JP2003299937A - Performance evaluation method for reverse osmosis membrane element - Google Patents

Performance evaluation method for reverse osmosis membrane element

Info

Publication number
JP2003299937A
JP2003299937A JP2002103255A JP2002103255A JP2003299937A JP 2003299937 A JP2003299937 A JP 2003299937A JP 2002103255 A JP2002103255 A JP 2002103255A JP 2002103255 A JP2002103255 A JP 2002103255A JP 2003299937 A JP2003299937 A JP 2003299937A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane element
permeated water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002103255A
Other languages
Japanese (ja)
Other versions
JP2003299937A5 (en
JP3835686B2 (en
Inventor
Kakichi Ito
嘉吉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002103255A priority Critical patent/JP3835686B2/en
Publication of JP2003299937A publication Critical patent/JP2003299937A/en
Publication of JP2003299937A5 publication Critical patent/JP2003299937A5/ja
Application granted granted Critical
Publication of JP3835686B2 publication Critical patent/JP3835686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a performance evaluation device of a reverse osmosis membrane element simultaneously evaluating a performance of two reverse osmosis membrane element samples arranged in a housing in series by one sample liquid to be tested. <P>SOLUTION: Two reverse osmosis membrane element samples 15a, 15b are installed in the housing 16 at a series arrangement and two permeated water collection pipes 19a, 19b are bonded by a sealing means 30 such that circulation of permeated water is shut off. The sample liquid to be tested is force-fed to the housing 16. Thereby, the first permeated water is obtained from the first reverse osmosis membrane element sample 15a and the second permeated water is independently obtained from the second reverse osmosis membrane element sample 15b respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一つのハウジング
内に直列に配置された2個の逆浸透膜エレメント検体
を、一の被検体液で同時にその性能を評価する逆浸透膜
エレメントの性能評価装置に関するものである。
TECHNICAL FIELD The present invention relates to a performance evaluation of a reverse osmosis membrane element for simultaneously evaluating the performance of two reverse osmosis membrane element specimens arranged in series in one housing with one specimen liquid. It relates to the device.

【0002】[0002]

【従来の技術】従来から各種被処理水の脱塩(脱イオン
も含む、以下脱塩および脱イオンを総称して脱塩とい
う)等を目的として逆浸透膜モジュールが用いられてい
る。例えば、半導体デバイスの様な電子部品部材類の洗
浄には超純水が使用されるが、超純水を製造する工程に
は逆浸透膜モジュールが用いられることが多い。一般に
当該モジュールに装着されている逆浸透膜エレメントは
脱塩の目的で設置されるが、逆浸透膜は全有機体炭素
(TOC)の除去能力も大きく、TOCが極力低減され
た水質が要求される前記電子部品部材類の洗浄工程に用
いられる超純水の製造過程では、逆浸透膜モジュールの
使用は不可欠といっても過言ではない。
2. Description of the Related Art Conventionally, a reverse osmosis membrane module has been used for the purpose of desalting various kinds of water to be treated (including deionization, hereinafter, deionization and deionization are collectively referred to as desalination). For example, although ultrapure water is used for cleaning electronic component members such as semiconductor devices, a reverse osmosis membrane module is often used in the process of producing ultrapure water. Generally, the reverse osmosis membrane element attached to the module is installed for the purpose of desalination, but the reverse osmosis membrane has a large total organic carbon (TOC) removal capacity, and it is required that the water quality with the TOC reduced as much as possible. It is no exaggeration to say that the use of the reverse osmosis membrane module is indispensable in the manufacturing process of ultrapure water used in the cleaning process of the electronic component members.

【0003】従来から用いられている逆浸透膜モジュー
ルの構造例としては、図4および図5に示したごとく、
透過水集水管80に袋状の逆浸透膜81をスパイラル状
に巻きつけ、その上部を外装体82で被覆し、その両端
はスパイラル状に巻きつけた逆浸透膜81がせり出すの
を防止するために、数本の放射状のリブ83を有するテ
レスコープ止め84が取り付けられている。これらの透
過水集水管80、逆浸透膜81、外装体82、テレスコ
ープ止め84でひとつの逆浸透膜エレメント85を形成
し、夫々の透過水集水管80をコネクタ(図示せず)で
連通して、ハウジング86内に逆浸透膜エレメント85
を複数個装填する。なお、逆浸透膜エレメント85の外
周とハンジング86の内周の間に隙間87が形成される
が、この隙間87をブラインシール88で閉塞してあ
る。なおハウジング86の一端には被処理水をハウジン
グ内部に流入するための被処理水流入管(図示せず)、
また他端には透過水集水管80に連通する処理水管(図
示せず)および非透過水管(図示せず)が付設され、ハ
ウジング86、その内部部品および配管(ノズル)等で
逆浸透膜モジュール89が構成される。
As an example of the structure of a conventional reverse osmosis membrane module, as shown in FIGS. 4 and 5,
A bag-shaped reverse osmosis membrane 81 is spirally wound around the permeated water collecting pipe 80, and its upper portion is covered with an exterior body 82, and both ends thereof are for preventing the spirally wound reverse osmosis membrane 81 from protruding. A telescope stop 84 having several radial ribs 83 is attached to the. A single reverse osmosis membrane element 85 is formed by the permeated water collection pipe 80, the reverse osmosis membrane 81, the exterior body 82, and the telescope stop 84, and the respective permeated water collection pipes 80 are connected by a connector (not shown). The reverse osmosis membrane element 85 in the housing 86.
Load multiple. Although a gap 87 is formed between the outer circumference of the reverse osmosis membrane element 85 and the inner circumference of the housing 86, this gap 87 is closed by a brine seal 88. It should be noted that at one end of the housing 86, a treated water inflow pipe (not shown) for flowing the treated water into the housing,
Further, a treated water pipe (not shown) and a non-permeated water pipe (not shown) communicating with the permeated water collection pipe 80 are attached to the other end, and the reverse osmosis membrane module is formed by the housing 86, its internal parts, pipes (nozzles), etc. 89 is constructed.

【0004】このような構造の逆浸透膜モジュール89
で被処理水を処理する場合は、ハウジング86の一端か
らポンプを用いて被処理水を圧入するが、図4において
矢線で示したように被処理水はテレスコープ止め84の
各放射状のリブ83の間を通って最初の逆浸透膜エレメ
ント85内に侵入し、一部の被処理液は逆浸透膜エレメ
ント85の膜間を通り抜けて次の逆浸透膜エレメント8
5に達し、他部の被処理水は逆浸透膜81を透過して透
過水となり当該透過水は透過水集水管80に集水され
る。このようにして逆浸透膜エレメント85に次々に被
処理水が通り抜けて、逆浸透膜を透過しなかった被処理
水は非透過水(濃縮水)としてハウジング86の他端か
ら取出し、また逆浸透膜を透過した透過水は透過水集水
管80を介してハウジング86外に取出す。
Reverse osmosis membrane module 89 having such a structure
When the treated water is treated with, the treated water is press-fitted from one end of the housing 86 by using a pump. However, as shown by the arrow in FIG. 4, the treated water is the radial ribs of the telescope stopper 84. The first reverse osmosis membrane element 85 penetrates through the gaps 83, and a part of the liquid to be treated passes through between the membranes of the reverse osmosis membrane element 85 and the next reverse osmosis membrane element 8
5, the water to be treated in the other portion permeates the reverse osmosis membrane 81 to become permeated water, and the permeated water is collected in the permeated water collecting pipe 80. In this way, the water to be treated passes through the reverse osmosis membrane element 85 one after another, and the water to be treated that has not permeated the reverse osmosis membrane is taken out from the other end of the housing 86 as non-permeated water (concentrated water), and the reverse osmosis is performed. The permeated water that has permeated the membrane is taken out of the housing 86 via the permeated water collecting pipe 80.

【0005】このように、逆浸透膜モジュールによる脱
塩は塩類を含む水を、ポンプを用いて逆浸透膜モジュー
ルに圧入するだけで脱塩水が得られ、電気透析法や蒸発
法と比較して装置が簡単であり、かつTOC成分である
有機物も除去することができ良好な処理水が得られる。
一方、逆浸透膜エレメントは、長期間使用されると、逆
浸透膜が各種の無機物あるいは有機物により汚染を受け
たりモジュール内の原水の接液部あるいは膜面に微生物
が発生するなどして、差圧が上昇したり、透過水量が減
少したり、さらには膜の劣化によりその脱塩率が低下す
るなどの性能低下を起こし、使用が困難となる。このよ
うな使用困難と判断された逆浸透膜エレメントはハウジ
ング内から取出され、新品の逆浸透膜エレメントと交換
され、取出された逆浸透膜エレメントは産業廃棄物とし
て廃棄される。
As described above, in the desalination by the reverse osmosis membrane module, desalted water can be obtained only by pressurizing the water containing salts into the reverse osmosis membrane module by using the pump, and compared with the electrodialysis method or the evaporation method. The apparatus is simple, and the organic matter that is the TOC component can be removed, and good treated water can be obtained.
On the other hand, the reverse osmosis membrane element, when used for a long period of time, has a difference in that the reverse osmosis membrane is contaminated with various inorganic or organic substances, or microorganisms are generated on the wetted part or the membrane surface of the raw water in the module. The pressure is increased, the amount of permeated water is reduced, and further, the deterioration of the membrane causes a decrease in the desalination rate, resulting in poor performance, which makes it difficult to use. The reverse osmosis membrane element determined to be difficult to use is taken out of the housing, is replaced with a new reverse osmosis membrane element, and the taken out reverse osmosis membrane element is discarded as industrial waste.

【0006】逆浸透膜エレメントを産業廃棄物として廃
棄処分する場合、処分コストや処分場所の問題がある。
この問題を解決するものとして、使用済み逆浸透膜モジ
ュールを回生処理して再使用することが従来から提案さ
れている。脱塩率が低下した逆浸透膜は、逆浸透膜の緻
密層が化学的に酸化されてその分子構造が破壊されるこ
と等に起因するものであり、元の状態に復帰させること
は困難であるが、膜が汚染を受けることにより差圧が上
昇したり、透過水量が減少したりした逆浸透膜は、回生
処理を施し再使用することができる。すなわち、膜の汚
染が原因で性能低下した逆浸透膜モジュールに、酸、ア
ルカリ、クエン酸のような洗浄力の高い有機性薬液を接
触させ、ベッセル内や逆浸透膜エレメントの膜面あるい
は膜内部に付着沈積した無機物、有機物、微生物スライ
ム等からなる汚染物を脱離するものである。このような
回生処理によって、差圧が上昇したりあるいは透過水量
が低下した逆浸透膜はその性能を復帰させることができ
る。
When the reverse osmosis membrane element is disposed of as industrial waste, there are problems of disposal cost and disposal place.
As a solution to this problem, it has been conventionally proposed that a used reverse osmosis membrane module be regenerated and reused. The reverse osmosis membrane with a reduced desalination rate is due to the fact that the dense layer of the reverse osmosis membrane is chemically oxidized and its molecular structure is destroyed, and it is difficult to restore the original state. However, the reverse osmosis membrane whose differential pressure is increased or permeated water is decreased due to the membrane being contaminated can be subjected to regenerative treatment and reused. That is, the reverse osmosis membrane module whose performance has deteriorated due to the contamination of the membrane is brought into contact with an organic chemical solution having a high detergency such as acid, alkali or citric acid, and the inside of the vessel or the membrane surface of the reverse osmosis membrane element or the inside of the membrane is It removes contaminants such as inorganic substances, organic substances, microbial slime, etc. that adhere to and deposit on. By such regenerative treatment, the performance of the reverse osmosis membrane having an increased differential pressure or a reduced amount of permeated water can be restored.

【0007】しかし、従来から提案されている使用済み
逆浸透膜モジュールの回生処理は、水処理施設内の複数
系列の逆浸透膜モジュールにおいて行われるものであ
り、回生処理に必要な薬液槽、配管、弁、ポンプ等を具
備した回生処理設備の設置やその設置場所が必要である
こと、回生処理に用いる薬液の排液処理装置の設置が必
要であること、回生処理装置の稼働率が極めて小さく回
生処理設備の投資に見合う採算が取れない等の種々の問
題を抱えている。そこで、近年、使用済み逆浸透膜エレ
メントの回生処理を個々の水処理施設内で行うのではな
く、特定の専用の施設内で集中して実施することで、回
生処理装置の稼働率を高め、回生処理した逆浸透膜エレ
メントは要望時には直ちに提供するような、使用済み逆
浸透膜エレメントの回収、回生処理および回生処理品の
供給にいたる総合的な利用技術の開発が検討されてい
る。
However, the regenerative treatment of a used reverse osmosis membrane module that has been conventionally proposed is performed in a plurality of series of reverse osmosis membrane modules in a water treatment facility, and a chemical solution tank and piping required for the regenerative treatment are required. , It is necessary to install regenerative treatment equipment equipped with valves, pumps, etc. and its installation location, it is necessary to install a drainage treatment device for the chemical solution used for regenerative treatment, and the operating rate of the regenerative treatment device is extremely small. There are various problems such as not being profitable for the investment of regenerative treatment equipment. Therefore, in recent years, instead of performing regenerative treatment of used reverse osmosis membrane elements in individual water treatment facilities, by concentrating them in specific dedicated facilities, the operating rate of the regenerative treatment device is increased, Development of a comprehensive utilization technology for recovering used reverse osmosis membrane elements, regeneration treatment, and supply of regenerated products such that the regenerated reverse osmosis membrane element is provided immediately upon request is under consideration.

【0008】[0008]

【発明が解決しようとする課題】このような使用済み逆
浸透膜エレメントの回生処理においては、回収された逆
浸透膜エレメントの性能を予め調べ、その結果に応じた
回生処理を行う必要がある。また、回生処理後において
は、回生処理品の回生状態を把握するため、回生後の性
能を調べる必要がある。しかし、従来、水処理施設内で
使用されている逆浸透膜モジュールから回収された使用
済み逆浸透膜エレメントを評価する逆浸透膜エレメント
の性能評価装置は未だ提案されていない。また、新品の
逆浸透膜エレメントは出荷の際、同様の性能評価が行わ
れるものの、これに用いる性能評価装置は一つのハウジ
ング内に一個の逆浸透膜エレメントを装填したモジュー
ルであるか、あるいは該モジュールの複数個を並列に組
付けたものであり、一つのハウジング内に二つの逆浸透
膜エレメントを装填し、一つの被検体液で二つの逆浸透
膜エレメントを同時に個別の評価が行えるものではな
い。この場合、一つのハウジングにおいて一つの逆浸透
膜エレメント検体の性能評価しかできず、性能評価試験
の効率が悪いという問題がある。また、逆浸透膜エレメ
ント検体の性能評価は、水処理施設内で使用される組付
け形態と同様の構成で実施するため、例えば図4に示す
ようにハウジング内に検体である逆浸透膜エレメントを
2個装填して逆浸透膜モジュールを構成し、被処理水の
代わりに被検体液を供給する形態が考えられる。しか
し、この場合、二つの逆浸透膜エレメントの透過水集水
管が共通しているため、一の被検体液を圧入して得られ
る透過水は二つの逆浸透膜エレメントの各透過水の混合
水であり、二つの逆浸透膜エレメントの個別の評価を行
うことはできない。
In the regenerative treatment of such a used reverse osmosis membrane element, it is necessary to investigate the performance of the recovered reverse osmosis membrane element in advance and perform the regenerative treatment according to the result. Further, after the regenerative treatment, it is necessary to investigate the performance after the regeneration in order to grasp the regenerative state of the regenerated product. However, conventionally, a performance evaluation device for a reverse osmosis membrane element for evaluating a used reverse osmosis membrane element recovered from a reverse osmosis membrane module used in a water treatment facility has not been proposed yet. Although a new reverse osmosis membrane element is subjected to the same performance evaluation at the time of shipment, the performance evaluation device used for this is a module in which one reverse osmosis membrane element is loaded in one housing, or This is a module in which multiple reverse osmosis membrane elements are installed in parallel in one housing, and two reverse osmosis membrane elements can be simultaneously evaluated individually with one analyte liquid. Absent. In this case, the performance of only one reverse osmosis membrane element sample can be evaluated in one housing, and the efficiency of the performance evaluation test is low. Further, since the performance evaluation of the reverse osmosis membrane element sample is carried out with the same configuration as the assembly form used in the water treatment facility, for example, as shown in FIG. A configuration is conceivable in which two reverse osmosis membrane modules are configured by loading two and the analyte liquid is supplied instead of the water to be treated. However, in this case, since the permeated water collecting pipes of the two reverse osmosis membrane elements are common, the permeated water obtained by press-fitting one analyte liquid is the mixed water of the permeated water of the two reverse osmosis membrane elements. Therefore, it is not possible to separately evaluate the two reverse osmosis membrane elements.

【0009】従って、本発明の目的は、一つのハウジン
グ内に直列に配置された2個の逆浸透膜エレメント検体
を、一の被検体液で同時にその性能を個別に評価する効
率の高い逆浸透膜エレメントの性能評価装置を提供する
ものである。
Therefore, an object of the present invention is to efficiently evaluate the performance of two reverse osmosis membrane element analytes arranged in series in one housing at the same time with one analyte liquid. A performance evaluation device for a membrane element is provided.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明(1)は、一端側に被検体液管と接続する被検
体液流入口及び第1透過水管と接続する第1透過水流出
口を有し、他端側に非透過水管と接続する非透過水流出
口及び第2透過水管と接続する第2透過水流出口を有す
るハウジングと、該ハウジングに装填され一端の開口が
前記第1透過水流出口に接続する第1透過水集水管を有
する第1逆浸透膜エレメント検体と、該ハウジングに装
填されかつ該第1逆浸透膜エレメント検体と直列に配置
され一端の開口が前記第2透過水流出口に接続する第2
透過水集水管を有する第2逆浸透膜エレメント検体とか
らなり、該第1透過水集水管の他端の開口と該第2透過
水集水管の他端の開口は共に封止手段で封止され、一の
検体液で二つの逆浸透膜エレメント検体を同時に性能評
価する逆浸透膜エレメントの性能評価装置を提供するも
のである。また、本発明(2)は、前記封止手段が、該
第1透過水集水管と該第2透過水集水管を該両集水管内
を流れる透過水の互いの流通を遮断する遮蔽部を備える
結合手段で結合したものであるか、あるいは該第1透過
水集水管及び該第2透過水集水管の他端の両開口を各々
エンドキャップで封止したものである前記逆浸透膜エレ
メントの性能評価装置を提供するものである。また、本
発明(3)は、前記ハウジングの中央部に、該第1逆浸
透膜エレメント検体の非透過水が流出する中間非透過水
流出口を設けた前記逆浸透膜エレメントの性能評価装置
を提供するものである。また、本発明(4)は、前記第
1逆浸透膜エレメント検体及び前記第2逆浸透膜エレメ
ント検体は、共に使用済み逆浸透膜エレメントである前
記逆浸透膜エレメントの性能評価装置を提供するもので
ある。
Means for Solving the Problems The present invention (1) for attaining the above-mentioned object is to provide a test-substance liquid inlet connected to a test-substance liquid pipe at one end and a first permeate flow connected to a first permeate pipe. A housing having an outlet and having a non-permeate water outlet connected to the non-permeate water pipe on the other end side and a second permeate water outlet connected to the second permeate water pipe, and an opening at one end loaded in the housing and having the first permeate A first reverse osmosis membrane element sample having a first permeate water collecting pipe connected to a water outlet, and a second permeate stream which is loaded in the housing and arranged in series with the first reverse osmosis membrane element sample. Second connecting to the exit
A second reverse osmosis membrane element sample having a permeated water collecting pipe, and the opening at the other end of the first permeated water collecting pipe and the other end of the second permeated water collecting pipe are both sealed by a sealing means. The present invention provides a reverse osmosis membrane element performance evaluation device that simultaneously evaluates the performance of two reverse osmosis membrane element samples with one sample solution. Further, in the present invention (2), the sealing means includes a shielding portion for blocking the mutual permeation of the permeated water flowing through both the first permeated water collecting pipe and the second permeated water collecting pipe. The reverse osmosis membrane element, wherein the reverse osmosis membrane element is joined by a joining means provided, or both openings of the other end of the first permeated water collection tube and the second permeated water collection tube are respectively sealed by end caps. A performance evaluation device is provided. Further, the present invention (3) provides a performance evaluation device for a reverse osmosis membrane element, wherein an intermediate non-permeable water outlet for discharging non-permeated water of the first reverse osmosis membrane element sample is provided in a central portion of the housing. To do. Further, the present invention (4) provides a performance evaluation device for the reverse osmosis membrane element, wherein both the first reverse osmosis membrane element sample and the second reverse osmosis membrane element sample are used reverse osmosis membrane elements. Is.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態における逆浸
透膜エレメントの性能評価装置を図1及び図2を参照し
て説明する。図1は本実施の形態例における逆浸透膜エ
レメントの性能評価装置の構造を示す縦断面図、図2は
ハウジングの端板と逆浸透膜エレメントの透過水集水管
との接合状態の一例を示す図である。図1において、逆
浸透膜エレメントの性能評価装置10は、ハウジング1
6内に二つの逆浸透膜エレメント検体15a、15bを
直列配置に装填し、二つの透過水集水管19a、19b
を透過水の流通が遮断されるように封止手段30で結合
し、ハウジング16に一の被検体液を圧入することで、
第1逆浸透膜エレメント検体15aから第1透過水を、
第2逆浸透膜エレメント検体15bから第2透過水をそ
れぞれ別個に得るように構成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION A performance evaluation apparatus for a reverse osmosis membrane element according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a vertical cross-sectional view showing a structure of a performance evaluation device for a reverse osmosis membrane element in the present embodiment, and FIG. 2 shows an example of a joint state between an end plate of a housing and a permeated water collecting pipe of the reverse osmosis membrane element. It is a figure. In FIG. 1, a reverse osmosis membrane element performance evaluation apparatus 10 includes a housing 1
Two reverse osmosis membrane element specimens 15a and 15b are loaded in series in 6 and two permeate water collecting pipes 19a and 19b are installed.
Are coupled by the sealing means 30 so that the flow of permeated water is blocked, and one analyte liquid is press-fitted into the housing 16,
The first permeated water from the first reverse osmosis membrane element sample 15a,
The second permeated water is separately obtained from the second reverse osmosis membrane element sample 15b.

【0012】すなわち、逆浸透膜エレメントの性能評価
装置10は、一端側に被検体液管(不図示)と接続する
被検体液流入口21及び第1透過水管22と接続する第
1透過水流出口23を有し、他端側に非透過水管(不図
示)と接続する非透過水流出口24及び第2透過水管2
5と接続する第2透過水流出口26を有するハウジング
16と、ハウジング16に装填され一端の開口31aが
第1透過水流出口23とアダプター27により接続する
第1透過水集水管19aを有する第1逆浸透膜エレメン
ト検体15aと、ハウジング16に装填されかつ第1逆
浸透膜エレメント検体15aと直列に配置され一端の開
口32aが第2透過水流出口26とアダプター28によ
り接続する第2透過水集水管19bを有する第2逆浸透
膜エレメント検体15bとから構成され、第1透過水集
水管19aの他端の開口31bと第2透過水集水管19
bの他端の開口32bは共に封止手段30で封止され、
一の被検体液で二つの逆浸透膜エレメント検体15a、
15bを同時に評価するものである。また、ハウジング
16の中央部には、必要に応じて設置される第1逆浸透
膜エレメント検体15aの非透過水が流出する中間非透
過水流出口33が設けられている。なお、図1及び図2
に示すように、ハウジング16の一端側及び他端側の両
側部材は、通常、本体の円筒部材とは別部材からなる端
板20であり、一端側の端板20は第1透過水流出口2
3、被検体液流入口21となる貫通孔を有している。端
板20に形成される第1透過水流出口23と逆浸透膜エ
レメントの透過水集水管との接合は、外周面のOリング
溝にOリング273を嵌合させた小径部271と、内周
面のOリング溝にOリング274を嵌合させた大径部2
72とからなるアダプター27を使用して行う。アダプ
ター27の小径部271の外径は第1透過水流出口23
の内径よりやや小さめ、アダプター27の大径部272
の内径は逆浸透膜エレメントの第1透過水集水管19a
の外径よりやや大きめに形成され、第1透過水流出口2
3とアダプター27の小径部271の嵌合、及び第1透
過水集水管19aの先端部191aとアダプター27の
大径部272との嵌合はOリングにより確実に固定され
る。
That is, the reverse osmosis membrane element performance evaluation apparatus 10 comprises a sample liquid inlet 21 connected to a sample liquid pipe (not shown) at one end and a first permeated water outlet connected to the first permeate water pipe 22. The non-permeate water outlet 24 and the second permeate water pipe 2 which have 23 and are connected to the non-permeate water pipe (not shown) on the other end side.
5, a first reverse having a housing 16 having a second permeate outlet 26 connected to it and a first permeate collection pipe 19a which is loaded in the housing 16 and has an opening 31a at one end connected to the first permeate outlet 23 by an adapter 27. The second permeate water collection pipe 19b, which is loaded in the housing 16 and is arranged in series with the first reverse osmosis membrane element sample 15a and has the opening 32a at one end connected to the second permeate outlet 26 and the adapter 28. A second reverse osmosis membrane element specimen 15b having an opening 31b at the other end of the first permeated water collection pipe 19a and a second permeated water collection pipe 19
The openings 32b at the other end of b are both sealed by the sealing means 30,
Two reverse osmosis membrane element specimens 15a with one specimen liquid,
15b is evaluated at the same time. Further, at the center of the housing 16, an intermediate non-permeated water outlet 33 through which the non-permeated water of the first reverse osmosis membrane element sample 15a, which is installed if necessary, is provided. 1 and 2
As shown in FIG. 2, the both side members on one end side and the other end side of the housing 16 are end plates 20 which are usually separate members from the cylindrical member of the main body, and the end plate 20 on the one end side is the first permeate outlet 2
3. It has a through hole which becomes the sample liquid inlet 21. The first permeated water outlet 23 formed on the end plate 20 and the permeated water collecting pipe of the reverse osmosis membrane element are joined to each other by the small diameter portion 271 in which the O ring 273 is fitted in the O ring groove on the outer peripheral surface and the inner peripheral portion. Large diameter part 2 with an O-ring 274 fitted in the O-ring groove on the surface
This is done using an adapter 27 consisting of 72 and 72. The outer diameter of the small diameter portion 271 of the adapter 27 is the first permeate outlet 23.
Slightly smaller than the inner diameter of the adapter, the large diameter portion 272 of the adapter 27
The inner diameter of the first permeated water collecting pipe 19a of the reverse osmosis membrane element
Formed slightly larger than the outer diameter of the first permeate outlet 2
3 and the small diameter portion 271 of the adapter 27, and the fitting of the tip portion 191a of the first permeated water collecting pipe 19a and the large diameter portion 272 of the adapter 27 are securely fixed by the O-ring.

【0013】封止手段30としては、第1透過水集水管
の他端の開口31bと第2透過水集水管の他端の開口3
2bを封止するものであれば、特に制限されず、例えば
本例のように第1透過水集水管19aと第2透過水集水
管19bを該両集水管内を流れる透過水の互いの流通を
遮断する遮蔽部35を備える結合手段34で結合したも
のであるか、あるいは第1透過水集水管19a及び第2
透過水集水管19bの他端の両開口を各々エンドキャッ
プで封止したもの等が挙げられる。本例の結合手段34
は遮蔽部35を内壁とする円筒体で、遮蔽部35で区画
される左右両側の内周面には図では省略するOリング溝
に嵌合するOリングが配設され、第1透過水集水管19
a及び第2透過水集水管19bと結合手段34の結合
は、円筒体の両側の開口から第1透過水集水管19aの
他端31bと第2透過水集水管19bの他端32bをO
リングの摩擦に抗して中に圧入することで行われる。
As the sealing means 30, the opening 31b at the other end of the first permeated water collecting pipe and the opening 3 at the other end of the second permeated water collecting pipe.
It is not particularly limited as long as it seals 2b. For example, as in this example, the first permeated water collecting pipe 19a and the second permeated water collecting pipe 19b flow through the permeated water flowing through the both water collecting pipes. Or a first permeated water collecting pipe 19a and a second permeated water collecting pipe 19a.
For example, the permeated water collecting pipe 19b may have both openings at the other end sealed with end caps. Coupling means 34 of this example
Is a cylindrical body having the shielding portion 35 as an inner wall, and O-rings fitted in O-ring grooves (not shown) are disposed on the inner peripheral surfaces of the left and right sides partitioned by the shielding portion 35, and Water pipe 19
a and the second permeated water collection pipe 19b and the coupling means 34 are coupled to each other by opening the other end 31b of the first permeated water collection pipe 19a and the other end 32b of the second permeated water collection pipe 19b from the openings on both sides of the cylindrical body.
It is done by press fitting it against the friction of the ring.

【0014】また、封止手段30において、両集水管の
他端31b、32bの両開口を各々エンドキャップで封
止する場合、封止後のエンドキャップの端部同士を当接
又は当接に近い状態まで近接させ、被検体液のハウジン
グ16内への圧入に伴う、第1逆浸透膜エレメント15
aの移動を防止するようにする。また、封止手段30の
他の例としては、例えば遮蔽部を金属製又は樹脂製のシ
ート板とし、これをフランジ部を有する1対の接合部材
で挟み、ネジ類で固定する方法を採ることもできる。こ
の場合、該接合部材と両集水管の他端31b、32bと
の結合は、本例と同様、Oリングによる方法を用いるこ
とができる。このように、本発明における封止手段30
は、エンドキャップのような分断型、本例である内壁を
有する円筒体のような一体型及びシート板をフランジで
挟む接続型などいずれの形態であってもよい。
Further, in the sealing means 30, when both openings of the other ends 31b and 32b of both water collecting pipes are sealed with end caps, the ends of the sealed end caps are brought into contact with each other or with each other. The first reverse osmosis membrane element 15 is brought into close proximity to the first reverse osmosis membrane element 15 as the analyte liquid is pressed into the housing 16.
Try to prevent the movement of a. Further, as another example of the sealing means 30, for example, a method is adopted in which the shielding portion is a sheet plate made of metal or resin, which is sandwiched by a pair of joining members having a flange portion and is fixed with screws. You can also In this case, the joining member and the other ends 31b and 32b of both the water collecting pipes can be coupled by the O-ring method as in this example. Thus, the sealing means 30 in the present invention
May be of any type such as a split type such as an end cap, an integrated type such as a cylinder having an inner wall in this example, or a connection type in which a sheet plate is sandwiched by flanges.

【0015】本発明の性能評価装置10で用いる第1逆
浸透膜エレメント検体15a及び第2逆浸透膜エレメン
ト検体15bとしては、特に制限されないが、例えば、
半導体デバイスの様な電子部品部材類の洗浄用超純水を
製造する工程で使用された逆浸透膜モジュールの逆浸透
膜エレメントであって、該使用済みとなった逆浸透膜エ
レメントの回収、回生処理及び回生処理済み品の供給に
至る一連の過程で必要となる性能評価試験における評価
対象物である。具体的には、第1逆浸透膜エレメント検
体15a及び第2逆浸透膜エレメント検体15bは、使
用済みとなって回収された逆浸透膜エレメント又は回生
処理後の逆浸透膜エレメントである。使用済みとなって
回収された逆浸透膜エレメントの性能評価は回収された
逆浸透膜エレメントの性能を予め調べ、その結果に応じ
て回生処理条件等を定めるために行うものであり、ま
た、回生処理後の逆浸透膜エレメントの性能評価は、回
生処理済み品の回生状態を把握し、新たな供給先を決定
するために行うものである。
The first reverse osmosis membrane element sample 15a and the second reverse osmosis membrane element sample 15b used in the performance evaluation apparatus 10 of the present invention are not particularly limited, but for example,
A reverse osmosis membrane element of a reverse osmosis membrane module used in the process of producing ultrapure water for cleaning electronic component members such as semiconductor devices, wherein the used reverse osmosis membrane element is collected and regenerated. It is an object to be evaluated in a performance evaluation test, which is required in a series of processes leading to treatment and supply of regenerated products. Specifically, the first reverse osmosis membrane element sample 15a and the second reverse osmosis membrane element sample 15b are reverse osmosis membrane elements that have been used and recovered, or reverse osmosis membrane elements after regeneration treatment. The performance evaluation of the used reverse osmosis membrane element is conducted to investigate the performance of the recovered reverse osmosis membrane element in advance, and to determine the regenerative treatment conditions etc. according to the result. The performance evaluation of the reverse osmosis membrane element after the treatment is performed in order to grasp the regeneration state of the regenerated product and determine a new supply destination.

【0016】使用済みとは、逆浸透膜エレメントが長期
間使用され、逆浸透膜が各種の無機物あるいは有機物に
より汚染を受けたりモジュール内の原水の接液部あるい
は膜面に微生物が発生するなどして、差圧が上昇した
り、透過水量が減少したり、さらには膜の劣化によりそ
の脱塩率が多少低下するなどの性能低下を起こし、使用
が困難となったものであるか、あるいは、予め定めた所
定期間が経過したもの、あるいは、処理水累積量が規定
値に達し、数ヶ月後には性能低下が予想されるため、安
全を見越してモジュール内から取出されたものである。
また、第1逆浸透膜エレメント検体15aと第2逆浸透
膜エレメント検体15bは、使用履歴が同じものであっ
ても、異なったものであってもよい。
The term "used" means that the reverse osmosis membrane element is used for a long period of time, the reverse osmosis membrane is contaminated with various inorganic or organic substances, and microorganisms are generated in the wetted part of the raw water in the module or the membrane surface. The pressure drop, the permeated water amount is decreased, or the performance of the membrane deteriorates, such as a slight decrease in the desalination rate, which makes it difficult to use, or It has been taken out of the module in anticipation of safety, because a predetermined period of time has passed in advance, or the cumulative amount of treated water has reached a specified value, and performance is expected to deteriorate after several months.
Further, the first reverse osmosis membrane element sample 15a and the second reverse osmosis membrane element sample 15b may have the same usage history or different usage history.

【0017】第1逆浸透膜エレメント検体15a及び第
2逆浸透膜エレメント検体15bは、本例では使用済み
のスパイラル式逆浸透膜エレメントを回収したものであ
るため、逆浸透膜エレメントの構造は図4および図5に
示されるものと同じである。すなわち、図1の第1逆浸
透膜エレメント検体15aでは第1透過水集水管19a
に袋状の逆浸透膜11aをスパイラル状に巻きつけ、そ
の上部を外装体12で被覆し、スパイラル状に巻きつけ
た逆浸透膜11aがせり出すのを防止するために、数本
の放射状のリブ13を有するテレスコープ止め14を両
端に取り付けてある。これらの第1透過水集水管19
a、逆浸透膜11a、外装体12、テレスコープ止め1
4でひとつの逆浸透膜エレメントを形成する。第2逆浸
透膜エレメント検体15bは、第1逆浸透膜エレメント
15aと同様の構造であるのでその説明を省略する。な
お、ハウジング16に二つの逆浸透膜エレメントを装填
した際、第1及び第2の逆浸透膜エレメント15a、1
5bの外周とハンジング16の内周の間に隙間17が形
成されるが、この隙間17をブラインシール18で閉塞
してある。
Since the first reverse osmosis membrane element sample 15a and the second reverse osmosis membrane element sample 15b are recovered spiral type reverse osmosis membrane elements used in this example, the structure of the reverse osmosis membrane element is as shown in FIG. 4 and the same as shown in FIG. That is, in the first reverse osmosis membrane element sample 15a of FIG.
A bag-shaped reverse osmosis membrane 11a is spirally wound around the upper surface of the bag, and the upper portion of the bag is covered with an outer casing 12. In order to prevent the spirally wound reverse osmosis membrane 11a from protruding, several radial ribs are formed. Telescope stops 14 having 13 are attached at both ends. These first permeate water collection pipes 19
a, reverse osmosis membrane 11a, exterior body 12, telescope stop 1
4 forms one reverse osmosis membrane element. The second reverse osmosis membrane element sample 15b has the same structure as the first reverse osmosis membrane element 15a, and therefore its description is omitted. When the housing 16 is loaded with the two reverse osmosis membrane elements, the first and second reverse osmosis membrane elements 15a, 1
A gap 17 is formed between the outer periphery of 5b and the inner periphery of the housing 16, and this gap 17 is closed by a brine seal 18.

【0018】本例の逆浸透膜エレメントの性能評価装置
10の組付けは、ハウジング16の一端から順次、各部
材を挿入する方法で行われる。挿入方向はブラインシー
ル18が閉じる方向であり、本例では図1中、ハウジン
グ16の左端の開口から右方向へ各部材を挿入する。す
なわち、右側の端板20及びアダプター28を組付けた
ハウジング16に、予め封止手段30を取付けた第2逆
浸透膜エレメント検体15bを挿入し、アダプター28
へ圧入することでOリングによって固定する。次いで、
第1逆浸透膜エレメント15aを挿入し、集水管の端部
を封止手段30へ圧入することで固定する。次いで、端
板20に予め組付けたアダプター27に第1透過水集水
管の他端191aを圧入し、更に端板20をハウジング
16に固定することで組付けを完了する(図2参照)。
The performance evaluation apparatus 10 for a reverse osmosis membrane element of this example is assembled by sequentially inserting the members from one end of the housing 16. The insertion direction is the direction in which the brine seal 18 is closed. In this example, each member is inserted rightward from the opening at the left end of the housing 16 in FIG. That is, the second reverse osmosis membrane element sample 15b to which the sealing means 30 is attached in advance is inserted into the housing 16 in which the right end plate 20 and the adapter 28 are assembled, and the adapter 28
It is fixed by O-ring by pressing into. Then
The first reverse osmosis membrane element 15a is inserted, and the end portion of the water collection pipe is press-fitted into the sealing means 30 to be fixed. Next, the other end 191a of the first permeate water collection pipe is press-fitted into the adapter 27 that is previously assembled to the end plate 20, and the end plate 20 is fixed to the housing 16 to complete the assembly (see FIG. 2).

【0019】本発明の逆浸透エレメントの性能評価装置
10の各流入口及び流出口に接続される被検体液管、第
1透過水管、第2透過水管、非透過水管及び中間非透過
水を通す中間非透過水管の各配管には、流量計、圧力
計、導電率計及びTOC計の少なくともひとつを設置す
ることが、これを用いた計測系を自動化でき、性能評価
の迅速化が図れる点で好適である。なお、当該計器類が
全くなくとも、前記配管又は該配管から分岐した分岐管
から流出する液又は水をサンプリングして当該水質を評
価することもできる。
A specimen liquid pipe, a first permeate water pipe, a second permeate water pipe, a non-permeate water pipe, and an intermediate non-permeate water, which are connected to the respective inlets and outlets of the performance evaluation device 10 for a reverse osmosis element of the present invention, are passed through. At least one of a flow meter, a pressure gauge, a conductivity meter and a TOC meter can be installed in each pipe of the intermediate non-permeate water pipe, and the measurement system using this can be automated and the performance evaluation can be accelerated. It is suitable. Even if there is no such instrument, the water quality can be evaluated by sampling the liquid or water flowing out from the pipe or a branch pipe branched from the pipe.

【0020】本発明の逆浸透膜エレメントの性能評価装
置10を用いて行う、逆浸透膜エレメントの性能評価項
目としては、塩類排除性能や有機物排除性能等の排除性
能、所定の測定条件下における透過水量を測定する造水
性能及び被検体液供給圧力と非透過水(濃縮水)圧力と
の差圧であるエレメント差圧が挙げられる。
The performance evaluation items of the reverse osmosis membrane element performed by using the performance evaluation device 10 for the reverse osmosis membrane element of the present invention include exclusion performance such as salt exclusion performance and organic matter removal performance, and permeation under predetermined measurement conditions. The water-producing capacity for measuring the amount of water and the element pressure difference, which is the pressure difference between the test liquid supply pressure and the non-permeate water (concentrated water) pressure, are mentioned.

【0021】塩類排除性能は、いわゆる脱塩性能、脱塩
率及び塩類排除率であり、塩化ナトリウム溶液等の塩類
溶液を被検体液とし、該被検体液中の塩類の排除性能を
測定するものである。測定方法としては、例えば、被検
体液中の電気導電率と透過水の電気導電率の比を測定す
る方法、1−(透過水の電気導電率÷被検体液の電気導
電率)から塩類排除率を測定する方法、及び次式(1)
から塩類排除率を測定する方法が挙げられる。 塩類排除率=1−[(透過水の電気導電率)/{(被検体液の電気導電率+濃 縮水の電気導電率)÷2}] (1)
The salt exclusion performance is so-called desalination performance, desalination rate and salt exclusion rate, and a salt solution such as a sodium chloride solution is used as a test solution, and the performance of removing salts in the test solution is measured. Is. As a measuring method, for example, a method of measuring the ratio of the electric conductivity of the test liquid to the electric conductivity of the permeated water, and the exclusion of salts from 1- (the electric conductivity of the permeated water / the electric conductivity of the test liquid) Method for measuring the rate and the following formula (1)
The method of measuring the salt elimination rate from the above is mentioned. Salt rejection rate = 1-[(electrical conductivity of permeated water) / {(electrical conductivity of test liquid + electrical conductivity of concentrated water) / 2]] (1)

【0022】有機物排除性能は、回収された逆浸透膜エ
レメントが非常にきれいな場合、逆浸透膜膜を塩類溶液
で汚染させたくない場合等で用いられる評価項目であ
る。測定方法としては、上記塩類排除性能で記載された
測定方法において、塩類を有機物に代えて適用すればよ
い。被検体液として用いられる有機物溶液としては、イ
ソプロピルアルコール溶液、グルコース、ショ糖及びラ
フィノース等の糖類溶液が挙げられる。有機物濃度はT
OC計で測定される。
The organic substance exclusion performance is an evaluation item used when the recovered reverse osmosis membrane element is very clean and when it is not desired to contaminate the reverse osmosis membrane with a salt solution. As a measuring method, in the measuring method described in the salt exclusion performance, the salt may be replaced with an organic substance and applied. Examples of the organic solution used as the sample liquid include isopropyl alcohol solution, saccharide solutions such as glucose, sucrose, and raffinose. Organic matter concentration is T
It is measured with an OC meter.

【0023】造水性能は、所定の測定条件下における透
過水の流量を測定し、新品時の流量と比較する。逆浸透
膜の表面が汚染されると、水が透過するときの抵抗が増
大して透過水量が減少する。新品エレメントの当該数値
は、対象となる回収エレメントと同じ型式の新品エレメ
ントの性能値あるいはカタログ値等が使用できる。
The fresh water production performance is measured by measuring the flow rate of permeated water under predetermined measurement conditions and comparing it with the flow rate of a new product. When the surface of the reverse osmosis membrane is contaminated, the resistance when water permeates increases and the amount of permeated water decreases. As the numerical value of the new element, the performance value or the catalog value of the new element of the same model as the target recovery element can be used.

【0024】エレメント差圧は、被検体液通水時の流路
差圧であり、具体的には被検体液供給圧力と非透過水
(濃縮水)圧力との差圧である。被処理水や濃縮水が流
れる流路が閉塞するとエレメント差圧が上昇する。
The element differential pressure is the differential pressure of the flow path when water is passed through the test liquid, and is specifically the differential pressure between the test liquid supply pressure and the non-permeated water (concentrated water) pressure. If the flow path through which the water to be treated or the concentrated water flows is blocked, the element pressure difference increases.

【0025】本発明の性能評価装置10を用いて性能評
価を行う場合、被検体液の供給圧力及び塩類濃度等は検
体である逆浸透膜エレメントの圧力タイプにより決定さ
れる。すなわち、運転圧力5.5MPaの高圧膜型の逆
浸透膜エレメントでは、塩化ナトリウム濃度が3%の被
検体液が用いられ、運転圧力2〜4MPaの中圧膜型の
逆浸透膜エレメント、運転圧力1〜2MPaの低圧型逆
浸透膜エレメント及び運転圧力0.5〜1MPaの超低
圧膜型逆浸透膜エレメントでは、塩化ナトリウム濃度が
500〜2,000mg/Lの被検体液が用いられる。な
お、濃縮水流量は、8インチエレメントの場合80リッ
トル/分、4インチエレメントの場合20リットル/分
が採用される。
When performing the performance evaluation using the performance evaluation apparatus 10 of the present invention, the supply pressure of the analyte liquid, the salt concentration, etc. are determined by the pressure type of the reverse osmosis membrane element which is the analyte. That is, in the high-pressure membrane type reverse osmosis membrane element having an operating pressure of 5.5 MPa, the analyte liquid having a sodium chloride concentration of 3% is used, and the medium pressure reverse osmosis membrane element having an operating pressure of 2 to 4 MPa and the operating pressure In the low pressure type reverse osmosis membrane element of 1 to 2 MPa and the ultra low pressure type reverse osmosis membrane element of operating pressure 0.5 to 1 MPa, the analyte liquid having a sodium chloride concentration of 500 to 2,000 mg / L is used. The concentrated water flow rate is 80 liters / minute for the 8-inch element and 20 liters / minute for the 4-inch element.

【0026】次に、本例の逆浸透膜エレメントの性能評
価装置10を用いて、逆浸透膜エレメント検体の性能を
評価する方法の一例を図1及び図3を参照して説明す
る。図3の性能評価装置10は、図1の逆浸透膜エレメ
ントの性能評価装置10の各流入口及び流出口に被検体
液管51、第1透過水管22、第2透過水管25、非透
過水管53及び中間非透過水を通す中間非透過水管55
の各配管を接続したものであり、これらの配管には、流
量計41、圧力計42、導電率計43及びTOC計44
がそれぞれ設置されている。図3中、測定圧力を定め
る、ポンプ、ニードル弁及び切り換え弁等は省略されて
いる。
Next, an example of a method for evaluating the performance of a reverse osmosis membrane element specimen using the performance evaluation device 10 for a reverse osmosis membrane element of this example will be described with reference to FIGS. 1 and 3. The performance evaluation device 10 of FIG. 3 includes a sample liquid pipe 51, a first permeated water pipe 22, a second permeated water pipe 25, and a non-permeated water pipe at each inlet and outlet of the performance evaluation device 10 for the reverse osmosis membrane element of FIG. 53 and intermediate non-permeable water pipe 55 through which intermediate non-permeable water passes
, Each of which is connected to these pipes, and these pipes include a flow meter 41, a pressure gauge 42, a conductivity meter 43, and a TOC meter 44.
Are installed respectively. In FIG. 3, a pump, a needle valve, a switching valve, etc. that determine the measurement pressure are omitted.

【0027】図1及び図3において、先ずハウジング1
6に接続された被検体液管51からポンプ(不図示)を
用いて被検体液を圧入する。図中、矢線で示すように被
検体液はテレスコープ止め14の各放射状のリブ13の
間を通って第1逆浸透膜エレメント検体15a内に侵入
し、一部の被処理液は第1逆浸透膜エレメント検体15
aの膜間を通り抜けて次の第2逆浸透膜エレメント検体
15bに達し、他部の被検体液は第1逆浸透膜11aを
透過して透過水となり当該透過水は第1透過水集水管1
9aに集水され、第1透過水として第1透過水管22か
ら流出する。次いで、第2逆浸透膜エレメント検体15
bに達した被検体液は当該膜間を通り抜けて、逆浸透膜
を透過しなかった被検体液は非透過水(濃縮水)として
ハウジング16に接続された非透過水管53に流出す
る。また、第2逆浸透膜エレメント検体15bの第2逆
浸透膜11bを透過した透過水は第2透過水集水管19
bを介して第2透過水管25からハウジング16の外に
流出する。一方、第1逆浸透膜エレメント検体15aの
膜間を通り抜け、第2逆浸透膜エレメント検体15bに
到達していない中間非透過水は、第2逆浸透膜エレメン
ト検体15bの被検体液であり、中間非透過水管55へ
流出する。
In FIGS. 1 and 3, first, the housing 1
A sample liquid is press-fitted from a sample liquid pipe 51 connected to 6 using a pump (not shown). As shown by the arrow in the figure, the analyte liquid passes between the radial ribs 13 of the telescope stop 14 and enters the first reverse osmosis membrane element analyte 15a, and some of the analyte liquid is the first Reverse osmosis membrane element sample 15
The second reverse osmosis membrane element specimen 15b is passed through between the membranes of a, and the analyte liquid of the other portion permeates the first reverse osmosis membrane 11a and becomes permeated water, which is the first permeated water collecting pipe. 1
The water is collected in 9a and flows out from the first permeated water pipe 22 as the first permeated water. Then, the second reverse osmosis membrane element sample 15
The analyte liquid that has reached b passes through the membrane, and the analyte liquid that has not permeated the reverse osmosis membrane flows out to the impervious water pipe 53 connected to the housing 16 as impervious water (concentrated water). Further, the permeated water that has permeated the second reverse osmosis membrane 11b of the second reverse osmosis membrane element sample 15b is the second permeated water collecting pipe 19
It flows out of the housing 16 from the 2nd permeate water pipe 25 via b. On the other hand, the intermediate non-permeated water that has passed through the membranes of the first reverse osmosis membrane element sample 15a and has not reached the second reverse osmosis membrane element sample 15b is the analyte liquid of the second reverse osmosis membrane element sample 15b, It flows into the intermediate non-permeable water pipe 55.

【0028】図3によれば、第1逆浸透膜エレメント検
体15aの第1透過水集水管19aと第2逆浸透膜エレ
メント検体15bの第2透過水集水管19bとは、封止
手段30でこの両集水管を流れる透過水の流通が遮断さ
れているため、第1透過水管22から得られる第1透過
水は第2透過水集水管19bに集められた第2透過水の
影響を受けることがなく、第2透過水は第1透過水集水
管19aに集められた第1透過水の影響を受けることが
ない。このため、例えば第1逆浸透膜エレメント検体1
5aの塩類排除性能又は有機物排除性能は、被検体液の
電気導電率又はTOCと、第1透過水の電気導電率又は
TOCを測定することにより求められ、これと同時に、
第2逆浸透膜エレメント検体15bの塩類排除性能又は
有機物排除性能は、中間非透過水の電気導電率又はTO
Cと、第2透過水の電気導電率又はTOCを測定するこ
とにより求められる。また、例えば第1逆浸透膜エレメ
ント検体15aの造水性能は、所定の測定条件下、第1
透過水の流量を測定することにより求められ、これと同
時に第2逆浸透膜エレメント検体15bの造水性能は、
所定の測定条件下、第2透過水の流量を測定することに
より求められる。また、例えば第1逆浸透膜エレメント
検体15aのエレメント差圧は、被検体液の供給圧力と
中間非透過水の圧力を測定することにより求められ、こ
れと同時に第2逆浸透膜エレメント検体15bのエレメ
ント差圧は、中間非透過水の供給圧力と非透過水の圧力
を測定することにより求められる。また、例えば第1逆
浸透膜エレメント検体15aの塩類排除性能又は有機物
排除性能は、被検体液の電気導電率又はTOCと、第1
透過水の電気導電率又はTOCを測定することにより求
められ、これと同時に、第2逆浸透膜エレメント検体1
5bのエレメント差圧は、中間非透過水の供給圧力と非
透過水の圧力を測定することにより求められる。なお、
中間非透過水流出口33を設けない場合、例えば被検体
液の流量から第1透過水量を差し引いた値を中間非透過
水の流量とし、この計算値を測定の基準値として用いれ
ばよい。
According to FIG. 3, the first permeate water collection pipe 19a of the first reverse osmosis membrane element sample 15a and the second permeate water collection pipe 19b of the second reverse osmosis membrane element sample 15b are sealed by the sealing means 30. Since the permeated water flowing through both of the water collection pipes is blocked, the first permeated water obtained from the first permeated water pipe 22 is affected by the second permeated water collected in the second permeated water collection pipe 19b. Therefore, the second permeated water is not affected by the first permeated water collected in the first permeated water collecting pipe 19a. Therefore, for example, the first reverse osmosis membrane element sample 1
The salt exclusion performance or organic matter removal performance of 5a is obtained by measuring the electrical conductivity or TOC of the analyte liquid and the electrical conductivity or TOC of the first permeated water, and at the same time,
The salt exclusion performance or organic matter removal performance of the second reverse osmosis membrane element sample 15b is determined by the electrical conductivity or TO of the intermediate non-permeable water.
It is determined by measuring C and the electric conductivity or TOC of the second permeate. Further, for example, the water production performance of the first reverse osmosis membrane element sample 15a is the first under the predetermined measurement conditions.
It is determined by measuring the flow rate of permeated water, and at the same time, the water producing performance of the second reverse osmosis membrane element sample 15b is
It is determined by measuring the flow rate of the second permeate under a predetermined measurement condition. In addition, for example, the element differential pressure of the first reverse osmosis membrane element sample 15a is obtained by measuring the supply pressure of the sample liquid and the pressure of the intermediate non-permeate water, and at the same time, the element pressure difference of the second reverse osmosis membrane element sample 15b. The element differential pressure is obtained by measuring the supply pressure of the intermediate non-permeated water and the pressure of the non-permeated water. Further, for example, the salt exclusion performance or the organic matter removal performance of the first reverse osmosis membrane element sample 15a is determined by the electrical conductivity or TOC of the sample liquid and the first
It is determined by measuring the electric conductivity or TOC of the permeate, and at the same time, the second reverse osmosis membrane element sample 1
The element differential pressure of 5b is obtained by measuring the supply pressure of the intermediate non-permeate water and the pressure of the non-permeate water. In addition,
When the intermediate non-permeable water outlet 33 is not provided, for example, a value obtained by subtracting the first permeated water amount from the flow rate of the sample liquid is set as the intermediate non-permeated water flow rate, and this calculated value may be used as a reference value for measurement.

【0029】このような手法により性能が評価された逆
浸透膜エレメントは、回生処理前の性能評価の場合、例
えば前述したと同じ装置を用いてハウジング内に純水を
流入して充分に洗浄され、次いで汚染の程度に応じて決
定された条件で回生処理が行なわれる。また、回生処理
後の性能評価の場合、純水洗浄後は、その性能評価の値
に基づいて回生処理済みエレメントをどのような再使用
先に用いるか決定される。
The reverse osmosis membrane element whose performance has been evaluated by such a method is thoroughly washed by injecting pure water into the housing, for example, using the same device as described above in the case of performance evaluation before regenerative treatment. Then, regenerative treatment is performed under the conditions determined according to the degree of contamination. Further, in the case of the performance evaluation after the regenerative treatment, after cleaning with pure water, it is determined based on the value of the performance evaluation what kind of reuse destination the regenerated element is to be used.

【0030】本発明の逆浸透膜エレメントの性能評価装
置は、これを二つ以上用いて並列に配設し、一つの被検
体液で四つ以上の逆浸透膜エレメント検体を同時に評価
するようにしてもよい。また、当該性能評価装置は、前
述したように回生処理装置としても使用できるため、例
えば切り換え弁の操作により、ハウジングと被検体液管
の接続をハウジングと純水供給管又は薬液供給管との接
続にすれば、逆浸透膜エレメントの性能評価装置兼回生
装置とすることができる。
The performance evaluation device for a reverse osmosis membrane element of the present invention uses two or more of them and is arranged in parallel so that four or more reverse osmosis membrane element specimens can be evaluated simultaneously by one specimen liquid. May be. Further, since the performance evaluation device can be used as a regenerative treatment device as described above, for example, by operating the switching valve, the connection between the housing and the sample liquid pipe is connected to the housing and the pure water supply pipe or the chemical liquid supply pipe. By doing so, it can be used as a performance evaluating device and a regenerating device for the reverse osmosis membrane element.

【0031】このように、本発明の逆浸透膜エレメント
の性能評価装置10によれば、ひとつのハウジング内に
直列に2個の逆浸透膜エレメント検体を配置しているに
もかかわらず、互いの透過水集水管を共通とせず独立に
したため、一の被検体液で同時にその個々の性能を別個
に評価することができる。
As described above, according to the reverse osmosis membrane element performance evaluation apparatus 10 of the present invention, although two reverse osmosis membrane element specimens are arranged in series in one housing, they are mutually disposed. Since the permeated water collecting tubes are not common but independent, the individual performances of one analyte liquid can be evaluated separately at the same time.

【0032】[0032]

【発明の効果】本発明によれば、ひとつのハウジング内
に直列に配置された2個の逆浸透膜エレメント検体を、
一の被検体液で同時にその性能を個別に評価することが
できる。このため、逆浸透膜エレメントの性能評価に要
する時間を短縮することができる。また、例えば水処理
施設内で使用されている逆浸透膜モジュールから回収さ
れた使用済み逆浸透膜エレメントを効率よく評価できる
ため、使用済み逆浸透膜エレメントの回収後の工程であ
る回生処理及び回生処理品の供給等を迅速に行うことが
できる。
According to the present invention, two reverse osmosis membrane element specimens arranged in series in one housing are
The performance can be individually evaluated simultaneously with one analyte liquid. Therefore, the time required to evaluate the performance of the reverse osmosis membrane element can be shortened. Further, for example, since it is possible to efficiently evaluate the used reverse osmosis membrane element recovered from the reverse osmosis membrane module used in the water treatment facility, regenerative treatment and regeneration which are steps after the recovery of the used reverse osmosis membrane element. It is possible to quickly supply the processed products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における逆浸透膜モジュー
ルの性能評価装置の構造を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a structure of a performance evaluation device for a reverse osmosis membrane module according to an embodiment of the present invention.

【図2】ハウジングの端板と逆浸透膜エレメントの透過
水集水管との接合状態の一例を示す図である。
FIG. 2 is a diagram showing an example of a joined state of an end plate of a housing and a permeated water collecting pipe of a reverse osmosis membrane element.

【図3】図1の性能評価装置を用いた性能評価方法を説
明する図である。
3 is a diagram illustrating a performance evaluation method using the performance evaluation device of FIG.

【図4】従来の逆浸透膜モジュールの構造を示す一部を
欠いた縦断面図である。
FIG. 4 is a partially cutaway vertical sectional view showing the structure of a conventional reverse osmosis membrane module.

【図5】図3のA−A線における縦断面図である。5 is a vertical sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

10 逆浸透膜エレメントの性能評価装置 11a、11b、81 逆浸透膜 14、84 テレスコープ止め 15a 第1逆浸透膜エレメント検体 15b 第2逆浸透膜エレメント検体 16、86 ハウジング 18、88 ブラインシール 19a 第1透過水集水管 19b 第2透過水集水管 20 端板 21 被検体液流入口 22 第1透過水管 23 第1透過水流出口 24 非透過水流出口 25 第2透過水管 26 第2透過水流出口 30 封止手段 41 流量計 42 圧力計 43 導電率計 44 TOC計 51 被検体液管 53 非透過水管 55 中間非透過水管 10 Reverse osmosis membrane element performance evaluation device 11a, 11b, 81 Reverse osmosis membrane 14,84 Telescope stop 15a First reverse osmosis membrane element sample 15b Second reverse osmosis membrane element sample 16,86 housing 18,88 Brine seal 19a First permeated water collection pipe 19b Second permeate water collection pipe 20 End plate 21 Sample liquid inlet 22 1st permeate pipe 23 First permeate outlet 24 Non-permeate water outlet 25 Second Permeate Water Pipe 26 Second permeate outlet 30 sealing means 41 Flowmeter 42 pressure gauge 43 Conductivity meter 44 TOC meter 51 Subject Liquid Tube 53 Non-permeable water pipe 55 Intermediate non-permeable water pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一端側に被検体液管と接続する被検体液
流入口及び第1透過水管と接続する第1透過水流出口を
有し、他端側に非透過水管と接続する非透過水流出口及
び第2透過水管と接続する第2透過水流出口を有するハ
ウジングと、該ハウジングに装填され一端の開口が前記
第1透過水流出口に接続する第1透過水集水管を有する
第1逆浸透膜エレメント検体と、該ハウジングに装填さ
れかつ該第1逆浸透膜エレメント検体と直列に配置され
一端の開口が前記第2透過水流出口に接続する第2透過
水集水管を有する第2逆浸透膜エレメント検体とからな
り、該第1透過水集水管の他端の開口と該第2透過水集
水管の他端の開口は共に封止手段で封止され、一の被検
体液で二つの逆浸透膜エレメント検体を同時に性能評価
することを特徴とする逆浸透膜エレメントの性能評価装
置。
1. A non-permeate water flow connected to a sample liquid pipe and a first permeate water outlet connected to a first permeate water pipe at one end side, and a non-permeate water flow connected to a non-permeate water pipe at the other end side. A first reverse osmosis membrane having a housing having an outlet and a second permeate outlet connected to the second permeate pipe, and a first permeate water collecting pipe having an opening at one end connected to the first permeate outlet connected to the housing. A second reverse osmosis membrane element having an element sample and a second permeated water collecting pipe which is loaded in the housing and is arranged in series with the first reverse osmosis membrane element sample and has an opening at one end connected to the second permeated water outlet. A sample, and the opening at the other end of the first permeated water collection pipe and the opening at the other end of the second permeated water collection pipe are both sealed by a sealing means, and two reverse osmosis are performed with one analyte liquid. Characterized by simultaneous performance evaluation of membrane element specimens Reverse osmosis membrane element performance evaluation device.
【請求項2】 前記封止手段は、該第1透過水集水管と
該第2透過水集水管を該両集水管内を流れる透過水の互
いの流通を遮断する遮蔽部を備える結合手段で結合した
ものであるか、あるいは該第1透過水集水管及び該第2
透過水集水管の他端の両開口を各々エンドキャップで封
止したものであることを特徴とする請求項1記載の逆浸
透膜エレメントの性能評価装置。
2. The sealing means is a coupling means comprising a shield part for blocking the mutual permeation of the permeated water flowing through the first permeated water collecting pipe and the second permeated water collecting pipe from each other. The first permeate water collecting pipe and the second pipe
2. The performance evaluation device for a reverse osmosis membrane element according to claim 1, wherein both openings at the other end of the permeated water collecting pipe are each sealed with an end cap.
【請求項3】 前記ハウジングの中央部に、該第1逆浸
透膜エレメント検体の非透過水が流出する中間非透過水
流出口を設けたことを特徴とする請求項1又は2記載の
逆浸透膜エレメントの性能評価装置。
3. The reverse osmosis membrane according to claim 1, wherein an intermediate non-permeate water outlet port through which the non-permeate water of the first reverse osmosis membrane element sample flows out is provided at the center of the housing. Element performance evaluation device.
【請求項4】 前記第1逆浸透膜エレメント検体及び前
記第2逆浸透膜エレメント検体は、共に使用済み逆浸透
膜エレメントであることを特徴とする請求項1〜3のい
ずれか1項記載の逆浸透膜エレメントの性能評価装置。
4. The first reverse osmosis membrane element sample and the second reverse osmosis membrane element sample are both used reverse osmosis membrane elements, according to any one of claims 1 to 3. Reverse osmosis membrane element performance evaluation device.
JP2002103255A 2002-04-05 2002-04-05 Reverse osmosis membrane element performance evaluation system Expired - Fee Related JP3835686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002103255A JP3835686B2 (en) 2002-04-05 2002-04-05 Reverse osmosis membrane element performance evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002103255A JP3835686B2 (en) 2002-04-05 2002-04-05 Reverse osmosis membrane element performance evaluation system

Publications (3)

Publication Number Publication Date
JP2003299937A true JP2003299937A (en) 2003-10-21
JP2003299937A5 JP2003299937A5 (en) 2005-07-14
JP3835686B2 JP3835686B2 (en) 2006-10-18

Family

ID=29389194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002103255A Expired - Fee Related JP3835686B2 (en) 2002-04-05 2002-04-05 Reverse osmosis membrane element performance evaluation system

Country Status (1)

Country Link
JP (1) JP3835686B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105725A (en) * 2005-10-11 2007-04-26 Millipore Corp Multi-layered filtration device allowing integrity test
WO2009148031A1 (en) * 2008-06-06 2009-12-10 日東電工株式会社 Membrane filtration equipment management system and membrane filtration equipment for use therein, and membrane filtration equipment management method
JP2009291743A (en) * 2008-06-06 2009-12-17 Nitto Denko Corp Management system for membrane filtration apparatus, membrane filtration apparatus used in the system and method of managing membrane filtration apparatus
JP2009291745A (en) * 2008-06-06 2009-12-17 Nitto Denko Corp Management system for membrane filtration apparatus, membrane filtration apparatus used in the system and method of managing membrane filtration apparatus
JP2010167420A (en) * 2010-05-10 2010-08-05 Toray Ind Inc Fluid separation element and fluid separation apparatus
CN102507359A (en) * 2011-09-30 2012-06-20 河南电力试验研究院 Dynamic evaluation method of scale inhibition performance of reverse osmosis scale inhibitor
CN104316653A (en) * 2014-10-24 2015-01-28 安徽新力电业科技咨询有限责任公司 Dynamic evaluation device and method for scale inhibition performances of reverse osmosis scale inhibitors
WO2015135545A1 (en) * 2014-03-11 2015-09-17 Gea Process Engineering A/S Apparatus and method for membrane filtration
US10821403B2 (en) 2015-10-29 2020-11-03 Nitto Denko Corporation Spiral wound separation membrane module
CN115025619A (en) * 2022-05-11 2022-09-09 刘嘉欣 Reverse osmosis membrane group

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105725A (en) * 2005-10-11 2007-04-26 Millipore Corp Multi-layered filtration device allowing integrity test
WO2009148031A1 (en) * 2008-06-06 2009-12-10 日東電工株式会社 Membrane filtration equipment management system and membrane filtration equipment for use therein, and membrane filtration equipment management method
JP2009291743A (en) * 2008-06-06 2009-12-17 Nitto Denko Corp Management system for membrane filtration apparatus, membrane filtration apparatus used in the system and method of managing membrane filtration apparatus
JP2009291745A (en) * 2008-06-06 2009-12-17 Nitto Denko Corp Management system for membrane filtration apparatus, membrane filtration apparatus used in the system and method of managing membrane filtration apparatus
US8568596B2 (en) 2008-06-06 2013-10-29 Nitto Denko Corporation Membrane filtering device managing system and membrane filtering device for use therein, and membrane filtering device managing method
JP2010167420A (en) * 2010-05-10 2010-08-05 Toray Ind Inc Fluid separation element and fluid separation apparatus
CN102507359A (en) * 2011-09-30 2012-06-20 河南电力试验研究院 Dynamic evaluation method of scale inhibition performance of reverse osmosis scale inhibitor
WO2015135545A1 (en) * 2014-03-11 2015-09-17 Gea Process Engineering A/S Apparatus and method for membrane filtration
CN104316653A (en) * 2014-10-24 2015-01-28 安徽新力电业科技咨询有限责任公司 Dynamic evaluation device and method for scale inhibition performances of reverse osmosis scale inhibitors
US10821403B2 (en) 2015-10-29 2020-11-03 Nitto Denko Corporation Spiral wound separation membrane module
CN115025619A (en) * 2022-05-11 2022-09-09 刘嘉欣 Reverse osmosis membrane group

Also Published As

Publication number Publication date
JP3835686B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US5518624A (en) Ultra pure water filtration
US11779883B2 (en) Water purification systems and methods having pressurized draw stream
US5645727A (en) On-line ozonation in ultra pure water membrane filtration
JP5798908B2 (en) Reverse osmosis treatment device and cleaning method for reverse osmosis treatment device
JP5287713B2 (en) Cleaning and sterilization method for ultrapure water production system
US20080168828A1 (en) Method For Measuring Number of Fine Particles in Ultrapure Water, Filtration Device For Measuring Number of Fine Particles, Method For Manufacturing Thereof, and Hollow Fiber Membrane Unit For Use in the Device
KR102276965B1 (en) Evaluation method of cleanliness of hollow fiber membrane device, cleaning method and cleaning device of hollow fiber membrane device
CN105283422A (en) Ultrapure water production system, ultrapure water production supply system, and method for cleaning same
JP3835686B2 (en) Reverse osmosis membrane element performance evaluation system
JP2007260497A (en) Film damage detector and method of detecting damage of film
JP4591703B2 (en) Liquid processing method and apparatus
JPH03165818A (en) Hollow fiber membrane separating module and hollow fiber membrane separating apparatus
JP2002052322A (en) Washing method
CN103272481A (en) Method for quickly judging reverse osmosis membrane leakage points in pressure membranous tube
JP4783773B2 (en) Mobile cleaning device for membrane filtration device
KR102218025B1 (en) Method and apparatus for inspection of polymeric membrane aging in water treatment process
US5905197A (en) Membrane sampling device
JP2000317413A (en) Method for washing ultrapure water production system
CN206232439U (en) Integrated reverse osmosis water treatment system
JPH0760073A (en) Membrane separation apparatus
WO2023127810A1 (en) Diagnosis method for separation membrane module and deterioration diagnosis device for separation membrane module
JP2525807B2 (en) Method for measuring contamination index of water filtered by membrane filter
JP5251522B2 (en) Membrane separator
CN106219682A (en) Integrated reverse osmosis water treatment system
JPS59183807A (en) Membrane filtration

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees