ケーブルを最長にした溶接時に必要となる負荷電圧,所望のパルス電流が出力可能なパルス電流及びパルス時間の調整と、所望の平均溶接電圧,平均溶接電流またはワイヤ送り速度に連動した平均溶接電流の調整と、アーク長変化の補正制御とが可能なパルス溶接電源とし、
    溶接を実行する時には、給電ケーブルの長さ変更で生じるケーブル電圧及びリアクタ電圧の変化に対応可能なパルス電流またはそのパルス電流及びパルス時間を設定し、所望のパルス電流,パルスアーク電圧を出力させ、
    所望の平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を設定し、前記平均アーク電圧をアーク溶接部分で出力させることを特徴とする自動溶接方法。
  3. 請求項1または2に記載の溶接方法において、
    少なくとも変更した給電ケーブルの往復長さを流れる所望のパルス電流で消費する第2のケーブル電圧と、リアクタで消費する第2のリアクタ電圧とを補充可能なパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定し、
    溶接中に増減制御する前記平均溶接電流で消費する第1のケーブル電圧と、リアクタで消費する第1のリアクタ電圧とを補充可能な平均溶接電圧を前記定電流制御方式のパルス溶接電源に設定し、
    高電流の1パルスで1溶滴が低電流のベース時間中に移行可能なパルス電流,パルスアーク電圧を出力させ、ワイヤ溶滴の移行時に短絡移行が生じない程度のアーク長を保持し得る所望の平均アーク電圧をアーク溶接部分で出力させて溶接することを特徴とする自動溶接方法。
  4. 請求項1ないし3のいずれかに記載の溶接方法において、
    少なくとも給電ケーブルの往復長さ別に予め定めたパルス電流またはそのパルス電流及びパルス時間と、平均溶接電圧を算出する電圧算出式とを記載した条件テーブルを溶接制御装置に設け、
    溶接を実行する時には、給電ケーブル長さの選択で予め決定したパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定し、所望のパルス電流,パルスアーク電圧を出力させ、
    溶接中に増減制御する平均溶接電流の大きさに適した平均アーク電圧と、変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧の予測値と、溶接回路内のリアクタで消費する第1のリアクタ電圧とを予め加算した平均溶接電圧を前記定電流制御方式のパルス溶接電源に設定し、所望の平均アーク電圧をアーク溶接部分で出力させることを特徴とする自動溶接方法。
  5. 請求項1ないし4のいずれかに記載の溶接方法において、
    前記ケーブル電圧の予測値は、少なくとも使用する給電ケーブルの単位長さ当りの抵抗または給電ケーブルの断面積に関係する単位長さ当りの抵抗と、その往復長さと、所望の電流との関係式で算出することを特徴とする自動溶接方法。
  6. 請求項1ないし4のいずれかに記載の溶接方法において、
    開先部のギャップ,開先面積,開先肩幅,左右上下方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置を設け、
    溶接を実行する時には、ギャップ幅または開先肩幅または開先面積と開先肩幅の大きさ対応した平均溶接電流,その平均溶接電流に適した平均溶接電圧とワイヤ送り速度,溶接速度,ウィービング幅などの溶接条件パラメータを各々算出して増減制御し、溶接線左右及び上下の位置ずれをなくす方向にトーチ位置を修正制御するようにしたことを特徴とする自動溶接方法。
  7. 溶接ワイヤを電極にするアーク溶接で用いる定電流制御方式のパルス溶接電源と、継手部材,溶接台車に搭載された溶接トーチとの間に各々接続する給電ケーブルの往復長さを変更して前記継手部材を溶接する自動溶接装置において、
    変更した給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を前記定電流制御方式のパルス溶接電源に設定するパルス電流設定手段と、
    平均溶接電流の大きさに適した平均アーク電圧,変更した給電ケーブルの往復長さを流れる前記平均溶接電流で消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段とを備えたことを特徴とする自動溶接装置。
  8. 請求項7に記載の溶接装置において、
    前記定電流制御方式のパルス溶接電源は、給電ケーブルを最長にした溶接時に必要となる負荷電圧,所望のパルス電流が出力可能なパルス電流及びパルス時間の調整と、所望の平均溶接電圧,平均溶接電流またはワイヤ送り速度に連動した平均溶接電流の調整と、アーク長変化の補正制御とが可能なパルス溶接電源としたことを特徴とする自動溶接装置。
  9. 請求項7に記載の溶接装置において、
    溶接トーチを左右上下方向に移動及び溶接線方向に移動可能な駆動機構,ワイヤ送り機構を搭載した溶接台車を制御する台車制御手段と、定電流制御方式のパルス溶接電源を制御する電源制御手段と、
    パルス溶接電源及び溶接装置から溶接対象の継手部材までの距離に応じて延長する複数の給電ケーブルと、同様に延長する制御ケーブルやガスホース類などを収納した予備の配線ケーブルと、
    給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を設定するパルス電流設定手段と、
    平均溶接電流の大きさに適した平均アーク電圧,変更した給電ケーブルの往復長さで消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段とを備えたことを特徴とする自動溶接装置。
  10. 請求項7に記載の溶接装置において、
    溶接トーチを左右上下方向に移動及び溶接線方向に移動可能な駆動機構,ワイヤ送り機構を搭載した溶接台車を制御する台車制御手段と、定電流制御方式のパルス溶接電源を制御する電源制御手段と、
    パルス溶接電源及び溶接装置から溶接対象の継手部材までの距離に応じて延長する複数の給電ケーブルと、同様に延長する制御ケーブルやガスホース類などを収納した予備の配線ケーブルと、
    給電ケーブルの往復長さに対応したパルス電流またはそのパルス電流及びパルス時間を設定するパルス電流設定手段と、
    平均溶接電流の大きさに適した平均アーク電圧,変更した給電ケーブルの往復長さで消費する第1のケーブル電圧,リアクタで消費する第1のリアクタ電圧を予め加算した平均溶接電圧を算出する平均溶接電圧算出手段と、
    平均溶接電流,その平均溶接電流に適した平均溶接電圧とワイヤ送り速度,溶接速度,ウィービング幅などの溶接条件パラメータの増減制御,溶接トーチ位置の修正制御に使用する開先部のギャップ,開先面積,開先肩幅,左右上下方向の開先中心ずれを検出する視覚センサ及び画像処理装置とを備えたことを特徴とする溶接装置。
JP2003060783A 2003-03-07 2003-03-07 自動溶接方法及び自動溶接装置 Pending JP2004268076A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060783A JP2004268076A (ja) 2003-03-07 2003-03-07 自動溶接方法及び自動溶接装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060783A JP2004268076A (ja) 2003-03-07 2003-03-07 自動溶接方法及び自動溶接装置

Publications (1)

Publication Number Publication Date
JP2004268076A true JP2004268076A (ja) 2004-09-30

Family

ID=33123184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060783A Pending JP2004268076A (ja) 2003-03-07 2003-03-07 自動溶接方法及び自動溶接装置

Country Status (1)

Country Link
JP (1) JP2004268076A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672305A (zh) * 2011-03-07 2012-09-19 株式会社大亨 焊接系统以及焊接用电源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672305A (zh) * 2011-03-07 2012-09-19 株式会社大亨 焊接系统以及焊接用电源装置
JP2012183566A (ja) * 2011-03-07 2012-09-27 Daihen Corp 溶接システム及び溶接用電源装置
CN102672305B (zh) * 2011-03-07 2016-06-29 株式会社大亨 焊接系统以及焊接用电源装置

Similar Documents

Publication Publication Date Title
EP1118415B1 (en) Arc welder and torch for same
KR20150037988A (ko) 레이저 아크 하이브리드 공정 중 소모재를 유도 가열하기 위한 방법 및 시스템
US20200316703A1 (en) Arc welding controlling method
EP3412396A1 (en) Pulsed arc welding control method and pulsed arc welding device
KR101991607B1 (ko) 수평 필렛 용접 방법, 수평 필렛 용접 시스템 및 프로그램
CN102985212A (zh) 焊接系统热输入控制
JP6748555B2 (ja) アーク溶接方法及びアーク溶接装置
US20220410300A1 (en) Method and apparatus for welding a weld seam
JP2020049535A (ja) 溶接装置及び溶接方法
JPWO2013136638A1 (ja) アーク溶接方法およびアーク溶接装置
JP4500489B2 (ja) 溶接方法及び溶接装置
KR100823551B1 (ko) 파이프 자동용접장치 및 그 용접방법
JP2004268076A (ja) 自動溶接方法及び自動溶接装置
CN111468802A (zh) 具有集成开关的用于受控短路焊接过程的系统和方法
JP4788094B2 (ja) 自動溶接装置
JP2003290921A (ja) 多層盛溶接方法および多層盛自動溶接装置
US10987765B2 (en) Induction weld bead shaping
KR102301317B1 (ko) 자체-조절식 용접 와이어 공급 속도를 갖는 용접 장치 및 용접 방법
JP4117526B2 (ja) X開先継手の多層盛溶接方法
JP2016147268A (ja) 2ワイヤ溶接制御方法
JP6748556B2 (ja) アーク溶接方法及びアーク溶接装置
JP5145889B2 (ja) 溶接装置
JP5145888B2 (ja) 溶接装置
EP4382236A1 (en) Welding control method, welding control device, welding power supply, welding system, program, welding method, and additive manufacturing method
JP2004148367A (ja) 溶接装置及び溶接方法