JP2004267878A - Heat-resistant catalyst prepared by using quasi-crystal aluminum alloy as precursor and its manufacturing method - Google Patents

Heat-resistant catalyst prepared by using quasi-crystal aluminum alloy as precursor and its manufacturing method Download PDF

Info

Publication number
JP2004267878A
JP2004267878A JP2003060574A JP2003060574A JP2004267878A JP 2004267878 A JP2004267878 A JP 2004267878A JP 2003060574 A JP2003060574 A JP 2003060574A JP 2003060574 A JP2003060574 A JP 2003060574A JP 2004267878 A JP2004267878 A JP 2004267878A
Authority
JP
Japan
Prior art keywords
alloy
catalyst
quasicrystalline
heat
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060574A
Other languages
Japanese (ja)
Other versions
JP4454239B2 (en
Inventor
Satoshi Kameoka
聡 亀岡
Yasukuni Sai
安邦 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
Japan Science and Technology Agency
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute for Materials Science filed Critical Japan Science and Technology Agency
Priority to JP2003060574A priority Critical patent/JP4454239B2/en
Publication of JP2004267878A publication Critical patent/JP2004267878A/en
Application granted granted Critical
Publication of JP4454239B2 publication Critical patent/JP4454239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based catalyst having high activity and excellent heat resistance and durability and a method for preparing this catalyst at a low cost by using a process as simple as possible. <P>SOLUTION: This heat-resistant catalyst is composed of composite particles prepared by sticking Cu nanoparticles and Co nanoparticles uniformly dispersedly to the surface of a particle of a quasi-crystal Al alloy obtained by crushing and leaching an ingot of the quasi-crystal Al alloy having the composition shown by the general formula: Al<SB>100-a-b-c</SB>Cu<SB>a</SB>Co<SB>b</SB>(wherein 5 atom%≤a≤30 atom%; 5 atom%≤b≤25 atom%). When this catalyst is made to be a quaternary alloy by adding Fe of ≤10 atom%, a quasi-crystal can be formed in a wider composition range and the catalytic activity can be made higher. The catalytic activity of this catalyst can be made high linearly even at 400°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、準結晶Al合金を前駆体とした高活性で耐熱性、耐久性の優れた、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなる耐熱触媒及びその製造方法に関する。
【0002】
【従来の技術】
銅系触媒はメタノール水蒸気改質、メタノール合成、水性ガスシフト反応ならびに有機化合物の水素化や水素化分解反応などに対し広範に用いられている。しかし、一般に銅系触媒は耐熱・耐久性が非常に低いことから使用条件などが限定される場合が多い。
【0003】
例えば、近年、COの排出量増加による地球温暖化などの環境問題の観点から、水素エネルギーのニーズが強まっている。しかしながら、水素は気体であるために貯蔵が難しく、自動車など移動体の燃料として用いる場合には、利用時に必要量の水素を発生することが望ましい。そのためのいくつかの方法の中で、メタノールの水蒸気改質反応は最も有効な方法である。メタノールは触媒及び水蒸気の存在下で下記反応式(1)に示す水蒸気改質により、容易に水素濃度の高いガスに改質される。
【0004】
CHOH+ HO →3H +CO……………(1)
【0005】
このメタノールの水蒸気改質反応は天然ガスやPLG等の炭化水素の水蒸気改質反応と比較し低温で効率的に水素が得られ、しかも、CO等の副生物が少ない等の特徴がある。特に、銅系触媒は、メタノールの水蒸気改質反応において高選択性を示すことが竹澤らにより既に報告されている(非特許文献1)。
【0006】
しかし、発電、コジェネレーション又は自動車搭載用の燃料電池などで水素を用いようとした場合、現状の銅系触媒の性能では不十分であり、高温下でも高活性かつ高選択性を維持する高い耐久性をもった触媒が望まれている。従来、この種の銅系触媒の製造方法としては銅/亜鉛系等の酸化物からなる触媒を混練法、共沈法により製造する方法が知られている(例えば、特許文献1,2)。
【0007】
この外、2元、3元系の合金をアルカリ金属水酸化物の水溶液で展開するラネ−型のメタノール合成触媒も知られており(特許文献3〜6)、Al−Cu系合金融液を急冷凝固により作製したアモルファス合金のリボン状触媒素材を酸又はアルカリで溶出処理して粉末状に分解し、その表層がCu系超微粒子及び希土類元素、遷移金属、貴金属等の超微粒子の混合相であるメタノールの水蒸気改質触媒の製造方法(特許文献7)等も検討されている。また、AlとCu、Ni、Pd等からなる準結晶Al合金超微粒子がメタノール分解反応において高い活性を有することが知られている(特許文献8)。また、アルミニウムと金属元素からなる原材料を加熱溶解、蒸発して得られる複合超微粒子からなる触媒も考えられている(特許文献9)。
【0008】
さらに、本発明者らは、AlとCu及びFe、Ru、Osから選ばれた少なくとも1種の金属原子を成分とする準結晶からなるAl合金インゴットを粉砕し、得られた合金粒子を水酸化ナトリウム水溶液でエッチングすることを特徴とするメタノール水蒸気改質用触媒の製造方法を開発した(特許文献10、非特許文献2,3,4)。また、銅ならびに亜鉛ならびにパラジウム及び/又は白金を含んだ合金からなるメタノールの水蒸気改質触媒が知られている(特許文献11)。
【0009】
【非特許文献1】
触媒,vol.37 (1995)320
【非特許文献2】
Applied catalysis A:General 214(2001)237−241
【非特許文献3】
Journal of Alloys and Compounds 342 (2002)451−454
【非特許文献4】
Journal of Alloys and Compounds 342 (2002)473−476
【0010】
【特許文献1】
特開昭59−189937号公報
【特許文献2】
特開平6−312142号公報
【特許文献3】
特公平5−86260号公報
【特許文献4】
特開平5−253486(特許3273055)号公報
【特許文献5】
特開平10−235197(特許3243504)号公報
【特許文献6】
特開2000−135436号公報
【特許文献7】
特開平7−265704号公報
【特許文献8】
特開平7−126702号公報
【特許文献9】
特開平10−80636号公報
【特許文献10】
特開2001−276625号公報
【特許文献11】
特開2002−95970号公報
【0011】
【発明が解決しようとする課題】
上記の代表的な方法によって作製されている従来のいわゆる銅系触媒は、いずれも、銅の微粒子を酸化物や金属の表面に担持させ、触媒反応の活性サイトを担わせている。これらの触媒は高温(300℃)になると、銅の微粒子の焼結により粗大化し、銅の表面積が極端に減少することにより、活性が低下する。
【0012】
特許文献7(特開平7−265704号公報)記載の発明の触媒は、アルカリ水溶液として、NaOHを用いる場合には、NaOHの濃度は20〜30重量%で浸漬時間は1〜30分間でリボン状素材を分解したものであり、高温下における焼結による粗大化を希土類元素、遷移金属、貴金属等の超微粒子を均一に分散させて耐熱性を高めているが、温度の上昇による活性の増分は触媒の劣化による活性の低下と打ち消しとなっており、耐熱性は、いずれも300℃で頭打ちになっている。これは、急冷凝固したアモルファス合金(特にAl合金)は少し温度が上がると平衡構造へ変化し結晶化して触媒の安定性を低下させるためと考えられる。さらに、急冷凝固というプロセスを用いるとコストが上がり、製品の歩留まりが低い。
【0013】
特許文献10(特開2001−276625号公報)記載の発明の触媒は、活性が高いものの、320℃以上になると活性が頭打ちになり、耐熱性は十分ではなかった。
【0014】
多くの触媒反応は高温で起きるので、耐熱、耐久性が求められている。例えば、耐熱性が要求される燃料電池の触媒として使用される場合、特に、耐熱、耐久性が問題になっている。銅系触媒以外のものは、殆ど貴金属から構成され、コストの面では実用的ではない。本発明の目的は、高活性で耐熱性、耐久性に優れた銅系触媒及び該触媒をできるだけ簡単なプロセスで安価に製造する方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者等は、上記のような課題を有する耐熱銅系触媒及びその製造方法について検討した結果、アルミニウムと銅とコバルトからなる準結晶Al合金インゴットを前駆体とし、これを粉砕し、得られた粒子をリーチング処理して得られた微粒子からなる触媒がメタノールの水蒸気改質反応において高活性、高耐熱性、耐久性を有すること、また、該触媒は該準結晶Al合金インゴットを粉砕し、得られた粒子を弱いアルカリ性溶液によりリーチング処理することにより容易に製造できることを見出し、本発明に到達した。
【0016】
すなわち、本発明は、(1)一般式Al100−a−b−cCuCo(ただし、5原子%≦a≦30原子%、5原子%≦b≦25原子%)で示される組成を有する準結晶Al合金のインゴットを粉砕及びリーチング処理して得られた準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなることを特徴とする耐熱触媒、である。
また、本発明は、(2)一般式Al100−a−b−cCuCoFe(ただし、5原子%≦a≦30原子%、5原子%≦b≦25原子%、c≦10原子%)で示される組成を有する準結晶Al合金のインゴットを粉砕及びリーチング処理して得られた準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなることを特徴とする耐熱触媒、である。
【0017】
また、本発明は、(3)上記(1)又は(2)記載の一般式で示される組成の準結晶Al合金のインゴットを粉砕して得られた複合微粒子をアルカリ水溶液によりリーチング処理することを特徴とする上記(1)又は(2)の耐熱触媒の製造方法、である。
また、本発明は、(4)アルカリ水溶液のアルカリ化合物の濃度範囲が2〜8重量%であることを特徴とする上記(3)の耐熱触媒の製造方法、である。
また、本発明は、(5)アルカリ水溶液が炭酸ナトリウム(NaCO)又は炭酸水素ナトリウム(NaHCO)水溶液であることを特徴とする上記(3)又は(4)の耐熱触媒の製造方法、である。
また、本発明は、(6)準結晶Al合金のインゴットを不活性雰囲気中で熱処理して合金内の準結晶相を成長させる工程を有することを特徴とする上記(3)の耐熱触媒の製造方法、である。
【0018】
通常、温度が高くなると分子が活発になり、活性も高くなり水素の発生速度も多くなる。このような比例は触媒の本質に変化がない場合に限られている。一般的には、温度の上昇による活性の増分は触媒の劣化による活性の低下と打ち消しとなってしまう。しかし、本発明の触媒の触媒活性は400℃なっても、直線的に活性が高くなる特長がある。
【0019】
【発明の実施の形態】
本発明の触媒は、アルミニウムと銅とコバルト又はアルミニウムと銅とコバルトと鉄からなる準結晶Al合金を前駆体とする。該準結晶Al合金の組成は原子%で銅が5〜30%、コバルトが5〜25%、鉄が0〜10%、アルミニウムはこれらの残量である。AlCuCo系合金は、準結晶の形成組成範囲がAlCuFeに比べてかなり広い。特に、Cu/Coの置換がCu/Feの置換より広い組成範囲で可能である。準結晶の形成により、準結晶自身の脆さで微細な表面積の大きな1次粒子を簡単に得ることができる。
【0020】
準結晶Al合金の銅含有量が5原子%より少ないと準結晶が形成されないし、触媒を担うCu粒子が少ないので、高活性が期待できない。また、30原子%より多いと準結晶が形成されず、さらにCuによるシンタリングが起き易くなるので好ましくない。コバルト含有量が5原子%より少ないと準結晶が形成されない。また、25原子%より多いと準結晶が形成されない。さらに、Feを添加して4元合金にすると、さらに広い組成範囲で準結晶が形成され、触媒活性を大きくすることができるが、鉄が10原子%を超えると準結晶の形成が困難になる。
【0021】
本発明において、触媒製造の原料に用いられる準結晶Al合金は、周期性をもたず、結晶にはない10回対称をもつ、正10角形(2次元)準結晶の構造を有する。これらの組成の準結晶は安定相として知られているので、融点が1020℃付近まで達し、融点まで準結晶構造を維持するものである。それゆえ、800℃程度の高温で熱処理すれば準結晶相の成長により三つの元素から構成される”準結晶”の単相性がよいものが得られる。
【0022】
準結晶相は周期性を持たず、特定なすべり面がないので、転位の運動による塑性変形は起りにくく、脆いという性質をもっている。触媒として用いる場合、充分な活性を得るには高表面積であることが必要であるため、準結晶は粉砕加工性に優れ、容易にミクロンオーダーまで粉砕され、高表面積を達成することができることが必要である。なお、本発明における準結晶Al合金には、準結晶単相からなる合金だけでなく、準結晶相以外に近似結晶やその他の結晶相を含む混相組織も含まれる。
【0023】
本発明の耐熱銅系触媒の前駆体となる特定の組成の準結晶Al合金は、当該組成比の純金属(純Al、純Cu、純Co、純Fe)を通常の溶解鋳造法、例えばアーク溶解などにより溶解し、鋳造することによりインゴットとして得られる。さらに、このインゴットは真空中や不活性雰囲気中で酸化を防ぎながら700〜850℃程度の温度範囲で熱処理を行い、準結晶相の均一化を図ることができる。
【0024】
本発明の触媒製造方法では、まず、得られた準結晶Al合金のインゴットを触媒として表面積を増加させるために粉砕する。粉砕は例えば、インゴットを砕いた合金を瑪瑙乳鉢に装入し、遊星型ボールミルにて行なう。その際に得られる粒子の粒径の分布範囲は約1μm〜100μm、好ましくは5μm〜50μmである。
【0025】
本発明の複合微粒子触媒は、こうして得られた粒子にリーチング処理を施すことにより製造される。リーチング処理に使う処理液は塩基性でアルミニウムと反応するアルカリ水溶液を用いるが、一般的に使用されるNaOH水溶液でリーチを行なうとNaOH水溶液のリーチが強すぎてしまいCuナノ粒子とCoナノ粒子が均一に分散した触媒層の形成が困難となるので、特に、中・弱塩基性の炭酸ナトリウム(NaCO)又は炭酸水素ナトリウム(NaHCO)水溶液を用いることが好ましい。これらのアルカリ水溶液のアルカリ化合物の濃度範囲は2〜8重量%程度が好ましい。2重量%未満ではリーチが充分に進行せず、また、8重量%を超えると反応が早くなりリーチの制御が困難であり、好ましくない。
【0026】
これらの低濃度のアルカリ水溶液を使用してリーチングすることにより準結晶合金粒子表面にできたアルミナの薄膜を取り除くとともに、準結晶合金粒子の表面のかなり薄い層からアルミニウムを溶出する。リーチング処理温度は0〜90℃の範囲であればよく、高温ほど溶出速度は速くなるが、特に加熱せず、室温近傍で行うことが好ましい。低濃度のアルカリ水溶液によるリーチングによる溶出量は約0.5〜40重量%程度が好ましい。0.5重量%未満ではAlの溶出が不十分で表面積が小さくなり、また、40重量%を超えると準結晶構造が壊れて触媒の安定性が低下するので、好ましくない。より好ましくは、5〜20重量%程度である。アルカリ水溶液の濃度が高いと合金粒子のかなりの量のAlが溶出してしまい、粒子表面に固着した微粒子の割合が圧倒的に多くなり好ましくない。
【0027】
このリーチングにより粒子表面に銅の微細な粒子(Cuナノ粒子)を析出させることができる。AlCuCo準結晶ではリーチング処理を行なうことにより、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子が得られる。得られた複合微粒子の粉末を濾過し、よく洗浄した後、乾燥する。得られた複合微粒子の比表面積は約5〜40m/g程度である。基本的にリーチングによる1次粒子のサイズの変化は殆どないので、表面積の増大は準結晶の表面に生成された網目状の微細構造に由来する。上記のとおり、低濃度のアルカリ水溶液によるリーチングによれば、準結晶の表面から約200nm領域だけが溶け出して、中心の準結晶の存在が触媒の安定性に重要な役割を果たす。したがって、この程度の表面積にも関わらず、高い触媒活性を示すことになる。
【0028】
このような構造の複合微粒子により、Cuナノ粒子の触媒機能の他にCo粒子によるその他の触媒反応も期待される。この点は、AlCuFe準結晶のFeの作用と異なる。実際、触媒活性を担うのは、準結晶表面に析出したナノ金属粒子であり、準結晶は”担体”として機能する。AlCuCoFe準結晶では、FeはFeあるいはFe酸化物のナノ粒子として存在する。Fe又はその酸化物もCuに対して固体として溶け込まない性質をもっているので、Cu原子の拡散によるシタリングを防ぐ効果がある。
【0029】
本発明の複合微粒子は、必要に応じて成形して触媒として使用する。複合微粒子は担体に担持して使用することもできる。本発明の触媒を用いる反応装置の形式は特に制限されず、固定床流通式反応装置や流動床反応装置に用いられ、気相反応のみならず液相反応にも使用することができる。
【0030】
【実施例】
次に、実施例により本発明をさらに具体的に説明する。
実施例1
Al−Cu−Co準結晶/NaCOリーチング
Al:4.514g、Cu:2.453g、Co:3.033gを秤量し、水冷した銅ハース内に入れ、アルゴン雰囲気下でアーク溶解し、そのまま銅ハース内で冷却してAl65Co20Cu15のインゴット10gを得た。これをアルミナの鉢にて1mm以下の粉末に粉砕して石英管に真空封入し、800℃で24時間熱処理した。熱処理後石英管から取り出しさらに、遊星ボールミルで粉砕した。得られた粒子の粒径分布範囲は1μm〜100μmであった。得られたAl−Cu−Co準結晶合金粒子を5wt%のNaCO(炭酸ナトリウム)水溶液で4時間リーチング処理した。これを濾過した後、よく水洗し、乾燥した。溶出量は3.6重量%であった。これにより、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約30m/gであった。
【0031】
実施例2
Al−Cu−Co準結晶/NaHCOリーチング
実施例1におけるNaCOの代わりに5wt%の炭酸水素ナトリウム(NaHCO)を用いた他は、実施例1と同じ条件とした。溶出量は0.9重量%であった。これにより、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約5m/gであった。
【0032】
実施例3
Al−Cu−Co−Fe準結晶/NaCOリーチング
Al:4.492g、Cu:3.7443g、Co:0.906g、Fe:0.858gを秤量し、水冷した銅ハース内に入れ、アルゴン雰囲気下でアーク溶解し、Al63Cu23CoFeのインゴット10gを得た。これをアルミナの鉢にて1mm以下の粉末に粉砕して石英管に真空封入し、800℃で24時間熱処理した。熱処理後石英管から取り出しさらに、遊星ボールミルで粉砕した。得られた粒子の粒径分布範囲は1μm〜100μmであった。得られた粒子を5wt%のNaCO(炭酸ナトリウム)で4時間リーチング処理した。これを濾過した後、良く水洗し、乾燥した。溶出量は3.0重量%であった。これにより、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約25m/gであった。
【0033】
実施例4
Al−Cu−Co準結晶/NaOHリーチング
実施例1におけるNaCOの代わりに5wt%の水酸化ナトリウム(NaOH)を用いた他は、実施例1と同じ条件とした。溶出量は37.8重量%であった。これにより、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約17m/gであった。
【0034】
比較例1
Al−Cu−Fe準結晶/5wt%NaOHリーチング
Al:4.29g、Cu:4.01g、Fe:1.69gを秤量し、水冷した銅ハース内に入れ、アルゴン雰囲気下でアーク溶解し、Al65Co20Cu15のインゴット10gを得た。これをアルミナの鉢にて1mm以下の粉末に粉砕して石英管に真空封入し、800℃で24時間熱処理した。熱処理後石英管から取り出しさらに、遊星ボールミルで粉砕した。得られた粒子の粒径分布範囲は0.1μm〜100μmであった。得られた粒子を5wt%のNaOH(水酸化ナトリウム)で4時間リーチング処理した。これを濾過した後、よく水洗し、乾燥した。溶出量は22.6重量%であった。これにより、準結晶Al合金粒子の表面にCuナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約25m/gであった。
【0035】
比較例2
Al−Cu−Fe準結晶/20wt%NaOHリーチング
比較例1における5wt%NaOH 代わりに20wt%の水酸化ナトリウム(NaOH)を用いた他は、比較例1と同じ条件とした。溶出量は27.7重量%であった。比表面積は約23m/gであった。
【0036】
比較例3
ラネーCu/NaOH展開
実施例1と同様の方法により、Al:2.980g、Cu:7.020gを用い、Al50Cu50の合金インゴット10gを作成し、40倍量の20%NaOH水溶液に合金粉末を少量ずつ30分かけて投入してリーチングし、水洗して調製した。溶出量は29.8重量%であった。これによりラネーCu触媒を製造した。比表面積は約32m/gであった。
【0037】
比較例4
実施例1で製造したAl−Cu−Co準結晶合金粒子をリーチングしなかった。比表面積は約1m/gであった。
【0038】
触媒活性試験
触媒0.6 gを秤量し、固定床流通式反応装置で常圧、反応温度240〜400℃に設定し、水/メタノールのモル比1.5の混合液を流通させた。発生ガスをガスクロマトグラフィーにより分析し、水素発生速度により実施例1〜4、比較例1〜4の触媒の活性評価をした。結果を図1に示す。
【0039】
以上の試験から、従来のラネーCu触媒は300℃を超えると触媒活性が低下するのに対して、実施例1〜4の触媒は300℃を超えても触媒活性が増大し、水酸化ナトリウムでリーチングした場合(実施例4)は、Al−Cu−Fe準結晶の場合と同様の傾向を示す高い活性、良好な耐熱性、耐久性を示し、特に、炭酸ナトリウム又は炭酸水素ナトリウムでリーチングした場合(実施例1〜3)は、360℃を超えても温度の上昇に比例して触媒活性が増大する特長があり、本発明の触媒が、従来の触媒に比べて高い活性を示すとともに良好な耐熱性、耐久性を有していることが明らかである。
【0040】
【発明の効果】
以上の説明から明らかなように、本発明の方法により製造された準結晶Al合金を前駆体とし、準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなるCu系触媒は高活性であるとともに、耐熱性に優れ、Co又はCoとFeを含むことによる付加的な触媒活性と優れた耐熱性、耐久性を有する。また、本発明の触媒は、通常の溶解鋳造法により製造したインゴットの粉砕及びリーチング処理により容易に製造されるので、簡単なプロセスで安価に製造できる。
【図面の簡単な説明】
【図1】図1は、実施例1〜4及び比較例1〜4の触媒の活性評価をした結果を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a composite particle obtained by using a quasicrystalline Al alloy as a precursor and having high activity, excellent heat resistance, and excellent durability, in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surfaces of quasicrystalline Al alloy particles. And a method for producing the same.
[0002]
[Prior art]
Copper-based catalysts are widely used for steam reforming of methanol, methanol synthesis, water gas shift reaction, hydrogenation and hydrocracking of organic compounds, and the like. However, in general, copper-based catalysts have very low heat resistance and durability, so that use conditions and the like are often limited.
[0003]
For example, in recent years, the need for hydrogen energy has been increasing from the viewpoint of environmental problems such as global warming due to an increase in CO 2 emissions. However, hydrogen is a gas and therefore difficult to store. When used as a fuel for mobile objects such as automobiles, it is desirable to generate a necessary amount of hydrogen when used. Of these methods, the steam reforming reaction of methanol is the most effective method. Methanol is easily reformed into a gas having a high hydrogen concentration by steam reforming represented by the following reaction formula (1) in the presence of a catalyst and steam.
[0004]
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
[0005]
This steam reforming reaction of methanol is characterized in that hydrogen can be obtained more efficiently at a lower temperature than the steam reforming reaction of hydrocarbons such as natural gas and PLG, and that there are few by-products such as CO. In particular, Takezawa et al. Have already reported that a copper-based catalyst exhibits high selectivity in a steam reforming reaction of methanol (Non-Patent Document 1).
[0006]
However, when hydrogen is used in power generation, cogeneration or on-board fuel cells, the performance of current copper-based catalysts is insufficient, and high durability and high activity and high selectivity are maintained even at high temperatures. There is a demand for a catalyst having good properties. Conventionally, as a method for producing this type of copper-based catalyst, there has been known a method for producing a catalyst composed of a copper / zinc-based oxide by a kneading method or a coprecipitation method (for example, Patent Documents 1 and 2).
[0007]
In addition, a Raney-type methanol synthesis catalyst that develops a binary or ternary alloy with an aqueous solution of an alkali metal hydroxide is also known (Patent Documents 3 to 6). The amorphous alloy ribbon-shaped catalyst material produced by rapid solidification is decomposed into powder by elution treatment with acid or alkali, and its surface layer is a mixed phase of Cu-based ultrafine particles and ultrafine particles of rare earth elements, transition metals, precious metals, etc. A method for producing a certain methanol steam reforming catalyst (Patent Document 7) and the like are also being studied. It is also known that ultrafine particles of a quasicrystalline Al alloy composed of Al and Cu, Ni, Pd, etc. have high activity in a methanol decomposition reaction (Patent Document 8). In addition, a catalyst comprising composite ultrafine particles obtained by heating and dissolving and evaporating a raw material composed of aluminum and a metal element has been considered (Patent Document 9).
[0008]
Further, the present inventors pulverize an Al alloy ingot composed of a quasicrystal containing Al and at least one kind of metal atom selected from Cu, Fe, Ru, and Os, and hydrolyze the obtained alloy particles. A method for producing a methanol steam reforming catalyst characterized by etching with a sodium aqueous solution was developed (Patent Document 10, Non-Patent Documents 2, 3, and 4). Also, a methanol steam reforming catalyst comprising an alloy containing copper, zinc, palladium and / or platinum is known (Patent Document 11).
[0009]
[Non-patent document 1]
Catalyst, vol. 37 (1995) 320
[Non-patent document 2]
Applied catalyst A: General 214 (2001) 237-241.
[Non-Patent Document 3]
Journal of Alloys and Compounds 342 (2002) 451-454.
[Non-patent document 4]
Journal of Alloys and Compounds 342 (2002) 473-476.
[0010]
[Patent Document 1]
JP-A-59-189937 [Patent Document 2]
Japanese Patent Application Laid-Open No. 6-312142 [Patent Document 3]
Japanese Patent Publication No. 5-86260 [Patent Document 4]
Japanese Patent Application Laid-Open No. Hei 5-253486 (Patent No. 3273055)
Japanese Patent Application Laid-Open No. Hei 10-235197 (Patent No. 3243504) [Patent Document 6]
JP 2000-135436 A [Patent Document 7]
JP-A-7-265704 [Patent Document 8]
JP-A-7-126702 [Patent Document 9]
JP-A-10-80636 [Patent Document 10]
JP 2001-276625 A [Patent Document 11]
JP-A-2002-95970
[Problems to be solved by the invention]
All of the conventional so-called copper-based catalysts manufactured by the above-described typical methods carry copper fine particles on the surfaces of oxides and metals, and serve as active sites for the catalytic reaction. At a high temperature (300 ° C.), these catalysts are coarsened by sintering of copper fine particles, and the surface area of copper is extremely reduced, so that the activity is reduced.
[0012]
When NaOH is used as the alkaline aqueous solution, the catalyst of the invention described in Patent Document 7 (Japanese Patent Application Laid-Open No. 7-265704) has a NaOH concentration of 20 to 30% by weight, a dipping time of 1 to 30 minutes, and a ribbon shape. The material is decomposed, and the coarsening due to sintering at high temperature is increased by uniformly dispersing ultrafine particles of rare earth elements, transition metals, noble metals, etc., but the increase in activity due to temperature rise is The decrease in activity due to the deterioration of the catalyst is canceled out, and the heat resistance reaches a peak at 300 ° C. in both cases. This is considered to be because the rapidly solidified amorphous alloy (particularly an Al alloy) changes to an equilibrium structure when the temperature rises a little, and crystallizes to lower the stability of the catalyst. Furthermore, the use of the process of rapid solidification increases costs and lowers product yield.
[0013]
The catalyst of the invention described in Patent Document 10 (Japanese Patent Application Laid-Open No. 2001-276625) has high activity, but its activity peaks at 320 ° C. or higher, and the heat resistance is not sufficient.
[0014]
Since many catalytic reactions occur at high temperatures, heat resistance and durability are required. For example, when used as a catalyst for a fuel cell requiring heat resistance, heat resistance and durability are particularly problematic. The components other than the copper-based catalyst are mostly composed of noble metals, and are not practical in terms of cost. An object of the present invention is to provide a copper-based catalyst having high activity and excellent heat resistance and durability, and a method for producing the catalyst at a low cost by a process as simple as possible.
[0015]
[Means for Solving the Problems]
The present inventors have studied a heat-resistant copper-based catalyst having the above-described problems and a method for producing the same.As a result, a quasicrystalline Al alloy ingot composed of aluminum, copper, and cobalt was used as a precursor, and this was pulverized. The catalyst comprising fine particles obtained by leaching the particles obtained has high activity, high heat resistance and durability in the steam reforming reaction of methanol, and the catalyst crushes the quasicrystalline Al alloy ingot, The present inventors have found that the obtained particles can be easily produced by leaching treatment with a weak alkaline solution, and have reached the present invention.
[0016]
That is, the present invention provides (1) a composition represented by the general formula: Al 100-abc Cu a Co b (provided that 5 atomic% ≦ a ≦ 30 atomic% and 5 atomic% ≦ b ≦ 25 atomic%) Characterized by being composed of composite particles in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surfaces of quasicrystalline Al alloy particles obtained by grinding and leaching a quasicrystalline Al alloy ingot having Heat-resistant catalyst.
Further, the present invention is (2) the general formula Al 100-a-b-c Cu a Co b Fe c ( where 5 atomic% ≦ a ≦ 30 atomic%, 5 atomic% ≦ b ≦ 25 atomic%, c ≦ (10 atomic%) A composite in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surfaces of quasicrystalline Al alloy particles obtained by pulverizing and leaching an ingot of a quasicrystalline Al alloy having a composition represented by 10 atomic%). A heat-resistant catalyst comprising particles.
[0017]
Further, the present invention provides (3) leaching the composite fine particles obtained by pulverizing an ingot of a quasicrystalline Al alloy having a composition represented by the above general formula (1) or (2) with an aqueous alkali solution. A method for producing a heat-resistant catalyst according to the above (1) or (2), which is characterized in that:
The present invention also provides (4) the method for producing a heat-resistant catalyst according to (3) above, wherein the concentration range of the alkali compound in the aqueous alkali solution is 2 to 8% by weight.
The present invention also provides (5) the method for producing a heat-resistant catalyst according to the above (3) or (4), wherein the aqueous alkali solution is an aqueous sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) solution. ,.
Further, the present invention comprises (6) a step of heat-treating the ingot of the quasicrystalline Al alloy in an inert atmosphere to grow a quasicrystalline phase in the alloy, the production of the heat resistant catalyst according to the above (3). The way.
[0018]
Usually, as the temperature increases, the molecules become more active, the activity increases, and the rate of hydrogen generation increases. Such a proportionality is limited only when there is no change in the nature of the catalyst. In general, an increase in activity due to an increase in temperature negates a decrease in activity due to deterioration of the catalyst. However, the catalyst of the present invention has a feature that the catalyst activity is linearly increased even at 400 ° C.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst of the present invention uses, as a precursor, a quasicrystalline Al alloy composed of aluminum, copper, and cobalt or aluminum, copper, cobalt, and iron. The composition of the quasicrystalline Al alloy is 5% to 30% of copper, 5% to 25% of cobalt, 0% to 10% of iron, and the remaining amount of aluminum in atomic%. The AlCuCo-based alloy has a quasicrystal forming composition range that is considerably wider than that of AlCuFe. In particular, Cu / Co substitution is possible in a wider composition range than Cu / Fe substitution. The formation of the quasicrystal makes it possible to easily obtain fine primary particles having a large surface area due to the fragility of the quasicrystal itself.
[0020]
If the copper content of the quasicrystalline Al alloy is less than 5 atomic%, quasicrystals will not be formed and the Cu particles carrying the catalyst will be small, so high activity cannot be expected. On the other hand, if the content is more than 30 atomic%, a quasicrystal is not formed, and sintering due to Cu is liable to occur. If the cobalt content is less than 5 atomic%, no quasicrystal is formed. On the other hand, if it exceeds 25 atomic%, no quasicrystal is formed. Further, when Fe is added to form a quaternary alloy, quasicrystals are formed in a wider composition range and the catalytic activity can be increased, but when iron exceeds 10 atomic%, formation of quasicrystals becomes difficult. .
[0021]
In the present invention, the quasicrystalline Al alloy used as a raw material for the production of the catalyst has a regular decagonal (two-dimensional) quasicrystal structure that has no periodicity and has a ten-fold symmetry not found in crystals. Since the quasicrystals of these compositions are known as stable phases, the melting point reaches around 1020 ° C. and the quasicrystal structure is maintained up to the melting point. Therefore, if heat treatment is performed at a high temperature of about 800 ° C., a “quasicrystal” composed of three elements having a good single phase can be obtained by the growth of the quasicrystal phase.
[0022]
Since the quasicrystalline phase has no periodicity and no specific slip surface, plastic deformation due to dislocation motion is unlikely to occur and has the property of being brittle. When used as a catalyst, the quasicrystal must have a high surface area in order to obtain sufficient activity, so the quasicrystal must be excellent in pulverizability, easily pulverized to the micron order, and capable of achieving a high surface area. It is. The quasicrystalline Al alloy in the present invention includes not only an alloy composed of a quasicrystalline single phase but also a mixed phase structure containing an approximate crystal and another crystal phase in addition to the quasicrystalline phase.
[0023]
The quasicrystalline Al alloy having a specific composition as a precursor of the heat-resistant copper-based catalyst of the present invention is prepared by melting a pure metal (pure Al, pure Cu, pure Co, pure Fe) having the above composition ratio by a normal melting casting method, for example, arc welding. It is obtained as an ingot by melting and melting and casting. Further, the ingot is subjected to a heat treatment in a temperature range of about 700 to 850 ° C. while preventing oxidation in a vacuum or an inert atmosphere, so that the quasicrystalline phase can be made uniform.
[0024]
In the catalyst production method of the present invention, first, the obtained ingot of the quasicrystalline Al alloy is pulverized in order to increase the surface area as a catalyst. The pulverization is performed, for example, by charging an alloy obtained by crushing an ingot into an agate mortar and using a planetary ball mill. The particle size distribution range of the particles obtained at that time is about 1 μm to 100 μm, preferably 5 μm to 50 μm.
[0025]
The composite fine particle catalyst of the present invention is produced by subjecting the thus obtained particles to a leaching treatment. The treatment solution used for the leaching treatment uses an alkaline aqueous solution that is basic and reacts with aluminum.However, when leaching is performed with a commonly used NaOH aqueous solution, the reach of the NaOH aqueous solution is too strong, and Cu nanoparticles and Co nanoparticles are generated. Since it becomes difficult to form a uniformly dispersed catalyst layer, it is particularly preferable to use an aqueous solution of sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) having a medium or weak basicity. The concentration range of the alkali compound in the aqueous alkali solution is preferably about 2 to 8% by weight. If the amount is less than 2% by weight, the reach does not proceed sufficiently, and if the amount exceeds 8% by weight, the reaction is accelerated and it is difficult to control the reach, which is not preferable.
[0026]
By leaching using these low-concentration aqueous alkali solutions, the thin film of alumina formed on the surface of the quasicrystalline alloy particles is removed, and aluminum is eluted from a considerably thin layer on the surface of the quasicrystalline alloy particles. The leaching temperature may be in the range of 0 to 90 ° C., and the elution rate increases as the temperature increases, but it is preferable to perform the heating at around room temperature without heating. The elution amount by leaching with a low-concentration aqueous alkali solution is preferably about 0.5 to 40% by weight. If it is less than 0.5% by weight, the elution of Al is insufficient and the surface area becomes small, and if it exceeds 40% by weight, the quasi-crystal structure is broken and the stability of the catalyst is lowered, which is not preferable. More preferably, it is about 5 to 20% by weight. When the concentration of the aqueous alkali solution is high, a considerable amount of Al is eluted from the alloy particles, and the proportion of the fine particles fixed on the particle surface is overwhelmingly large, which is not preferable.
[0027]
By this leaching, fine copper particles (Cu nanoparticles) can be precipitated on the particle surface. By performing the leaching treatment on the AlCuCo quasicrystal, composite particles in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surfaces of the quasicrystal Al alloy particles are obtained. The powder of the obtained composite fine particles is filtered, washed well, and then dried. The specific surface area of the obtained composite fine particles is about 5 to 40 m 2 / g. Basically, there is almost no change in the size of the primary particles due to leaching, so the increase in surface area comes from the network-like microstructure generated on the surface of the quasicrystal. As described above, according to leaching with a low-concentration aqueous alkali solution, only a region of about 200 nm is eluted from the surface of the quasicrystal, and the presence of the central quasicrystal plays an important role in the stability of the catalyst. Therefore, despite this surface area, high catalytic activity is exhibited.
[0028]
With the composite fine particles having such a structure, other catalytic reactions by Co particles are expected in addition to the catalytic function of Cu nanoparticles. This point is different from the function of Fe in the AlCuFe quasicrystal. In fact, it is the nanometal particles deposited on the surface of the quasicrystal that are responsible for the catalytic activity, and the quasicrystal functions as a “support”. In the AlCuCoFe quasicrystal, Fe exists as nanoparticles of Fe or Fe oxide. Since Fe or its oxide also has the property of not dissolving as a solid in Cu, it has an effect of preventing sitering due to diffusion of Cu atoms.
[0029]
The composite fine particles of the present invention are formed as necessary and used as a catalyst. The composite fine particles can be used by being supported on a carrier. The type of the reactor using the catalyst of the present invention is not particularly limited, and it is used for a fixed bed flow type reactor or a fluidized bed reactor, and can be used not only for a gas phase reaction but also for a liquid phase reaction.
[0030]
【Example】
Next, the present invention will be described more specifically with reference to examples.
Example 1
Al-Cu-Co quasicrystal / Na 2 CO 3 leaching 4.514 g of Al, 2.453 g of Cu, 3.033 g of Co were weighed, placed in a water-cooled copper hearth, and arc-melted under an argon atmosphere. It was cooled in a copper hearth as it was to obtain 10 g of an ingot of Al 65 Co 20 Cu 15 . This was ground into a powder of 1 mm or less in an alumina pot, vacuum-sealed in a quartz tube, and heat-treated at 800 ° C. for 24 hours. After the heat treatment, it was taken out of the quartz tube and further ground with a planetary ball mill. The particle size distribution range of the obtained particles was 1 μm to 100 μm. The resulting Al-Cu-Co quasicrystalline alloy particles was 4 hours leaching treated with 5 wt% of Na 2 CO 3 (sodium carbonate) solution. This was filtered, washed well with water, and dried. The elution amount was 3.6% by weight. As a result, composite particles in which Cu nanoparticles and Co nanoparticles were uniformly dispersed and fixed on the surfaces of the quasicrystalline Al alloy particles were obtained. The specific surface area was about 30 m 2 / g.
[0031]
Example 2
Al-Cu-Co quasicrystal / NaHCO 3 leaching The same conditions as in Example 1 were used except that 5 wt% of sodium hydrogen carbonate (NaHCO 3 ) was used instead of Na 2 CO 3 in Example 1. The elution amount was 0.9% by weight. As a result, composite particles in which Cu nanoparticles and Co nanoparticles were uniformly dispersed and fixed on the surfaces of the quasicrystalline Al alloy particles were obtained. The specific surface area was about 5 m 2 / g.
[0032]
Example 3
Al-Cu-Co-Fe quasicrystal / Na 2 CO 3 leaching Al: 4.492 g, Cu: 3.7443 g, Co: 0.906 g, Fe: 0.858 g were weighed and placed in a water-cooled copper hearth. Arc melting was performed in an argon atmosphere to obtain 10 g of an ingot of Al 63 Cu 23 Co 6 Fe 6 . This was ground into a powder of 1 mm or less in an alumina pot, vacuum-sealed in a quartz tube, and heat-treated at 800 ° C. for 24 hours. After the heat treatment, it was taken out of the quartz tube and further ground with a planetary ball mill. The particle size distribution range of the obtained particles was 1 μm to 100 μm. The obtained particles were subjected to a leaching treatment with 5 wt% of Na 2 CO 3 (sodium carbonate) for 4 hours. This was filtered, washed well with water, and dried. The elution amount was 3.0% by weight. As a result, composite particles in which Cu nanoparticles and Co nanoparticles were uniformly dispersed and fixed on the surfaces of the quasicrystalline Al alloy particles were obtained. The specific surface area was about 25 m 2 / g.
[0033]
Example 4
Al-Cu-Co quasicrystal / NaOH leaching The same conditions as in Example 1 were used except that 5 wt% sodium hydroxide (NaOH) was used instead of Na 2 CO 3 in Example 1. The elution amount was 37.8% by weight. As a result, composite particles in which Cu nanoparticles and Co nanoparticles were uniformly dispersed and fixed on the surfaces of the quasicrystalline Al alloy particles were obtained. The specific surface area was about 17 m 2 / g.
[0034]
Comparative Example 1
Al-Cu-Fe quasicrystal / 5 wt% NaOH leaching 4.29 g of Al, 4.01 g of Cu, and 1.69 g of Fe were weighed, placed in a water-cooled copper hearth, and arc-melted under an argon atmosphere. 10 g of 65 Co 20 Cu 15 ingot was obtained. This was ground into a powder of 1 mm or less in an alumina pot, vacuum-sealed in a quartz tube, and heat-treated at 800 ° C. for 24 hours. After the heat treatment, it was taken out of the quartz tube and further ground with a planetary ball mill. The particle size distribution range of the obtained particles was 0.1 μm to 100 μm. The obtained particles were subjected to a leaching treatment with 5 wt% of NaOH (sodium hydroxide) for 4 hours. This was filtered, washed well with water, and dried. The elution amount was 22.6% by weight. As a result, composite particles in which Cu nanoparticles were uniformly dispersed and fixed on the surfaces of the quasicrystalline Al alloy particles were obtained. The specific surface area was about 25 m 2 / g.
[0035]
Comparative Example 2
Al-Cu-Fe quasicrystal / 20 wt% NaOH leaching The same conditions as in Comparative Example 1 were used except that 20 wt% sodium hydroxide (NaOH) was used instead of 5 wt% NaOH in Comparative Example 1. The elution amount was 27.7% by weight. The specific surface area was about 23 m 2 / g.
[0036]
Comparative Example 3
Raney Cu / NaOH development In the same manner as in Example 1, using 2.980 g of Al and 7.020 g of Cu, 10 g of an alloy ingot of Al 50 Cu 50 was prepared, and the alloy was mixed with a 40-fold amount of a 20% aqueous NaOH solution. The powder was charged little by little over 30 minutes, leached and washed with water. The elution amount was 29.8% by weight. This produced a Raney Cu catalyst. The specific surface area was about 32 m 2 / g.
[0037]
Comparative Example 4
The leaching was not performed on the Al-Cu-Co quasicrystal alloy particles produced in Example 1. The specific surface area was about 1 m 2 / g.
[0038]
Catalyst activity test 0.6 g of the catalyst was weighed, and a fixed-bed flow reactor was set at normal pressure and a reaction temperature of 240 to 400 ° C., and a mixed solution having a water / methanol molar ratio of 1.5 was passed. The generated gas was analyzed by gas chromatography, and the activities of the catalysts of Examples 1 to 4 and Comparative Examples 1 to 4 were evaluated based on the hydrogen generation rate. The results are shown in FIG.
[0039]
From the above test, the catalyst activity of the conventional Raney Cu catalyst decreases when the temperature exceeds 300 ° C., whereas the catalyst activity of the catalysts of Examples 1 to 4 increases even when the temperature exceeds 300 ° C. In the case of leaching (Example 4), high activity, good heat resistance and durability exhibiting the same tendency as in the case of the Al-Cu-Fe quasicrystal are exhibited. In particular, when leaching is performed with sodium carbonate or sodium hydrogen carbonate. (Examples 1 to 3) have a feature that the catalytic activity increases in proportion to the temperature rise even when the temperature exceeds 360 ° C., and the catalyst of the present invention shows a higher activity and a better It is clear that it has heat resistance and durability.
[0040]
【The invention's effect】
As is clear from the above description, a composite in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surface of quasicrystalline Al alloy particles as a precursor using the quasicrystalline Al alloy produced by the method of the present invention. The Cu-based catalyst composed of particles has high activity, is excellent in heat resistance, has additional catalytic activity due to containing Co or Co and Fe, and has excellent heat resistance and durability. Further, since the catalyst of the present invention is easily produced by pulverizing and leaching an ingot produced by a usual melting casting method, it can be produced by a simple process at low cost.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of evaluating the activities of catalysts of Examples 1 to 4 and Comparative Examples 1 to 4.

Claims (6)

一般式Al100−a−b−cCuCo(ただし、5原子%≦a≦30原子%、5原子%≦b≦25原子%)で示される組成を有する準結晶Al合金のインゴットを粉砕及びリーチング処理して得られた準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなることを特徴とする耐熱触媒。A quasicrystalline Al alloy ingot having a composition represented by the general formula Al 100-abc Cu a Co b (5 at% ≦ a ≦ 30 at%, 5 at% ≦ b ≦ 25 at%) A heat-resistant catalyst comprising composite particles in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surfaces of quasicrystalline Al alloy particles obtained by pulverization and leaching. 一般式Al100−a−b−cCuCoFe(ただし、5原子%≦a≦30原子%、5原子%≦b≦25原子%、c≦10原子%)で示される組成を有する準結晶Al合金のインゴットを粉砕及びリーチング処理して得られた準結晶Al合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなることを特徴とする耐熱触媒。Formula Al 100-a-b-c Cu a Co b Fe c ( where 5 atomic% ≦ a ≦ 30 atomic%, 5 atomic% ≦ b ≦ 25 atomic%, c ≦ 10 atomic%) a composition represented by Characterized in that it is composed of composite particles in which Cu nanoparticles and Co nanoparticles are uniformly dispersed and fixed on the surfaces of quasicrystalline Al alloy particles obtained by grinding and leaching a quasicrystalline Al alloy ingot. catalyst. 請求項1又は2記載の一般式で示される組成の準結晶Al合金のインゴットを粉砕して得られた複合微粒子をアルカリ水溶液によりリーチング処理することを特徴とする請求項1又は2記載の耐熱触媒の製造方法。3. The heat-resistant catalyst according to claim 1, wherein the composite fine particles obtained by pulverizing an ingot of a quasicrystalline Al alloy having a composition represented by the general formula according to claim 1 or 2 are leached with an aqueous alkali solution. Manufacturing method. アルカリ水溶液のアルカリ化合物の濃度範囲が2〜8重量%であることを特徴とする請求項3記載の耐熱触媒の製造方法。The method for producing a heat-resistant catalyst according to claim 3, wherein the concentration range of the alkali compound in the aqueous alkali solution is 2 to 8% by weight. アルカリ水溶液が炭酸ナトリウム(NaCO)又は炭酸水素ナトリウム(NaHCO)水溶液であることを特徴とする請求項3又は4記載の耐熱触媒の製造方法。The method for producing a heat-resistant catalyst according to claim 3 or 4, wherein the alkaline aqueous solution is a sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) aqueous solution. 準結晶Al合金のインゴットを不活性雰囲気中で熱処理して合金内の準結晶相を成長させる工程を有することを特徴とする請求項3に記載の耐熱触媒の製造方法。The method for producing a heat-resistant catalyst according to claim 3, further comprising a step of heat-treating the ingot of the quasicrystalline Al alloy in an inert atmosphere to grow a quasicrystalline phase in the alloy.
JP2003060574A 2003-03-06 2003-03-06 Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor Expired - Fee Related JP4454239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060574A JP4454239B2 (en) 2003-03-06 2003-03-06 Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060574A JP4454239B2 (en) 2003-03-06 2003-03-06 Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor

Publications (2)

Publication Number Publication Date
JP2004267878A true JP2004267878A (en) 2004-09-30
JP4454239B2 JP4454239B2 (en) 2010-04-21

Family

ID=33123072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060574A Expired - Fee Related JP4454239B2 (en) 2003-03-06 2003-03-06 Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor

Country Status (1)

Country Link
JP (1) JP4454239B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733071A (en) * 2015-03-19 2015-06-24 苏州欢颜电气有限公司 Wire containing copper aluminum alloy
KR20160129043A (en) 2014-03-28 2016-11-08 신닛테츠스미킨 카부시키카이샤 Plated steel sheet containing quasicrystal
KR20170045332A (en) 2014-09-05 2017-04-26 신닛테츠스미킨 카부시키카이샤 Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
US10232589B2 (en) 2014-03-28 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet with quasicrystal
CN109837534A (en) * 2019-02-26 2019-06-04 西安文理学院 A kind of method that gas-liquid interface prepares nanometer cobalt film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129043A (en) 2014-03-28 2016-11-08 신닛테츠스미킨 카부시키카이샤 Plated steel sheet containing quasicrystal
US10232589B2 (en) 2014-03-28 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet with quasicrystal
US10232590B2 (en) 2014-03-28 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet with quasicrystal
KR20170045332A (en) 2014-09-05 2017-04-26 신닛테츠스미킨 카부시키카이샤 Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
US10508330B2 (en) 2014-09-05 2019-12-17 Nippon Steel Corporation Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
CN104733071A (en) * 2015-03-19 2015-06-24 苏州欢颜电气有限公司 Wire containing copper aluminum alloy
CN109837534A (en) * 2019-02-26 2019-06-04 西安文理学院 A kind of method that gas-liquid interface prepares nanometer cobalt film
CN109837534B (en) * 2019-02-26 2020-09-29 西安文理学院 Method for preparing nano cobalt film on gas-liquid interface

Also Published As

Publication number Publication date
JP4454239B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
Wang et al. Recent progress in high entropy alloys for electrocatalysts
Wang et al. Nanocrystalline intermetallics and alloys
WO2006045606A1 (en) Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP4441594B2 (en) Method for producing methanol steam reforming catalyst
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
Li et al. Controlled synthesis of monodisperse PdxSn100− x nanoparticles and their catalytic activity for hydrogen generation from the hydrolysis of ammonia-borane
CN113437318A (en) Carbon-loaded noble metal alloy nanoparticle and preparation method and application thereof
Wang et al. Recent advances in pt‐based ultrathin nanowires: synthesis and electrocatalytic applications
Schaefer et al. Direct solution synthesis, reaction pathway studies, and structural characterization of crystalline Ni3B nanoparticles
Qin et al. Selective synthesis and characterization of metallic cobalt, cobalt/platinum, and platinum microspheres
JP4454239B2 (en) Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor
EP1721666B1 (en) INTERMETALLIC COMPOUND Ni3Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME
JP4446029B2 (en) Method for producing methanol steam reforming catalyst
GB2026029A (en) Self-disintegrating raney metal alloys containing carbon
JP4386662B2 (en) Method for producing compound catalyst ultrafine particles using quasicrystalline Al alloy particles as carrier
JP6851860B2 (en) Hydrogen production catalyst and hydrogen production method
JP2007245077A (en) Catalyst and hydrogen production apparatus using the same
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
JP3872465B2 (en) High hydrogen storage material and its manufacturing method
JP6099202B2 (en) Method for producing metal catalyst
JP5187845B2 (en) Methanol decomposition catalyst
Fukushima et al. Thermal Stability and CO Oxidation Property of Non-Equilibrium Pd–Ru Alloy Catalyst
Jain et al. Synthesis and electrochemical oxygen reduction reaction activities of palladium-based intermetallic nano-electrocatalysts
JPH0889802A (en) Catalyst for reforming methanol and its preparation and method for reforming methanol
Farhat et al. High surface area mechanically alloyed Pt-based catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees