JPH0889802A - Catalyst for reforming methanol and its preparation and method for reforming methanol - Google Patents

Catalyst for reforming methanol and its preparation and method for reforming methanol

Info

Publication number
JPH0889802A
JPH0889802A JP6231256A JP23125694A JPH0889802A JP H0889802 A JPH0889802 A JP H0889802A JP 6231256 A JP6231256 A JP 6231256A JP 23125694 A JP23125694 A JP 23125694A JP H0889802 A JPH0889802 A JP H0889802A
Authority
JP
Japan
Prior art keywords
methanol
alloy
reforming
catalyst
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231256A
Other languages
Japanese (ja)
Inventor
Hideo Fukui
英夫 福井
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP6231256A priority Critical patent/JPH0889802A/en
Publication of JPH0889802A publication Critical patent/JPH0889802A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a highly active catalyst related to a reforming catalyst for producing hydrogen from methanol and to provide a highly efficient method for reforming methanol. CONSTITUTION: A catalyst for reforming methanol consists of an alloy of general formula TM (wherein T is at least one of rare earth elements [La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu], Mg, Ca and Mn and M is at least one of IB group and VIII group elements) or TQM (wherein Q is Y, Zn, Zr or Hf) and the surface is prepd. by dispersing metal fine particles consisting of the element M on an oxide consisting of the element T or a composite or a mixture of the element T and the element Q. In addition, the above described catalyst is prepd. by preparing an alloy contg. an amorphous phase and/or a finely crystalline phase from a melt of TM or TQM and heating it at 50-700 deg.C under an oxidative atmosphere or the same atmosphere as that for reformation of methanol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタノールから水素を製
造するメタノールの改質触媒およびその製造方法並びに
メタノールの改質法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a methanol reforming catalyst for producing hydrogen from methanol, a method for producing the same, and a method for reforming methanol.

【0002】[0002]

【従来の技術】半導体製造用の雰囲気ガスとして、ま
た、今後普及が予想される燃料電池の燃料などとして、
高純度水素ガスの需要が高まっている。そのため、種々
の水素製造技術が開発されてきているが、このような用
途に対応した中小規模で水素を得る方法としてはメタノ
ールの改質による方法が注目を集めている。というの
は、メタノールは、近年、石油、石炭、天然ガスなど多
くの資源から大量生産される技術が確立されてきてお
り、安価に入手できる上、取扱いの面からみても水素ガ
スに比べ危険が少ないため、運搬や備蓄が容易になり、
簡易に水素を作り出すシステムが実現できるからであ
る。そして、メタノールの改質に用いられる触媒として
は、特開昭49−47281号公報、特公昭54−11
274号公報、特開昭57−56302号公報、特開昭
58−17836号公報、特開昭59−131501号
公報、特開昭60−96504号公報、特開昭60−7
7103号公報、特開昭60−77104号公報などが
知られている。又、メタノールを水素に転化する触媒と
して他に特開昭58−166937号公報も知られてい
る。なお、非晶質合金を触媒とするメタノールの製造法
が特開昭60−87233号公報に記載されている。
2. Description of the Related Art As an atmospheric gas for semiconductor manufacturing, and as a fuel for fuel cells, which is expected to spread in the future,
The demand for high-purity hydrogen gas is increasing. Therefore, various hydrogen production techniques have been developed, but a method by reforming methanol has been attracting attention as a method for obtaining hydrogen on a small-to-medium scale corresponding to such applications. In recent years, methanol has been established as a technology for mass production from many resources such as petroleum, coal, and natural gas, and it is available at low cost, and it is more dangerous than hydrogen gas from the viewpoint of handling. Because there are few, it is easy to transport and stockpile,
This is because a system that easily produces hydrogen can be realized. The catalyst used for reforming methanol is disclosed in JP-A-49-47281 and JP-B-54-11.
274, JP-A-57-56302, JP-A-58-17836, JP-A-59-131501, JP-A-60-96504, and JP-A-60-7.
7103, JP-A-60-77104, etc. are known. Further, as a catalyst for converting methanol into hydrogen, Japanese Patent Laid-Open No. 166937/1983 is also known. A method for producing methanol using an amorphous alloy as a catalyst is described in JP-A-60-87233.

【0003】[0003]

【発明が解決しようとする課題】上記公知のCu系メタ
ノール改質触媒はいずれも水素製造のプラント等で実用
化されている。しかし、エネルギー・環境問題解決に向
け、今後益々水素の需要が高まり、発電、コジェネ等、
様々な用途に水素を用いようとした場合、現状のCu系
触媒の性能では不十分であり、より低温での高活性、高
温下での高選択性、耐久性が望まれている。また触媒製
造の面においても、従来法は出発原料として金属塩や金
属酸化物を使用しており、触媒として機能させるために
は、水素を含んだ気流中で加熱し、金属酸化物や金属水
酸化物の一部を還元させる処理が必要不可欠なため、プ
ロセスが煩雑な上、大きな活性を得にくいといった欠点
があった。また、特開昭58−166937号公報に記
載のものも同様に金属塩を原料として用いる化学的な方
法で調製するため、プロセスが長く、複雑である問題点
を有する。そこで、本発明は比較的低温下で活性が高
く、しかも高温下でも高活性に加え、高い選択性を有
し、さらには簡易な非水系プロセスで製造できるメタノ
ール改質用触媒およびその製造方法、および比較的低温
で効率よく分解でき、プロセスが簡略化できるメタノー
ルの改質法を提供しようとするものである。
All of the above known Cu-based methanol reforming catalysts have been put to practical use in hydrogen production plants and the like. However, in order to solve energy / environmental problems, demand for hydrogen will continue to increase, and power generation, cogeneration, etc.
When hydrogen is used for various purposes, the performance of the current Cu-based catalyst is insufficient, and high activity at lower temperatures, high selectivity at high temperatures, and durability are desired. Also in terms of catalyst production, the conventional method uses a metal salt or metal oxide as a starting material, and in order to function as a catalyst, it is heated in an air flow containing hydrogen, and metal oxide or metal oxide is used. Since a process of reducing a part of the oxide is indispensable, there are drawbacks that the process is complicated and it is difficult to obtain a large activity. Further, the one described in JP-A-58-166937 also has a problem that the process is long and complicated because it is similarly prepared by a chemical method using a metal salt as a raw material. Therefore, the present invention has a high activity at a relatively low temperature, and in addition to a high activity even at a high temperature, has a high selectivity, and a methanol reforming catalyst which can be produced by a simple non-aqueous process and a method for producing the same. Another object of the present invention is to provide a methanol reforming method that can be efficiently decomposed at a relatively low temperature and that can simplify the process.

【0004】[0004]

【課題を解決するための手段】本発明の第一は、一般
式:TM(ただし、Tは希土類元素〔La,Ce,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,H
o,Er,Tm,Yb,Lu〕およびMg,Ca,Mn
から選ばれる少なくとも一種の元素、Mは周期律表IB
族〔Cu,Ag,Au〕およびVIII族〔Fe,Co,N
i,Ru,Rh,Pd,Os,Ir,Pt〕から選ばれ
る少なくとも一種の元素)で示される合金からなり、そ
の表面がT元素からなる酸化物上にM元素からなる金属
微細粒子が分散してなることを特徴とするメタノール改
質用触媒である。上記一般式において、原子パーセント
でT元素は5〜95%、M元素は95〜5%である。
又、島状に分散したM元素からなる金属微細粒子の大き
さはサブナノメートルから数十ナノメートル、より具体
的には30nm以下の粒子が触媒として特に有効に働
く。一般式で示されるT元素とM元素とを組合せること
により、その溶融合金の急冷凝固体が非晶質あるいは非
晶質と微細結晶質相との混相からなる合金(非晶質相を
含む合金)又は微細結晶質相からなる合金を得て、それ
を所定の熱処理をしてT元素よりなる酸化物上にM元素
の金属微細粒子又は表層が金属よりなる金属酸化物超微
粒子が分散してなる表面層を得ることができる。T元素
よりなる酸化物は、M元素よりなる金属微細粒子と強い
相互作用で結びつき、金属微細粒子をそのまま安定に固
定し大きな活性を示す。T元素とM元素の組合せから外
れると非晶質相を前駆体としても触媒活性は低い。
The first aspect of the present invention is to provide a compound represented by the general formula: TM (where T is a rare earth element [La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, Lu] and Mg, Ca, Mn
At least one element selected from M and M is the periodic table IB
Group [Cu, Ag, Au] and Group VIII [Fe, Co, N]
i, Ru, Rh, Pd, Os, Ir, Pt] and at least one element selected from the alloys, the surface of which is an oxide of T element on which fine metal particles of M element are dispersed. The catalyst for reforming methanol is characterized in that In the above general formula, T element is 5 to 95% and M element is 95 to 5% in atomic percent.
Further, the size of the metal fine particles composed of M elements dispersed in an island shape is from sub-nanometer to several tens of nanometers, and more specifically, particles of 30 nm or less work particularly effectively as a catalyst. By combining the T element and the M element represented by the general formula, the rapidly solidified body of the molten alloy is an amorphous alloy or a mixed phase of an amorphous and a fine crystalline phase (including an amorphous phase). Alloy) or an alloy consisting of a fine crystalline phase, and subjecting it to a predetermined heat treatment to disperse the metal fine particles of the M element or the ultrafine metal oxide particles of which the surface layer is a metal on the oxide of the T element. The resulting surface layer can be obtained. The oxide composed of the T element is bound to the metal fine particles composed of the M element through a strong interaction, and the metal fine particles are stably fixed as they are and show a large activity. If the combination of the T element and the M element deviates, the catalytic activity is low even if the amorphous phase is used as a precursor.

【0005】T元素およびM元素の好ましい範囲は、合
金状態図上での共晶点付近が非晶質相や微細な結晶組織
を得るのに最も効果的であり、そのため触媒活性も高
い。原子パーセントでT元素が5〜95%、M元素が9
5〜5%であるが、この範囲とすることにより大きな活
性を示す酸化物上に金属微細粒子が分散してなる組織が
より顕著に表われる。具体例としてはLaAu合金では
LabalAu10〜95、CeCo合金ではCebalCo
5〜50、NdAg合金ではNdbalAg10〜95、GdAu
合金ではGdbalAu5〜90、MgPd合金ではMgbal
Pd5〜30、CaCu合金ではCabalCu10〜50、Mn
Cu合金はMnbalCu40〜80などが挙げられる。もち
ろん、他の組合せ例でも同程度の範囲となる。又、上記
合金組成のT元素の一部をQ元素(ただし、QはY,Z
n,Zr,Hfから選ばれる少なくとも一種の元素)で
置換し、TQMの組成(原子パーセントでT元素は5〜
95%、M元素は95〜5%の中のT元素の量の1%を
超え95%未満の量をQ元素で置換した組成)にするこ
とにより、酸化処理を施した際に、その表面がT元素と
Q元素の複合酸化物又はT元素とQ元素の混合酸化物上
にM元素からなる金属微細粒子がさらに高密度で分散す
るなど、分散の高密度化に有効に作用する。したがっ
て、このQ元素による置換により、触媒の活性および寿
命も向上する。このTQMの好ましい組成範囲は、合金
状態図上の共晶点付近で非晶質相や微細な液晶組織を得
るのに最も効果的であり、大きな触媒活性が得られる。
なお、特に有効な元素としては、T元素はLa,Ce,
Pr,Nd,Gd,Dyであり、M元素はCu,Ag,
Auであり、Q元素はZn,Zrである。これらの元素
の組合せは他に比べて一般に触媒活性が大となる。
The preferred ranges of the T element and the M element are most effective for obtaining an amorphous phase and a fine crystal structure near the eutectic point on the alloy phase diagram, and therefore the catalytic activity is also high. 5 to 95% of T element and 9 of M element in atomic percent
Although it is 5 to 5%, by setting it in this range, a structure in which fine metal particles are dispersed on an oxide showing a large activity is more remarkably exhibited. As a specific example, La bal Au 10 to 95 for LaAu alloy and Ce bal Co for CeCo alloy.
5 to 50 , Nd bal Ag 10 to 95 for NdAg alloy, GdAu
Gd bal Au 5 to 90 for alloys, Mg bal for MgPd alloys
Pd 5~30, Ca bal Cu 10~50 a CaCu alloy, Mn
Examples of the Cu alloy include Mn bal Cu 40 to 80 . Of course, the range is about the same for other combinations. Further, a part of the T element of the above alloy composition is a Q element (where Q is Y, Z
Substitution with at least one element selected from n, Zr, and Hf), and the composition of TQM (atomic element is 5 to T element 5 to
95%, M element is 95 to 5% of the amount of T element in the amount of more than 1% and less than 95% of the amount of the element is replaced by the Q element), so that the surface thereof when subjected to the oxidation treatment. Is effective in increasing the density of the dispersion, such as fine metal particles of the M element being dispersed at a higher density on the composite oxide of the T element and the Q element or the mixed oxide of the T element and the Q element. Therefore, the replacement with the Q element also improves the activity and life of the catalyst. The preferable composition range of TQM is most effective for obtaining an amorphous phase or a fine liquid crystal structure near the eutectic point on the alloy phase diagram, and a large catalytic activity is obtained.
Incidentally, as a particularly effective element, the T element is La, Ce,
Pr, Nd, Gd, Dy, and M element is Cu, Ag,
Au and the Q element is Zn and Zr. The combination of these elements generally has a greater catalytic activity than the others.

【0006】又、それぞれの元素の好ましい組成範囲は
T元素:30〜70%、M元素:30〜70、Q元素:
0〜30%である。この範囲内で大きな触媒活性が得ら
れる。金属微粒子の大きさは前述のように、サブナノメ
ートルから数十ナノメートル、より具体的には30nm
以下、特に10nm以下で触媒効果が飛躍的に向上す
る。さらには5nm以下が好ましい。本発明触媒の対象
反応は下記に示すメタノールを直接分解して水素を製造
する直接分解法(1)とのメタノールと水蒸気から水素
を製造する水蒸気改質法(2)の2種類の方法がある。
The preferred composition range of each element is T element: 30 to 70%, M element: 30 to 70, Q element:
0 to 30%. A large catalytic activity is obtained within this range. As described above, the size of the metal fine particles is from sub-nanometer to several tens of nanometers, more specifically, 30 nm.
Below, particularly, when the thickness is 10 nm or less, the catalytic effect is dramatically improved. Furthermore, 5 nm or less is preferable. The subject reactions of the catalyst of the present invention include the following two methods: a direct decomposition method (1) for directly decomposing methanol to produce hydrogen, and a steam reforming method (2) for producing hydrogen from methanol and steam. .

【0007】[0007]

【数1】 [Equation 1]

【0008】本発明の第二は、又、上記一般式TM又は
TQMに示す合金の溶融組成より非晶質相および/又は
微細結晶質相を含む合金を作製し、これを酸化雰囲気又
はメタノール改質と同等の雰囲気中で50〜700℃に
加熱し、合金表面のT元素からなる酸化物上にM元素か
らなる金属微細粒子を析出分散せしめることを特徴とす
るメタノール改質用触媒の製造方法である。上記非晶質
相および/又は微細結晶質相を含む合金を作製する手段
としては溶融金属の液体急冷法により104〜106K/
sの冷却速度で急冷凝固させる方法やアトマイズ法、液
中紡糸法、MA(メカニカルアロイング)法、スパッタ
法、メッキ法等がある。かかる合金は酸化雰囲気又はメ
タノール改質雰囲気あるいはそれと同等の雰囲気にさら
すことにより表面層が酸化され、T元素からなる酸化物
上あるいはT元素とQ元素の複合酸化物又はT元素とQ
元素の混合酸化物上にサブナノメートルから数十ナノメ
ートルのM元素からなる金属微細粒子が分散した状態に
なり、高い触媒活性を示す。上記に示す酸化物上に金属
微細粒子が分散した触媒を製造する際には、その加熱温
度は50〜700℃とすることが必要である。すなわ
ち、この種触媒に関しては低温での活性と、例えば炭酸
溶融塩型燃料電池との結合を目的とした高温活性を目指
すものとがあるので、この双方の要求とその中間をカバ
ーすべく50〜700℃と限定した。
In the second aspect of the present invention, an alloy containing an amorphous phase and / or a fine crystalline phase is prepared from the melt composition of the alloy represented by the above general formula TM or TQM, and this is prepared in an oxidizing atmosphere or methanol. A method for producing a methanol reforming catalyst, which comprises heating to 50 to 700 ° C. in an atmosphere equivalent to quality to deposit and disperse fine metal particles of M element on an oxide of T element on the alloy surface. Is. As a means for producing an alloy containing the above-mentioned amorphous phase and / or fine crystalline phase, 10 4 to 10 6 K /
There are a method of rapidly solidifying at a cooling rate of s, an atomizing method, a submerged spinning method, an MA (mechanical alloying) method, a sputtering method, a plating method and the like. When such an alloy is exposed to an oxidizing atmosphere, a methanol reforming atmosphere, or an atmosphere equivalent thereto, the surface layer is oxidized, and the surface oxide is formed on the oxide composed of the T element or the composite oxide of the T element and Q element or the T element and Q
Fine metal particles of the element M of sub-nanometers to tens of nanometers are dispersed on the mixed oxide of the elements, which shows high catalytic activity. When producing a catalyst in which fine metal particles are dispersed on the above-mentioned oxide, it is necessary to set the heating temperature to 50 to 700 ° C. That is, some of these catalysts have an activity at a low temperature and an activity at a high temperature for the purpose of, for example, binding to a molten carbonate fuel cell, so that 50- Limited to 700 ° C.

【0009】上記第二の発明は触媒の製造法であるが、
これは一般式:TM又はTQMの出発合金をメタノール
改質と同等の雰囲気で処理するものであるから、出発合
金をメタノール改質工程中に配して直ちにメタノール改
質反応を開始すれば、最初に出発合金が触媒化し、以後
触媒としてメタノール改質反応に寄与する。したがっ
て、加熱温度も150〜500℃であることが好まし
い。本方法では触媒の活性により120℃程度から反応
が起り、300〜500℃の範囲ではメタノールから水
素への高い変換率を示す。
The second invention described above is a method for producing a catalyst.
This is because the starting alloy of the general formula: TM or TQM is treated in the same atmosphere as the methanol reforming, so if the starting alloy is placed in the methanol reforming process and the methanol reforming reaction is immediately started, The starting alloy is catalyzed and contributes to the methanol reforming reaction as a catalyst. Therefore, the heating temperature is also preferably 150 to 500 ° C. In this method, the reaction occurs from about 120 ° C. due to the activity of the catalyst, and a high conversion rate from methanol to hydrogen is exhibited in the range of 300 to 500 ° C.

【0010】[0010]

【実施例】以下本発明を実施例に基づき具体的に説明す
る。 実施例1 アーク溶解炉によりGd79Au21の合金を作り、これを
先端に小孔を有する石英管に挿入し、加熱溶解後、その
石英管を200mmのロールの直上に設置し、回転数4
000r.p.m.の高速回転下、石英管内の溶融金属
をAr加圧下0.4kg/cm2により石英管の小孔か
ら噴出し、ロールの表面と接触することにより急冷凝固
させて幅約1mmの薄体を得た。この際の冷却速度は1
5K/sである。かかる薄体を用いて固定床流通式の
反応装置を用いて触媒反応試験を行った。薄体充填量
0.1gとし、メタノールと水蒸気の混合物を窒素ガス
をキャリアとして該薄体層を通過させ、薄体を触媒化さ
せるとともに、メタノール改質反応を行わせた。生成ガ
ス成分をガスクロマトグラフにより分析することにより
触媒活性を求めた。その性能を表1に示す。
EXAMPLES The present invention will be specifically described below based on examples. Example 1 An alloy of Gd 79 Au 21 was made in an arc melting furnace, and this was inserted into a quartz tube having a small hole at the tip. After heating and melting, the quartz tube was placed directly on a roll of 200 mm and the rotation speed was 4
000r. p. m. Under high pressure, the molten metal in the quartz tube was jetted from a small hole in the quartz tube at 0.4 kg / cm 2 under Ar pressure and brought into contact with the surface of the roll to rapidly solidify to obtain a thin body with a width of about 1 mm. It was The cooling rate at this time is 1
It is 0 5 K / s. Using this thin body, a catalytic reaction test was conducted using a fixed-bed flow reactor. A thin body filling amount was set to 0.1 g, and a mixture of methanol and water vapor was passed through the thin body layer using nitrogen gas as a carrier to catalyze the thin body and to carry out a methanol reforming reaction. The catalytic activity was determined by analyzing the produced gas components by gas chromatography. The performance is shown in Table 1.

【0011】実施例2 Ce76Co24よりなる合金を実施例1と同様な方法で作
製した薄体の触媒としての性能を表1に示す。 実施例3 Nd80Au20よりなる合金を実施例1と同様な方法で作
製した薄体の触媒としての性能を表1に示す。
Example 2 Table 1 shows the performance as a catalyst of a thin body produced by the same method as in Example 1 using an alloy composed of Ce 76 Co 24 . Example 3 An alloy made of Nd 80 Au 20 is manufactured by the same method as in Example 1 and the performance as a catalyst of a thin body is shown in Table 1.

【0012】比較例 金属塩を出発原料として化学的手法で調製したCuO−
ZnO触媒の性能を表1に示す。以上示したとおり、本
発明実施例1〜10は比較例に比べて、活性、選択性と
もに優れており、又、繰返しによる再現性、耐久性等も
十分である。上記実施例と比較例を合せて他の例ととも
に触媒1kg当り、1分間に発生させることができる水
素量の標準状態での体積を表2にまとめて示す。又、高
温における触媒の選択性を示す例を図1に示す。
Comparative Example CuO— prepared by a chemical method using a metal salt as a starting material.
The performance of the ZnO catalyst is shown in Table 1. As shown above, Examples 1 to 10 of the present invention are superior in activity and selectivity as compared with Comparative Examples, and also have sufficient reproducibility by repeated use, durability and the like. Table 2 shows the volume of hydrogen that can be generated in 1 minute per 1 kg of the catalyst in the standard state together with other examples including the above-mentioned Examples and Comparative Examples. An example showing the selectivity of the catalyst at high temperature is shown in FIG.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明に係るメタノール改質用触媒は、
比較的低温で大きな触媒活性を示し、300℃以上で高
い水素発生量を示し、特に350℃以上の高温下におい
ても活性、選択性ともに良好な性能を示す。又、その製
造法は単純なプロセスで触媒活性を得ることができる。
さらに、本発明のメタノール改質法によれば、低温から
高温まで効率よくメタノールを改質し水素を得ることが
でき、又、改質プロセスに先立って触媒活性化を行うこ
とができてプロセス自体を簡略化することができる。
The methanol reforming catalyst according to the present invention is
It exhibits a large catalytic activity at a relatively low temperature, a high hydrogen generation amount at 300 ° C. or higher, and exhibits good activity and selectivity even at a high temperature of 350 ° C. or higher. In addition, the production method can obtain the catalytic activity by a simple process.
Furthermore, according to the methanol reforming method of the present invention, methanol can be efficiently reformed to obtain hydrogen from a low temperature to a high temperature, and the catalyst itself can be activated prior to the reforming process. Can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】各温度における触媒の選択性を示す図である。FIG. 1 is a diagram showing the selectivity of a catalyst at each temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増本 健 宮城県仙台市青葉区上杉3−8−22 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地川内住宅11 −806 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Ken Masumoto 3-8-22, Uesugi, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Akihisa Inoue Kawauchi Muzenchi, Kawauchi 11-806, Aoba-ku, Sendai-shi, Miyagi Prefecture

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 一般式:TM(ただし、Tは希土類元素
〔La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,
Tb,Dy,Ho,Er,Tm,Yb,Lu〕またはM
g,Ca,Mnから選ばれる少なくとも一種の元素、M
は周期律表IB族〔Cu,Ag,Au〕およびVIII族
〔Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,
Pt〕から選ばれる少なくとも一種の元素)で示される
合金からなり、その表面がT元素からなる酸化物上にM
元素からなる金属微細粒子が分散してなることを特徴と
するメタノール改質用触媒。
1. A general formula: TM (where T is a rare earth element [La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu] or M
at least one element selected from g, Ca and Mn, M
Is a group IB [Cu, Ag, Au] and a group VIII [Fe, Co, Ni, Ru, Rh, Pd, Os, Ir,
Pt] at least one element selected from the above) and the surface of which is an oxide of T element and M
A catalyst for reforming methanol, characterized in that fine metal particles comprising an element are dispersed.
【請求項2】 原子パーセントで、T元素は5〜95
%、M元素は95〜5%である請求項1記載のメタノー
ル改質用触媒。
2. The atomic percentage of T element is 5 to 95.
%, M element is 95-5%, The catalyst for reforming methanol according to claim 1.
【請求項3】 一般式:TMで示される請求項1記載の
合金のT元素の一部をQ元素で置換した一般式:TQM
(ただし、QはY,Zn,Zr,Hfから選ばれる少な
くとも一種の元素)で示される合金からなり、その表面
がT元素とQ元素の複合酸化物又はT元素とQ元素の混
合酸化物上にM元素からなる金属微細粒子が分散してな
ることを特徴とするメタノール改質用触媒。
3. The general formula: TQM represented by the general formula: TM, in which a part of the T element of the alloy according to claim 1 is replaced by the Q element.
(However, Q is an alloy represented by at least one element selected from Y, Zn, Zr, and Hf), and its surface is on a composite oxide of T element and Q element or a mixed oxide of T element and Q element. A catalyst for reforming methanol, which is characterized in that fine metal particles of M element are dispersed therein.
【請求項4】 原子パーセントでT元素は5〜95%、
M元素は5〜95%の中のT元素の1%を超え95%未
満の量をQ元素で置換してなる請求項3記載のメタノー
ル改質用触媒。
4. The atomic percentage of T element is 5 to 95%,
The methanol reforming catalyst according to claim 3, wherein the M element is obtained by substituting the Q element in an amount of more than 1% and less than 95% of the T element in 5 to 95%.
【請求項5】 M元素からなる金属微細粒子の大きさが
サブナノメートルから数十ナノメートルである請求項1
又は3記載のメタノール改質用触媒。
5. The size of the metal fine particles of M element is from sub-nanometer to several tens of nanometers.
Or the catalyst for reforming methanol according to 3.
【請求項6】 一般式:TM(ただし、Tは希土類元素
〔La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,
Tb,Dy,Ho,Er,Tm,Yb,Lu〕またはM
g,Ca,Mnから選ばれる少なくとも一種の元素、M
は周期律表IB族〔Cu,Ag,Au〕およびVIII族
〔Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,
Pt〕から選ばれる少なくとも一種の元素)の溶融組成
より非晶質相および/又は微細結晶質相を含む合金を作
製し、これを酸化雰囲気又はメタノール改質と同等の雰
囲気中で50〜700℃に加熱し、合金表面のT元素か
らなる酸化物上にM元素からなる金属微細粒子を析出分
散せしめることを特徴とするメタノール改質用触媒の製
造方法。
6. The general formula: TM (where T is a rare earth element [La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu] or M
at least one element selected from g, Ca and Mn, M
Is a group IB [Cu, Ag, Au] and a group VIII [Fe, Co, Ni, Ru, Rh, Pd, Os, Ir,
An alloy containing an amorphous phase and / or a fine crystalline phase is prepared from a molten composition of at least one element selected from Pt], and the alloy is prepared in an oxidizing atmosphere or an atmosphere equivalent to methanol reforming at 50 to 700 ° C. A method for producing a methanol reforming catalyst, characterized in that fine particles of metal consisting of M element are deposited and dispersed on an oxide consisting of T element on the surface of the alloy by heating.
【請求項7】 原子パーセントでT元素は5〜95%、
M元素は95〜5%である合金を用いる請求項6記載の
メタノール改質用触媒の製造方法。
7. The atomic percentage of T element is 5 to 95%,
The method for producing a methanol reforming catalyst according to claim 6, wherein an alloy in which the M element is 95 to 5% is used.
【請求項8】一般式:TMで示される請求項6記載の合
金のT元素の一部をQ元素で置換した一般式:TQM
(ただし、QはY,Zn,Zr,Hfから選ばれる少な
くとも一種の元素)の溶融組成より非晶質および/又は
微細結晶質相を含む合金を作製し、これを酸化雰囲気又
はメタノール改質と同等の雰囲気中で50〜700℃に
加熱し、合金表面のT元素とQ元素とからなる複合酸化
物又はT元素とQ元素の混合酸化物上にM元素からなる
金属微細粒子を析出分散せしめることを特徴とするメタ
ノール改質用触媒の製造方法。
8. A general formula: TQM in which a part of the T element of the alloy according to claim 6 represented by the general formula: TM is replaced with a Q element.
(However, Q is at least one element selected from Y, Zn, Zr, and Hf) An alloy containing an amorphous and / or fine crystalline phase is prepared from a molten composition, and this is subjected to an oxidizing atmosphere or methanol reforming. By heating to 50 to 700 ° C. in an equivalent atmosphere, fine metal particles of M element are precipitated and dispersed on the composite oxide of T element and Q element or the mixed oxide of T element and Q element on the alloy surface. A method for producing a methanol reforming catalyst, comprising:
【請求項9】 原子パーセントでT元素は5〜95%、
M元素は5〜95%の中のT元素の1%を超え95%未
満の量をQ元素で置換してなる合金を用いる請求項8記
載のメタノール改質用触媒の製造方法。
9. The atomic percentage of T element is 5 to 95%,
The method for producing a catalyst for reforming methanol according to claim 8, wherein the element M is an alloy obtained by substituting the element Q in an amount of more than 1% and less than 95% of the element T in 5 to 95%.
【請求項10】 M元素からなる金属の微細粒子の大き
さがサブナノメートルから数十ナノメートルである請求
項6又は8記載のメタノール改質用触媒の製造方法。
10. The method for producing a methanol reforming catalyst according to claim 6, wherein the size of the fine particles of the metal containing the M element is from sub-nanometer to several tens of nanometers.
【請求項11】 一般式:TM(ただし、Tは希土類元
素〔La,Ce,Pr,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu〕また
はMg,Ca,Mnから選ばれる少なくとも一種の元
素、Mは周期律表IB族〔Cu,Ag,Au〕およびVI
II族〔Fe,Co,Ni,Ru,Rh,Pd,Os,I
r,Pt〕から選ばれる少なくとも一種の元素)の急冷
凝固合金にメタノール又はメタノールと水蒸気を導入す
るとともに、100〜700℃に加熱することを特徴と
するメタノールの改質法。
11. A general formula: TM (where T is a rare earth element [La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu] or at least one element selected from Mg, Ca, Mn, M is IB group [Cu, Ag, Au] and VI of the periodic table.
Group II [Fe, Co, Ni, Ru, Rh, Pd, Os, I
At least one element selected from r, Pt] is introduced into a rapidly solidified alloy of methanol or methanol and steam, and the mixture is heated to 100 to 700 ° C., and a method for reforming methanol is characterized.
【請求項12】 原子パーセントでT元素は5〜95
%、M元素は95〜5%である合金を用いる請求項11
記載のメタノールの改質法。
12. The atomic percentage of T element is 5 to 95.
%, M element is 95 to 5%, and an alloy is used.
The method for reforming methanol described.
【請求項13】 急冷凝固合金の表面がT元素からなる
酸化物上にM元素からなる金属微細粒子が分散してなる
ものである請求項11記載のメタノールの改質法。
13. The method for reforming methanol according to claim 11, wherein the surface of the rapidly solidified alloy is formed by dispersing fine metal particles of M element on an oxide of T element.
【請求項14】 一般式:TMで示される請求項11記
載の合金のT元素の一部をQ元素で置換した一般式:T
QM(ただし、QはY,Zn,Zr,Hfから選ばれる
少なくとも一種の元素)で急冷凝固合金にメタノール又
はメタノールと水蒸気を導入すると共に、100〜70
0℃に加熱することを特徴とするメタノールの改質法。
14. A general formula: T in which a part of the T element of the alloy according to claim 11 represented by the general formula: TM is replaced by a Q element.
QM (where Q is at least one element selected from Y, Zn, Zr, and Hf) is used to introduce methanol or methanol and steam into the rapidly solidified alloy,
A method for reforming methanol, which comprises heating to 0 ° C.
【請求項15】 原子パーセントでT元素5〜95%、
M元素5〜95%の中のT元素の1%を超え95%未満
の量をQ元素で置換してなる合金を用いる請求項14記
載のメタノールの改質法。
15. A T element in an atomic percentage of 5 to 95%,
The method for reforming methanol according to claim 14, wherein an alloy obtained by substituting an amount of more than 1% and less than 95% of the T element in the M element of 5 to 95% by the Q element is used.
【請求項16】 急冷凝固合金の表面がT元素とQ元素
とからなる複合酸化物又はT元素とQ元素の混合酸化物
上にM元素からなる金属微細粒子を析出分散してなるも
のである請求項14記載のメタノールの改質法。
16. The surface of a rapidly solidified alloy is obtained by depositing and dispersing fine metal particles of M element on a complex oxide of T element and Q element or a mixed oxide of T element and Q element. The method for reforming methanol according to claim 14.
JP6231256A 1994-09-27 1994-09-27 Catalyst for reforming methanol and its preparation and method for reforming methanol Pending JPH0889802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231256A JPH0889802A (en) 1994-09-27 1994-09-27 Catalyst for reforming methanol and its preparation and method for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231256A JPH0889802A (en) 1994-09-27 1994-09-27 Catalyst for reforming methanol and its preparation and method for reforming methanol

Publications (1)

Publication Number Publication Date
JPH0889802A true JPH0889802A (en) 1996-04-09

Family

ID=16920770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231256A Pending JPH0889802A (en) 1994-09-27 1994-09-27 Catalyst for reforming methanol and its preparation and method for reforming methanol

Country Status (1)

Country Link
JP (1) JPH0889802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096234A3 (en) * 2000-06-13 2002-05-16 Conoco Inc Supported nickel-magnesium oxide catalysts and processes for the production of syngas
US6930068B2 (en) 1999-12-15 2005-08-16 Nissan Motor Co., Ltd. Methanol reforming catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930068B2 (en) 1999-12-15 2005-08-16 Nissan Motor Co., Ltd. Methanol reforming catalyst
WO2001096234A3 (en) * 2000-06-13 2002-05-16 Conoco Inc Supported nickel-magnesium oxide catalysts and processes for the production of syngas
US6635191B2 (en) 2000-06-13 2003-10-21 Conocophillips Company Supported nickel-magnesium oxide catalysts and processes for the production of syngas

Similar Documents

Publication Publication Date Title
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
US7601321B2 (en) Laser pyrolysis method for producing carbon nano-spheres
EP1742283B1 (en) Method for producing catalyst for fuel cell
US11738332B2 (en) Metal alloy/oxide composite catalyst for ammonia decomposition
Zhang et al. Unconventional phase engineering of fuel-cell electrocatalysts
EP1896178A1 (en) Metal oxide catalyst for hydrogen generation and method of producing the same
US7592292B2 (en) Catalyst for use in reforming methanol with steam and method for preparation thereof
JP2008528250A (en) Catalytically active composition for selective methanation of carbon monoxide and method for producing the composition
CN107754831B (en) Amorphous alloy catalyst, preparation method thereof and application thereof in ammonia borane decomposition hydrogen production
JP2002226926A (en) Composite functional material and its manufacturing method
EP1721666B1 (en) INTERMETALLIC COMPOUND Ni3Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME
JPH0889802A (en) Catalyst for reforming methanol and its preparation and method for reforming methanol
CN116574957A (en) High-entropy alloy, preparation method thereof, membrane electrode assembly and fuel cell
CN114984952B (en) Carbon-coated copper material and preparation method and application thereof
JP3757248B2 (en) Composite ultrafine particles useful as catalysts for methanol synthesis and reforming, and methods for producing the same
JP3819516B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
JPH08215570A (en) Catalyst for synthesis of methanol, production thereof and synthesis of methanol
JP4454239B2 (en) Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
EP0446710B1 (en) The use of an amorphous alloy catalyst for conversion of carbon dioxide
JP3819486B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
JP2002234702A (en) Method and apparatus for generating hydrogen
Baiker Glassy metals in catalysis
Shi et al. High-entropy catalysts: new opportunities toward excellent catalytic activities
JP3872465B2 (en) High hydrogen storage material and its manufacturing method