JP2004267990A - Apparatus for making composite structure - Google Patents

Apparatus for making composite structure Download PDF

Info

Publication number
JP2004267990A
JP2004267990A JP2003066070A JP2003066070A JP2004267990A JP 2004267990 A JP2004267990 A JP 2004267990A JP 2003066070 A JP2003066070 A JP 2003066070A JP 2003066070 A JP2003066070 A JP 2003066070A JP 2004267990 A JP2004267990 A JP 2004267990A
Authority
JP
Japan
Prior art keywords
powder
gas
aerosol
container
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066070A
Other languages
Japanese (ja)
Other versions
JP4311041B2 (en
Inventor
Masakatsu Kiyohara
正勝 清原
Junji Hiraoka
純治 平岡
Tatsuro Yokoyama
達郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003066070A priority Critical patent/JP4311041B2/en
Publication of JP2004267990A publication Critical patent/JP2004267990A/en
Application granted granted Critical
Publication of JP4311041B2 publication Critical patent/JP4311041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover and reuse a material fine particle in an aerosol without being associated with formation of a structure, and a powder carrier gas used for the formation of the structure in an aerosol deposition method. <P>SOLUTION: An apparatus for making the structure is to make the structure by causing the aerosol in which the material fine particle supplied from a powder supply vessel is dispersed into gas to come into collision with a substrate. The apparatus for making the structure is constituted of a powder recovery mechanism having a suction cylinder which sucks the aerosol provided in the vicinity of a collision area of the aerosol and the substrate, and a fine particle recovery vessel which is connected to the suction cylinder and captures to store the material fine particle in the aerosol; non-return means allowing only one direction flow from the fine particle recovery vessel to the powder supply vessel; and a powder transport mechanism provided closer to the fine particle powder supply vessel side than the non-return means, and having a drive source which produces a flow from the fine particle recovery vessel to the powder supply vessel. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、材料微粒子粉体を含むエアロゾルを基板に吹き付け、材料構造物を基板上に形成させることによって、基板と材料構造物からなる複合構造物を作製する複合構造物作製装置に関する。
【0002】
【従来の技術】
基板上の膜の形成方法としては数μm以上の厚膜の場合、溶射法が一般に知られているが、その他ガスデポジション法が提案されている(例えば、非特許文献1参照。)。
この方法は金属やセラミックスの超微粒子をガス攪拌にてエアロゾル化し、微小なノズルを通して加速せしめ、基材表面に超微粒子の圧粉体層を形成させ、これを加熱して焼成させることにより被膜を形成する。
【0003】
上記非特許文献1のガスデポジション法を改良した先行技術として微粒子ビーム堆積法あるいはエアロゾルデポジション法と呼ばれる脆性材料の膜あるいは構造物の形成方法がある。これは、脆性材料の微粒子を含むエアロゾルをノズルから高速で基板に向けて噴射し、基板に微粒子を衝突させて、その機械的衝撃力を利用して脆性材料の多結晶構造物を基板上にダイレクトに形成させる方法である(例えば、特許文献1、特許文献2参照。)。
【0004】
この特許文献1に開示される技術は、前記した超微粒子を含むエアロゾルを搬送する際あるいはセラミックスなどを加熱蒸発させる際に、超微粒子同士が凝集して大きな粒子となるのを防止するために、中間の経路に分級装置を配置するようにしている。
【0005】
特許文献2においては、粒径が10nmから5μmの範囲にあるセラミックスなどの超微粒子をガスに分散させてエアロゾルとした後、ノズルより高速の超微粒子流として基板に向けて噴射して堆積物を形成させる。このときに超微粒子や基板に、イオン、原子、分子ビームや低温プラズマなどの高エネルギー原子などを照射して作製される構造物を強固なものとする工夫がなされている。
【0006】
【非特許文献1】
加集誠一郎:金属 1989年1月号
【特許文献1】
特開平11−21677号公報
【特許文献2】
特開平2000−212766号公報に開示
【0007】
【発明が解決しようとする課題】
ガスデポジション法やエアロゾルデポジション法を利用した複合構造物形成装置は、チャンバーなどの容器のなかにノズルと基板を配置した構造をとっており、多くの場合真空ポンプを使用してチャンバー内を減圧環境とし、ノズルより微粒子を噴射させる。
【0008】
金属の超微粒子を使って圧粉体層を形成させるガスデポジション法や脆性材料の微粒子粉体をガス中に分散させてエアロゾルとし、これをノズルより基板に向けて噴射して、基板上にダイレクトに脆性材料の構造物を形成させるエアロゾルデポジション法は、用いられる微粒子の利用効率が悪く、特に、エアロゾルデポジション法では、噴射された微粒子のうち構造物となるものは実質的に1%以下である場合が多く、従って構造物形成に与らなかったほとんどの割合を占める微粒子は衝突後のガス流に乗って装置内に飛散しチャンバー内壁に付着したり、真空ポンプに吸い込まれるなどする。このためチャンバー内を掃除する頻度が高く、また真空ポンプへの粉体混入による機能低下の懸念があった。
【0009】
またチャンバー内にはXYステージなど機械装置を設置するため、この駆動部分やセンサ部分に微粒子が付着し、機能障害を引き起こすことがままあった。そこで、真空ポンプの前段に粉体回収フィルターを設ける等の工夫はされているが、この場合はフィルター自体により真空ポンプの吸気性能を絶対的に落としたり、またフィルターに徐々に蓄積する粉体により吸気性能が段々と劣化する問題がある。また原料となる微粒子を大量に用意しても、構造物となった一部以外はすべて廃棄物となるため、資源、コストともに大きな無駄が生じていた。
【0010】
特に、本方法にて大きな面積や大量の製膜体等の複合構造物を作製する際には、製膜効率等の問題から、長時間の作製時間が必要となり、ガスの使用量及び飛散した材料微粒子粉体の消費が激しく、コストに影響を及ぼし本プロセスを実用化に結びつけるのは厳しく、回収された材料粉体及び分離されたガスを回収し、具体的に再利用するための装置や回収作業を減圧環境下で行う必要がることからその実際の操作方法は重要である。そこで、本発明は、材料微粒子粉体等をノズルより基板に向けて噴射して、基板上にダイレクトに材料構造物を形成させる特に、ガスデポジション法やエアロゾルデポジション法等の複合構造物形成方法で、回収された材料粉体及び分離されたガスを、具体的に再利用するための複合構造物作製装置に関するものである。
【0011】
【課題を解決するための手段】
上記課題を解決する為に本発明においては、粉体供給容器から供給された材料微粒子をガス中に分散させたエアロゾルを発生するエアロゾル発生器と、発生したエアロゾルを高速で噴射するノズルとを備え、エアロゾルを基板に衝突させて構造物を作製する構造物作製装置において、前記エアロゾルと前記基板との衝突部位の近傍に設置され前記基板に衝突した後に前記構造物の形成に与らないエアロゾルを吸入する吸引筒と、前記吸引筒に連結し前記構造物の形成に与らないエアロゾル中の材料微粒子を捕捉し貯留する微粒子回収容器とを有した粉体回収機構と、前記微粒子回収容器から前記粉体供給容器への一方向の流れのみを許可する逆流防止手段と、この逆流防止手段よりも前記微粒子粉体供給容器側に設けられ、前記微粒子回収容器から前記粉体供給容器への流れを生起する駆動源とを有する粉体搬送機構と、から構成されたことを特徴とする。ここで示す微粒子回収容器とエアロゾル発生器の粉体供給容器の接合はに配管で接合すること必然性はなく、その仕切に逆流防止手段を介した構造でも良い。
【0012】
これによって、粉体回収機構と粉体搬送機構がより小型化・簡素化することが可能になる。また、ここで言う逆流防止手段としては、逆流防止弁や逆流防止機構を有する電磁弁が有効である。また、回収され再利用する粉体を粉体供給容器には搬送するための駆動源は、エアロゾル発生器の粉体供給容器に設置されており粉体を効率よく搬送する機構を有する。ここで言う粉体を粉体供給容器には搬送するための駆動源としては、真空ポンプや静電気的力により吸引する粉体搬送機構が考えられる。
【0013】
ここで示す粉体搬送用の真空ポンプにおいては、粉体の搬送の際に粉体を巻き込みポンプのオイルの劣化及び機構部品の摩滅等の問題が発生するので、ポンプの前方に粉体を除去するフィルターを設置することで、より長寿命化・品質の安定性が確保させる。
【0014】
このような要素機構部品から構成されたことを特徴とする複合構造物作製装置においては、ステージ機能・ポンプの機能の劣化や構造物形成室内の真空度の上昇が抑制され、作製された構造物の品質の不安定が解消できる。また、形成室内壁の掃除の頻度を減らすことや飛散していた原料粉体を再利用できることから、大幅なコスト削減も可能となる。本手法にて作製された複合構造物のコスト削減に寄与する。特に、この効果は、ダイヤモンドや貴金属を含むような高価な原料粉体材料を用いた場合に顕著な効果が発揮される。
【0015】
本発明の一実施形態においては、前記粉体回収容器は回収された粉体の重量又は容積を感知するセンサーを装備し、このセンサーが任意の設定量の粉体が回収されたことを検知すると、前記粉体搬送機構に設置された駆動源が作動して粉体を搬送することを特徴とする。
また、前記粉体供給容器は供給用粉体の重量又は容積を感知するセンサーを装備し、このセンサーが任意の設定量以下になると、前記粉体搬送機構に設置された駆動源が作動して粉体を搬送することを特徴とする。
【0016】
この複合構造物作製装置においては、粉体の供給が自動的に行うことができる。生産性の向上、コストダウンにも繋がる。
なお、各種容器に設置したセンサーは、少なくとも粉体回収容器及び粉体供給容器のどちらか一方に設置されることで、本機能は満足される。また、粉体搬送の駆動源としては、真空ポンプや静電気的力により吸引する粉体搬送機構が考えられる。ここで示す粉体搬送用の真空ポンプにおいては、粉体の搬送の際に粉体を巻き込みポンプのオイルの劣化及び機構部品の摩滅等の問題が発生するので、ポンプの前方に粉体を除去するフィルターを設置することで、より長寿命化・品質の安定性が確保させる。
【0017】
本発明の別の一実施形態においては、前記微粒子回収容器及び構造物作製を行うチャンバー室と逆流防止手段を介して接続され、排出されたガスを回収するガス回収容器と、前記のガス回収容器で回収したガス圧をあげるためのガス圧縮機構と、前記エアロゾル発生器に対し、始動用あるいは補充用のガスを搬送するガス供給機構と択一的に接続可能な切り替え手段と、を備えたことを特徴とする。
前記ガス回収容器には容器内の圧力を測定する圧力計を配備し、この圧力計にて測定された圧力が任意に設定した圧力未満になるまでガス回収容器から前記エアロゾル発生器へガスが搬送され、任意に設定した圧力未満になった時点で、前記切り替え手段をエアロゾル発生器と始動用あるいはガスの補充用に用いられるガス供給機構に切り替えることを特徴とする。
【0018】
ここに示すガス回収容器は、回収したガスを圧縮するために、かなり内圧が掛かるために、耐圧容器であるとより安心であり、ガス圧縮機構としては、容器内の容積を機械的な仕掛けにて変化させ内圧を上げる方式や単純に搬送用ガスを吸引してコンプレッサーを用いて加圧する方式が考えられる。
【0019】
また、ガス回収容器内の圧力を加圧にて上げる際に、せっかく回収したガスが回収配管から逃げないように、排出ガスを回収するための配管あるいは配管との接合部には、逆流防止弁や逆流防止機構を有する電磁弁(逆流防止手段)や、回収容器のエアロゾル発生器へガスを搬送するための配管においては、ガス供給機構と切り替えために用いられる弁が閉じた状態で、ガス回収容器内の加圧が可能になる。ここに示す切り替え弁としては、3方向コックを有した電磁弁であれば、複雑な制御も必要なが有効であると考える。
【0020】
さらに、このようなシステムにおいては、構造物形成開始の時点と構造物形成中においても粉体回収機構及び構造物形成室から排出回収されたガスが必ずしも100%回収できるとは限らないためにガス回収容器からエアロゾル発生器へガスを搬送するための配管においては、始動用あるいはガスの補充用に用いられるガス供給機構と前記した切り替え弁を介して接続している必要があり、エアロゾル発生器器へのガス供給切り替えは、回収容器に設置した圧力計によって連動して動作し、加圧処理され圧力が増加したガス回収容器内のガス圧を圧力計で感知し、任意に設定した圧力以上になった時点で、切替え弁が切り替わり、エアロゾル発生器とガス回収容器が繋がり、エアロゾル発生器に加圧された回収ガスが搬送される。
【0021】
このように、このガス回収機構を用いることにより。これで構造物形成の際に使用されていたガス供給機構から供給される粉体搬送用ガスが大幅な削減が可能となり、本手法にて作製された複合構造物のコスト削減に寄与する。特に、この効果は、Heガス等の高価なガスを搬送用のガスとして使用していた場合に顕著な効果が発揮される。
【0022】
【発明の実施の態様】
以下に本発明の実施の形態を添付図面に基づいて説明する。
図1は請求項6に記載の粉体回収機構、粉体搬送機構とガス回収容器と回収ガス搬送機構から構成された複合構造物作製装置の1例を示したものであり、本発明の一態様として粉体回収機構、粉体搬送機構とガス回収容器と回収ガス搬送機構を有する複合構造物作製装置1を示したものであり、ガスボンベ等によるガス供給機構101は、3方向切替え弁103を介して、エアロゾル発生器104にガス搬送管102で連結して設置され、その下流側にエアロゾル搬送管106を介して構造物形成室107内にノズル108が設置されている。エアロゾル発生器104内の粉体供給容器105には材料微粒子例えば酸化アルミニウム微粒子粉体が充填されている。ノズル108の先には基板109がXYステージ110に固定されて配置される。ノズル108の先端から基板109までの距離は10mmである。構造物形成室107は、粉体除去用フィルター114を介して真空ポンプ115と接続されている。ノズル108を取り囲むように中空状で縦横60mmの開口を基板方向に向けた吸引筒111が配置され配管112を介して微粒子回収容器113が設置されている。さらに下流側に微粒子回収容器113は、微粒子回収容器113に粉体を吸引するための真空ポンプ117に粉体除去用フィルター116を介して設置されている。前記それぞれの真空ポンプ115及び117の排気は配管118及び119を通って、逆流防止弁120を介して、ガス回収容器121に接続された構造であり、配管126を介して3方向切替え弁103に接続した構造である。ガス回収容器121には、回収したガスを加圧するためのガス圧縮機構122が設置されており、そのガス回収容器121に容器内圧を測定する圧力計123が設置され、この圧力計123は、駆動させる3方向切替え弁103とシーケンス回路が組み込まれた制御ボックス124を介して配線125にて接続されている。一方、粉体回収容器113は、逆流防止電磁弁128を介して、粉体搬送配管127にてエアロゾル発生器104の粉体供給容器105に接続されている。
【0023】
以下に本発明によるエアロゾルデポジション法に基づく複合構造物作製装置1の作用を述べる。まず、始動時に、ガス供給機構101を動作し、シーケンス回路が組み込まれた制御ボックス124にて3方向切替え弁103を開け、ガス供給機構101とエアロゾル発生器104に配管されているガス搬送管102にガスを送り込み、同時にエアロゾル発生器104を運転させて粉体供給容器内の材料微粒子と搬送ガスが適当比で混合されたエアロゾルを発生させる。また真空ポンプ115および117を稼動させ、エアロゾル発生器104と構造物形成室107の間に差圧を生じさせる。このエアロゾルをエアロゾル搬送管106を通して加速させ、ノズル108より基板109に向けて噴射する。基板109はXYステージ110により揺動され、エアロゾル衝突位置を変化させつつ、微粒子の衝突により基板109上に膜状の材料構造物が形成されていく。このとき多くの微粒子は構造物形成に与らず、基板に衝突後四方に跳ね返り飛行するが、これをエアロゾル衝突位置の近傍に設けた吸引筒111で受け、構造物形成室107内に飛散する微粒子の量を抑える。吸引されたエアロゾル粒は搬送管112を通って粉体回収容器113内に導入されて、ガスと材料微粒子とが分離され、ガスは、粉体除去フィルター116を通過後、真空ポンプ117に吸引され、配管119を介して構造物形成室107の内気圧全体を一定レベルに下げる役割を果たすために設置した真空ポンプ115の排気配管118に合流する。
【0024】
粉体除去フィルター114の下流に設置された真空ポンプ115は構造物形成室の内気圧全体を一定レベルに下げる役割を果たし、真空ポンプ117はエアロゾルの流れを吸引筒111方向へ誘導し整流する役割を果たしている。この機構を備えることにより、構造物形成室107内で散逸する脆性材料微粒子の量を大幅に減少させることが可能となり、従ってXYステージ109の機構部への材料微粒子が付着してリミッタなどの異常動作を引き起こすなどの故障を大幅に減少させ、また形成室内壁の掃除の頻度が低下した。また真空ポンプ115へ流入する材料微粒子が減少したため、ポンプの機能が使用時間とともに劣化して、構造物形成室107内の真空度が徐々に上昇するという不具合が解消された。構造物形成室107内の真空度は形成される構造物の機械的特性や電気的特性に影響を与える大きな要因であるため、この不具合解消は構造物の品質の安定に寄与する。
【0025】
排気配管118を通ったガスは、逆流防止弁120を介してガス回収容器121に集められる。集められたガスは任意に設定した時間毎にガス加圧機構122が作動し、ガス回収容器121内に蓄えられたガスを加圧し、その圧力を圧力計123が感知し、任意に設置した圧力以上になった際に、配線125にて接続されたシーケンス回路が組み込まれた制御ボックス124を介して配線125にて、3方向切替え弁103が動作し、加圧されたガス回収容器121とガス搬送配管102を繋ぎエアロゾル発生器104に圧縮ガスを送り込む。
【0026】
また、ガス回収容器121内のガス圧が任意に設定したガス圧未満になったことを圧力計123が感知した時点で、シーケンス回路が組み込まれた制御ボックス124を介して、3方向切替え弁103が動作し、搬送ガスの供給サイドをガス供給機構101に切り替えるシステムになっている。これによって、回収した搬送ガスを効率よく再利用出来、ガス資源の有効活用ができ、構造物作製のコスト削減に大きく寄与する。
【0027】
一方、サイクロン方式等により材料微粒子粉体とガスが分離され粉体回収容器113に回収蓄積された材料粉体は、エアロゾル発生器104の粉体供給容器105に設置された粉体量のレベルセンサーと連動して動く逆流防止弁128を介して、粉体搬送配管127を通って、エアロゾル発生器104の粉体供給容器105に搬送される。構造物形成に寄与しなかった材料粉体を回収再利用することで、粉体資源を有効的に活用することができ、構造物作製のコスト削減に寄与する。
【0028】
【発明の効果】
以上に説明したように本発明によれば、エアロゾルデポジション法による材料構造物形成において、従来利用効率が著しく低いゆえに廃棄されていた材料微粒子や粉体の搬送に用いていたガスの排気ガスを構造物形成室内に散逸させることなく回収し及びガス回収容器に回収し加圧後搬送ガスとして、再利用を可能とした。
【図面の簡単な説明】
【図1】本発明の一態様である複合構造物作製装置を示す模式図
【符号の説明】
101…ガス供給機構
102…ガス搬送管
103…3方向切替え弁
104…エアロゾル発生器
105…粉体供給容器
106…エアロゾル搬送管
107…構造物形成室
108…ノズル
109…基板
110…XYステージ
111…吸引筒
112…配管
113…微粒子回収容器
114…粉体除去用フィルター
115…真空ポンプ
116…粉体除去用フィルター
117…真空ポンプ
118…配管
119…配管
120…逆流防止弁
121…ガス回収容器
122…ガス圧縮機構
123…圧力計
124…制御ボックス
125…配線
126…配管
127…粉体搬送配管
128…逆流防止電磁弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite structure manufacturing apparatus for manufacturing a composite structure composed of a substrate and a material structure by spraying an aerosol containing material fine particle powder onto a substrate to form a material structure on the substrate.
[0002]
[Prior art]
As a method of forming a film on a substrate, in the case of a thick film having a thickness of several μm or more, a thermal spraying method is generally known, but other gas deposition methods have been proposed (for example, see Non-Patent Document 1).
In this method, ultrafine particles of metal or ceramics are aerosolized by gas agitation, accelerated through a fine nozzle, a compacted layer of ultrafine particles is formed on the surface of the substrate, and this is heated and fired to form a coating. Form.
[0003]
As a prior art that improves the gas deposition method of Non-Patent Document 1, there is a method of forming a film or structure of a brittle material called a fine particle beam deposition method or an aerosol deposition method. In this method, an aerosol containing fine particles of a brittle material is jetted from a nozzle toward a substrate at a high speed, and the fine particles collide with the substrate, and the polycrystalline structure of the brittle material is applied to the substrate using the mechanical impact force. This is a method of directly forming (see, for example, Patent Documents 1 and 2).
[0004]
The technique disclosed in Patent Document 1 is to prevent the ultra-fine particles from aggregating into large particles when transferring the aerosol containing the above-described ultra-fine particles or when heating and evaporating ceramics or the like. A classifier is arranged in the middle path.
[0005]
In Patent Literature 2, ultrafine particles such as ceramics having a particle size in a range of 10 nm to 5 μm are dispersed in a gas to form an aerosol, and then jetted toward a substrate as a high-speed flow of ultrafine particles from a nozzle to deposit the deposit. Let it form. At this time, a structure has been devised to make the structure produced by irradiating the ultrafine particles and the substrate with high-energy atoms such as ions, atoms, molecular beams, and low-temperature plasma.
[0006]
[Non-patent document 1]
Seiichiro Kashu: Metals January 1989 [Patent Document 1]
JP-A-11-21677 [Patent Document 2]
Disclosed in Japanese Patent Application Laid-Open No. 2000-212766
[Problems to be solved by the invention]
A complex structure forming apparatus using a gas deposition method or an aerosol deposition method has a structure in which a nozzle and a substrate are arranged in a container such as a chamber. In a reduced pressure environment, fine particles are ejected from the nozzle.
[0008]
A gas deposition method in which a compact layer is formed using ultrafine metal particles, or fine powder of a brittle material is dispersed in a gas to form an aerosol, which is sprayed from a nozzle toward the substrate and In the aerosol deposition method for directly forming a structure of a brittle material, the utilization efficiency of the fine particles used is poor. In particular, in the aerosol deposition method, the structure of the injected fine particles is substantially 1%. In most cases, the particles that account for the majority of the particles that did not contribute to the formation of the structure are scattered in the device on the gas flow after the collision, adhere to the inner wall of the chamber, or are sucked into the vacuum pump, etc. . For this reason, the frequency of cleaning the inside of the chamber is high, and there is a concern that the function may be degraded due to mixing of powder into the vacuum pump.
[0009]
Further, since a mechanical device such as an XY stage is installed in the chamber, fine particles adhere to the driving portion and the sensor portion, which may cause a functional failure. Therefore, measures such as providing a powder recovery filter in front of the vacuum pump have been devised, but in this case, the suction performance of the vacuum pump is absolutely reduced by the filter itself, or the powder gradually accumulates in the filter. There is a problem that the intake performance gradually deteriorates. Even if a large amount of fine particles as a raw material are prepared, all but a part of the structure become waste, so that a great waste of resources and cost is generated.
[0010]
In particular, when producing a composite structure such as a large area or a large amount of a film-forming body by the present method, a long production time is required due to the problem of film-forming efficiency, etc., and the amount of gas used and scattered. The consumption of material fine powder is intense, it is severe that affects the cost and leads to the practical application of this process, and the equipment and equipment for collecting the recovered material powder and separated gas and specifically reusing them The actual operation method is important because the recovery operation needs to be performed in a reduced pressure environment. Accordingly, the present invention provides a method for forming a composite structure, such as a gas deposition method or an aerosol deposition method, in which a material fine particle powder or the like is ejected from a nozzle toward a substrate to form a material structure directly on the substrate. The present invention relates to a composite structure manufacturing apparatus for specifically reusing a material powder and a separated gas collected by a method.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention includes an aerosol generator that generates an aerosol in which material particles supplied from a powder supply container are dispersed in a gas, and a nozzle that ejects the generated aerosol at a high speed. In a structure manufacturing apparatus for manufacturing a structure by causing an aerosol to collide with a substrate, an aerosol that is installed near a collision portion between the aerosol and the substrate and does not contribute to the formation of the structure after colliding with the substrate is provided. A powder collection mechanism having a suction cylinder for inhaling, a particle collection container connected to the suction cylinder and capturing and storing material fine particles in the aerosol that does not contribute to the formation of the structure; and Backflow preventing means for permitting only one-way flow to the powder supply container, and the fine particle powder container provided closer to the fine particle powder supply container than the backflow preventing means, Characterized in that it consists of a powder transfer mechanism and a drive source that occurs flow to the powder supply container from. The joining of the particulate collection container and the powder supply container of the aerosol generator shown here does not necessarily have to be joined by piping, and the partition may have a structure through a backflow prevention means.
[0012]
As a result, the powder recovery mechanism and the powder transport mechanism can be made smaller and simpler. Further, as the backflow prevention means referred to here, a backflow prevention valve or a solenoid valve having a backflow prevention mechanism is effective. A drive source for transporting the collected and reused powder to the powder supply container is provided in the powder supply container of the aerosol generator and has a mechanism for efficiently transporting the powder. As a driving source for transporting the powder to the powder supply container, a vacuum pump or a powder transport mechanism that sucks the powder by electrostatic force can be considered.
[0013]
In the vacuum pump for powder transfer shown here, powder is involved in the transfer of the powder, causing problems such as deterioration of pump oil and wear of mechanical parts. By installing a filter, a longer life and more stable quality are ensured.
[0014]
In a composite structure manufacturing apparatus characterized by being composed of such element mechanism parts, deterioration of the stage function / pump function and increase in the degree of vacuum in the structure forming chamber are suppressed, and the manufactured structure is manufactured. Quality instability can be eliminated. Further, since the frequency of cleaning the inner wall of the forming chamber can be reduced and the scattered raw material powder can be reused, it is possible to significantly reduce the cost. It contributes to cost reduction of the composite structure manufactured by this method. In particular, this effect is remarkable when an expensive raw material powder material containing diamond or a noble metal is used.
[0015]
In one embodiment of the present invention, the powder collection container is equipped with a sensor for sensing the weight or volume of the collected powder, and when this sensor detects that an arbitrary set amount of powder has been collected. The driving source installed in the powder transport mechanism operates to transport the powder.
Further, the powder supply container is equipped with a sensor for sensing the weight or volume of the powder for supply, and when this sensor becomes equal to or less than an arbitrary set amount, a drive source installed in the powder transport mechanism operates. It is characterized by conveying powder.
[0016]
In this composite structure manufacturing apparatus, powder can be automatically supplied. This leads to improved productivity and cost reduction.
This function is satisfied when the sensors installed in various containers are installed in at least one of the powder recovery container and the powder supply container. In addition, as a driving source of the powder transport, a vacuum pump or a powder transport mechanism that suctions by an electrostatic force can be considered. In the vacuum pump for powder transfer shown here, powder is involved in the transfer of the powder, causing problems such as deterioration of pump oil and wear of mechanical parts. By installing a filter, a longer life and more stable quality are ensured.
[0017]
In another embodiment of the present invention, a gas recovery container connected to a chamber for producing the fine particle recovery container and a structure through a backflow prevention unit to recover discharged gas, and the gas recovery container A gas compression mechanism for increasing the pressure of the gas collected in the above, and switching means that can be connected to the aerosol generator as a gas supply mechanism for transporting a starting or replenishing gas. It is characterized by.
The gas recovery container is provided with a pressure gauge for measuring the pressure in the container, and the gas is transported from the gas recovery container to the aerosol generator until the pressure measured by the pressure gauge becomes less than an arbitrarily set pressure. Then, when the pressure becomes lower than an arbitrarily set pressure, the switching means is switched to an aerosol generator and a gas supply mechanism used for starting or replenishing gas.
[0018]
The gas recovery container shown here compresses the recovered gas, which requires considerable internal pressure, so it is safer to use a pressure-resistant container.As a gas compression mechanism, the volume inside the container is used for mechanical devices. There is a method of increasing the internal pressure by changing the pressure, or a method of simply suctioning the carrier gas and pressurizing it using a compressor.
[0019]
When the pressure in the gas recovery container is increased by pressurization, a check valve is installed on the pipe for collecting exhaust gas or the joint with the pipe so that the recovered gas does not escape from the recovery pipe. Valve for preventing gas from flowing back to the aerosol generator of the recovery container, or a solenoid valve having a backflow prevention mechanism, or a pipe used to switch the gas supply mechanism with the gas supply mechanism is closed. Pressurization in the container becomes possible. As the switching valve shown here, if it is an electromagnetic valve having a three-way cock, complicated control is required, but it is considered to be effective.
[0020]
Furthermore, in such a system, 100% of the gas discharged and recovered from the powder recovery mechanism and the structure forming chamber cannot always be recovered at the start of the structure formation and during the structure formation. In the piping for conveying gas from the collection container to the aerosol generator, it is necessary to connect the gas supply mechanism used for starting or gas replenishment via the above-mentioned switching valve, and the aerosol generator The gas supply switching to the gas supply is operated in conjunction with the pressure gauge installed in the collection container, and the gas pressure in the gas collection container whose pressure has been increased due to the pressurization process is detected by the pressure gauge, and the pressure becomes higher than the arbitrarily set pressure. At this point, the switching valve is switched, the aerosol generator is connected to the gas collection container, and the pressurized collected gas is transported to the aerosol generator.
[0021]
Thus, by using this gas recovery mechanism. This makes it possible to significantly reduce the amount of powder carrier gas supplied from the gas supply mechanism used for forming the structure, and contributes to the cost reduction of the composite structure manufactured by this method. In particular, this effect is remarkable when an expensive gas such as He gas is used as a carrier gas.
[0022]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows an example of a composite structure manufacturing apparatus comprising a powder recovery mechanism, a powder transport mechanism, a gas recovery container, and a recovered gas transport mechanism according to claim 6. As an embodiment, a composite structure manufacturing apparatus 1 having a powder recovery mechanism, a powder transport mechanism, a gas recovery container, and a recovered gas transport mechanism is shown. A gas supply mechanism 101 such as a gas cylinder has a three-way switching valve 103. The nozzle 108 is connected to the aerosol generator 104 via the gas transport pipe 102 and installed downstream of the aerosol generator 104 via the aerosol transport pipe 106 in the structure forming chamber 107. The powder supply container 105 in the aerosol generator 104 is filled with material fine particles, for example, aluminum oxide fine particle powder. At the end of the nozzle 108, a substrate 109 is fixedly disposed on an XY stage 110. The distance from the tip of the nozzle 108 to the substrate 109 is 10 mm. The structure forming chamber 107 is connected to a vacuum pump 115 via a filter 114 for removing powder. A suction tube 111 having a hollow shape and an opening of 60 mm in length and width facing the substrate direction is arranged so as to surround the nozzle 108, and a particle collection container 113 is provided via a pipe 112. Further on the downstream side, the fine particle collecting container 113 is installed via a powder removing filter 116 on a vacuum pump 117 for sucking the fine powder into the fine particle collecting container 113. The exhaust of the respective vacuum pumps 115 and 117 passes through pipes 118 and 119, is connected to a gas recovery container 121 via a check valve 120, and is connected to a three-way switching valve 103 via a pipe 126. It is a connected structure. The gas recovery container 121 is provided with a gas compression mechanism 122 for pressurizing the recovered gas, and the gas recovery container 121 is provided with a pressure gauge 123 for measuring the internal pressure of the container. The three-way switching valve 103 to be operated is connected to a wiring 125 via a control box 124 in which a sequence circuit is incorporated. On the other hand, the powder collecting container 113 is connected to the powder supply container 105 of the aerosol generator 104 via a powder conveying pipe 127 via a backflow prevention electromagnetic valve 128.
[0023]
The operation of the composite structure manufacturing apparatus 1 based on the aerosol deposition method according to the present invention will be described below. First, at the time of starting, the gas supply mechanism 101 is operated, the three-way switching valve 103 is opened in the control box 124 in which the sequence circuit is incorporated, and the gas transport pipe 102 connected to the gas supply mechanism 101 and the aerosol generator 104 is opened. And the aerosol generator 104 is operated at the same time to generate an aerosol in which the material particles in the powder supply container and the carrier gas are mixed at an appropriate ratio. Further, the vacuum pumps 115 and 117 are operated to generate a pressure difference between the aerosol generator 104 and the structure forming chamber 107. The aerosol is accelerated through the aerosol transport pipe 106 and is ejected from the nozzle 108 toward the substrate 109. The substrate 109 is oscillated by the XY stage 110, and while changing the aerosol collision position, a film-like material structure is formed on the substrate 109 by the collision of the fine particles. At this time, many fine particles do not contribute to the formation of the structure, and fly back in all directions after the collision with the substrate, but this is received by the suction tube 111 provided near the aerosol collision position and scattered in the structure formation chamber 107. Reduce the amount of fine particles. The sucked aerosol particles are introduced into the powder collecting container 113 through the transfer pipe 112, and the gas and the material fine particles are separated. After passing through the powder removing filter 116, the gas is sucked by the vacuum pump 117. Through a pipe 119 to join an exhaust pipe 118 of a vacuum pump 115 installed to serve to lower the entire internal pressure of the structure forming chamber 107 to a certain level.
[0024]
A vacuum pump 115 installed downstream of the powder removal filter 114 serves to reduce the entire internal pressure of the structure forming chamber to a certain level, and a vacuum pump 117 guides the flow of the aerosol toward the suction cylinder 111 to rectify the flow. Plays. By providing this mechanism, it is possible to greatly reduce the amount of the brittle material particles that dissipate in the structure forming chamber 107. Therefore, the material particles adhere to the mechanism of the XY stage 109, and abnormalities such as a limiter may occur. Failures, such as causing motion, have been greatly reduced, and the frequency of cleaning the interior walls has been reduced. In addition, since the number of material particles flowing into the vacuum pump 115 was reduced, the function of the pump deteriorated with use time, and the problem that the degree of vacuum in the structure forming chamber 107 gradually increased was solved. Since the degree of vacuum in the structure forming chamber 107 is a major factor affecting the mechanical and electrical characteristics of the structure to be formed, the elimination of this problem contributes to the stability of the quality of the structure.
[0025]
The gas that has passed through the exhaust pipe 118 is collected in the gas recovery container 121 via the check valve 120. The collected gas activates the gas pressurizing mechanism 122 at an arbitrarily set time, pressurizes the gas stored in the gas recovery container 121, and the pressure gauge 123 senses the pressure, and the arbitrarily set pressure is set. At this time, the three-way switching valve 103 is operated by the wiring 125 through the control box 124 in which the sequence circuit connected by the wiring 125 is incorporated, and the pressurized gas collection container 121 and the gas are connected. The compressed gas is sent to the aerosol generator 104 by connecting the transport pipe 102.
[0026]
Further, when the pressure gauge 123 detects that the gas pressure in the gas recovery container 121 has become lower than the arbitrarily set gas pressure, the three-way switching valve 103 is provided via a control box 124 in which a sequence circuit is incorporated. Operates, and the supply side of the carrier gas is switched to the gas supply mechanism 101. As a result, the collected carrier gas can be efficiently reused, gas resources can be effectively used, and this greatly contributes to cost reduction in manufacturing structures.
[0027]
On the other hand, the material powder collected by the powder collection container 113 after the material fine particle powder and the gas are separated by the cyclone method or the like is supplied to the powder supply container 105 of the aerosol generator 104 by a powder level sensor. The powder is conveyed to the powder supply container 105 of the aerosol generator 104 through the powder conveyance pipe 127 via a check valve 128 which moves in conjunction with the flow. By collecting and reusing the material powder that has not contributed to the formation of the structure, the powder resources can be effectively used, which contributes to a reduction in the cost of manufacturing the structure.
[0028]
【The invention's effect】
As described above, according to the present invention, in the formation of a material structure by the aerosol deposition method, the exhaust gas of the gas used for transporting the material fine particles and the powder that has been discarded because the usage efficiency is extremely low conventionally is used. The gas was collected without dissipating into the structure forming chamber and collected in a gas collection container, and after pressurization, reused as a carrier gas.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a composite structure manufacturing apparatus according to one embodiment of the present invention.
101 gas supply mechanism 102 gas transfer pipe 103 three-way switching valve 104 aerosol generator 105 powder supply container 106 aerosol transfer pipe 107 structure forming chamber 108 nozzle 109 substrate 110 XY stage 111 Suction cylinder 112 ... Pipe 113 ... Particle collection container 114 ... Powder removal filter 115 ... Vacuum pump 116 ... Powder removal filter 117 ... Vacuum pump 118 ... Pipe 119 ... Pipe 120 ... Backflow prevention valve 121 ... Gas collection container 122 ... Gas compression mechanism 123 Pressure gauge 124 Control box 125 Wiring 126 Pipe 127 Powder transport pipe 128 Backflow prevention solenoid valve

Claims (5)

粉体供給容器から供給された材料微粒子をガス中に分散させたエアロゾルを発生するエアロゾル発生器と、発生したエアロゾルを高速で噴射するノズルとを備え、エアロゾルを基板に衝突させて構造物を作製する複合構造物作製装置において、
前記エアロゾルと前記基板との衝突部位の近傍に設置され前記基板に衝突した後に前記構造物の形成に与らないエアロゾルを吸入する吸引筒と、前記吸引筒に連結し前記構造物の形成に与らないエアロゾル中の材料微粒子を捕捉し貯留する微粒子回収容器とを有した粉体回収機構と、
前記微粒子回収容器から前記粉体供給容器への一方向の流れのみを許可する逆流防止手段と、この逆流防止手段よりも前記微粒子粉体供給容器側に設けられ、前記微粒子回収容器から前記粉体供給容器への流れを生起する駆動源とを有する粉体搬送機構と、
から構成されたことを特徴とする複合構造物作製装置。
It has an aerosol generator that generates an aerosol in which material particles supplied from a powder supply container are dispersed in a gas, and a nozzle that jets the generated aerosol at high speed. In the composite structure manufacturing apparatus to be
A suction tube that is installed near a collision portion between the aerosol and the substrate and that sucks aerosol that does not contribute to the formation of the structure after colliding with the substrate; A powder recovery mechanism having a fine particle recovery container for capturing and storing material fine particles in an aerosol that does not
Backflow prevention means for permitting only one-way flow from the fine particle collection container to the powder supply container, and provided on the fine particle powder supply container side with respect to the reverse flow prevention means; A powder transport mechanism having a drive source for generating a flow to the supply container,
A composite structure manufacturing apparatus characterized by comprising:
前記微粒子回収容器は回収された粉体の重量又は容積を感知するセンサーを装備し、このセンサーが任意の設定量の粉体が回収されたことを検知すると、前記粉体搬送機構に設置された駆動源が作動して粉体を搬送することを特徴とする請求項1記載の複合構造物作製装置。The fine particle collection container is equipped with a sensor for sensing the weight or volume of the collected powder, and when the sensor detects that an arbitrary set amount of powder has been collected, the sensor is installed in the powder transfer mechanism. The composite structure manufacturing apparatus according to claim 1, wherein the driving source operates to transport the powder. 前記粉体供給容器は供給用粉体の重量又は容積を感知するセンサーを装備し、このセンサーが任意の設定量以下になると、前記粉体搬送機構に設置された駆動源が作動して粉体を搬送することを特徴とする請求項1記載の複合構造物作製装置。The powder supply container is equipped with a sensor for detecting the weight or volume of the powder for supply, and when this sensor becomes equal to or less than an arbitrary set amount, a driving source installed in the powder transport mechanism operates to operate the powder. The composite structure manufacturing apparatus according to claim 1, wherein the composite structure is transported. 請求項1に記載の複合構造物作製装置において、前記微粒子回収容器及び構造物作製を行うチャンバー室と逆流防止手段を介して接続され、排出されたガスを回収するガス回収容器と、前記のガス回収容器で回収したガス圧をあげるためのガス圧縮機構と、前記エアロゾル発生器に対し、始動用あるいは補充用のガスを搬送するガス供給機構と択一的に接続可能な切り替え手段と、を備えたことを特徴とする複合構造物作製装置。2. The composite structure manufacturing apparatus according to claim 1, wherein the gas recovery container is connected to the particulate collection container and a chamber chamber for manufacturing the structure through a backflow prevention unit, and collects discharged gas; A gas compression mechanism for increasing the pressure of the gas collected in the collection container, and switching means that can be selectively connected to the aerosol generator with a gas supply mechanism for conveying a starting or replenishing gas. An apparatus for manufacturing a composite structure, comprising: 前記ガス回収容器には容器内の圧力を測定する圧力計を配備し、この圧力計にて測定された圧力が任意に設定した圧力未満になるまでガス回収容器から前記エアロゾル発生器へガスが搬送され、任意に設定した圧力未満になった時点で、前記切り替え手段をエアロゾル発生器と始動用あるいはガスの補充用に用いられるガス供給機構に切り替えることを特徴とする請求項4記載の複合構造物作製装置。The gas recovery container is provided with a pressure gauge for measuring the pressure in the container, and the gas is transported from the gas recovery container to the aerosol generator until the pressure measured by the pressure gauge becomes less than an arbitrarily set pressure. The composite structure according to claim 4, wherein the switching means is switched to an aerosol generator and a gas supply mechanism used for starting or replenishing gas when the pressure becomes lower than an arbitrarily set pressure. Production equipment.
JP2003066070A 2003-03-12 2003-03-12 Composite structure manufacturing equipment Expired - Fee Related JP4311041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066070A JP4311041B2 (en) 2003-03-12 2003-03-12 Composite structure manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066070A JP4311041B2 (en) 2003-03-12 2003-03-12 Composite structure manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004267990A true JP2004267990A (en) 2004-09-30
JP4311041B2 JP4311041B2 (en) 2009-08-12

Family

ID=33126883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066070A Expired - Fee Related JP4311041B2 (en) 2003-03-12 2003-03-12 Composite structure manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4311041B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206976A (en) * 2005-01-28 2006-08-10 Toto Ltd System and method for forming composite structure
JP2011208221A (en) * 2010-03-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology Film deposition device
US8636846B2 (en) 2007-06-29 2014-01-28 Brother Kogyo Kabushiki Kaisha Aerosol-generating apparatus, film-forming apparatus, and aerosol-generating method
JP2014019592A (en) * 2012-07-13 2014-02-03 Taiyo Nippon Sanso Corp Method for recovering helium gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206976A (en) * 2005-01-28 2006-08-10 Toto Ltd System and method for forming composite structure
JP4736022B2 (en) * 2005-01-28 2011-07-27 Toto株式会社 Composite structure forming system and forming method
US8636846B2 (en) 2007-06-29 2014-01-28 Brother Kogyo Kabushiki Kaisha Aerosol-generating apparatus, film-forming apparatus, and aerosol-generating method
JP2011208221A (en) * 2010-03-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology Film deposition device
JP2014019592A (en) * 2012-07-13 2014-02-03 Taiyo Nippon Sanso Corp Method for recovering helium gas

Also Published As

Publication number Publication date
JP4311041B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP5049625B2 (en) Structure manufacturing method and structure manufacturing apparatus using the same
US9079209B2 (en) Apparatus for power coating
TWI539876B (en) Etching method and etching device
JP2014511972A (en) Diaphragm pump and method for conveying fine powder using diaphragm pump
JP2004267990A (en) Apparatus for making composite structure
TWI577504B (en) And a direct pressure type bead processing apparatus for direct injection type bead processing apparatus
JP3893512B2 (en) Composite structure manufacturing equipment
KR101065271B1 (en) Powder coating apparatus
JP2004277851A (en) Composite structure production device
JP2016159248A (en) Powder coating apparatus
JP2006198577A (en) Classification method of finely divided particle and film forming method
JP4371884B2 (en) Aerosol deposition equipment
CN110065801A (en) A kind of titanium dioxide conveying anti-blocking equipment of blanking
JP2008285743A (en) Film formation system
JP5190766B2 (en) Composite structure forming apparatus and method for forming composite structure
JP2020183564A (en) Device for manufacturing laminate film and method for manufacturing laminate film
JP4736022B2 (en) Composite structure forming system and forming method
JP4649642B2 (en) Powder recovery apparatus and film forming apparatus with powder recovery apparatus
JP4496380B2 (en) Aerosol deposition system
JP2022156847A (en) Film deposition apparatus, and film deposition method
JP4075719B2 (en) Aerosol generator and composite structure manufacturing device
JP2011012319A (en) Method for manufacturing structure
JP3254663B2 (en) Fine particle injection processing equipment
JP2008274318A (en) Aerosol discharge nozzle and film-forming apparatus
JP4920912B2 (en) Film forming method and film forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees