JP2004267864A - Method of washing ultrapure water production and supply device - Google Patents

Method of washing ultrapure water production and supply device Download PDF

Info

Publication number
JP2004267864A
JP2004267864A JP2003059904A JP2003059904A JP2004267864A JP 2004267864 A JP2004267864 A JP 2004267864A JP 2003059904 A JP2003059904 A JP 2003059904A JP 2003059904 A JP2003059904 A JP 2003059904A JP 2004267864 A JP2004267864 A JP 2004267864A
Authority
JP
Japan
Prior art keywords
cleaning
hydrogen peroxide
ultrapure water
chemical
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003059904A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
広 菅原
Kazuhiko Kawada
和彦 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2003059904A priority Critical patent/JP2004267864A/en
Publication of JP2004267864A publication Critical patent/JP2004267864A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can facilitate a pure water rinse confirmation process work after an ultrapure water production supply device is washed with a chemical solution and can do the washing efficiently in a short time. <P>SOLUTION: At least a part of the liquid contact part of the ultrapure water production supply device which treats primary pure water to produce ultrapure water and supplies it to a use place, after being washed with a hydrogen peroxide aqueous solution, is washed further with a basic aqueous solution. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造工場、原子力発電所あるいは医薬品製造工場などで広く利用される超純水を製造供給する超純水製造供給装置の洗浄方法に関し、特にその立上洗浄方法に関する。
【0002】
【従来の技術】
従来から、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造工程、原子力発電所の発電の工程あるいは医薬品の製造工程においてはイオン状物質、微粒子、有機物、溶存ガス及び生菌等の不純物含有量が極めて少ない超純水が使用されている。特に、半導体デバイスをはじめとする電子部品製造工程においては、多くの超純水が使用されており、半導体デバイスの集積度の向上にともなって、超純水の純度に対する要求は益々厳しくなってきている。例えば、最先端の半導体製造用超純水の仕様は、抵抗率18.2MΩ・cm以上、0.05μm以上の微粒子数1個/mL以下、TOC1μg/L(リットル、以下同様)以下、メタル5ng/L以下と要求水質は厳しく、更に、例えば、メタル1ng/L以下と要求水質はより厳しくなる傾向にある。
【0003】
このような超純水と称される高純度な水は、必ずしも「超純水」の明確な定義があるものではないが、一般的には前処理装置、一次純水装置、二次純水装置(サブシステム)で構成される超純水製造供給システムで製造される。このようなシステムにより、工業用水、市水、井水等の原水を処理して超純水を製造して供給する。前処理装置は、凝集沈澱装置や砂濾過装置等を用いて原水を除濁するものである。一次純水装置は、活性炭濾過装置、逆浸透膜装置、2床3塔式イオン交換装置、真空脱気装置、混床式イオン交換装置、精密フィルター等の少なくとも幾つかを用いて、前処理水中の不純物を除去し、一次純水とするものである。二次純水装置(サブシステム)は狭義の超純水製造供給装置と称すべきものであり、(一次)純水貯槽から各種の単位装置を経て使用場所に到達する配管系と使用場所から通常は純水貯槽に戻るリターン配管系で循環系を成した構造を持っている。使用場所は、電子部品製造工場や医薬品製造工場などでは、ユースポイント(使用点)と称されるものである。かかる超純水製造供給装置(サブシステム)は、より具体的には、一次純水を一時的に貯留する(一次)純水貯槽と、その後段の有機物分解の為の紫外線酸化装置、混床式イオン交換樹脂を用いたカートリッジポリッシャー(CP)、限外濾過膜装置や逆浸透膜装置のような膜処理装置などを用いて一次純水中に微量残留する微粒子(空気中から混入するチリ、シリカ、アルミ、バクテリアの死骸、鉄錆、装置製造時の膜や配管等の削り屑など)、コロイダル物質、有機物、金属、イオン類などの不純物を可及的に除去するものである。
【0004】
超純水製造供給システムあるいは超純水製造供給装置の新規立ち上げ時あるいは定期検査等による休止後の再立ち上げ時には、系内に混入・発生する上記の様な不純物を除去して使用場所(ユースポイント)近辺における超純水が所望の水質に至るまで洗浄試運転を行う。従って、超純水製造供給装置の起動時から所望の超純水を使用場所で使用できるまでには洗浄試運転時間が必要であるが、近年、工場の稼働効率の向上を目的として、装置の立ち上げ期間(即ち、試運転・調整期間)の短縮、いわゆる装置の垂直立ち上げと称される短期立ち上げが強く求められている。洗浄方法としては、超純水によるフラシング・ブロー、超純水の循環、温水洗浄、過酸化水素水洗浄、塩基性水溶液洗浄などが実施され、また、機能水(オゾンや水素等を溶解した水)や界面活性剤を使った洗浄方法なども提案されている。各種の洗浄方法の中から洗浄対象や目的等に応じて適切な方法が実施される。
【0005】
また、十分な洗浄効果を得るためには各種洗浄方法の効果を考慮して、複数の洗浄方法が段階的に実施されることもある。しかし、複数の洗浄方法を段階的に実施する場合、高い洗浄効果が期待できる反面、工程や操作が煩雑となるために洗浄試運転時間が長くなるといった問題が生じる。
【0006】
複数の薬液洗浄工程を実施する方法として、特開2002−192162号公報に、超純水製造システムの少なくとも一部を塩基性水溶液で洗浄した後、該塩基性化合物の少なくとも一部が残存する状態で過酸化水素を注入する方法が提案されている。この提案によれば、塩基性水溶液による洗浄と過酸化水素水による洗浄の間で純水による押し出し洗浄工程の大半又は全部を省略できるため全体の洗浄時間を従来方法より短くできるとしている。
【0007】
しかし、特開2002−192162号公報の過酸化水素水による洗浄工程は、従来の過酸化水素水による洗浄方法と基本的に同じである。洗浄に用いられる薬液の過酸化水素水は水温にもよるが一般に0.1〜3重量%といった高濃度で使用される。過酸化水素水洗浄後は(超)純水による高濃度過酸化水素の押し出し洗浄が行われ、循環洗浄、そして通常運転が行われる。
【0008】
過酸化水素水洗浄を薬液洗浄の最終工程とした場合、その使用濃度が高いために、完全に薬液を系外に除去するためには(超)純水による洗浄が長時間必要である。
【0009】
また、過酸化水素の押し出し洗浄から循環洗浄への切り替えやカートリッジポリッシャー(非再生型混床式イオン交換樹脂塔、以下時に「CP」と略称する)通水への切り替えは、系内の過酸化水素濃度が十分に低減したのを確認した後に行われる。過酸化水素濃度の確認は、サンプリング水を試験紙に浸して色で確認する方法や、サンプリング水に試薬を入れて着色具合を見る方法が一般に使用される。これらの手法は、サンプリング+分析操作のために手間と時間がかかるといった問題がある。また、測定値そのものが定性的であり、検出できる濃度(測定精度)は0.Xppm程度のレベルである(より具体的に言えば、0.1mg/Lより低い値の確認は困難である)ため、薬液洗浄後の薬品のリンス状況を高度に検出確認することが出来ないといった問題がある。なお、上記試験紙の例としては過酸化水素濃度試験紙(菱江化学(株)販売)があり、上記試薬の例としてはハイスパール35(明治薬品工業(株)製)がある。
【0010】
従来、超純水水質の管理項目に過酸化水素は挙げられておらず、微量の過酸化水素はその他の水質管理項目に大きな影響を与えない。しかし、過酸化水素は明らかに超純水中の不純物であるため、薬液洗浄に伴う過酸化水素が多く含まれる超純水をそのままユースポイントに供給するのは問題である。過酸化水素はCPによって分解される(特開平11−77091号公報参照)がその分解効率は十分ではない。逆に、過酸化水素はその酸化力によってCP中のイオン交換樹脂を劣化させることから、CPに通水して通常運転を開始するまでに系内の過酸化水素濃度は極力低くする必要がある。
【0011】
しかし、上述の通り、過酸化水素を完全に除去するには押し出し洗浄の時間及び薬品のリンス状況の検出確認の時間が長くなり、その結果として装置の立ち上がり時間が長くなる。また、一般的に現場で行われる過酸化水素の検出方法では、低濃度の過酸化水素を検出することができず、一時的に薬液洗浄に伴う過酸化水素を多く含んだ超純水をユースポイントに送ってしまう虞がある。
【0012】
【発明が解決しようとする課題】
本発明は、超純水製造供給装置の洗浄方法において、試運転作業、特に、薬液洗浄後の薬品のリンス状況の確認作業を容易に行うことができる方法を提供することを目的とし、そのことによって洗浄を短時間で効率的に行うことができる方法を提供せんとするものである。また、本発明は、特に、超純水製造供給装置の新規立ち上げあるいは定期検査等による休止後の再立ち上げ時に、超純水を所望の水質に至るまでの洗浄試運転時間を短縮することができる方法を提供することを別の目的とする。更に、本発明は、立ち上げ直後から可及的に高純度の超純水を供給することを可能とすることを別の目的とする。
【0013】
【課題を解決するための手段】
本発明は、一次純水を処理して超純水を製造し使用場所へ供給する超純水製造供給装置の接液部の少なくとも一部を、薬液を用いて2回以上洗浄を行う(単一薬液の場合もあれば、種類/濃度の異なる混合薬液の場合もある)場合において、該薬液洗浄の最終回の工程で使用する薬液の主たる成分がイオン性導電性物質であることを特徴とする超純水製造供給装置の洗浄方法を提供するものである。該イオン性導電性物質は、その存在の為に最終回の工程で使用する薬液中の薬品成分の装置系内で残留する濃度を抵抗率計等で容易に測定することを可能にする。また、最終回の工程で使用する薬液の重量濃度がその直前の薬液洗浄の工程で使用する薬液の重量濃度未満であるのが、洗浄試運転時間を短縮する上で好ましい。2回以上の薬液洗浄の工程に用い得る薬液としては、以下に詳述する過酸化水素水や塩基性水溶液の他に、薬液洗浄の最終回の工程以外で用い得る薬液としてオゾン水、水素水、(超)純水の電気分解により得られるアノード水(酸化性水、酸を添加してもよい)やカソード水(還元性水、塩基を添加してもよい)、アルコール水溶液、弗化水素水溶液、界面活性剤含有水溶液などを挙げることができる。薬液洗浄の最終回の工程で使用し得る薬液としては、塩基性水溶液、弗化水素水溶液、水素水やカソード水に塩基を添加した水溶液、オゾン水やアノード水に酸を添加した水溶液などを挙げることができる。2回以上の薬液洗浄工程で組み合わせることができる薬液は、例えば上記の薬液類から種々に考えることができる。
【0014】
また、本発明は、一次純水を処理して超純水を製造し使用場所へ供給する超純水製造供給装置の接液部の少なくとも一部を、過酸化水素水(過酸化水素の水溶液)で洗浄した後に、更に塩基性水溶液で洗浄することを特徴とする超純水製造供給装置の洗浄方法を提供するものである。この場合に、少なくとも過酸化水素が残存している状態から、塩基性水溶液で洗浄をすることが好ましい。更に、塩基性水溶液が少なくとも水酸化テトラメチルアンモニウム(TMAH)やコリン等の水酸化テトラアルキルアンモニウムを含むのが好ましい。
【0015】
過酸化水素水による洗浄は、生菌数を要求水質のレベルとするための殺菌を目的とするもので、「殺菌洗浄」と称される。塩基性水溶液による洗浄は、微粒子の表面電位を変化させてシステムの構成材料と電気的に反発させて、剥離・除去するもので、「微粒子洗浄」と称される。即ち、微粒子はその表面電位により配管などに静電的に付着しているが、液のpHをアルカリ性側に変化させると微粒子はマイナスに帯電し且つその電荷も増大するが、その一方で、装置システムや配管系等を構成するポリ塩化ビニール(PVC)、ポリ弗化ビニリデン(PVdF)やポリフェニレンサルファイド(PPS)等の有機高分子材料類は表面電荷の変化を起こさず、液のpHに関係なくマイナス荷電を有しており、従って両者は電気的に反発して、微粒子は剥離、除去し易くなる。
【0016】
次に、上記方法の代表例の各工程を説明する。超純水製造供給装置(サブシステム)の洗浄を行うには、一般に、CPをバイパスする流路を設け、過酸化水素水や塩基性水溶液等の薬液洗浄時、及び、その後の押し出し洗浄時にはCPをバイパスして、この系全体の洗浄を行い、リンスが十分にできてからCP通水に切り替える。その理由は後述する。
<各工程>
工程(1):過酸化水素水による「殺菌洗浄」を行う。過酸化水素水は水温にもよるが一般に0.1〜5重量%といった高濃度で使用される。
工程(2):次に、純水による過酸化水素の「押し出し(1)」を行う。この押し出し(1)は完全な押し出しでも部分的な押出しでもよい。場合によっては、この押し出し(1)を省略することもあるし、逆にこの押し出し(1)後に(超)純水で若干のリンスを行ってもよい。
工程(3):次に、塩基性水溶液による「微粒子洗浄」を行う。塩基の濃度は、特にpH9〜11となる様に設定するのが好ましい(特開2002−192162号公報、その他参照)。この場合、TMAH濃度は100mg/L程度で良い。また、コリン等の他の水酸化テトラアルキルアンモニウムを用いた場合でも、その濃度は数100mg/L程度で良く、高くても数1000mg/L以下で良い。即ち、塩基濃度は、過酸化水素濃度に比べて十分低い。
工程(4):次に、純水による塩基の「押し出し(2)」を行う。
工程(5):塩基濃度が問題を生じない程度に十分低くなったのを確認するまで(超)純水でリンスを続ける。
工程(6):その後、循環洗浄やCP通水に切り替えを行い洗浄を行う。その後、通常運転とする。
【0017】
ここで、当業界で言う「押し出し洗浄」とは「押し出し」+「リンス」を言い、例えば、上記工程(4)〜(5)の(超)純水による押し出しやリンスを合せたものである。即ち、「押し出し」とは、系内の薬液を純水で追い出すこと、即ち純水による薬液置換で、同一系での押し出しなら使用薬液の薬品濃度に依存せず押し出し工程時間はほぼ同じとなり、理想的には系の容量の1倍量分の純水を用いる。また、「リンス」とは押し出し後に、配管表面に付着したり、配管溜りや、継ぎ手部分に残っている薬品を(超)純水で綺麗に洗い流す(リンスする)ことで、同一系であっても使用薬液の薬品濃度に依存して洗浄時間は異なってくるもので、高濃度の場合ほど長時間必要になる。「押し出し洗浄」とは、両者を纏めて称するものである。
【0018】
次に、過酸化水素水と塩基性水溶液を薬液として用いる本発明の方法の作用を考察しつつその効果について説明する。
それぞれの薬液中の薬品濃度が「過酸化水素>塩基」であるとする。通常運転の直前の薬液洗浄を低濃度の塩基性水溶液による「微粒子洗浄」とすることで、最終の押し出し洗浄時間、即ち、「(超)純水押し出し+リンス」時間が短縮できる。使用薬液濃度が低い方が短時間でリンスできるのは当然のことである。
【0019】
高濃度薬液をブローする際、短時間の少ない倍容量(リンス水/配管容積=数倍)の洗浄でも、系内の薬品はある程度の濃度まで下がるが、そこから超純水として求められる高純度レベルまで薬品濃度を下げるのに長い時間が必要である。しかし、工程(2)で行う純水による「押し出し(1)」は、最終の押し出しではないので、短時間の純水押し出しのみ又は短時間の数〜数10倍容量の純水押し出し洗浄でよく、場合によってはこの押し出し工程(2)を省略しても良い。従って、この時に特に過酸化水素濃度を確認する必要は無い。
【0020】
過酸化水素水に比べ低濃度である塩基性水溶液による「微粒子洗浄」は、(1)循環によって前工程で系内の滞留部や配管・機器表面に付着し部分的に高濃度な状態で残っている過酸化水素を循環水溶液中に均一化する。(2)塩基(アルカリ)効果によって、前工程で系内の滞留部や配管・機器表面に付着して残っている過酸化水素の剥離・分解を促進し、過酸化水素濃度を低減、均一化する。なお、塩基(アルカリ)効果とは、アルカリ性で過酸化水素を分解するという効果である。
【0021】
使用薬液の塩基濃度は比較的低いので、塩基の「押し出し(2)」で、従来の過酸化水素水洗浄後の押し出し洗浄時間に比べて短時間で行うことが出来る。また、前工程で系内の滞留部や配管・機器表面に付着して残っていた過酸化水素は、塩基性水溶液の循環によって、均一化、剥離・分解されるため、過酸化水素濃度の低下時間も短縮できる。
【0022】
過酸化水素の測定を行うとすればサンプリング+手分析を行わねばならず、検出下限値も高いのに対して、塩基はイオン性導電性物質であるため、抵抗率計によって、系内に残留した薬品(塩基性化合物)濃度を経済的且つ安定的に高感度・高精度で自動モニタリングすることが出来る。従って、最終の押し出し後の洗浄(リンス)の終了時点を容易に確認・判断することができる。なお、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエタノールアミンなどの弱塩基性化合物は、中性分子化合物であるが、水溶液中では水と反応してそれぞれのアンモニウムイオンと水酸化物イオンとに解離するため、ここでは、塩基であり且つイオン性導電性物質に含まれる。前工程の薬液洗浄に伴い系内に残留した過酸化水素の濃度は、抵抗率計によって直接自動モニタリングすることはできないが、後述する様に、塩基濃度のモニタリングから間接的に過酸化水素のリンス状況を検知確認し、判断することが可能である。
【0023】
塩基性化合物として水酸化テトラアルキルアンモニウムを用いることが好ましい理由は、水酸化テトラアルキルアンモニウムは強塩基であるため低濃度で高いpHとなることに加えて、イオン解離性が強く、そのためモル導電率が高く、抵抗率計により微量でも高感度・高精度に検出、確認され易いからである。
【0024】
工程(3)の際の系内の薬品濃度条件が、「塩基≧過酸化水素」となっている場合は、抵抗率計によって塩基濃度が十分低いことが確認できれば過酸化水素濃度も十分低いと言えるので、工程(5)の際に過酸化水素濃度を検出、確認する必要は全く無い。工程(2)で行う純水による「押し出し(1)」によって、過酸化水素濃度は大きく低下する。更に、短時間の数〜数10倍容量程度の純水押し出し洗浄(リンス)で、過酸化水素濃度は十分に低下する。従って、工程(3)の塩基濃度(例えば、TMAH濃度で100mg/L程度)以下に過酸化水素濃度を調整するのは容易であり、工程(2)を実施した場合は、通常、工程(3)の際の薬品濃度条件は「塩基≧過酸化水素」となる。そのため、工程(2)の終了段階や工程(3)の段階の過酸化水素濃度を確認することは必ずしも必要ではない。
【0025】
また、水質管理項目として、過酸化水素の項目は一般に無いこと、過酸化水素の定量下限値が塩基に比べて高いこと、及び、通常運転時の超純水中にはサブシステムの紫外線酸化装置により発生する過酸化水素がμg/Lオーダーで含まれる可能性があることなどから、工程(3)の際の系内の薬品濃度条件が、「塩基<過酸化水素」となっていてもよい。但し、この場合、過酸化水素濃度が塩基濃度の1000倍重量以内であるのが好ましく、100倍重量以内であるのがより好ましい。その理由は、抵抗率計で確認できる塩基濃度のレベルは数μg/L程度であり、その一方、過酸化水素が1000倍重量含まれる時は過酸化水素濃度は数mg/L、100倍重量含まれるときは過酸化水素濃度は数100μg/Lであるからである。これに対して、従来の現場での試験紙や試薬による過酸化水素の検出方法による過酸化水素濃度の検出下限値は、明確な検出には1mg/L程度であり、0.1mg/L程度まで何とか過酸化水素の存在を検出できるものの、それ以下では検出不可能である。このことから、工程(3)の際の系内の薬品濃度条件における過酸化水素濃度の上記の上限の正当性が理解できるであろう。
【0026】
抵抗率計は、例えば、CPの出口や限外濾過膜処理装置(以下、「UF」と略称する)の出口でユースポイントに供給する超純水の純度確認のために設置される抵抗率計など、系内に設置したものであれば差し支えないが、出来る限り下流側のリターン配管上(例えば、純水貯槽への戻り配管やその貯槽入口付近)に設置するのが好ましい。また、メインのライン上に直接設置しても良いし、分岐したサンプリングライン上に設置してもよい。また、常時設置でなくとも、装置の立ち上げ試運転時用に仮設置しても良い。
【0027】
【発明の実施の形態】
次に、発明の実施の形態を説明するが、本発明はこれらに限定されるものではない。
【0028】
超純水製造供給装置の例は、特開2002−192162号公報や特願2002−324252号などの多数の文献に記載されているが、本発明を適用する系は、これらに限定されるものでなく、実質的に全ての超純水製造供給装置である。図1は、特開2002−192162号公報にも記載される本発明を適用する超純水製造供給装置の代表的な一例を示すフロー図である。図1の超純水製造供給システムでは、工業用水、市水、井水等の原水は、原水槽→前処理装置→(前処理水)貯槽→一次純水装置を経て、超純水製造供給装置(サブシステム)の(一次)純水貯槽に入る。超純水製造供給装置は、「純水貯槽→ポンプ(略して「P」)→熱交換器(略して「熱交」)→紫外線酸化装置(略して「UVox」)→カートリッジポリッシャー(略して「CP」)→限外濾過膜処理装置(略して「UF」)→供給配管→ユースポイント(略して「POU」)→リターン配管(→純水貯槽)」の循環系を形成している。リターン配管の純水貯槽の近くに「抵抗率計」が配置され、純水貯槽の直前にブロー用のブロー配管が設けられている。なお、特願2002−324252号に開示される超純水製造供給装置は、上記の系のCPとUFの間に膜脱気装置、ブースターポンプ、イオン吸着膜を用いたカートリッジポリッシャーを更に配置したものである。
【0029】
図1に示される様な超純水製造供給装置(サブシステム)の洗浄を行うには、CPをバイパスする流路を設け、過酸化水素水や塩基性水溶液等による薬液洗浄時、及び、その後の押し出し洗浄工程時にはCPをバイパスして、この系全体の洗浄を行う。塩基などのイオン成分はCPのイオン負荷となり、過酸化水素はCPのイオン交換樹脂を酸化劣化させるからである。従って、押し出し洗浄時に、通水した純水の薬品濃度が十分に低下したのを確認した後、通常のCP通水に切り替える必要がある。また、薬液洗浄時のUVoxのランプは一般にOFFとしておく。また、UFは、薬液洗浄時にはダミーモジュール(形はモジュールでも膜が入っていない)を設置してもよい。
【0030】
洗浄薬液の調製は、純水貯槽又は循環系の任意の箇所から系内へ過酸化水素、TMAHやアンモニア水などの塩基を添加することによって行う。アンモニアのようにガス成分として供給できる物質であれば、そのままガス状で添加してもよい。純水貯槽及び系内の純水と混合して所定の薬液濃度に調整し、通常の(超)純水の循環フローに従って、系内に循環させて超純水製造供給装置全体を洗浄する。純水貯槽以外の薬液槽を準備し、そこで洗浄薬液を調製して、洗浄薬液を循環させてもよい。
【0031】
洗浄薬液の循環系内の流速は、高速の方が流れによる物理的な力が強く、高い洗浄効果が期待できるが、高流速で流すためにはポンプ容量が大きくなってしまうので、実際には、水溶液系の液体を移送する一般的な線速度の範囲、例えば、好ましくは0.1〜3.0m/秒、より好ましくは0.5〜2.0m/秒で流すのがよい。なお、本発明の洗浄方法は、薬液を循環する方法に限らず、例えば、超純水製造供給装置の洗浄箇所に薬液を満たした状態で、超音波などにより薬液に微小振動を与えて洗浄効果を高める方法を採ってもよい。
【0032】
過酸化水素水洗浄の際は、0.5〜8時間程度の循環を行う。過酸化水素水洗浄の主たる目的は殺菌(化学的効果)であるため、過酸化水素薬液が系内に存在して被洗浄体である生菌やバイオフィルム(配管やユースポイント内の附帯設備などの超純水と接触する面に生じる、生菌と死菌の両方を含めた菌体や菌の生産物質から成る付着物)に接触することが重要である。従って、薬液循環する方が物理的効果を伴うので好ましいが、過酸化水素水を循環して過酸化水素を系内に行き渡らせた後は、或る時間だけポンプを停止して、過酸化水素水で系内を浸漬して浸漬殺菌を行っても高い殺菌効果が期待できる。新規設備などで配管施工条件が悪く、十分な殺菌を行う必要があり、ユースポイントへの超純水供給までに時間的な余裕がある場合などは、0.5〜5時間程度の循環の後、更に薬液で系内を数時間以上、例えば、半日(一晩)〜1日浸漬してもよい。
【0033】
塩基性水溶液洗浄の場合、0.5〜8時間程度の循環を行う。塩基性水溶液洗浄の主たる目的は微粒子と有機物(TOC:菌体を含む)の除去である。従って、塩基性水溶液による化学的洗浄効果に加えて、流れによる物理的な除去、剥離、拡散効果が重要となる。但し、塩基性水溶液中では微粒子の再付着は防止されるため(一旦機器や配管表面から除去、剥離された微粒子は、塩基性水溶液中では流れを止めても再付着し難い)、また、TOCも溶解、均一化されているので流れを止めても影響ないため、本工程の最中や終わりの時点で、ポンプを停止して浸漬状態としても差し支えない。例えば、作業の都合上、日中に循環して夜間は浸漬するなどの手順を採ることができる。
【0034】
洗浄時の薬液温度は、特に限定されないが、超純水製造供給装置を構成する配管、機器等の耐熱温度を越えない範囲で、高い温度にした方が洗浄力の点からは好ましい。例えば、塩基性水溶液については、10〜100℃の範囲とすることもでき、耐熱温度が約45℃であるポリ塩化ビニール(PVC)を構成材料とする場合は薬液温度約40℃程度まで、耐熱温度が約80℃であるポリ弗化ビニリデン(PVdF)を構成材料とする場合は薬液温度約75〜80℃まで、ステンレス鋼を構成材料とする場合は薬液温度100℃近くまで上昇させることが可能であり、過酸化水素水についても、加温してもよく、構成材料によるが20〜60℃の液温で洗浄に用いるのが好適である。但し、薬液温度は水温の成り行きとすることも多く、常温成り行きとすることもある。
【0035】
塩基性水溶液の調製に用いる塩基(アルカリ)性化合物としては、アンモニア、アンモニウム化合物、アミン類(モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエタノールアミンなど)、アルカリ金属の水酸化物(NaOHやKOH)やアルカリ金属の酸化物、炭酸塩(例えば、NaCO)、重炭酸塩(例えば、NaHCO)等を挙げることができ、単独でも組み合わせても用いることができる。アンモニア、第3級までのアンモニウム化合物、アミン類は弱塩基であるため、pHを高めるのにより多くの薬品が必要となる。アルカリ金属の水酸化物(NaOHやKOH)やアルカリ金属の酸化物、炭酸塩(例えば、NaCO)、重炭酸塩(例えば、NaHCO)は、半導体製造工場などの電子産業分野では、極微量の金属類が製品歩留まりに悪影響を及ぼすといわれていることから安全のため使用しがたい。従って、電子産業分野では分子構造中に金属元素を含まない強塩基性化合物である水酸化テトラアルキルアンモニウム(第4級アンモニウム化合物)を用いるのが好適である。水酸化テトラアルキルアンモニウムの代表的な例としては、水酸化テトラメチルアンモニウム(TMAH)、コリン等を挙げることができ、その他に水酸化2−(2−ヒドロキシエトキシ)エチルトリメチルアンモニウム(DECH)や水酸化2−[2−(2−ヒドロキシエトキシ)エトキシ]エチルトリメチルアンモニウム(TECH)も用いることができる。また、塩基性化合物に好ましくは少量の界面活性剤を併用してもよく、界面活性剤としてはアルキルベンゼンスルホン酸塩等の陰イオン界面活性剤を用いることができる。また、塩基性水溶液に、塩基性化合物と共に酸素ガス、水素ガス、窒素ガス等のガス類の微細気泡を共存させる様にして、微粒子のより一層の効果的剥離、除去を図るようにしてもよい。
【0036】
塩基性水溶液の濃度は、好ましくはpH7〜12、特に好ましくはpH9〜11となる様に設定するのが好ましい。そのpHが12を越える様に更に濃度を上げてもよいが、洗浄効果は飽和の傾向となり、塩基性化合物(アルカリ薬品)にかかるコストが高くなると共に、洗浄後の排水にアルカリ薬品が多量に残留することになるので排水処理のコストも高くなる。また、前工程の薬液である過酸化水素水の濃度と同等或いはそれ以上の濃度に塩基性化合物を添加してしまうと、本発明の効果が小さくなる。即ち、この場合、微量薬品レベルでのリンス性能とリンス時間短縮のメリットが無くなる。但し、この場合においても、抵抗率計で薬品のリンス状況を確認できるので、リンス状況確認作業は容易であるというメリットは確保される。逆に、低濃度すぎると洗浄効果が十分に発揮されない。
【0037】
例えば、TMAH水溶液を用いた場合、pH11とするにはTMAH濃度=約100mg/L、pH12ではTMAH濃度=約1000mg/Lである。前工程で過酸化水素水洗浄を過酸化水素濃度=1重量%(10000mg/L)で行った時は、pH12以上であってもpH13未満(例えば、pH13でTMAH濃度=約10000mg/L)であれば、後工程の塩基性水溶液の方が薬液濃度が低いので、「過酸化水素水洗浄(高濃度)→TMAH水溶液洗浄(低濃度)」となるため最終の押し出し洗浄の時間が短くなる。
【0038】
過酸化水素水洗浄後は、系内に(超)純水を導入して過酸化水素を押し出し、ブローし、系内の過酸化水素を除去する押し出し洗浄を行うが、この押し出し洗浄中に、或いは、押し出し洗浄を完全には行わずに、または押し出しも行わずに、つまり、系内に過酸化水素が一部又は全部残留している状態で、塩基性水溶液を系内に循環させる洗浄工程に移行することができる。
【0039】
好ましくは、過酸化水素濃度が次工程の塩基性水溶液の重量濃度よりも低くなるように(超)純水により過酸化水素の押し出し洗浄を行う。こうすれば、後工程の塩基性水溶液の押し出し洗浄で、塩基性化合物のリンスが完了する時点(抵抗率計で確認)の過酸化水素濃度はその測定確認をしなくとも問題の無いレベルまで低下している。
【0040】
過酸化水素の押し出し洗浄は、使用する洗浄薬液濃度、システムの機器仕様、配管長さ、形態などによっても異なるが、通常の条件では系内容量に対して数倍容量程度の純水押し出し洗浄、ブローで、塩基性水溶液洗浄工程の薬液組成は「塩基性化合物濃度>過酸化水素濃度」となる。従って、過酸化水素の系内濃度を必ずしも測定確認する必要は無く、数倍容量以上の純水で押し出し洗浄、ブローすればよい(倍容量=流速×時間/系内容量)。
【0041】
また、過酸化水素の押し出し洗浄を省略することも可能である。例えば、過酸化水素濃度=1重量%(10000mg/L)で洗浄した後、塩基性化合物としてTMAHを用いてTMAH濃度=1000mg/L(pH12)になるように調整した場合(過酸化水素濃度はTMAH濃度の10倍)を考えると、塩基性化合物の押し出し洗浄工程時のリンス状況確認は、抵抗率計によりTMAHで数〜数10μg/Lのオーダー(低濃度)まで十分に検出可能である。このレベルまで押し出し洗浄した時の過酸化水素濃度は、数10〜数100μg/L程度である。過酸化水素濃度は高めであるが、従来の過酸化水素水洗浄後の押し出し洗浄工程時のリンス状況の確認は、現場測定用の検出試薬によってmg/Lオーダーで行われており、0.1mg/L以下の確認はしていない。従って、「塩基性化合物濃度<過酸化水素濃度」の条件であったとしても従来法と比べると問題ないことが多い。
【0042】
押し出し洗浄で排出された薬液は、過酸化水素の還元処理及び塩基性化合物の中和・処理をした後に放流、または、適切な処理を施した後に原水や他の用途の水として回収再使用される。過酸化水素の処理には、カタラーゼ、二酸化マンガンなどの触媒、活性炭、亜硫酸ソーダなどの還元剤等が使用できる。塩基性化合物の処理は、NaOHやKOHなどのアンモニア以外の無機系アルカリの場合、中和だけでも放流処理は可能であるが、アンモニア、アミン、TMAHなどの水酸化テトラアルキルアンモニウムは、窒素放流基準などの規制値を超えない様にする注意が必要であり、生物活性汚泥による分解無害化処理や、カチオン交換樹脂による吸着処理などが適宜行われる。特に、TMAHなどの水酸化テトラアルキルアンモニウムは強塩基であるため、弱酸性のカチオン交換樹脂にそのまま通液して吸着処理するのが好適である。
【0043】
このように超純水製造供給装置全体を洗浄する方法のほか、UFやUVoxといった個別の機器や配管の一部、配管継ぎ手部分などの上記システムの一部を個別に洗浄してもよい。被洗浄部の直前に薬液を注入すると共にその直後から排出させたり、薬液を満たした状態で超音波などによる振動を与えるようにして洗浄してもよい。例えば、過酸化水素水洗浄をこのような個別の洗浄とし、塩基性水溶液での洗浄を超純水製造供給装置全体に対して行う様にしてもよいし、その逆にしてもよい。また、新規施工組み立ての直前にUFやプレハブ配管などの洗浄にも利用でき、効果的に新規立上洗浄時間の短縮を図ることもできる。
【0044】
【実施例】
次に、実施例により本発明を具体的に説明するが、本発明は実施例に限定されるものではない。実施例では、図1に示す超純水製造供給装置の洗浄を行った。「一次純水装置」の後の「純水貯槽」より右の部分が超純水製造供給装置であり、代表的な構成となっている。この系では、洗浄用薬品(洗浄薬液)を純水貯槽に供給する様に構成されている。
【0045】
実施例1
次の手順で洗浄を行った。
<工程1>過酸化水素濃度=1重量%の洗浄薬液を調製し、配管流速0.6m/秒で3時間循環させた。熱交換器(図1で「熱交」と略称する)によるコントロールは行わずに水(液)温は常温成り行きとした。また、CPはバイパスとした。なお、洗浄終了前に純水貯槽内の過酸化水素水を可能な限り排出し、貯槽液面を低くした。
【0046】
<工程2>純水貯槽に17MΩ・cm以上の純水を張りながら、配管流速0.6m/秒で純水による過酸化水素の押し出し洗浄を1時間行った。押し出し洗浄は、リターン配管の純水貯槽入口直近から分岐したブロー配管から薬液(過酸化水素水)及びリンス水(洗浄水)を排出しつつ行った。この際に、リンス水中の過酸化水素の濃度確認作業は行わなかった。
【0047】
<工程3>次いで、リターン配管をブローラインから循環ラインに戻し、純水貯槽への純水の供給を一旦停止した後、TMAHを純水貯槽に添加して、pH11(TMAH約100mg/L相当)の洗浄薬液を調製した。TMAHを添加し始めてから配管流速0.6m/秒で3時間の循環洗浄を行った。なお、洗浄終了前に純水貯槽内の薬液(主にTMAH水溶液)を可能な限り排出し、貯槽液面を低くした。
【0048】
<工程4>再び純水貯槽に17MΩ・cm以上の純水を張りながら、配管流速0.6m/秒で上記の工程2と同様の押し出し洗浄を行った。押し出し洗浄水のリンス状況は、リターン配管上で純水貯槽入口近くに設けた抵抗率計で確認し、抵抗率が15MΩ・cm以上になるまで押し出し洗浄を続け、ブロー配管から薬液及びリンス水(洗浄水)の排出を行った。
【0049】
<工程5>リターン配管をブローラインから循環ラインに戻した後、CP通水に切り替えを行い、通常運転とした。
【0050】
なお、排水は、過酸化水素のカタラーゼによる還元処理とTMAHの弱酸性カチオン交換樹脂による中和・吸着処理を行った。
【0051】
比較例1
<工程1>TMAHを純水貯槽に添加して、pH11(TMAH約100ppm相当)の洗浄薬液を調製し、配管流速0.6m/秒で3時間循環させた。熱交換器によるコントロールは行わず水(液)温は常温成り行きとした。また、CPはバイパスとした。なお、洗浄終了前に純水貯槽内の薬液(TMAH水溶液)を可能な限り排出し貯槽液面を低くした。
【0052】
<工程2>純水貯槽に17MΩ・cm以上の純水を張りながら、配管流速0.6m/秒で純水によるTMAHの押し出し洗浄を1時間行った。押し出し洗浄は、リターン配管の純水貯槽入口直近から分岐したブロー配管から薬液(TMAH水溶液)及びリンス水(洗浄水)を排出しつつ行った。
【0053】
<工程3>次いで、リターン配管をブローラインから循環ラインに戻し、純水貯槽への純水の供給を一旦停止した後、過酸化水素を純水貯槽に添加して、過酸化水素濃度=1重量%の洗浄薬液を調製した。配管流速0.6m/秒で(過酸化水素を添加し始めてから)3時間の循環洗浄を行った。なお、洗浄終了前に純水貯槽内の薬液(主に過酸化水素水)を可能な限り排出し貯槽液面を低くした。
【0054】
<工程4>再び純水貯槽に17MΩ・cm以上の純水を張りながら、配管流速0.6m/秒で上記の工程2と同様の押し出し洗浄を行った。押し出し洗浄水のリンス状況は、リターン配管の純水貯槽入口近くに設けたサンプリング弁からサンプル水を定期的に採取して、過酸化水素濃度試験紙(菱江化学(株)販売)による着色度合いによって判断し、目視で着色しなくなる(約0.1mg/L以下)まで押し出し洗浄を続け、ブロー配管から薬液及びリンス水(洗浄水)の排出を行った。
【0055】
<工程5>リターン配管をブローラインから循環ラインに戻した後、CP通水に切り替えを行い、通常運転とした。
【0056】
実施例の工程4にかかった時間は、2時間であった。また、2時間後のリンス水をサンプリングし、実験室での(フェノールフタレイン比色法による)微量過酸化水素濃度分析を行ったところ、過酸化水素濃度は10μg/L以下であった。
【0057】
一方、比較例の工程4にかかった時間は、5時間であった。また、5時間後のリンス水をサンプリングし、実験室での(フェノールフタレイン比色法による)微量過酸化水素濃度分析を行ったところ、過酸化水素は54μg/Lの濃度で検出された。
【0058】
また、実施例の工程4のリンス状況確認は、抵抗率計を用いた現場モニタリングにより行ったため確認作業が容易であった。一方、比較例の工程4のリンス状況確認は、その都度サンプリングと分析が必要であり確認作業に大きな労力が必要であった。
【0059】
なお、全洗浄工程作業終了後に通常運転に入ってから(工程5に相当)の水質の立ち上がり傾向は、実施例と比較例の間で有意な差は無く、共に良好であった。
【0060】
【発明の効果】
本発明によれば、超純水製造供給装置の試運転作業、特に、薬液洗浄後の純水リンスの確認工程作業を容易にすることができると共に、超純水製造供給装置の新規立ち上げあるいは定期検査等による休止後の再立ち上げ時に、超純水が所望の水質に至るまでの洗浄試運転時間を短縮することができる。更に、立ち上げ直後から高純度の超純水を供給することが可能となる。
【図面の簡単な説明】
【図1】図1は、本発明を適用する超純水製造供給装置の代表的な一例を示すフロー図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to cleaning of an ultrapure water production and supply apparatus for producing and supplying ultrapure water widely used in electronic component manufacturing plants such as semiconductor devices, liquid crystal displays, silicon wafers, printed circuit boards, nuclear power plants and pharmaceutical manufacturing plants. The present invention relates to a method, particularly to a start-up cleaning method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in the process of manufacturing electronic components such as semiconductor devices, liquid crystal displays, silicon wafers, and printed circuit boards, in the process of generating power in nuclear power plants, and in the process of manufacturing pharmaceuticals, ionic substances, fine particles, organic substances, dissolved gases, viable bacteria, etc. Ultrapure water with extremely low impurity content is used. In particular, in the process of manufacturing electronic components such as semiconductor devices, a lot of ultrapure water is used, and with the improvement of the degree of integration of semiconductor devices, the demand for the purity of ultrapure water is becoming increasingly severe. I have. For example, the most advanced ultrapure water for semiconductor production is specified as having a resistivity of 18.2 MΩ · cm or more, a particle number of 1 μm / mL or less of 0.05 μm or more, a TOC of 1 μg / L (liter, the same applies hereinafter), and a metal of 5 ng. / L or less, the required water quality is severe, and for example, the required water quality tends to be more severe, for example, 1 ng / L or less.
[0003]
Such high-purity water, which is called ultrapure water, does not always have a clear definition of “ultrapure water”, but is generally a pretreatment device, a primary water purification device, and a secondary water purification device. Manufactured in an ultrapure water production and supply system composed of devices (subsystems). With such a system, raw water such as industrial water, city water and well water is treated to produce and supply ultrapure water. The pre-treatment device is for removing raw water using a coagulating sedimentation device or a sand filtration device. The primary purified water apparatus uses at least some of activated carbon filtration equipment, reverse osmosis membrane equipment, two-bed three-column ion exchanger, vacuum deaerator, mixed-bed ion exchanger, precision filter, etc. Is removed to obtain primary pure water. The secondary water purification system (subsystem) is what should be called an ultrapure water production and supply device in a narrow sense. It is usually used from a piping system that reaches the place of use from a (primary) pure water storage tank through various unit devices, and from the place of use. Has a structure that forms a circulation system with a return piping system returning to the pure water storage tank. The place of use is called a point of use (point of use) in an electronic component manufacturing factory, a pharmaceutical manufacturing factory, or the like. More specifically, such an ultrapure water production and supply device (subsystem) includes a (primary) pure water storage tank for temporarily storing primary pure water, an ultraviolet oxidizing device for the subsequent stage of organic matter decomposition, and a mixed bed. Particles that remain in trace amounts in primary pure water using a cartridge polisher (CP) using a type of ion exchange resin, a membrane treatment device such as an ultrafiltration membrane device or a reverse osmosis membrane device (for example, dust, It removes impurities such as silica, aluminum, dead bacteria, iron rust, shavings of membranes and pipes at the time of manufacturing the device, colloidal substances, organic substances, metals and ions as much as possible.
[0004]
When newly starting up the ultrapure water production / supply system or ultrapure water production / supply system, or after restarting after a periodic inspection, etc., remove the above-mentioned impurities mixed and generated in the system, (Use point) Perform cleaning test operation until ultrapure water in the vicinity reaches desired water quality. Therefore, a cleaning test operation time is required from the start of the ultrapure water production and supply apparatus until the desired ultrapure water can be used at the place of use, but in recent years, the apparatus has been started up for the purpose of improving the operation efficiency of the factory. There is a strong demand for a shortened start-up period (that is, a test run / adjustment period), that is, a short-term start-up called a so-called vertical start-up of a device. Cleaning methods include flushing blow with ultrapure water, circulation of ultrapure water, warm water cleaning, hydrogen peroxide water cleaning, basic aqueous solution cleaning, and the like, and functional water (water in which ozone, hydrogen, etc. are dissolved, etc.). ) And a cleaning method using a surfactant have been proposed. An appropriate method is implemented from various cleaning methods according to the object to be cleaned, the purpose, and the like.
[0005]
In addition, in order to obtain a sufficient cleaning effect, a plurality of cleaning methods may be performed stepwise in consideration of the effects of various cleaning methods. However, when a plurality of cleaning methods are performed stepwise, a high cleaning effect can be expected, but there is a problem that the cleaning test operation time becomes long because the steps and operations are complicated.
[0006]
As a method of performing a plurality of chemical solution washing steps, JP-A-2002-192162 discloses a state in which at least a part of an ultrapure water production system is washed with a basic aqueous solution, and at least a part of the basic compound remains. A method of injecting hydrogen peroxide has been proposed. According to this proposal, most or all of the extrusion cleaning step with pure water between the cleaning with the basic aqueous solution and the cleaning with the hydrogen peroxide solution can be omitted, so that the entire cleaning time can be shortened as compared with the conventional method.
[0007]
However, the cleaning step using a hydrogen peroxide solution in JP-A-2002-192162 is basically the same as the conventional cleaning method using a hydrogen peroxide solution. The hydrogen peroxide solution of the chemical used for cleaning is generally used at a high concentration of 0.1 to 3% by weight, depending on the water temperature. After washing with the hydrogen peroxide solution, high-concentration hydrogen peroxide is extruded and washed with (ultra) pure water, circulation washing, and normal operation are performed.
[0008]
When the cleaning with hydrogen peroxide is used as the final step of chemical cleaning, its concentration is high, and cleaning with (ultra) pure water is required for a long time to completely remove the chemical from the system.
[0009]
In addition, switching from the flush cleaning of hydrogen peroxide to circulating cleaning and switching to the flow of water through a cartridge polisher (non-regenerative mixed-bed ion exchange resin tower, hereinafter sometimes abbreviated as “CP”) are performed in the system. This is performed after confirming that the hydrogen concentration has been sufficiently reduced. In order to confirm the concentration of hydrogen peroxide, a method of immersing sampling water in a test paper and confirming the color, or a method of putting a reagent in the sampling water and observing the coloring state is generally used. These methods have a problem that it takes time and effort for sampling and analysis operations. The measured value itself is qualitative, and the detectable concentration (measurement accuracy) is 0.1. Since the level is about X ppm (more specifically, it is difficult to confirm a value lower than 0.1 mg / L), it is difficult to detect and confirm the rinse condition of the chemical after cleaning with the chemical at a high level. There's a problem. An example of the test paper is a hydrogen peroxide concentration test paper (available from Hishie Chemical Co., Ltd.), and an example of the reagent is Hyspearl 35 (Meiji Pharmaceutical Co., Ltd.).
[0010]
Conventionally, hydrogen peroxide has not been listed as a control item for ultrapure water quality, and a trace amount of hydrogen peroxide does not significantly affect other water quality control items. However, since hydrogen peroxide is clearly an impurity in ultrapure water, it is problematic to supply ultrapure water, which contains a large amount of hydrogen peroxide accompanying chemical cleaning, to the point of use as it is. Hydrogen peroxide is decomposed by CP (see JP-A-11-77091), but its decomposition efficiency is not sufficient. Conversely, since hydrogen peroxide degrades the ion exchange resin in the CP due to its oxidizing power, the concentration of hydrogen peroxide in the system must be as low as possible before water is passed through the CP and normal operation is started. .
[0011]
However, as described above, in order to completely remove the hydrogen peroxide, the time for the extrusion cleaning and the time for detecting and confirming the rinsing state of the chemicals become longer, and as a result, the rise time of the apparatus becomes longer. In addition, the method of detecting hydrogen peroxide that is generally performed on site cannot detect low-concentration hydrogen peroxide, and uses ultrapure water that contains a large amount of hydrogen peroxide due to chemical cleaning temporarily. There is a risk of sending to the point.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a method of cleaning a ultrapure water production and supply apparatus, in which a test operation can be performed, and in particular, a method of easily confirming a state of rinsing of a chemical after cleaning with a chemical can be performed. It is an object of the present invention to provide a method capable of efficiently performing cleaning in a short time. In addition, the present invention can reduce the time for cleaning test operation until ultrapure water reaches a desired water quality, particularly when the ultrapure water production and supply device is newly started up or restarted after a pause due to periodic inspection or the like. Another object is to provide a method that can be used. Still another object of the present invention is to make it possible to supply ultrapure water with as high a purity as possible immediately after startup.
[0013]
[Means for Solving the Problems]
According to the present invention, at least a part of a liquid contacting part of an ultrapure water production and supply apparatus which processes primary pure water to produce and supply ultrapure water to a place of use is washed two or more times with a chemical solution. In some cases, the chemical component may be a single chemical solution, or may be a mixed chemical solution having different types / concentrations). In this case, the main component of the chemical solution used in the final step of the chemical solution cleaning is an ionic conductive substance. The present invention provides a method for cleaning an ultrapure water production and supply apparatus. The ionic conductive substance makes it possible to easily measure, with a resistivity meter or the like, the concentration of the chemical component in the chemical solution used in the final step, which remains in the apparatus system due to its presence. Further, it is preferable that the weight concentration of the chemical used in the last step is lower than the weight concentration of the chemical used in the immediately preceding chemical cleaning step, in order to shorten the cleaning test operation time. The chemicals that can be used in two or more chemical cleaning steps include, in addition to the aqueous hydrogen peroxide solution and the basic aqueous solution described in detail below, ozone water and hydrogen water as chemicals that can be used in steps other than the last chemical cleaning step. Water (oxidizing water or acid may be added) or cathodic water (reducing water or base may be added) obtained by electrolysis of (ultra) pure water, alcohol aqueous solution, hydrogen fluoride An aqueous solution, a surfactant-containing aqueous solution and the like can be mentioned. Examples of the chemical solution that can be used in the final step of chemical solution washing include a basic aqueous solution, an aqueous solution of hydrogen fluoride, an aqueous solution obtained by adding a base to hydrogen water or cathode water, and an aqueous solution obtained by adding an acid to ozone water or anode water. be able to. Chemical solutions that can be combined in two or more chemical solution washing steps can be variously considered, for example, from the above-mentioned chemical solutions.
[0014]
Also, the present invention provides a method for producing ultrapure water by treating primary pure water and supplying the ultrapure water to a place of use at least a part of the liquid contact portion of the apparatus for producing and supplying ultrapure water. ), Followed by further washing with a basic aqueous solution. In this case, it is preferable to wash with a basic aqueous solution from a state where at least hydrogen peroxide remains. Further, the basic aqueous solution preferably contains at least a tetraalkylammonium hydroxide such as tetramethylammonium hydroxide (TMAH) or choline.
[0015]
Washing with a hydrogen peroxide solution is intended to sterilize the viable cell count to the required water quality level, and is referred to as "sterilizing washing". Washing with a basic aqueous solution is performed by changing the surface potential of the fine particles to electrically repel the constituent materials of the system, thereby removing and removing them, and is called “fine particle cleaning”. That is, the fine particles are electrostatically attached to a pipe or the like due to their surface potential, but when the pH of the liquid is changed to an alkaline side, the fine particles are negatively charged and the charge is increased. Organic polymer materials such as polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), and polyphenylene sulfide (PPS) that make up the system and piping system do not change the surface charge, regardless of the pH of the liquid. Since they have a negative charge, they are electrically repelled, and the fine particles are easily separated and removed.
[0016]
Next, each step of a typical example of the above method will be described. In order to clean the ultrapure water production / supply system (subsystem), a flow path bypassing the CP is generally provided, and the CP is used at the time of cleaning a chemical solution such as a hydrogen peroxide solution or a basic aqueous solution, and at the time of extruding cleaning. , The entire system is washed, and after sufficient rinsing is completed, the system is switched to the CP water flow. The reason will be described later.
<Each process>
Step (1): “Sterilization cleaning” with a hydrogen peroxide solution is performed. The hydrogen peroxide solution is generally used at a high concentration of 0.1 to 5% by weight, depending on the water temperature.
Step (2): Next, "push-out (1)" of hydrogen peroxide with pure water is performed. This extrusion (1) may be a complete extrusion or a partial extrusion. In some cases, the extrusion (1) may be omitted, or after the extrusion (1), a slight rinsing may be performed with (ultra) pure water.
Step (3): Next, “fine particle washing” with a basic aqueous solution is performed. The concentration of the base is preferably set so as to be particularly pH 9 to 11 (see JP-A-2002-192162 and others). In this case, the TMAH concentration may be about 100 mg / L. Even when other tetraalkylammonium hydroxide such as choline is used, its concentration may be about several 100 mg / L, and may be as high as several thousand mg / L or less. That is, the base concentration is sufficiently lower than the hydrogen peroxide concentration.
Step (4): Next, "push (2)" of the base with pure water is performed.
Step (5): Rinse with (ultra) pure water until it is confirmed that the base concentration has become sufficiently low that no problem occurs.
Step (6): Thereafter, the cleaning is performed by switching to circulation cleaning or CP water supply. Thereafter, normal operation is performed.
[0017]
Here, “extrusion cleaning” in the art refers to “extrusion” + “rinse”, for example, a combination of extrusion and rinsing with (ultra) pure water in the above steps (4) to (5). . In other words, `` extrusion '' means that the chemical solution in the system is driven out with pure water, that is, the chemical solution is replaced with pure water.If the extrusion is performed in the same system, the extrusion process time is almost the same regardless of the chemical concentration of the used chemical solution. Ideally, pure water equivalent to one time the volume of the system is used. In addition, "rinse" means that after extrusion, the chemicals that adhere to the pipe surface, or the chemicals remaining in the pipe pool and joints are thoroughly rinsed with (ultra) pure water (rinse), so that they are the same system. Also, the cleaning time varies depending on the chemical concentration of the chemical used, and the higher the concentration, the longer the cleaning time. “Extrusion cleaning” is a collective term for both.
[0018]
Next, the effect of the method of the present invention in which a hydrogen peroxide solution and a basic aqueous solution are used as a chemical solution will be described while considering its effects.
It is assumed that the chemical concentration in each chemical solution is “hydrogen peroxide> base”. By performing the chemical cleaning immediately before the normal operation as “fine particle cleaning” using a low-concentration basic aqueous solution, the final extrusion cleaning time, that is, “(ultra) pure water extrusion + rinsing” time can be reduced. Naturally, the lower the concentration of the used chemical solution, the shorter the rinsing time.
[0019]
When blowing high-concentration chemicals, the chemicals in the system can be reduced to a certain concentration even if washing with a short double volume (rinse water / piping volume = several times) in a short period of time. It takes a long time to reduce the drug concentration to the level. However, the “push-out (1)” using pure water performed in the step (2) is not the final push-out, and therefore, only a short-time pure water push-out or a short-time pure water push-out cleaning of several to several tens times the volume is sufficient. In some cases, the extrusion step (2) may be omitted. Therefore, there is no need to check the hydrogen peroxide concentration at this time.
[0020]
“Particle cleaning” using a basic aqueous solution that is lower in concentration than hydrogen peroxide solution (1) is circulated and adheres to the stagnation part in the system and the surface of pipes and equipment in the previous process, and remains in a partially concentrated state. The hydrogen peroxide is homogenized in the circulating aqueous solution. (2) The base (alkali) effect promotes the separation and decomposition of hydrogen peroxide remaining on the stagnant part in the system, piping and equipment surfaces in the previous process, reducing the concentration of hydrogen peroxide and making it uniform. I do. The base (alkali) effect is an effect of decomposing hydrogen peroxide under alkaline conditions.
[0021]
Since the base concentration of the chemical solution used is relatively low, the "push-out (2)" of the base can be performed in a shorter time than the conventional push-out washing time after washing with hydrogen peroxide. In addition, the hydrogen peroxide remaining on the stagnation part in the system and on the surfaces of pipes and equipment in the previous process is homogenized, peeled and decomposed by the circulation of the basic aqueous solution, so that the hydrogen peroxide concentration decreases. Time can also be reduced.
[0022]
If hydrogen peroxide is to be measured, sampling + manual analysis must be performed. Although the lower limit of detection is high, the base is an ionic conductive substance, so it remains in the system using a resistivity meter. It is possible to economically and stably automatically monitor the concentration of a drug (basic compound) with high sensitivity and high accuracy. Therefore, the end point of the cleaning (rinsing) after the final extrusion can be easily confirmed and determined. Weakly basic compounds such as ammonia, monomethylamine, dimethylamine, trimethylamine, and monoethanolamine are neutral molecular compounds, but react with water in an aqueous solution to form respective ammonium ions and hydroxide ions. Here, it is a base and is included in the ionic conductive substance for dissociation. The concentration of hydrogen peroxide remaining in the system due to the chemical cleaning in the previous process cannot be directly monitored automatically by a resistivity meter, but as described later, the concentration of hydrogen peroxide is indirectly measured by monitoring the base concentration. It is possible to detect and confirm the situation and make a judgment.
[0023]
The reason that it is preferable to use tetraalkylammonium hydroxide as the basic compound is that tetraalkylammonium hydroxide is a strong base and thus has a high pH at a low concentration because it is a strong base. The reason is that it is easy to detect and confirm even a minute amount with high sensitivity and high accuracy by a resistivity meter.
[0024]
When the chemical concentration condition in the system in the step (3) is “base ≧ hydrogen peroxide”, if the base concentration can be confirmed to be sufficiently low by a resistivity meter, it is determined that the hydrogen peroxide concentration is sufficiently low. Since it can be said, there is no need to detect and confirm the concentration of hydrogen peroxide in the step (5). The “push-out (1)” with pure water performed in the step (2) significantly reduces the hydrogen peroxide concentration. In addition, the concentration of hydrogen peroxide is sufficiently reduced by washing (rinsing) with a few to several tens of volumes of pure water in a short time. Therefore, it is easy to adjust the concentration of hydrogen peroxide to be lower than the base concentration (for example, about 100 mg / L in TMAH concentration) in the step (3). The chemical concentration condition at the time of ()) is “base ≧ hydrogen peroxide”. Therefore, it is not always necessary to confirm the concentration of hydrogen peroxide at the end stage of the step (2) or the stage of the step (3).
[0025]
In addition, as a water quality control item, there is generally no item of hydrogen peroxide, the lower limit of quantification of hydrogen peroxide is higher than that of a base, and the ultraviolet oxidation device of the subsystem is used in ultrapure water during normal operation. May be contained in the order of μg / L, and the concentration of the chemical in the system in the step (3) may be “base <hydrogen peroxide”. . However, in this case, the concentration of hydrogen peroxide is preferably within 1000 times the weight of the base concentration, more preferably within 100 times the weight. The reason is that the level of the base concentration that can be confirmed by the resistivity meter is about several μg / L, while the concentration of hydrogen peroxide is several mg / L and 100 times the weight when hydrogen peroxide is contained by 1000 times by weight. This is because when it is contained, the concentration of hydrogen peroxide is several hundred μg / L. On the other hand, the lower detection limit of the concentration of hydrogen peroxide by the conventional method of detecting hydrogen peroxide using test papers and reagents on site is about 1 mg / L for clear detection, and about 0.1 mg / L. To some extent, the presence of hydrogen peroxide can be detected, but below that level, it cannot be detected. From this, it can be understood that the above-mentioned upper limit of the hydrogen peroxide concentration under the chemical concentration condition in the system in the step (3) is justified.
[0026]
The resistivity meter is, for example, a resistivity meter installed to check the purity of ultrapure water supplied to a use point at an outlet of a CP or an outlet of an ultrafiltration membrane treatment device (hereinafter abbreviated as “UF”). Such a device may be installed in the system, but it is preferable to install it on the return pipe on the downstream side as much as possible (for example, on the return pipe to the pure water storage tank or near the storage tank entrance). Further, it may be installed directly on the main line or on a branched sampling line. Further, the apparatus may not be always installed but may be temporarily installed for a test start-up of the apparatus.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described, but the present invention is not limited thereto.
[0028]
Examples of the ultrapure water production and supply apparatus are described in a number of documents such as JP-A-2002-192162 and Japanese Patent Application No. 2002-324252, but the system to which the present invention is applied is not limited thereto. But not virtually all ultrapure water production and supply equipment. FIG. 1 is a flowchart showing a typical example of an ultrapure water production and supply apparatus to which the present invention described in JP-A-2002-192162 is applied. In the ultrapure water production and supply system of FIG. 1, raw water such as industrial water, city water, and well water is supplied to the ultrapure water through a raw water tank, a pretreatment device, a (pretreatment water) storage tank, and a primary pure water device. Enter the (primary) pure water storage tank of the device (subsystem). The ultrapure water production and supply device is composed of “pure water storage tank → pump (abbreviated as“ P ”) → heat exchanger (abbreviated as“ heat exchange ”) → ultraviolet oxidizer (abbreviated as“ UVox ”) → cartridge polisher (abbreviated as“ abbreviated ”) "CP") → Ultrafiltration membrane treatment device (abbreviated as “UF”) → supply piping → use point (abbreviated as “POU”) → return piping (→ pure water storage tank). A “resistivity meter” is arranged near the pure water storage tank on the return pipe, and a blow pipe for blowing is provided immediately before the pure water storage tank. In addition, the ultrapure water production supply apparatus disclosed in Japanese Patent Application No. 2002-324252 further includes a membrane deaerator, a booster pump, and a cartridge polisher using an ion-adsorbing membrane between the CP and the UF of the above system. Things.
[0029]
In order to clean the ultrapure water production and supply device (subsystem) as shown in FIG. 1, a flow path that bypasses the CP is provided, and at the time of chemical cleaning with a hydrogen peroxide solution or a basic aqueous solution, and thereafter. During the extrusion cleaning step, the CP is bypassed and the entire system is cleaned. This is because an ionic component such as a base causes an ionic load of the CP, and hydrogen peroxide causes oxidative deterioration of the ion exchange resin of the CP. Therefore, it is necessary to switch to the normal CP water flow after confirming that the chemical concentration of the pure water passed through has sufficiently decreased during the extrusion cleaning. In addition, the UVox lamp at the time of chemical cleaning is generally turned off. In addition, the UF may be provided with a dummy module (the module is a module and does not contain a membrane) at the time of cleaning the chemical solution.
[0030]
Preparation of the cleaning solution is carried out by adding a base such as hydrogen peroxide, TMAH or aqueous ammonia into the system from a pure water storage tank or an arbitrary part of the circulation system. Any substance that can be supplied as a gas component, such as ammonia, may be added as it is in a gaseous state. It is mixed with pure water in a pure water storage tank and the system to adjust the concentration to a predetermined chemical solution, and circulates in the system according to a normal (ultra) pure water circulation flow to wash the entire ultrapure water production and supply apparatus. A chemical solution tank other than the pure water storage tank may be prepared, and a cleaning solution may be prepared there and the cleaning solution may be circulated.
[0031]
As for the flow velocity of the cleaning solution in the circulation system, the higher the flow rate, the stronger the physical force due to the flow, and a higher cleaning effect can be expected.However, in order to flow at a higher flow rate, the pump capacity becomes larger. The flow rate is generally in the range of a general linear velocity for transferring an aqueous solution liquid, for example, preferably 0.1 to 3.0 m / sec, more preferably 0.5 to 2.0 m / sec. Note that the cleaning method of the present invention is not limited to the method of circulating a chemical solution, and, for example, a cleaning effect is obtained by applying a minute vibration to a chemical solution by ultrasonic waves or the like in a state where a cleaning point of an ultrapure water production and supply device is filled with the chemical solution. May be adopted.
[0032]
In the case of washing with a hydrogen peroxide solution, circulation is performed for about 0.5 to 8 hours. Since the main purpose of cleaning with hydrogen peroxide is sterilization (chemical effect), the presence of a chemical solution of hydrogen peroxide in the system means that living bacteria and biofilms to be cleaned (piping and incidental facilities in use points, etc.) It is important to make contact with extraneous water, which is formed on the surface that comes into contact with ultrapure water, and that is made up of microorganisms, including both live and dead bacteria, and substances produced by the bacteria. Therefore, it is preferable to circulate the chemical solution because it has a physical effect, but after circulating the hydrogen peroxide solution and distributing the hydrogen peroxide into the system, the pump is stopped for a certain time and the hydrogen peroxide is stopped. Even if immersion sterilization is performed by immersing the system in water, a high sterilization effect can be expected. If the piping construction conditions are poor for new equipment, it is necessary to perform sufficient sterilization, and if there is enough time to supply ultrapure water to the point of use, etc., after circulating for about 0.5 to 5 hours Alternatively, the system may be immersed in a chemical solution for several hours or more, for example, half a day (overnight) to one day.
[0033]
In the case of washing with a basic aqueous solution, circulation is performed for about 0.5 to 8 hours. The main purpose of washing with a basic aqueous solution is to remove fine particles and organic substances (including TOC: bacterial cells). Therefore, in addition to the chemical cleaning effect by the basic aqueous solution, the physical removal, peeling, and diffusion effects by the flow are important. However, since the fine particles are prevented from re-adhering in the basic aqueous solution (the fine particles once removed and separated from the surface of the device or the pipe are difficult to re-adhere even if the flow is stopped in the basic aqueous solution). Even if the flow is stopped, the pump is stopped during the process or at the end of the process, so that the immersion state may be used. For example, a procedure such as circulation during the day and immersion at night can be adopted for the convenience of the work.
[0034]
The temperature of the chemical solution at the time of washing is not particularly limited, but it is preferable to set the temperature to a high temperature within a range that does not exceed the heat-resistant temperature of the pipes and equipment constituting the ultrapure water production and supply device from the viewpoint of the washing power. For example, the basic aqueous solution can be in the range of 10 to 100 ° C., and when polyvinyl chloride (PVC) having a heat resistance temperature of about 45 ° C. is used as a constituent material, the temperature of the chemical solution can be increased to about 40 ° C. When using polyvinylidene fluoride (PVdF) with a temperature of about 80 ° C as a constituent material, the temperature of the chemical solution can be raised to about 75 to 80 ° C. When using stainless steel as a constituent material, the temperature can be raised to about 100 ° C. The hydrogen peroxide solution may be heated, and is preferably used for cleaning at a liquid temperature of 20 to 60 ° C., depending on the constituent materials. However, the temperature of the chemical solution often depends on the temperature of the water, and may depend on the temperature of the room temperature.
[0035]
Examples of the basic (alkali) compound used for preparing the basic aqueous solution include ammonia, ammonium compounds, amines (such as monomethylamine, dimethylamine, trimethylamine and monoethanolamine), hydroxides of alkali metals (NaOH and KOH), and the like. Oxides and carbonates of alkali metals (eg, Na 2 CO 3 ), Bicarbonates (eg, NaHCO 3 And the like, and these can be used alone or in combination. Since ammonia, ammonium compounds up to tertiary, and amines are weak bases, more chemicals are required to increase the pH. Alkali metal hydroxides (NaOH and KOH) and alkali metal oxides and carbonates (for example, Na 2 CO 3 ), Bicarbonates (eg, NaHCO 3 ) Is difficult to use for safety in the electronics industry, such as semiconductor manufacturing plants, because it is said that very small amounts of metals adversely affect product yield. Therefore, in the field of electronics, it is preferable to use a tetraalkylammonium hydroxide (quaternary ammonium compound) which is a strongly basic compound containing no metal element in the molecular structure. Representative examples of tetraalkylammonium hydroxide include tetramethylammonium hydroxide (TMAH), choline, and the like. In addition, 2- (2-hydroxyethoxy) ethyltrimethylammonium hydroxide (DECH) and water 2- [2- (2-hydroxyethoxy) ethoxy] ethyltrimethylammonium oxide (TECH) can also be used. In addition, a small amount of a surfactant may be preferably used in combination with the basic compound, and as the surfactant, an anionic surfactant such as an alkylbenzene sulfonate can be used. Further, fine particles of gases such as oxygen gas, hydrogen gas, and nitrogen gas may coexist with the basic compound in the basic aqueous solution, so that the fine particles can be more effectively separated and removed. .
[0036]
The concentration of the basic aqueous solution is preferably set to be pH 7 to 12, particularly preferably pH 9 to 11. The concentration may be further increased so that the pH exceeds 12, but the washing effect tends to be saturated, and the cost of a basic compound (alkali chemical) increases, and a large amount of alkaline chemical is contained in the waste water after washing. Since it remains, the cost of wastewater treatment also increases. Further, if the basic compound is added to a concentration equal to or higher than the concentration of the aqueous solution of hydrogen peroxide as the chemical solution in the preceding step, the effect of the present invention is reduced. That is, in this case, there is no merit of rinsing performance at a trace amount of chemicals and shortening of rinsing time. However, also in this case, since the rinsing status of the chemical can be checked with the resistivity meter, the merit that the rinsing status checking operation is easy is ensured. Conversely, if the concentration is too low, the cleaning effect will not be sufficiently exhibited.
[0037]
For example, when an aqueous solution of TMAH is used, the TMAH concentration is about 100 mg / L for pH 11, and the TMAH concentration is about 1000 mg / L for pH 12. When the aqueous hydrogen peroxide solution was washed in the preceding step at a hydrogen peroxide concentration of 1% by weight (10000 mg / L), the pH was 12 or more but less than pH 13 (for example, the TMAH concentration at pH 13 was about 10,000 mg / L). If so, the basic aqueous solution in the subsequent step has a lower chemical concentration, so that "the cleaning with hydrogen peroxide solution (high concentration) → the washing with the TMAH aqueous solution (low concentration)" shortens the final extrusion cleaning time.
[0038]
After cleaning with hydrogen peroxide solution, (ultra) pure water is introduced into the system to extrude the hydrogen peroxide, blow it, and perform extrusion cleaning to remove hydrogen peroxide in the system. During this extrusion cleaning, Alternatively, a washing step in which a basic aqueous solution is circulated through the system without completely extruding or extruding, that is, in a state where hydrogen peroxide partially or entirely remains in the system. Can be transferred to.
[0039]
Preferably, hydrogen peroxide is extruded and washed with (ultra) pure water so that the concentration of hydrogen peroxide is lower than the weight concentration of the basic aqueous solution in the next step. In this way, the concentration of hydrogen peroxide at the time when the rinsing of the basic compound is completed (confirmed with a resistivity meter) in the subsequent step of extruding and washing the basic aqueous solution is reduced to a level at which there is no problem without confirming the measurement. are doing.
[0040]
Extrusion cleaning of hydrogen peroxide varies depending on the concentration of the cleaning chemical solution used, system specifications, piping length, form, etc. By blowing, the chemical composition in the basic aqueous solution washing step becomes “basic compound concentration> hydrogen peroxide concentration”. Therefore, it is not always necessary to measure and confirm the concentration of hydrogen peroxide in the system, but it is sufficient to extrude, wash, and blow it with several times or more of pure water (double volume = flow rate × time / system volume).
[0041]
In addition, it is possible to omit the extrusion cleaning of hydrogen peroxide. For example, after washing at a hydrogen peroxide concentration of 1% by weight (10000 mg / L), adjusting the TMAH concentration to 1000 mg / L (pH 12) using TMAH as a basic compound (the hydrogen peroxide concentration is Considering the TMAH concentration (10 times the TMAH concentration), it is possible to sufficiently confirm the rinsing status in the step of extruding and washing the basic compound with a resistivity meter to the order of several to several tens of μg / L (low concentration) with TMAH. The concentration of hydrogen peroxide when extruded and washed to this level is about several tens to several hundreds μg / L. Although the concentration of hydrogen peroxide is high, the status of rinsing at the time of the extrusion cleaning process after the conventional cleaning with aqueous hydrogen peroxide is confirmed in the order of mg / L using a detection reagent for on-site measurement. No confirmation was made below / L. Therefore, there is often no problem compared with the conventional method even under the condition of “basic compound concentration <hydrogen peroxide concentration”.
[0042]
The chemical solution discharged by extrusion cleaning is discharged after reducing hydrogen peroxide and neutralizing and treating basic compounds, or is recovered and reused as raw water or water for other uses after appropriate treatment. You. For the treatment of hydrogen peroxide, a catalyst such as catalase or manganese dioxide, a reducing agent such as activated carbon or sodium sulfite can be used. For the treatment of a basic compound, in the case of an inorganic alkali other than ammonia such as NaOH or KOH, the discharge treatment can be performed only by neutralization. However, ammonia, amine, tetraalkylammonium hydroxide such as TMAH are based on nitrogen discharge standard. It is necessary to pay attention not to exceed the regulation values such as the above, and a detoxification treatment with biologically activated sludge, an adsorption treatment with a cation exchange resin, and the like are appropriately performed. In particular, since tetraalkylammonium hydroxide such as TMAH is a strong base, it is preferable to pass the solution through a weakly acidic cation exchange resin as it is to perform the adsorption treatment.
[0043]
As described above, in addition to the method of cleaning the entire ultrapure water production and supply apparatus, individual devices such as UF and UVox, a part of a pipe, and a part of the system such as a pipe joint may be individually cleaned. The cleaning may be performed by injecting the chemical solution immediately before the part to be cleaned and discharging the chemical solution immediately after that, or by applying vibration by ultrasonic waves or the like in a state where the chemical solution is filled. For example, the cleaning with a hydrogen peroxide solution may be performed as such individual cleaning, and the cleaning with a basic aqueous solution may be performed on the entire ultrapure water production and supply apparatus, or vice versa. In addition, it can be used for cleaning UF, prefabricated pipes, etc. immediately before new construction and assembling, so that the time for new startup cleaning can be effectively reduced.
[0044]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In the example, the ultrapure water production and supply device shown in FIG. 1 was cleaned. The part to the right of the “pure water storage tank” after the “primary pure water apparatus” is an ultrapure water production and supply apparatus, which has a typical configuration. This system is configured to supply a cleaning chemical (cleaning liquid) to a pure water storage tank.
[0045]
Example 1
Washing was performed in the following procedure.
<Step 1> A cleaning solution having a hydrogen peroxide concentration of 1% by weight was prepared and circulated at a pipe flow rate of 0.6 m / sec for 3 hours. Water (liquid) temperature was assumed to be normal temperature without control by a heat exchanger (abbreviated as "heat exchange" in FIG. 1). The CP was bypassed. Before the end of the washing, the hydrogen peroxide solution in the pure water storage tank was discharged as much as possible to lower the storage tank liquid level.
[0046]
<Step 2> While pure water of 17 MΩ · cm or more was filled in the pure water storage tank, extrusion cleaning of hydrogen peroxide with pure water was performed for one hour at a piping flow rate of 0.6 m / sec. The push-out cleaning was performed while discharging the chemical solution (hydrogen peroxide solution) and the rinsing water (washing water) from the blow pipe branched from the return pipe near the pure water storage tank entrance. At this time, the operation for confirming the concentration of hydrogen peroxide in the rinse water was not performed.
[0047]
<Step 3> Next, return the return pipe from the blow line to the circulation line, temporarily stop the supply of pure water to the pure water storage tank, add TMAH to the pure water storage tank, and adjust the pH to 11 (equivalent to about 100 mg / L of TMAH). ) Was prepared. After the start of the addition of TMAH, circulating washing was performed at a pipe flow rate of 0.6 m / sec for 3 hours. Before the end of the cleaning, the chemical solution (mainly TMAH aqueous solution) in the pure water storage tank was discharged as much as possible to lower the storage tank liquid level.
[0048]
<Step 4> Extrusion washing was performed in the same manner as in Step 2 above at a pipe flow rate of 0.6 m / sec while filling pure water of 17 MΩ · cm or more in the pure water storage tank again. The rinse condition of the flushing water is checked with a resistivity meter provided near the inlet of the pure water tank on the return pipe, and the flushing is continued until the resistivity becomes 15 MΩ · cm or more. (Wash water) was discharged.
[0049]
<Step 5> After returning the return pipe from the blow line to the circulation line, switching to CP water flow was performed, and normal operation was performed.
[0050]
The wastewater was subjected to a reduction treatment of hydrogen peroxide with catalase and a neutralization and adsorption treatment of TMAH with a weakly acidic cation exchange resin.
[0051]
Comparative Example 1
<Step 1> TMAH was added to a pure water storage tank to prepare a cleaning solution having a pH of 11 (corresponding to about 100 ppm of TMAH), which was circulated at a pipe flow rate of 0.6 m / sec for 3 hours. Water (liquid) temperature was assumed to be normal temperature without control by a heat exchanger. The CP was bypassed. Before the end of the cleaning, the chemical solution (TMAH aqueous solution) in the pure water storage tank was discharged as much as possible to lower the storage liquid level.
[0052]
<Step 2> TMAH was extruded and washed with pure water for 1 hour at a piping flow rate of 0.6 m / sec while pure water of 17 MΩ · cm or more was filled in the pure water storage tank. The push-out cleaning was performed while discharging the chemical solution (TMAH aqueous solution) and the rinsing water (washing water) from the blow pipe branched from the vicinity of the pure water storage tank entrance of the return pipe.
[0053]
<Step 3> Next, the return pipe is returned from the blow line to the circulation line, the supply of pure water to the pure water storage tank is temporarily stopped, hydrogen peroxide is added to the pure water storage tank, and the concentration of hydrogen peroxide = 1. A weight percent cleaning solution was prepared. The circulation cleaning was performed for 3 hours at a piping flow rate of 0.6 m / sec (after the start of the addition of hydrogen peroxide). Before the cleaning, the chemical solution (mainly, hydrogen peroxide solution) in the pure water storage tank was discharged as much as possible to lower the storage tank liquid level.
[0054]
<Step 4> Extrusion washing was performed in the same manner as in Step 2 above at a pipe flow rate of 0.6 m / sec while filling pure water of 17 MΩ · cm or more in the pure water storage tank again. The rinsing condition of the extruded cleaning water depends on the degree of coloring using a hydrogen peroxide concentration test paper (sold by Hishie Chemical Co., Ltd.) by periodically collecting sample water from a sampling valve provided near the inlet of the pure water tank on the return pipe. Judgment was made and extrusion cleaning was continued until visual discoloration did not occur (about 0.1 mg / L or less), and the chemical solution and rinse water (wash water) were discharged from the blow pipe.
[0055]
<Step 5> After returning the return pipe from the blow line to the circulation line, switching to CP water flow was performed, and normal operation was performed.
[0056]
The time required for step 4 of the example was 2 hours. Further, the rinse water after 2 hours was sampled, and a trace amount of hydrogen peroxide was analyzed in the laboratory (by phenolphthalein colorimetry). As a result, the hydrogen peroxide concentration was 10 μg / L or less.
[0057]
On the other hand, the time required for step 4 of the comparative example was 5 hours. Further, the rinse water after 5 hours was sampled, and a trace amount of hydrogen peroxide was analyzed in a laboratory (by a phenolphthalein colorimetric method). As a result, hydrogen peroxide was detected at a concentration of 54 μg / L.
[0058]
Further, since the rinsing status check in step 4 of the example was performed by on-site monitoring using a resistivity meter, the checking operation was easy. On the other hand, the confirmation of the rinsing status in step 4 of the comparative example required sampling and analysis each time, and the confirmation work required a large amount of labor.
[0059]
In addition, the tendency of the water quality to rise after entering the normal operation after the completion of the entire cleaning process operation (corresponding to the process 5) was not significant between the example and the comparative example, and both were good.
[0060]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the test operation work of an ultrapure water production supply apparatus, especially the confirmation step operation of the pure water rinse after chemical | medical solution washing | cleaning can be facilitated, and a new start-up or a periodic At the time of re-starting after a stop due to inspection or the like, the cleaning test operation time until ultrapure water reaches a desired water quality can be shortened. Further, it becomes possible to supply ultrapure water of high purity immediately after startup.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a typical example of an ultrapure water production and supply apparatus to which the present invention is applied.

Claims (6)

一次純水を処理して超純水を製造し使用場所へ供給する超純水製造供給装置の接液部の少なくとも一部を、薬液を用いて2回以上洗浄を行う場合において、該薬液洗浄の最終回の工程で使用する薬液の主たる成分が、イオン性導電性物質であることを特徴とする超純水製造供給装置の洗浄方法。In the case where at least a part of a liquid contacting part of an ultrapure water production and supply device that processes primary pure water to produce and supply ultrapure water to a place of use is washed twice or more with a chemical solution, the chemical solution cleaning is performed. A method for cleaning an ultrapure water production and supply device, wherein a main component of a chemical solution used in the final step of the step (a) is an ionic conductive substance. 該薬液洗浄の最終回の工程で使用する薬液の重量濃度がその直前の薬液洗浄の工程で使用する薬液の重量濃度未満であることを特徴とする請求項1に記載の超純水製造供給装置の洗浄方法。2. The ultrapure water production and supply apparatus according to claim 1, wherein the weight concentration of the chemical used in the last chemical cleaning step is less than the weight concentration of the chemical used in the immediately preceding chemical cleaning step. Cleaning method. 一次純水を処理して超純水を製造し使用場所へ供給する超純水製造供給装置の接液部の少なくとも一部を、過酸化水素水で洗浄した後に、更に塩基性水溶液で洗浄することを特徴とする請求項1又は2に記載の超純水製造供給装置の洗浄方法。At least a part of the liquid contacting part of the ultrapure water production and supply device that processes primary pure water to produce ultrapure water and supply it to the place of use is washed with a hydrogen peroxide solution, and then further washed with a basic aqueous solution. The method for cleaning an ultrapure water production / supply device according to claim 1 or 2, wherein: 少なくとも過酸化水素が残存している状態から、塩基性水溶液で洗浄をすることを特徴とする請求項3に記載の超純水製造供給装置の洗浄方法。4. The method for cleaning an ultrapure water production and supply apparatus according to claim 3, wherein the cleaning is performed with a basic aqueous solution from a state where at least hydrogen peroxide remains. 塩基性水溶液が少なくとも水酸化テトラアルキルアンモニウムを含むことを特徴とする請求項3又は4に記載の超純水製造供給装置の洗浄方法。The method for cleaning an ultrapure water production and supply device according to claim 3 or 4, wherein the basic aqueous solution contains at least tetraalkylammonium hydroxide. 該薬液洗浄の最終回の工程で使用する薬液を、(超)純水によって押し出し、リンスする工程において、薬品のリンス状況を系内に設置した抵抗率計によって検出確認し、判断することを特徴とする請求項1から5のいずれかに記載の超純水製造供給装置の洗浄方法。In the step of rinsing the chemical used in the final step of the chemical cleaning with (ultra) pure water and rinsing, the rinsing state of the chemical is detected and confirmed by a resistivity meter installed in the system, and the determination is made. The method for cleaning an ultrapure water production and supply device according to any one of claims 1 to 5.
JP2003059904A 2003-03-06 2003-03-06 Method of washing ultrapure water production and supply device Pending JP2004267864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059904A JP2004267864A (en) 2003-03-06 2003-03-06 Method of washing ultrapure water production and supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059904A JP2004267864A (en) 2003-03-06 2003-03-06 Method of washing ultrapure water production and supply device

Publications (1)

Publication Number Publication Date
JP2004267864A true JP2004267864A (en) 2004-09-30

Family

ID=33122600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059904A Pending JP2004267864A (en) 2003-03-06 2003-03-06 Method of washing ultrapure water production and supply device

Country Status (1)

Country Link
JP (1) JP2004267864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297343A (en) * 2005-04-25 2006-11-02 Japan Organo Co Ltd Washing method of ultrapure water manufacturing and supplying device
WO2008123351A1 (en) * 2007-03-30 2008-10-16 Kurita Water Industries Ltd. Method of washing and sterilizing ultrapure water production system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297343A (en) * 2005-04-25 2006-11-02 Japan Organo Co Ltd Washing method of ultrapure water manufacturing and supplying device
WO2008123351A1 (en) * 2007-03-30 2008-10-16 Kurita Water Industries Ltd. Method of washing and sterilizing ultrapure water production system
US20100032387A1 (en) * 2007-03-30 2010-02-11 Kurita Water Industries Ltd. Cleaning and sterilizing method for ultrapure water manufacturing system
JP5287713B2 (en) * 2007-03-30 2013-09-11 栗田工業株式会社 Cleaning and sterilization method for ultrapure water production system
CN105381482A (en) * 2007-03-30 2016-03-09 栗田工业株式会社 cleaning and sterilizing method for ultrapure water manufacturing system
US9370802B2 (en) 2007-03-30 2016-06-21 Kurita Water Industries Ltd. Cleaning and sterilizing method for ultrapure water manufacturing system
CN105381482B (en) * 2007-03-30 2021-02-02 栗田工业株式会社 Cleaning and sterilizing method for ultrapure water preparation system

Similar Documents

Publication Publication Date Title
KR101407831B1 (en) Method of washing and sterilizing ultrapure water production system
JP4449080B2 (en) Cleaning method for ultrapure water production and supply equipment
JP2003205299A (en) Hydrogen dissolved water manufacturing system
EP1290248A1 (en) Regeneration of plating baths
CN105283422A (en) Ultrapure water production system, ultrapure water production supply system, and method for cleaning same
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
JPH0938648A (en) Treatment of blow water of power plant
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2002151459A (en) Cleaning method
JP2000354729A (en) Method and apparatus for producing functional water for washing
JP4034668B2 (en) Ultrapure water production system and operation method thereof
WO2002013981A1 (en) Method for cleaning ultrapure water supplying system
JP2011161418A (en) Washing method for ultrapure water production system
JP4747659B2 (en) Cleaning method for ultrapure water production and supply equipment
JP5962135B2 (en) Ultrapure water production equipment
JP3620577B2 (en) Cleaning method for ultrapure water production system
TWI699245B (en) Cleaning method of ultrapure water production system
JP2004267864A (en) Method of washing ultrapure water production and supply device
JP2010036094A (en) Method and device for recovering water-soluble organic solvent having amino group
JP2003299937A (en) Performance evaluation method for reverse osmosis membrane element
JP2009160512A (en) Wastewater treatment method of membrane filtration apparatus
JP2005224671A (en) Method for washing permeable membrane
JP4469542B2 (en) Functional water production method and production apparatus
JP2002192162A (en) Washing and sterilizing method for extrapure water manufacturing system