JP2010167420A - Fluid separation element and fluid separation apparatus - Google Patents

Fluid separation element and fluid separation apparatus Download PDF

Info

Publication number
JP2010167420A
JP2010167420A JP2010107972A JP2010107972A JP2010167420A JP 2010167420 A JP2010167420 A JP 2010167420A JP 2010107972 A JP2010107972 A JP 2010107972A JP 2010107972 A JP2010107972 A JP 2010107972A JP 2010167420 A JP2010167420 A JP 2010167420A
Authority
JP
Japan
Prior art keywords
fluid separation
separation element
prevention plate
outer peripheral
telescope prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010107972A
Other languages
Japanese (ja)
Other versions
JP2010167420A5 (en
JP5287789B2 (en
Inventor
Akira Katayama
朗 片山
Tomomasa Katayama
智正 片山
Takashi Seki
隆志 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010107972A priority Critical patent/JP5287789B2/en
Publication of JP2010167420A publication Critical patent/JP2010167420A/en
Publication of JP2010167420A5 publication Critical patent/JP2010167420A5/ja
Application granted granted Critical
Publication of JP5287789B2 publication Critical patent/JP5287789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the damage of a fluid separation element when the plurality of fluid separation elements are loaded in series inside a pressure container and operated. <P>SOLUTION: The fluid separation element has a structure wherein a telescope-preventing plate 9 is disposed at the end part of a spiral wound body composed by spirally winding a separation membrane, a raw water passage material and a permeated water passage material. Multiple fluid separation elements are loaded in series inside the pressure container and used. The fluid separation element is characterized in that a recessed part for brine seal mounting is provided on the outer peripheral surface of the outer peripheral ring part of the telescope-preventing plate, a hole 13 is provided on the outer peripheral ring part of the telescope-preventing plate on the downstream side as a path for making the raw water side passage of the fluid separation element communicate with a gap 12 between the fluid separation element and the pressure container, and the telescope-preventing plate on the upstream side is not provided with a hole on the downstream side of the recessed part for brine seal mounting. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、逆浸透装置やナノ濾過装置、さらには限外濾過装置、精密濾過装置等に好適に用いられる流体分離素子および流体分離装置に関するものである。 The present invention relates to a fluid separation element and a fluid separation device that are preferably used in reverse osmosis devices, nanofiltration devices, ultrafiltration devices, microfiltration devices, and the like.

近年、海水淡水化や半導体分野における超純水用途、さらには、一般かん水用途や有機物分離、排水再利用などを始めとする膜の透過液または濃縮液を利用するさまざまな流体分離分野において、分離膜を用いた流体分離素子の使用が急速に増加してきている。   In recent years, separation in various fluid separation fields using membrane permeates or concentrated liquids such as seawater desalination and ultrapure water applications in the semiconductor field, as well as general brine applications, organic matter separation, wastewater reuse, etc. The use of membrane-based fluid separation elements is increasing rapidly.

流体分離素子の形態として、中空糸膜を用いたものや、平膜のプレートフレーム型、スパイラル型があげられる。この中で、スパイラル型の流体分離素子は、分離膜が透過流路材と原水流路材と共に集水管の周りにスパイラル状に巻き付けられた構造をとる。スパイラル型流体分離素子は、図1に示すように、第1の分離膜3および第2の分離膜4の3辺を互いに接着して形成した封筒状膜の間に透過流路材5を挟み込み、これと原水流路材6とを1つのユニットとして、単数もしくは複数ユニット用意し、集水管1の周囲にスパイラル状に巻き付けてスパイラル巻体17とする。封筒状膜は集水管1側で開口している。原水2は、流体分離素子の一方の端面から供給され、第1の分離膜3および第2の分離膜4で処理される。分離膜3、4を透過した透過8は集水管1から取り出され、分離膜3、4を透過しなかった原水2は、流体分離素子の他方の端面から濃縮7として排出される。 Examples of the form of the fluid separation element include those using hollow fiber membranes, flat membrane plate frame types, and spiral types. Among these, a spiral type fluid separation element takes a structure wound in a spiral shape around the water collecting pipe separation membrane with the permeate channel material and the raw water flow path member. The spiral type fluid separation element, as shown in FIG. 1, the permeate flow path member between the first isolation layer 3 and the second envelope-shaped film adhesive to form each other three sides of the separation membrane 4 5 pinching, the raw water flow path member 6 as a single unit, and single or multiple units prepared, shall be the spiral Makitai 17 wound spirally around the water collecting pipe 1. The envelope-like membrane is opened on the water collecting pipe 1 side. The raw water 2 is supplied from one end face of the fluid separation element, and is processed by the first separation membrane 3 and the second separation membrane 4. The permeated water 8 that has passed through the separation membranes 3, 4 is taken out from the water collecting pipe 1, and the raw water 2 that has not passed through the separation membranes 3, 4 is discharged as concentrated water 7 from the other end face of the fluid separation element.

通常スパイラル型の流体分離素子は、スパイラル巻体17の外側をガラス繊維とエポキシ樹脂のFRPシェルにより固められており(外側シェル11)、長手方向の両端にテレスコープ防止板が取り付けられた形態をとる。 In the normal spiral type fluid separation element , the outside of the spiral wound body 17 is hardened with an FRP shell of glass fiber and epoxy resin (outer shell 11) , and a telescope prevention plate 9 is attached to both ends in the longitudinal direction. Take.

流体分離素子の上流側のテレスコープ防止板にはブラインシールと呼ばれるシール部材があり、原水が流体分離素子の外側FRPシェルと圧力容器との間の隙間へショートパスするのを防いでいる。ブラインシールはOリング等でもよいが、圧力容器への装填性からUシール等が用いられることが多い。Uシールは、上流側から流体が流れてきた際にはU部分が開いてテレスコープ防止板と圧力容器を液密にシールする。下流側からの流れに対してはその構造上液密にシールすることはできない。 On the upstream side of the telescope prevention plate of a fluid separation element has a seal member called a brine seal, the raw water is prevented from short path into the gap between the outer FRP shell and the pressure vessel of the fluid separation element. The brine seal may be an O-ring or the like, but a U seal or the like is often used because of its ability to be loaded into a pressure vessel. When the fluid flows from the upstream side, the U seal opens to seal the telescope prevention plate and the pressure vessel in a fluid-tight manner. The flow from the downstream side cannot be liquid-tightly sealed due to its structure.

流体分離素子が使用される時には、圧力容器の中に1〜6本程度直列に装填して使用され、該圧力容器を多数本ラックの上に設置して大容量の流体の処理に対応する。 When the fluid separation element is used, about 1 to 6 pressure vessels are used in series in a pressure vessel, and a large number of the pressure vessels are installed on a rack to handle a large volume of fluid .

圧力容器内に複数の流体分離素子を直列に装填した場合、通常は、連続する二つの流体分離素子のうち、上流の流体分離素子下流側のテレスコープ防止板と、下流側の流体分離素子上流側のテレスコープ防止板との間の間隙から、上流側の流体分離素子の外側と圧力容器の間の隙間空間に流体が流れ込むことができるため、流体分離素子の外側のFRPシェル内外は同じ圧力がかかることとなる。 When loaded with a plurality of fluid separation elements in series in a pressure vessel, usually of the two fluid separation elements continuous and downstream of the telescope prevention plate of a fluid separation element on the upstream side, a downstream side fluid separation from the gap between the upstream side of the telescope prevention plate of the device for which fluid can flow into the clearance space between the outer and the pressure vessel of the fluid separation element on the upstream side, FRP outer fluid separation element The same pressure is applied to the inside and outside of the shell .

しかしながら、実運転の状況では、装置の構造、運転状況、使用状況等なんらかの原因で、圧力容器に装填した複数本の流体分離素子のテレスコープ防止板の端部表面同士が密着した状態になる場合がまれに発生する。また、ブラインシールがなんらかの状況で、下流側からの流体を液密にシールするような状態になることがある。 However, in the context of actual operation, the structure of the apparatus, operating conditions, for some reason usage, etc., if a state in which the end surfaces on each of the telescoping prevention plate of the plurality of fluid separation element was charged to the pressure vessel are in close contact Rarely occurs. Further, in some circumstances brine seal, there is Rukoto such a state as to seal the fluid from the downstream side in a liquid-tight manner.

このような状態になった時、流体分離素子の外側FRPシェルの内外圧力差が生じる。すなわち、FRPシェルの外側流体分離素子装填時の圧力(大気圧あるが、FRPシェルの内側は、供給原水圧力(高圧)となる。供給原水の圧力は、海水化を行う場合は6〜9MPaにも達する。そのため、この圧力差状態が発生すると流体分離素子の外側FRPシェル部分は圧力差に耐え切れずに破裂を起こすことが多い。破裂すると、内包する膜に損傷が発生して著しい性能低下を起こしてしまうケースがある。 In such a state, a pressure difference is generated inside and outside the outer FRP shell of the fluid separation element. That is, on the outside of the FRP shell is a pressure during fluid separation element loading (atmospheric pressure), the inside of the FRP shell that Do and pressure of the feed raw water (high pressure). The pressure of the feed raw water, when performing seawater desalination also reach 6~9MPa. Therefore, the outer FRP shell portion of the fluid separation element when the pressure difference condition occurs frequently Succoth Oko rupture can not withstand the pressure differential. When ruptured, there are cases where the encapsulating film is damaged and the performance is significantly reduced.

従来技術として、流体分離素子の外側FRPシェルの内外を連通させる開口部を設けた流体分離素子がある(例えば特許文献1、2参照)。この場合の開口部は、ブラインシール背後(直近下流側)のシェル部分開口させた通路であり、シェルと圧力容器との間隙間内における原水の滞留の防止を目的とする。この場合原水は、開口部からの通路をショートパスし易いので、流体分離素子の膜面部分を有効に流すことができず、性能が悪化する問題があり、特に滞留を嫌う食品用途等に限定されて適用される。 As a prior art, there is a fluid separation element provided with an opening for communicating the inside and outside of the outer FRP shell of the fluid separation element (see , for example, Patent Documents 1 and 2 ) . Opening of the case is a passage is opened to the shell portion or the like behind the brine seal (nearest downstream), it shall be the purpose of preventing retention of the raw water in the gap between the shell and the pressure vessel. In this case, the raw water, since the passage from the opening and short path easily, can not be passed to enable the film surface portion of the fluid separation element, there is a problem that the performance is deteriorated, foods, etc., particularly hate residence It is limited that apply.

その他、従来のテレスコープ防止板としては、接続時に簡単にシールできるもの(例えば、非特許文献1参照)や、テレスコープ防止板に無数の孔をあけ原水の偏流を防ぐタイプ(例えば、非特許文献2参照)が用いられているが、いずれも不測の場合には、テレスコープ防止板の面同士密着を生じて破裂を起こす危険性がある。 In addition, as a conventional telescope prevention plate , it can be easily sealed at the time of connection (for example, refer to Non-Patent Document 1), or a type that prevents inflow of raw water by opening countless holes in the telescope prevention plate (for example, non-patent) Document 2 reference) have been used, both in the case of unforeseen are at risk of causing rupture occurs the adhesion surface between the telescoping prevention plate.

実開平5-93530号公報Japanese Utility Model Publication No. 5-93530 特開平4−330921号公報Japanese Patent Laid-Open No. 4-330921

ジョンソン ジェイ(Johnson J)アイレック インターロッキング エンドキャプス メイクシーウォーター デズリネイション プロセッシング イージアー レス エクスペンシブ (iLEK interlocking Endcaps Make Seawater Desalination Processing Easier Less Expensive) [online]、 ダウケミカルカンパニー(Dow Chemical Company)、2004年8月31日、ダウケミカルカンパニーホームページ[平成17年1月20日検索]、インターネット<URLhttp://www.dow.com/webapps/lit/litorder.asp?filepath=liquidseps/pdfs/noreg/609-00466.pdf>Johnson J Irek interlocking Endcaps Make Seawater Desalination Processing Easy Seawater Desalination Processing Easier Less Expensive [online], Dow Chemical Company, August 2004 31st, Dow Chemical Company website [searched on January 20, 2005], Internet <URL http://www.dow.com/webapps/lit/litorder.asp?filepath=liquidseps/pdfs/noreg/609-00466. pdf> ハイドロノーティクス(HYDRANATUICS)、フラッシュカットエレメントデザイン(FLUSH CUT ELEMENT DESIGN)、テクニカルサービスブレテイン(Technical Service Bulletin)、[online]2002年9月、ハイドロノーティクスホームページ[平成17年1月20日検索]、インターネット<URL:http://www.membranes.com/docs/tsb/tsb103.pdf>Hydronautics (HYDRANATUICS), FLUSH CUT ELEMENT DESIGN, Technical Service Bulletin, [online] September 2002, Hydronautics homepage [searched January 20, 2005] Internet <URL: http://www.membranes.com/docs/tsb/tsb103.pdf>

本発明は、流体分離素子が運転中に破裂するというトラブルを防ぐことを目的とする。具体的には、圧力容器内に流体分離素子を装填して連結したときに、テレスコープ防止の面同士が密着し状態となった場合でも、圧力容器と流体分離素子との間の圧力が原水圧力と大幅に異なる状況とならずに、流体分離素子の破損を防ぐことを目的とする。 An object of this invention is to prevent the trouble that the fluid separation element bursts during operation. Specifically, when connected by loading a fluid separation element in a pressure vessel, even if the surface between the telescope prevention plate has Tsu Do a state of close contact, between the pressure vessel and the fluid separation element the Razz such as to significantly different situations and pressure raw water pressure, and an object thereof is to prevent damage to the fluid separation element.

上記目的を達成するため、本発明の流体分離素子は以下の構成からなる。すなわち、
(1)分離膜原水流路材及び透過水流路材スパイラル状に巻回されてなるスパイラル巻体の外周に外側シェルが設けられると共にスパイラル巻体及び外側シェルの端部にテレスコープ防止板が配設された構造を有し、圧力容器直列に複数装填して使用される流体分離素子において、テレスコープ防止板の外周環部の外周面にブラインシール装着用凹部があり、流体分離素子の原水流路と流体分離素子と圧力容器の間の隙間とを連通させる通路として、下流側のテレスコープ防止板の外周環部に孔が設けられ、かつ、上流側のテレスコープ防止板のブラインシール装着用凹部より下流側及び上流側テレスコープの直近下流の外側シェルには孔が設けられていないことを特徴とする流体分離素子。
(2)下流側のテレスコープ防止板の外周面にブラインシールが装着されていない上記(1)記載の流体分離素子。
In order to achieve the above object, the fluid separation element of the present invention has the following configuration. That is,
(1) separation membrane, the raw water flow path member and permeate channel material telescoping preventing plate to the ends of the spiral wound body and the outer shell with the outer shell is provided on the outer periphery of the spiral wound body formed by winding spirally There have a arranged structure, the fluid separation device that is used by multiple loaded in series in a pressure vessel, there is the brine seal attachment recess on the outer peripheral surface of the outer peripheral ring portion of the telescope prevention plate, fluid separation a raw water flow path in the device, as a passage that Ru is communicating the gap between the fluid separation element and the pressure vessel, holes are provided in the outer peripheral ring portion on the downstream side of the telescope prevention plate and the upstream tele A fluid separation element characterized in that no hole is provided in an outer shell on the downstream side of the scope seal plate and on the downstream side of the upstream telescope .
(2) The fluid separation element according to (1) , wherein a brine seal is not attached to the outer peripheral surface of the downstream telescope prevention plate .

(3)下流側のテレスコープ防止板の外周環部に設けられた孔の総面積が2〜100mm である上記(1)又は(2)に記載の流体分離素子。
(4)テレスコープ防止板の外周環部の孔が丸孔である上記(1)〜(3)のいずれかに記載の流体分離素子。
(5)流体分離素子内の原水流路と、流体分離素子と圧力容器との間の隙間とを連通させる通路として、上流側のテレスコープ防止板の外周環部のブラインシール装着用凹部より長手方向端部側に孔が設けられている上記(1)〜(4)のいずれかに記載の流体分離素子。
(3) The fluid separation element according to the above (1) or (2), wherein the total area of the holes provided in the outer peripheral ring portion of the downstream telescope prevention plate is 2 to 100 mm 2 .
(4) The fluid separation element according to any one of (1) to (3), wherein the hole in the outer peripheral ring portion of the telescope prevention plate is a round hole.
(5) Longer than the brine seal mounting recess on the outer peripheral ring of the upstream telescope prevention plate as a passage for communicating the raw water flow path in the fluid separation element and the gap between the fluid separation element and the pressure vessel The fluid separation element according to any one of the above (1) to (4), wherein a hole is provided on the direction end side.

(6)上記(1)〜(5)のいずれかに記載の流体分離素子の複数が圧力容器内に直列に複数装填され、隣接する流体分離素子のテレスコープ防止板どうしが接する形式で接続されており、かつ、最下流側の流体分離素子の下流にスラストリングが装填されていることを特徴とする流体分離装置。
により構成される。
(6) A plurality of fluid separation elements according to any one of the above (1) to (5) are loaded in series in a pressure vessel, and are connected in a form in which telescope prevention plates of adjacent fluid separation elements are in contact with each other. And a thrust ring is loaded downstream of the most downstream fluid separation element.
Consists of.

本発明の流体分離素子によって得られる効果は、テレスコープ防止板の面同士が密着状態となった場合でも、液密状態の発生を防ぐことができ、流体分離素子の破裂を防ぐことができることである。 Effect obtained by the fluid separation device of the present invention, even if the surface between the telescope prevention plate becomes close contact, the occurrence of liquid-tight state can proof Gukoto, it can prevent the rupture of the fluid separation element It is.

本発明が適用されるスパイラル型流体分離素子の一実施態様を示す概略一部展開図である。 It is a general | schematic partially expanded view which shows one embodiment of the spiral type fluid separation element to which this invention is applied . 従来のテレスコープ防止板を使用した流体分離素子を圧力容器内に直列に装填した場合の概略を示す断面図である。It is sectional drawing which shows the outline at the time of loading the fluid separation element using the conventional telescope prevention board in a pressure vessel in series. 従来のテレスコープ防止板を使用した流体分離素子を圧力容器内に直列に装填し、最下流側にスラストリングを装填した場合の概略を示す断面図である。It is sectional drawing which shows the outline at the time of loading the fluid separation element using the conventional telescope prevention plate in series in a pressure vessel, and loading the thrust ring in the most downstream side . 本発明の一実施態様の流体分離素子(テレスコープ防止板に孔13を開けたもの)を圧力容器内に装填した場合の概略を示す断面図である。It is sectional drawing which shows the outline at the time of loading the fluid separation element ( what formed the hole 13 in the telescope prevention plate ) of one embodiment of this invention in the pressure vessel. 下流側テレスコープ防止板から20mmの位置の所の外側シェルにφ2mmの孔をあけ上下流両方にブラインシールを装着た流体分離素子を圧力容器内に装填した場合(参考例)の概略を示す断面図である。 Outline of the case where a fluid separation element with a φ2 mm hole in the outer shell at a position 20 mm from the downstream telescope prevention plate and a brine seal attached to both the upstream and downstream is loaded in the pressure vessel (reference example). It is sectional drawing shown . 比較例用いた流体分離素子上下流両側のテレスコープ防止板にブラインシールを装着したもの)を圧力容器内に装填した場合の概略を示す断面図である。It is sectional drawing which shows the outline at the time of loading the fluid separation element ( what attached the brine seal to the telescope prevention board of both upstream and downstream sides) used in the comparative example 1 in the pressure vessel .

以下、本発明の実施の形態について、図面を参照しながら説明する。本発明の適用される流体分離素子は、スパイラル型流体分離素子であって、外側シェルを持ち、圧力容器に装填され、圧力容器と流体分離素子との間の隙間内を原水が流れることを防ぐためのブラインシール様の部材を使用するものであ
通常の運転状態では、図2のように、圧力容器内に直列に装填された流体分離素子同士の間は特にシール手段が備られておらないので、液密状態とはならない。この時には、流体分離素子外側シェルと圧力容器との間の隙間は原水圧力と同じとなるので、外側シェルに破裂方向の力がかかることはない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fluid separation element of the present invention is applied, I Oh in scan Pairaru type Fluid separation element has an outer shell, it is loaded in a pressure vessel, raw water to the gap between the pressure vessel and the fluid separation element Ru der those using brine seal-like member for preventing the flow.
In normal operation, as shown in FIG. 2, since no he especially sealing means are e Bei between fluid separation element between loaded in series in a pressure vessel, not a liquid-tight state. At this time, the gap between the outer shell and the pressure vessel of the fluid separation element the same city as Runode raw water pressure, never force the rupture direction to the outer shell is applied.

しかしながら、運転状況、原水中の物質その他なんらかの理由により、上流側流体分離素子の下流側テレスコープ防止板と下流側流体分離素子の上流側テレスコープ防止板とが密着して液密になるケースがまれに発生する。この場合でも、最下流側の流体分離素子の下流側から流体分離素子の外側シェルと圧力容器との間の隙間を伝って原水の圧力が最上流の流体分離素子の外側シェルと圧力容器との間の隙間内までかかってくるはずである However, there are cases where the downstream telescope prevention plate of the upstream fluid separation element and the upstream telescope prevention plate of the downstream fluid separation element are in close contact with each other and become liquid-tight due to operating conditions, substances in the raw water, etc. Rarely occurs. In this case, from the downstream side of the fluid separation element on the most downstream side, along the gap between the outer shell and the pressure vessel of the fluid separation element, the outer shell and the pressure of the fluid separation element of the pressure of the raw water is the most upstream side is a gap in Madeka or Tteku Ruhazu between the container.

しかし、例えば図3のように最下流側に配設したスラストリング等により、最下流側の流体分離素子の下流側と圧力容器の下流側の蓋との間がなんらかの理由により液密となった場合や、ブラインシールが流体分離素子と圧力容器との間にはさまって下流から上流への原水の流通妨げられる場合、ブラインシールとしてOリング等のように上下流向きに関係なく液密にシールする方式のシール材が用いられる場合においては、下流側から上流側への原水圧力の伝搬が生じないので、圧力容器と流体分離素子との間の隙間と流体分離素子の内側の間に圧力差が生じる。ここで、外側シェルとしては、通常ガラス繊維を樹脂で固めFRP(Fiber Reinforced Plastics)が用いられることが多いが、流体分離素子内側と外側を略液密にできるものであれば、テープ巻きやフィルム巻き等であってもよい However , for example, the thrust ring disposed on the most downstream side as shown in FIG. 3 makes the gap between the downstream side of the most downstream fluid separation element and the lid on the downstream side of the pressure vessel for some reason. or when, or if the flow of raw water to the upstream side is Ru prevented from the downstream side I sama between the brine seals fluid separation element and the pressure vessel, the upstream and downstream directions as such as an O-ring as a brine seal In the case where a sealing material that seals liquid-tightly is used regardless of whether or not the raw water pressure propagates from the downstream side to the upstream side, the gap between the pressure vessel and the fluid separation element , and the fluid separation element A pressure difference is generated between the inside and the inside. Here, as the outer shell , FRP (Fiber Reinforced Plastics) is usually used in which glass fibers are hardened with a resin. However, if the inner and outer sides of the fluid separation element can be substantially liquid-tight, tape winding or Film winding or the like may be used .

流体分離素子の外側シェルの内外に圧力差が生じた時には、その圧力差は原水圧力と同水準となるため、特に海水淡水化では約6MPaの圧力を受けることとなり、FRP外側シェルでも破壊され易い条件となる。
本発明の流体分離素子では、そのような圧力差が生じないように、テレスコープ防止板に圧力容器と流体分離素子との間の隙間に連通する孔13を設ける。その孔の形態は図4に例示する。
When the pressure difference inside and outside the outer shell of the fluid separation element occurs, that the pressure difference is the same level and the raw water pressure, in particular it will be subjected to a pressure differential of about 6MPa seawater desalination, in the FRP of the outer shell It becomes a condition that is easily destroyed.
In fluid separation element of the present invention, so as not to cause such a pressure difference, the Te Resukopu preventing plate, Ru provided a hole 13 communicating with the gap between the pressure vessel and the fluid separation element. The form of the hole is illustrated in FIG.

この際、破裂防止のみを目的とするのであれば、ブラインシールと孔13の位置関係を気にすることはないが、ブラインシールの本来の目的(流体分離素子と圧力容器との間の隙間に原水がショートパスして流体分離素子の性能が低下することを防ぐという目的)を阻害しないために、少なくとも流体分離素子の上流側テレスコープ防止板では、ブラインシール直近下流に連通通路(孔)を開けないようにするAt this time, if only to prevent rupture than the intended, but never to worry about the positional relationship between the brine seals the hole 13, the gap between the original purpose (fluid separation element and the pressure vessel of the probe line seal for raw water performance of the fluid separation element with a short path does not inhibit the purpose) of preventing a decrease within, at the upstream side of the telescope prevention plate of at least the fluid separation element, the communicating passage to the nearest downstream of brine seals Do not open holes .

連通通路としての孔13の個数は、1〜24個程度で好ましくは4〜12程度がよい孔13の断面総面積は、圧力を均等にするために流体を導通させることを目的としているため、比較的小さな断面総面積でもよく、2mm以上であればほぼ目的を達成することができる。また、その断面総面積が必要以上に大きくなり過ぎるテレスコープ防止板の大きさが過大となり、膜面積の減少を余儀なくされるため、その断面総面積の上限は実質的には100mm程度までである。実際には、2〜100mm程度が機能および膜面積への影響等を考慮すると好ましい。 The number of holes 13 as communicating passages, in 1 to 24 or so, preferably from about 4 to 12. Sectional total area of the holes 13, since the purpose Rukoto to conduct fluid to equalize the pressure, may be a relatively small cross-sectional total area, it is possible to achieve near object if 2 mm 2 or more . Further, the cross-sectional total area becomes excessively large size of the too large than necessary telescoping prevention plate, to be forced to decrease in membrane area, the upper limit of the cross-sectional total area of substantially the 100 mm Up to about 2 . In practice, good Masui and considering the influence of the function and membrane area of about 2 to 100 mm 2.

孔の断面形状については、丸、三角、四角、半円等が挙げられ、テレスコープ防止板に連通通路としての流路を確保できるのであればよい。製造上の観点からは、丸断面の孔が容易に実施しやすい形態である。 The cross-sectional shape of the hole, round, triangular, square, semicircle or the like can be mentioned, et al is, as long as it can ensure the flow path of the communication passage to the telescoping preventing plate. From the viewpoint of the manufacturing, round cross-section of the holes Ru easily implemented form easy der.

発明は、圧力容器内に複数の流体分離素子を直列に装填した際に、隣り合う2つの流体分離素子のテレスコープ防止板表面外周部どうしで実質的に接触するか、または略接触状態にあるタイプのエレメントに適用される。通常このタイプでは、隣り合うエレメントの透過水の接続を中心パイプ内に入るコネクターでもって接続される。 The present invention, when loaded with a plurality of fluid separation elements in series in a pressure vessel, a surface of the telescope prevention plate of two fluid separation elements adjacent substantially in contact with and how the outer peripheral portion, or substantially contact Applied to the type of element in the state. Usually in this type, Ru is connected with the connector entering the connection permeate adjacent elements within the central pipe.

また、テレスコープ防止板は射出成形により製造され、上流側も下流側も同じものを使用していることが多い。従って、このようなテレスコープ防止板に連通通路を設ける場合は、ブラインシールより流体分離素子長手方向端部側に連通通路の孔を設置することが望ましい。連通通路とて孔を設ける。 Further, the Te Resukopu preventing plate is produced by injection molding, it is not a multi also upstream using the same is also the downstream side. Therefore, when providing a communication passage in such a telescope prevention plate, it is desirable to install a hole of the communication passage on the end side in the longitudinal direction of the fluid separation element from the brine seal. Providing holes in the communicating communication path.

図4の例では上流側にも流側にも、外周環部に連通通路の孔を設けた同じテレスコープ防止板を使用しているが、下流側のテレスコープ防止板に連通通路を設けた場合でも本発明の目的は達成することができる。
連通通路を確保する点から考えれば、流体分離素子の外側シェルに孔等の連通通路を設置する方法でもよいが、この場合には、原水のショートパス防止の理由から流体分離素子下流部に連通通路を設置することが望ましい。
FIG even lower flow side in the upper stream side in the example of 4, but is using the same telescope prevention plate provided with holes in the communication passage to the outer peripheral ring portion, a communicating passage telescope prevention plate on the downstream side Even when provided, the object of the present invention can be achieved.
Considering from the viewpoint of securing the communication passage may be a method of installing a communication passage hole or the like to the outer shell of the flow body separation device, but in this case, the fluid separation element downstream portion reasons of short pass prevention of raw water It is desirable to install a communication passage.

(参考例)
流体分離素子の外側シェルの下流側テレスコープ防止板から20mmの位置のところにφ2mmの孔90度毎に4つ等配となるように開けた。
模擬的に流体分離素子内外に圧力差がかかるようにするため、図のようにブラインシールを流体分離素子の上流側にも下流側にも装着し、圧力容器に装填した。
原水供給条件は原水(ブライン流量130L/min、全溶質濃度3.5重量%の海水、9MPaの条件となるように設定し、運転を開始した。
60分後圧力容器から流体分離素子を取り出し、破損状況を確認した。流体分離素子に損傷はなく、外側シェルも観察の結果、破損等の形跡はみあたらなかった。
(Reference example)
Open digits such that four equidistant to each place to φ2mm holes 90 degrees 20mm position from the downstream side telescope prevention plate of the outer shell of the fluid separation element.
Simulatively so that the pressure difference in the fluid separation element and out is applied, both mounted on the downstream side on stream side of the fluid separation element brine seal as shown in Figure 5, it was charged to the pressure vessel.
The raw water supply conditions were set such that the raw water ( brine ) flow rate was 130 L / min, seawater with a total solute concentration of 3.5 wt%, and 9 MPa, and the operation was started.
Removed fluid separation element from the pressure vessel after 60 minutes to confirm the damaged situation. The fluid separation element was not damaged, and the outer shell was also observed. As a result, no evidence of breakage was found.

(比較例1)
外側シェルにもテレスコープ防止板にも連通通路となる孔や溝等のない従来の流体分離素子(東レ(株)社製 TM820−400)を準備した。
模擬的に流体分離素子内外に圧力差がかかるようにするため、図6のようにブラインシールを流体分離素子の上流側にも下流側にも装着し、圧力容器に装填した。
原水供給条件はブライン流量130L/min、全溶質濃度3.5重量%の海水、9MPaの条件となるように設定し、運転を開始した。
10秒後破裂音がしたため運転を中止し、流体分離素子を圧力容器から取り出したところ、流体分離素子の外側シェルが破裂し、中の膜が裂けてとびだしていた。
(Comparative Example 1)
To telescope prevention plate in the outer shell, we were prepared conventional fluid separation element without holes or grooves or the like serving as the communication passage (Toray Industries Co., Ltd. TM820-400).
Simulatively so that the pressure difference in the fluid separation element and out is applied, both mounted on the downstream side of the brine seal on the upstream side of the fluid separation element as shown in FIG. 6, it was loaded into a pressure vessel.
The raw water supply conditions were set to be a brine flow rate of 130 L / min, seawater with a total solute concentration of 3.5 wt%, and 9 MPa, and the operation was started.
Stop operation for pops the after 10 seconds, it was taken out of fluid separation element from the pressure vessel, and rupture the outer shell of the fluid separation element, the film in had jumped torn.

(比較例2)
外側シェルにもテレスコープ防止板にも連通通路となる孔や溝等のない従来の流体分離素子(東レ(株)社製 TM820−400)を6本準備した。
ブラインシールを加工して上下流どちらにも液密となるようにして、流体分離素子上流部に装着した。6本入り直列の圧力容器内に6本の流体分離素子を装填した。このとき、流体分離素子列上・下流側にスラストリングを装着し、圧力容器の蓋で流体分離素子列を3mm圧縮し、流体分離素子の内と圧力容器との間の隙間が略液密となるようにした。
原水供給条件は、原水(ブライン)流量80L/min、全溶質濃度3.5重量%の海水、5.5MPaの条件とし、スタートから5分かけて立ち上げた。
スタート後5分から6分の間に3度破裂音がしたため装置を停止し、圧力容器から流体分離素子を取り出し、破損状況を確認した。上流側から1、3、4本目の計3本の流体分離素子の外側シェルが破裂し、中の膜が裂けてとびだしていた。
(Comparative Example 2)
To telescope prevention plate in the outer shell, the conventional fluid separation element without holes or grooves or the like serving as a communicating passage (Toray Co., Ltd. TM820-400) were prepared six.
The brine seal was processed so as to be liquid-tight both upstream and downstream, and was mounted on the upstream portion of the fluid separation element. Six fluid separation elements were loaded in a series of six pressure vessels. In this case, the thrust ring is mounted in the upstream and downstream side of the fluid separation element array, a fluid separation element array and 3mm compression by the lid of the pressure vessel, substantially falls within the gap between the inner side and the pressure vessel of the fluid separation element It was designed to be liquid-tight.
The raw water supply conditions were as follows: raw water ( brine ) flow rate 80 L / min, seawater with a total solute concentration of 3.5% by weight, and 5.5 MPa.
Since there was a popping sound 3 times within 5 to 6 minutes after the start, the apparatus was stopped, the fluid separation element was taken out from the pressure vessel , and the state of breakage was confirmed. The outer shells of a total of three fluid separation elements, the first, third, and fourth, from the upstream side burst, and the inner membrane was torn out.

1:集水管
2:供給された原水の流れ方向(原水流路)
3:第1の分離膜
4:第2の分離膜
5:透過流路材
6:原水流路材
7:濃縮
8:透過
9:テレスコープ防止板の外周環部
10:ブラインシール
11:外側シェル
12:流体分離素子と圧力容器との間の隙間
13:連通通路としての孔
14:スラストリング
17:スパイラル巻体
1: Catch pipe 2: Flow direction of supplied raw water (raw water flow path)
3: the first separation layer 4: second separation membrane 5: permeate flow path member 6: raw water flow path member 7: concentrated water 8: permeated water 9: outer circumference of the telescoping preventing plate ring portion 10: brine seal 11 : Outer shell 12: gap between fluid separation element and pressure vessel 13: hole 14 as communication passage: thrust ring
17: Spiral roll

Claims (6)

分離膜、原水流路材及び透過水流路材がスパイラル状に巻回されてなるスパイラル巻体の端部にテレスコープ防止板が配設された構造を有し、圧力容器内に直列に複数装填して使用される流体分離素子において、テレスコープ防止板の外周環部の外周面にブラインシール装着用凹部があり、流体分離素子内の原水流路と、流体分離素子と圧力容器との間の隙間とを連通させる通路として、下流側のテレスコープ防止板の外周環部に孔が設けられ、かつ、上流側のテレスコープ防止板にはブラインシール装着用凹部より下流に孔が設けられていないことを特徴とする流体分離素子。   It has a structure in which a telescope prevention plate is arranged at the end of a spiral wound body in which a separation membrane, raw water channel material and permeate channel material are wound in a spiral shape, and a plurality of them are loaded in series in a pressure vessel In the fluid separation element used, there is a concave portion for mounting a brine seal on the outer peripheral surface of the outer peripheral ring portion of the telescope prevention plate, and between the raw water flow path in the fluid separation element and the fluid separation element and the pressure vessel As a passage that communicates with the gap, a hole is provided in the outer peripheral ring portion of the downstream telescope prevention plate, and the upstream telescope prevention plate is not provided with a hole downstream from the brine seal mounting recess. A fluid separation element. 下流側のテレスコープ防止板の外周環部に設けられた孔の総面積が2〜100mmであることを特徴とする請求項1記載の流体分離素子。 2. The fluid separation element according to claim 1, wherein the total area of the holes provided in the outer peripheral ring portion of the downstream telescope prevention plate is 2 to 100 mm < 2 >. 下流側のテレスコープ防止板の外周面にブラインシールが装着されていないことを特徴とする請求項1又は2に記載の流体分離素子。   The fluid separation element according to claim 1, wherein a brine seal is not attached to the outer peripheral surface of the downstream telescope prevention plate. 流体分離素子内の原水流路と、流体分離素子と圧力容器との間の隙間とを連通させる通路として、上流側のテレスコープ防止板の外周環部のブラインシール装着用凹部より長手方向端部側に孔が設けられていることを特徴とする請求項1〜3のいずれかに記載の流体分離素子。   Longitudinal end from the brine seal mounting recess of the outer peripheral ring of the telescope prevention plate on the upstream side as a passage for communicating the raw water flow path in the fluid separation element and the gap between the fluid separation element and the pressure vessel The fluid separation element according to claim 1, wherein a hole is provided on the side. テレスコープ防止板の外周環部の孔が、丸孔であることを特徴とする請求項1〜4のいずれかに記載の流体分離素子。   The fluid separation element according to any one of claims 1 to 4, wherein the hole in the outer peripheral ring portion of the telescope prevention plate is a round hole. 請求項1〜5のいずれかに記載の流体分離素子の複数が圧力容器内に直列に複数装填され、隣接する流体分離素子のテレスコープ防止板どうしが接する形式で接続されており、かつ、最下流側の流体分離素子の下流にスラストリングが装填されていることを特徴とする流体分離装置。   A plurality of fluid separation elements according to any one of claims 1 to 5 are loaded in series in a pressure vessel, are connected in a form in which telescope prevention plates of adjacent fluid separation elements are in contact with each other, and A fluid separation device, wherein a thrust ring is loaded downstream of a downstream fluid separation element.
JP2010107972A 2010-05-10 2010-05-10 Fluid separation element and fluid separation device Active JP5287789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107972A JP5287789B2 (en) 2010-05-10 2010-05-10 Fluid separation element and fluid separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107972A JP5287789B2 (en) 2010-05-10 2010-05-10 Fluid separation element and fluid separation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005026340A Division JP2006212514A (en) 2005-02-02 2005-02-02 Fluid separation element

Publications (3)

Publication Number Publication Date
JP2010167420A true JP2010167420A (en) 2010-08-05
JP2010167420A5 JP2010167420A5 (en) 2012-07-12
JP5287789B2 JP5287789B2 (en) 2013-09-11

Family

ID=42700049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107972A Active JP5287789B2 (en) 2010-05-10 2010-05-10 Fluid separation element and fluid separation device

Country Status (1)

Country Link
JP (1) JP5287789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181411A1 (en) 2017-03-31 2018-10-04 東レ株式会社 Fluid separating element and telescoping prevention plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102585046B1 (en) 2017-07-27 2023-10-10 디디피 스페셜티 일렉트로닉 머티리얼즈 유에스, 엘엘씨 Spiral-wound membrane module with integrated differential pressure monitoring
ES2971971T3 (en) 2019-01-29 2024-06-10 Ddp Specialty Electronic Mat Us Llc Measurement of pressure differences within a spiral wound membrane module vessel
KR102357812B1 (en) 2020-06-03 2022-01-28 두산중공업 주식회사 Reverse osmosis apparatus and seawater desalination system comprising the same
US20230145145A1 (en) 2020-07-30 2023-05-11 Ddp Specialty Electronic Materials Us, Llc Spiral wound membrane modules with sensor and transmitter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151405U (en) * 1982-03-31 1983-10-11 日東電工株式会社 liquid separator
JPS58195601U (en) * 1982-06-24 1983-12-26 オルガノ株式会社 spiral module
JPS6249902A (en) * 1985-08-28 1987-03-04 Toray Ind Inc Liquid separator
JPH04330921A (en) * 1990-12-27 1992-11-18 Millipore Corp Spiral filter
JPH05208120A (en) * 1992-01-30 1993-08-20 Toray Ind Inc Spiral separation membrane element
JPH11267469A (en) * 1998-03-23 1999-10-05 Toray Ind Inc Fluid separating element assembly
JP2000093761A (en) * 1998-09-24 2000-04-04 Toray Ind Inc Fluid separation element
JP2003299937A (en) * 2002-04-05 2003-10-21 Japan Organo Co Ltd Performance evaluation method for reverse osmosis membrane element
JP2004141846A (en) * 2002-08-29 2004-05-20 Japan Organo Co Ltd Method for operating separation membrane module and separation membrane apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151405U (en) * 1982-03-31 1983-10-11 日東電工株式会社 liquid separator
JPS58195601U (en) * 1982-06-24 1983-12-26 オルガノ株式会社 spiral module
JPS6249902A (en) * 1985-08-28 1987-03-04 Toray Ind Inc Liquid separator
JPH04330921A (en) * 1990-12-27 1992-11-18 Millipore Corp Spiral filter
JPH05208120A (en) * 1992-01-30 1993-08-20 Toray Ind Inc Spiral separation membrane element
JPH11267469A (en) * 1998-03-23 1999-10-05 Toray Ind Inc Fluid separating element assembly
JP2000093761A (en) * 1998-09-24 2000-04-04 Toray Ind Inc Fluid separation element
JP2003299937A (en) * 2002-04-05 2003-10-21 Japan Organo Co Ltd Performance evaluation method for reverse osmosis membrane element
JP2004141846A (en) * 2002-08-29 2004-05-20 Japan Organo Co Ltd Method for operating separation membrane module and separation membrane apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181411A1 (en) 2017-03-31 2018-10-04 東レ株式会社 Fluid separating element and telescoping prevention plate
KR20190130580A (en) 2017-03-31 2019-11-22 도레이 카부시키가이샤 Fluid Separation Element and Telescope Barrier
US11097224B2 (en) 2017-03-31 2021-08-24 Toray Industries, Inc. Fluid separating element and telescoping prevention plate

Also Published As

Publication number Publication date
JP5287789B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US9901878B2 (en) Membrane separation device and operation method for membrane separation device
KR102502797B1 (en) Flexible adjustable membrane cartridges for separation of fluids
JP5287789B2 (en) Fluid separation element and fluid separation device
US9707518B2 (en) Hollow fiber membrane module
US9975090B2 (en) Double pass reverse osmosis separator module
US9993776B2 (en) Separation membrane module, method for driving same, separation membrane element, thrust load maintaining member, and thrust load adjustment maintaining member
JP2018126706A (en) Membrane separation device and fluid separation method
JP4704791B2 (en) Spiral membrane module
JP5935808B2 (en) Method for hydrophilizing hollow fiber membrane module
EP2821123B1 (en) Separation membrane module and replacement method for separation membrane element
JP2011152538A5 (en)
JP2011152538A (en) Fluid separation element and fluid separation apparatus
JP2006212514A (en) Fluid separation element
US11097224B2 (en) Fluid separating element and telescoping prevention plate
CA3024832C (en) Separation membrane module
JP2006334507A (en) Spiral type separation membrane element
JP6771812B2 (en) Spiral separation membrane module
KR20160091032A (en) Hollowfiber Membrane Moldule
JPWO2020080428A1 (en) Separation membrane module and its operation method
JP2015089536A (en) Separation membrane element and separation membrane module
WO2014141967A1 (en) Separating membrane element
EP3858469A1 (en) Fluid separation element
JP2013208522A (en) Telescope prevention plate and spiral type fluid separating element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5287789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151