JP2006212514A - Fluid separation element - Google Patents

Fluid separation element Download PDF

Info

Publication number
JP2006212514A
JP2006212514A JP2005026340A JP2005026340A JP2006212514A JP 2006212514 A JP2006212514 A JP 2006212514A JP 2005026340 A JP2005026340 A JP 2005026340A JP 2005026340 A JP2005026340 A JP 2005026340A JP 2006212514 A JP2006212514 A JP 2006212514A
Authority
JP
Japan
Prior art keywords
fluid separation
separation element
pressure vessel
raw water
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026340A
Other languages
Japanese (ja)
Inventor
Akira Katayama
朗 片山
Tomomasa Katayama
智正 片山
Takashi Seki
隆志 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005026340A priority Critical patent/JP2006212514A/en
Publication of JP2006212514A publication Critical patent/JP2006212514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid separation element which is prevented from bursting during operation, concretely is prevented from bursting because such circumstances that end plates are tightly adhered to each other to form a liquid-tight state and a pressure between a pressure vessel and the fluid separation element is drastically different from the pressure of raw water is produced when the fluid separation elements are connected with each other. <P>SOLUTION: In the fluid separation element which is formed by spirally winding a separation membrane, raw water channel material and water permeate channel material, is loaded into the pressure vessel and is used, a channel which communicates with the raw water side channel of the fluid separation element and a gap between the fluid separation element and the pressure vessel is secured and the channel which communicates with the raw water side channel of the fluid separation element and the gap between the fluid separation element and the pressure vessel is disposed on a telescope prevention plate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

近年、海水淡水化や半導体分野における超純水用途、さらには、一般かん水用途や有機物分離、排水再利用などを始めとする膜の透過液または濃縮液を利用するさまざまな流体分離分野において、分離膜を用いた流体分離素子の使用が急速に増加してきている。   In recent years, separation in various fluid separation fields using membrane permeates or concentrated liquids such as seawater desalination and ultrapure water applications in the semiconductor field, as well as general brine applications, organic matter separation, wastewater reuse, etc. The use of membrane-based fluid separation elements is increasing rapidly.

流体分離素子の形態として、中空糸膜を用いたものや、平膜のプレートフレーム型、スパイラル型があげられる。この中で、スパイラル型の流体分離素子は、分離膜が透過液流路材と供給液流路材と共に集水管の周りにスパイラル状に巻き付けられた構造をとる。スパイラル型流体分離素子は、図1に示すように、第1の分離膜3および第2の分離膜4の3辺を互いに接着して形成した封筒状膜の間に透過液流路材5を挟み込み、これと供給液流路材6とを1つのユニットとして、単数もしくは複数ユニット用意し、集水管1の周囲にスパイラル状に巻き付けてなる。封筒状膜は集水管1側で開口している。供給液2は、流体分離素子の一方の端面から供給され、第1の分離膜3および第2の分離膜4で処理される。分離膜3、4を透過した透過液8は集水管1から取り出され、分離膜3、4を透過しなかった供給液2は、流体分離素子の他方の端面から濃縮液7として排出される。   Examples of the form of the fluid separation element include those using hollow fiber membranes, flat membrane plate frame types, and spiral types. Among these, the spiral type fluid separation element has a structure in which a separation membrane is spirally wound around a water collecting pipe together with a permeate flow path material and a supply liquid flow path material. As shown in FIG. 1, the spiral type fluid separation element has a permeate flow path material 5 between an envelope membrane formed by adhering three sides of a first separation membrane 3 and a second separation membrane 4 to each other. A single unit or a plurality of units are prepared as a single unit by sandwiching them and the supply liquid channel material 6 and wound around the water collecting pipe 1 in a spiral shape. The envelope-like membrane is opened on the water collecting pipe 1 side. The supply liquid 2 is supplied from one end face of the fluid separation element and is processed by the first separation membrane 3 and the second separation membrane 4. The permeated liquid 8 that has passed through the separation membranes 3 and 4 is taken out from the water collecting pipe 1, and the supply liquid 2 that has not passed through the separation membranes 3 and 4 is discharged as a concentrated liquid 7 from the other end face of the fluid separation element.

通常スパイラル型の流体分離素子は外側をガラス繊維とエポキシ樹脂のFRPシェルにより固められており、長手方向の両端にテレスコープ防止板が取り付けられた形態をとる。   Usually, the spiral type fluid separation element has a configuration in which the outer side is hardened by an FRP shell of glass fiber and epoxy resin, and telescope prevention plates are attached to both ends in the longitudinal direction.

流体分離素子の上流側のテレスコープ防止板にはブラインシールと呼ばれるシール部材があり、原水が流体分離素子の外側FRPと圧力容器の隙間へショートパスするのを防いでいる。ブラインシールはOリング等でもよいが、圧力容器への装填性からUシール等が用いられることが多い。Uシールは、上流側から流体が流れてきた際にはU部分が開いてテレスコープ防止板と圧力容器を液密にシールする。下流側からの流れに対してはその構造上液密にシールすることはできない。
使用時には、圧力容器の中に1〜6本程度直列に装填して使用され、該圧力容器を多数本ラックの上に設置して大容量の処理に対応する。
The telescope prevention plate on the upstream side of the fluid separation element has a seal member called a brine seal, which prevents the raw water from short-passing to the gap between the outer FRP of the fluid separation element and the pressure vessel. The brine seal may be an O-ring or the like, but a U seal or the like is often used because of its ability to be loaded into a pressure vessel. When the fluid flows from the upstream side, the U seal opens to seal the telescope prevention plate and the pressure vessel in a fluid-tight manner. The flow from the downstream side cannot be liquid-tightly sealed due to its structure.
At the time of use, about 1 to 6 bottles are used in series in a pressure vessel, and a large number of the pressure vessels are installed on a rack to handle a large volume of processing.

通常は複数の流体分離素子を直列に装填した場合、連続する二つの流体分離素子のうち、上流の流体分離素子は下流側のテレスコープ防止板と、下流側の流体分離素子は上流側のテレスコープ防止板のすきまから、上流側の流体分離素子の外側と圧力容器の間の空間に流体が流れ込むことができるため、流体分離素子の外側のFRP内外は同じ圧力となる。   Normally, when a plurality of fluid separation elements are loaded in series, of two continuous fluid separation elements, the upstream fluid separation element is the downstream telescope prevention plate and the downstream fluid separation element is the upstream telescope. Since the fluid can flow into the space between the outside of the upstream fluid separation element and the pressure vessel from the clearance of the scope prevention plate, the inside and outside of the FRP outside the fluid separation element have the same pressure.

しかしながら、実運転の状況では、装置の構造、運転状況、使用状況等なんらかの原因で、圧力容器に装填した複数本の流体分離素子のテレスコープ防止板が密着した状態になるケースがまれに発生することがある。また、ブラインシールがなんらかの状況で、下流側からの流体を液密にシールするような状態が発生することがある。
この際、流体分離素子のFRPシェルの内外に圧力差が生じる。すなわち、FRP外側は装填時の大気圧で、内側は原水圧力となり、海淡用の場合は6〜9MPaにも達する。そのため、この状態が発生すると流体分離素子の外側FRP部分は圧力差に耐え切れずに破裂を起こし、内包する膜に損傷が発生して著しい性能低下を起こしてしまうケースがある。
従来、流体分離素子の外側FRPシェルの内外を連通させる(例えば特許文献1参照)の流体分離素子があるが、ブラインシール背後のシェル部分に原液通路を開口したものであり、シェルと圧力容器のすきまに原水が滞留するのを防止する目的である。この場合原水が開口部からショートパスしてしまい、流体分離素子の膜面部分を有効に流すことができず、性能が悪化するため、特に滞留を嫌う食品用途等に限定された使用法である。
However, in the actual operation situation, there are rare cases where the telescope prevention plates of the plurality of fluid separation elements loaded in the pressure vessel are in close contact due to some reason such as the structure of the apparatus, the operation situation, the use situation, etc. Sometimes. In some situations, the brine seal may seal the fluid from the downstream side in a liquid-tight manner.
At this time, a pressure difference is generated between the inside and outside of the FRP shell of the fluid separation element. That is, the outside of the FRP is the atmospheric pressure at the time of loading, the inside is the raw water pressure, and reaches 6 to 9 MPa for seawater. For this reason, when this state occurs, the outer FRP portion of the fluid separation element may not withstand the pressure difference and may rupture, causing damage to the encapsulating film and causing a significant performance degradation.
Conventionally, there is a fluid separation element that communicates the inside and outside of the outer FRP shell of the fluid separation element (see, for example, Patent Document 1). However, the stock solution passage is opened in the shell portion behind the brine seal, and the shell and the pressure vessel The purpose is to prevent the raw water from staying in the gap. In this case, the raw water is short-passed from the opening, and the membrane surface portion of the fluid separation element cannot be flowed effectively, and the performance deteriorates. .

その他、テレスコープ防止板は、接続時に簡単にシールできるもの(例えば、非特許文献1参照)や、テレスコープ防止板に無数の孔をあけ原水の偏流を防ぐタイプ(例えば、非特許文献2参照)が用いられているが、いずれも不測のケースでは、端板同士が密着して破裂を起こす危険性がある。
実開平5-93530号公報 ジョンソン ジェイ(Johnson J)アイレック インターロッキング エンドキャプス メイクシーウォーター デズリネイション プロセッシング イージアー レス エクスペンシブ (iLEK interlocking Endcaps Make Seawater Desalination Processing Easier Less Expensive) [online]、 ダウケミカルカンパニー(Dow Chemical Company)、2004年8月31日、ダウケミカルカンパニーホームページ[平成17年1月20日検索]、インターネット<URLhttp://www.dow.com/webapps/lit/litorder.asp?filepath=liquidseps/pdfs/noreg/609-00466.pdf> ハイドロノーティクス(HYDRANATUICS)、フラッシュカットエレメントデザイン(FLUSH CUT ELEMENT DESIGN)、テクニカルサービスブレテイン(Technical Service Bulletin)、[online]2002年9月、ハイドロノーティクスホームページ[平成17年1月20日検索]、インターネット<URL:http://www.membranes.com/docs/tsb/tsb103.pdf>
In addition, the telescope prevention plate can be easily sealed at the time of connection (for example, see Non-Patent Document 1), or a type that prevents the drift of raw water by opening countless holes in the telescope prevention plate (for example, see Non-Patent Document 2). ) Is used, but in any case, there is a risk of end plates coming into close contact with each other and causing rupture.
Japanese Utility Model Publication No. 5-93530 Johnson J Irek interlocking Endcaps Make Seawater Desalination Processing iSealess Desalination Processing Easier Less Expensive [online], Dow Chemical Company, August 2004 31st, Dow Chemical Company website [searched on January 20, 2005], Internet <URL http://www.dow.com/webapps/lit/litorder.asp?filepath=liquidseps/pdfs/noreg/609-00466. pdf> Hydronautics (HYDRANATUICS), FLUSH CUT ELEMENT DESIGN, Technical Service Bulletin, [online] September 2002, Hydronautics homepage [searched January 20, 2005] Internet <URL: http://www.membranes.com/docs/tsb/tsb103.pdf>

本発明は、流体分離素子が運転中に破裂することを防ぐことを課題とする。具体的には連結したときに端板同士が密着して液密状態となり圧力容器と流体分離素子との間の圧力が原水圧力と大幅に異なる状況となり、流体分離素子が破損することを防ぐことを課題とする。   An object of the present invention is to prevent the fluid separation element from bursting during operation. Specifically, when connected, the end plates are in close contact with each other and become liquid-tight, so that the pressure between the pressure vessel and the fluid separation element is significantly different from the raw water pressure, preventing the fluid separation element from being damaged. Is an issue.

上記課題を解決するため、本発明は以下の構成からなる。すなわち、
(1)分離膜と原水流路材、透過水流路材をスパイラル状に巻回し、圧力容器に装填して使用する流体分離素子において、流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が確保されており、前記流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路がテレスコープ防止板に設けられていることを特徴とする流体分離素子。
In order to solve the above problems, the present invention has the following configuration. That is,
(1) In a fluid separation element in which a separation membrane, a raw water flow path material, and a permeate flow path material are spirally wound and loaded into a pressure vessel, the raw water side flow path of the fluid separation element, the fluid separation element, and the pressure vessel A passage communicating with a gap between the fluid separation element and a passage communicating with the gap between the raw water side flow path of the fluid separation element and the fluid separation element and the pressure vessel is provided in the telescope prevention plate. A fluid separation element.

(2)流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が、テレスコープ防止板のブラインシール装填シール部より長手方向端部側に開けられた孔であることを特徴とする(1)記載の流体分離素子。   (2) The passage that communicates with the raw water-side flow path of the fluid separation element and the gap between the fluid separation element and the pressure vessel is a hole that is opened on the end side in the longitudinal direction from the brine seal loading seal portion of the telescope prevention plate. (1) The fluid separation element according to (1).

(3)流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が、テレスコープ防止板表面に刻まれた溝であることを特徴とする(1)記載の流体分離素子。
(4)流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が、テレスコープ防止板表面に設けられた凸部同志があわされてテレスコープ防止板の間に形成された隙間であることを特徴とする(1)に記載の流体分離素子。
(3) The raw water side channel of the fluid separation element and the passage communicating with the gap between the fluid separation element and the pressure vessel are grooves carved on the surface of the telescope prevention plate. Fluid separation element.
(4) A flow path communicating with the raw water side flow path of the fluid separation element and the gap between the fluid separation element and the pressure vessel is formed between the telescope prevention plates by the protrusions provided on the surface of the telescope prevention plate. The fluid separation element according to (1), wherein the fluid separation element is a formed gap.

(5)分離膜と原水流路材透過水流路材をスパイラル状に巻回し、圧力容器に装填して使用する流体分離素子において、流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が確保されており、前記流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が下流側のテレスコープ防止板またはテレスコープ防止板付近に設けられたことを特徴とする流体分離素子。
により構成される。
(5) In the fluid separation element that is used by winding the separation membrane and the raw water passage material in a spiral shape and loading the pressure vessel, the raw water side passage of the fluid separation element, the fluid separation element, and the pressure vessel A passage communicating with the gap between the raw water side flow path of the fluid separation element and the passage communicating with the gap between the fluid separation element and the pressure vessel is a downstream telescope prevention plate or telescope prevention plate. A fluid separation element provided in the vicinity.
Consists of.

本発明によって得られる効果は、テレスコープ防止板や外側シェルに孔、溝、凸部等を設けることにより液密状態の発生を防ぎ流体分離素子の破裂を防ぐことができることである。   The effect obtained by the present invention is that the formation of a liquid-tight state can be prevented and the fluid separation element can be prevented from rupturing by providing holes, grooves, convex portions, etc. in the telescope prevention plate or the outer shell.

以下、本発明の実施の形態について、図面を参照しながら説明する。本発明の適用される流体分離素子は、主にスパイラル型の流体分離素子であるが、外側シェルを持ち、圧力容器に装填され、圧力容器と流体分離素子の隙間に流体が流れることを防ぐブラインシール様の部材を使用するものであれば、特にその形態は問わない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The fluid separation element to which the present invention is applied is mainly a spiral type fluid separation element, but has an outer shell, is loaded in a pressure vessel, and prevents brine from flowing into the gap between the pressure vessel and the fluid separation element. As long as a seal-like member is used, the form is not particularly limited.

通常の運転では、図2のように直列に装填された流体分離素子の間は特にシール手段を備えておらず、液密とはならないため、流体分離素子外側シェルと圧力容器の隙間は原水圧力と同じとなり、外側シェルに破裂方向の力がかかることはない。しかしながら、運転状況、原水中の物質その他なんらかの理由により、上流側流体分離素子の下流側テレスコープ防止板と下流側流体分離素子の上流側テレスコープ防止板の間が液密になるケースがまれに発生する。この場合でも、最下流流体分離素子の下流側から流体分離素子の外側シェルと圧力容器の隙間を伝って原水の圧力が最上流の流体分離素子までかかるはずであるが、例えば図3のように、スラストリング等により、最下流流体分離素子の下流側と圧力容器の蓋がなんらかの理由により液密となった場合や、ブラインシールが流体分離素子と圧力容器との間にはさまり、下流から上流への流通を妨げる場合、ブラインシールがOリング等上下流向きに関係なく液密にシールする方式等においては、圧力容器と流体分離素子の隙間と流体分離素子の内側の間に圧力差が生じる。ここで、外側シェルは通常ガラス繊維を樹脂で固めFRPが用いられることが多いが、テープ巻きやフィルム巻き等、流体分離素子内側と外側を略液密にできるものを含む。
流体分離素子の外側シェル内外に圧力差は、原水圧力となるため、特に海水淡水化では約6MPaの圧力を受けるため、FRPのシェルでも破壊される条件となる。
In normal operation, there is no particular sealing means between the fluid separation elements loaded in series as shown in FIG. 2 and the liquid separation element is not liquid-tight. And no force in the burst direction is applied to the outer shell. However, there are rare cases in which the space between the downstream telescope prevention plate of the upstream fluid separation element and the upstream telescope prevention plate of the downstream fluid separation element becomes liquid-tight due to operating conditions, substances in the raw water, and other reasons. . Even in this case, the pressure of raw water should reach the most upstream fluid separation element from the downstream side of the most downstream fluid separation element through the gap between the outer shell of the fluid separation element and the pressure vessel. For example, as shown in FIG. When the downstream side of the most downstream fluid separation element and the lid of the pressure vessel become liquid-tight for some reason due to thrust ring, etc., or when the brine seal is sandwiched between the fluid separation element and the pressure vessel, from downstream to upstream If the brine seal is liquid-tightly sealed regardless of the upstream or downstream direction, such as an O-ring, a pressure difference is generated between the gap between the pressure vessel and the fluid separation element and the inside of the fluid separation element. Here, the outer shell is usually made of glass fiber that is hardened with a resin and FRP is often used.
Since the pressure difference between the inside and outside of the outer shell of the fluid separation element becomes the raw water pressure, and particularly in seawater desalination, the pressure difference is about 6 MPa.

本発明は、圧力差が生じないように、連通する通路を設けることを主旨としており、その形態としては、例えば図4のように、テレスコープ防止板に圧力容器と流体分離素子の隙間に連通する通路を設ける方法があげられる。
この際、破裂防止のみを目的とするのであれば、ブラインシールと連通通路の位置関係を気にすることはないが、本来ブラインシールは流体分離素子と圧力容器の隙間に原水がショートパスして流体分離素子の性能が低下することを防ぐことを目的としているため、少なくとも流体分離素子の上流側テレスコープ防止板では、ブラインシール直近下流に連通通路があいていないほうが望ましい。
The main object of the present invention is to provide a communicating passage so as not to cause a pressure difference. As a form thereof, for example, as shown in FIG. 4, the telescope prevention plate communicates with the gap between the pressure vessel and the fluid separation element. There is a method of providing a passage.
At this time, if the purpose is to prevent rupture only, the positional relationship between the brine seal and the communication passage is not a concern. However, the brine seal originally has a short path of raw water in the gap between the fluid separation element and the pressure vessel. Since it aims at preventing the performance of the fluid separation element from deteriorating, it is desirable that at least the upstream telescope prevention plate of the fluid separation element does not have a communication passage immediately downstream of the brine seal.

連通通路、穴、凸部等の個数は、1〜24個程度で好ましくは4〜12程度がよく、デザイン上リブ等の位置に合わせて設置する方法が製造上好ましい。穴、溝、凸部等の連通通路の総面積は、圧力を均等にするために流体が同通することを目的としているため、比較的小さな面積でもよく、2mm以上であればほぼ目的を達成することができる。また、総面積の上限は機能からいえばないが、必要以上に多くとると端板部が大きくなり、膜面積の減少を余儀なくされるため、実質的には6000mm程度までである。実際には、2〜100mm程度が機能および膜面積への影響等を考慮すると、より好ましい。
穴、溝、凸部の形状については 丸、三角、四角、半円、ロゴ、刻印、模様等で、外側シェルおよびテレスコープ防止板に連通通路となり流路を確保できるのであればよいが、製造上の観点からも孔であれば丸、溝であれば半円、矩形の溝が容易に実施しやすい形態である。
The number of communication passages, holes, convex portions, etc. is about 1 to 24, preferably about 4 to 12, and a method of installing in accordance with the position of ribs or the like in terms of design is preferable in production. Holes, grooves, a total area of the communication passage, such as the convex portion, since the purpose of fluid to the passing to equalize the pressure, may be a relatively small area, approximately the object if 2 mm 2 or more Can be achieved. The upper limit of the total area is not limited in terms of function, but if it is increased more than necessary, the end plate portion becomes large and the film area is inevitably reduced, so it is substantially up to about 6000 mm 2 . Actually, about 2 to 100 mm 2 is more preferable in consideration of the function and the influence on the membrane area.
The shape of the hole, groove, and convex part is round, triangular, square, semicircle, logo, stamp, pattern, etc., as long as it can be a communication path to the outer shell and telescope prevention plate to secure the flow path. From the above point of view, it is easy to implement a round groove if it is a hole, a semicircle if it is a groove, or a rectangular groove.

ただ単に破裂を防ぐことのみを目的とするのであればコネクターにつば等の形態をもたせてエレメント間にすきまを開ける方法もあるが、全長および部品加工性の面では有利ではない。その他、薄いリング状の部材を装填時に流体分離素子の間にはさむ方法等もあるが作業性の面と全長変化の面から、有利ではない。   If the purpose is merely to prevent bursting, there is a method in which a gap is formed between the elements by giving the connector a form such as a collar, but this is not advantageous in terms of overall length and part workability. In addition, there is a method in which a thin ring-shaped member is sandwiched between the fluid separation elements at the time of loading, but this is not advantageous from the viewpoint of workability and the change in the total length.

本発明は、複数の流体分離素子を装填した際に、隣り合う2つの流体分離素子のテレスコープ防止板表面の外周部が実質的に接触するか、または略接触状態にあるタイプのエレメントに適用される。通常このタイプは隣り合うエレメントの透過水の接続を中心パイプ内径部に入るコネクターで接続されるタイプが多い。   The present invention is applied to an element of a type in which the outer peripheral portions of the telescope prevention plate surfaces of two adjacent fluid separation elements are substantially in contact with each other or are substantially in contact with each other when a plurality of fluid separation elements are loaded. Is done. Usually, this type has many types in which the permeate of adjacent elements is connected by a connector that enters the inner diameter of the central pipe.

また、通常テレスコープ防止板は射出成形により、上流下流共同じものを使用していることが多く、上流・下流用と違うタイプのテレスコープ防止板を製作するのは経済的ではない。従って、テレスコープ防止板に連通通路を設ける場合は、ブラインシールより流体分離素子長手方向端部側に連通通路を設置することが望ましい。
連通通路の形態としては、孔があるが、他にも本発明の目的からすれば、直列する2つの流体分離素子間に連通通路が形成されるものであってもかまわない。具体的な形態としては、図5のように、テレスコープ防止板の表面に溝を刻んでおくことにより、直列する2つの流体分離素子間に、流体分離素子と圧力容器の隙間への連通通路を形成することができる。また、図6のようにテレスコープ防止板表面に凸部を設けておくことにより、同様に直列する2つの流体分離素子間に、流体分離素子と圧力容器の隙間への連通通路を形成することができる。
In general, the same telescope prevention plate is used for both upstream and downstream by injection molding, and it is not economical to produce a telescope prevention plate of a different type from that for upstream and downstream. Therefore, when providing the communication path in the telescope prevention plate, it is desirable to install the communication path on the end side in the longitudinal direction of the fluid separation element from the brine seal.
As a form of the communication passage, there is a hole, but for the purpose of the present invention, a communication passage may be formed between two fluid separation elements in series. As a specific form, as shown in FIG. 5, a groove is formed on the surface of the telescope prevention plate, so that a communication path to the gap between the fluid separation element and the pressure vessel is established between two fluid separation elements in series. Can be formed. Further, by providing a convex portion on the surface of the telescope prevention plate as shown in FIG. 6, a communication path to the gap between the fluid separation element and the pressure vessel is formed between two fluid separation elements that are similarly connected in series. Can do.

溝の形態としては、放射状が設計上容易であるが、射出成形の型抜きの都合やその他の理由により、平行状の溝でもよく、また放射状の本数についても、連通通路を形成できればよく、特に図により限定するものではない。   As the form of the groove, the radial shape is easy in design, but it may be a parallel groove due to the convenience of die-cutting for injection molding or for other reasons, and it is only necessary to form a communication path for the radial number. It is not limited by the figure.

凸部の形態も同じく連通通路を形成するものであればよく、例えばテレスコープ防止板表面に会社のロゴマーク等を盛り上げて設けたようなものでもよく、また見た目にはデザイン模様に見えるものでもよく、大きさ、形状を図により特に限定するものではない。   The shape of the convex portion may also be a shape that forms a communication path, for example, the surface of the telescope prevention plate may be provided with a company logo mark or the like, or it may look like a design pattern The size and shape are not particularly limited by the drawings.

図5の例では上下流同じテレスコープ防止板を使用している例であるが、図7のように、上・下流どちらかのテレスコープ防止板に連通通路を設けた例でも本発明の目的は達成することができる。   In the example of FIG. 5, the same telescope prevention plate is used in the upstream and downstream, but the object of the present invention is also an example in which a communication passage is provided in either the upstream or downstream telescope prevention plate as shown in FIG. 7. Can be achieved.

連通通路を確保する点から考えれば、テレスコープ防止板にこだわる必要はなく、例えば図8のように流体分離素子の外側シェルに孔等の連通通路を設置する方法でも本発明の目的は達成することができる。このとき、原水のショートパス防止の理由から流体分離素子下流部に連通通路を設置することが望ましい。   Considering from the viewpoint of securing the communication path, it is not necessary to stick to the telescope prevention plate, and the object of the present invention can be achieved by a method of providing a communication path such as a hole in the outer shell of the fluid separation element as shown in FIG. be able to. At this time, it is desirable to install a communication passage in the downstream portion of the fluid separation element for the purpose of preventing a short path of raw water.

凸部は、半円、三角、四角、ロゴ、模様等様々あるが、これに限定するものではない。サイズについては、総面積は、2mm〜6000mm程度がよい。さらに好ましくは2〜100mm程度であるが、これによって限定するものではない。 There are various convex portions such as a semicircle, a triangle, a square, a logo, and a pattern, but the present invention is not limited to this. For size, total area, it is 2mm 2 ~6000mm 2 about. More preferably, it is about 2 to 100 mm 2 , but is not limited thereto.

(実施例1)
流体分離素子の外側シェルの下流側テレスコープ防止板から30mmのところにφ1mmの孔を2箇所、180度対向で開けた。
Example 1
Two φ1 mm holes were opened at 180 ° opposite to each other at 30 mm from the downstream telescope prevention plate of the outer shell of the fluid separation element.

模擬的に流体分離素子内外に圧力差がかかるようにするため、図9のようにブラインシールを流体分離素子の上、下流に装着し、圧力容器に装填した。   In order to simulate a pressure difference between the inside and outside of the fluid separation element, a brine seal was mounted on the upstream and downstream of the fluid separation element as shown in FIG.

原水供給条件はブライン流量130L/min、全溶質濃度3.5重量%の海水、9MPaの条件となるように設定し、運転を開始した。   The raw water supply conditions were set to be a brine flow rate of 130 L / min, seawater with a total solute concentration of 3.5 wt%, and 9 MPa, and the operation was started.

60分後圧力容器から流体分離素子を取り出し、破損状況を確認した。流体分離素子に損傷はなく、外側シェルも観察の結果、破損等の形跡はみあたらなかった。   After 60 minutes, the fluid separation element was taken out from the pressure vessel, and the damage state was confirmed. The fluid separation element was not damaged, and the outer shell was also observed. As a result, no evidence of breakage was found.

(実施例2)
テレスコープ防止板の表面に、放射状に深さ1.5mmの半円状の溝を12箇所きざんだ。
(Example 2)
Twelve semicircular grooves having a depth of 1.5 mm were radially formed on the surface of the telescope prevention plate.

ブラインシールを加工して上下流どちらにも液密となるようにして、流体分離素子上流部に装着した。6本入り直列の圧力容器に6本の流体分離素子を装填した。このとき、流体分離素子列上・下流側に側面に内外との連通通路がないスラストリングを装着し、圧力容器の蓋で流体分離素子列を3mm圧縮し、流体分離素子の内と圧力容器の隙間の間が略液密となるようにした。   The brine seal was processed so as to be liquid-tight in both the upstream and downstream, and attached to the upstream portion of the fluid separation element. Six fluid separation elements were loaded in a series of six pressure vessels. At this time, a thrust ring having no communication path between the inside and outside of the fluid separation element row is mounted on the upstream and downstream sides, the fluid separation element row is compressed by 3 mm with the lid of the pressure vessel, and the inside of the fluid separation device and the pressure vessel The gap was made substantially liquid-tight.

原水供給条件は、ブライン80L/min、全溶質濃度3.5重量%の海水、5.5MPaの条件とし、スタートから5分かけて立ち上げた。   The raw water supply conditions were as follows: brine 80 L / min, seawater with a total solute concentration of 3.5% by weight, and 5.5 MPa, starting from 5 minutes from the start.

15分後圧力容器から流体分離素子を取り出し、破損状況を確認した。流体分離素子には損傷はなく、外側シェルも間接の結果、破損等の形跡はみあたらなかった。   After 15 minutes, the fluid separation element was taken out from the pressure vessel, and the damage state was confirmed. There was no damage to the fluid separation element, and the outer shell was indirect, and no evidence of breakage was found.

(実施例3)
テレスコープ防止板に図6のように高さ1.5mmの凸部を放射状に設けた。
(Example 3)
As shown in FIG. 6, convex portions having a height of 1.5 mm were provided radially on the telescope prevention plate.

ブラインシールを加工して上下流どちらにも液密となるようにして、流体分離素子上流部に装着した。6本入り直列の圧力容器に6本の流体分離素子を装填した。このとき、流体分離素子列上・下流側に側面に内外を連通通路がないスラストリングを装着し、圧力容器の蓋で流体分離素子列を3mm圧縮し、流体分離素子の内と圧力容器の隙間の間が略液密となるようにした。   The brine seal was processed so as to be liquid-tight in both the upstream and downstream, and attached to the upstream portion of the fluid separation element. Six fluid separation elements were loaded in a series of six pressure vessels. At this time, a thrust ring having no communication passage on the inside and outside is installed on the upstream and downstream sides of the fluid separation element array, and the fluid separation element array is compressed by 3 mm with the lid of the pressure vessel, and the gap between the inside of the fluid separation element and the pressure vessel It was made to be substantially liquid-tight.

原水供給条件は、ブライン80L/min、全溶質濃度3.5重量%の海水、5.5MPaの条件とし、スタートから1分で立ち上げた。   The raw water supply conditions were as follows: brine 80 L / min, seawater with a total solute concentration of 3.5% by weight, and 5.5 MPa, starting from 1 minute from the start.

15分後圧力容器から流体分離素子を取り出し、破損状況を確認した。流体分離素子には損傷はなく、外側シェルも間接の結果、破損等の形跡はみあたらなかった。   After 15 minutes, the fluid separation element was taken out from the pressure vessel, and the damage state was confirmed. There was no damage to the fluid separation element, and the outer shell was indirect, and no evidence of breakage was found.

(実施例4)
テレスコープ防止板の下流側のみを図7のように、放射状に1.5mm削った。
Example 4
Only the downstream side of the telescope prevention plate was cut radially by 1.5 mm as shown in FIG.

ブラインシールを加工して上下流どちらにも液密となるようにして、流体分離素子上流部に装着した。6本入り直列の圧力容器に6本の流体分離素子を装填した。このとき、流体分離素子列上・下流側に側面に内外を連通通路がないスラストリングを装着し、圧力容器の蓋で流体分離素子列を3mm圧縮し、流体分離素子の内と圧力容器の隙間の間が略液密となるようにした。   The brine seal was processed so as to be liquid-tight in both the upstream and downstream, and attached to the upstream portion of the fluid separation element. Six fluid separation elements were loaded in a series of six pressure vessels. At this time, a thrust ring having no communication passage on the inside and outside is installed on the upstream and downstream sides of the fluid separation element array, and the fluid separation element array is compressed by 3 mm with the lid of the pressure vessel, and the gap between the inside of the fluid separation element and the pressure vessel It was made to be substantially liquid-tight.

原水供給条件は、ブライン80L/min、全溶質濃度3.5重量%の海水、5.5MPaの条件とし、スタートから5分かけて立ち上げた。   The raw water supply conditions were as follows: brine 80 L / min, seawater with a total solute concentration of 3.5% by weight, and 5.5 MPa, starting from 5 minutes from the start.

15分後圧力容器から流体分離素子を取り出し、破損状況を確認した。流体分離素子には損傷はなく、外側シェルも間接の結果、破損等の形跡はみあたらなかった。   After 15 minutes, the fluid separation element was taken out from the pressure vessel, and the damage state was confirmed. There was no damage to the fluid separation element, and the outer shell was indirect, and no evidence of breakage was found.

(実施例5)
流体分離素子の外側シェルの下流側テレスコープ防止板から20mmのところにφ2mmの孔90度毎に4つ等配であけた。
(Example 5)
Four equidistant holes were formed 20 mm from the downstream telescope prevention plate of the outer shell of the fluid separation element every 90 degrees of φ2 mm holes.

模擬的に流体分離素子内外に圧力差がかかるようにするため、図9のようにブラインシールを流体分離素子の上、下流に装着し、圧力容器に装填した。   In order to simulate a pressure difference between the inside and outside of the fluid separation element, a brine seal was mounted on the upstream and downstream of the fluid separation element as shown in FIG.

原水供給条件はブライン流量130L/min、全溶質濃度3.5重量%の海水、9MPaの条件となるように設定し、運転を開始した。   The raw water supply conditions were set to be a brine flow rate of 130 L / min, seawater with a total solute concentration of 3.5 wt%, and 9 MPa, and the operation was started.

60分後圧力容器から流体分離素子を取り出し、破損状況を確認した。流体分離素子に損傷はなく、外側シェルも観察の結果、破損等の形跡はみあたらなかった。   After 60 minutes, the fluid separation element was taken out from the pressure vessel, and the damage state was confirmed. The fluid separation element was not damaged, and the outer shell was also observed. As a result, no evidence of breakage was found.

(比較例1)
外側シェルにも端板部にも本出願の連通孔のない通常の流体分離素子(東レ(株)社製 TM820−400)を準備した。
(Comparative Example 1)
A normal fluid separation element (TM820-400 manufactured by Toray Industries, Inc.) having no communication hole of the present application was prepared for both the outer shell and the end plate.

模擬的に流体分離素子内外に圧力差がかかるようにするため、図10のようにブラインシールを流体分離素子の上、下流に装着し、圧力容器に装填した。   In order to simulate a pressure difference between the inside and outside of the fluid separation element, a brine seal is mounted on the fluid separation element above and downstream as shown in FIG.

原水供給条件はブライン流量130L/min、全溶質濃度3.5重量%の海水、9MPaの条件となるように設定し、運転を開始した。   The raw water supply conditions were set to be a brine flow rate of 130 L / min, seawater with a total solute concentration of 3.5 wt%, and 9 MPa, and the operation was started.

10秒後破裂音がしたため運転を中止し、流体分離素子を圧力容器から取り出したところ、流体分離素子の外側シェルが破裂し、中の膜が裂けてとびだしていた。   After 10 seconds, a bursting sound was heard, the operation was stopped, and the fluid separation element was taken out of the pressure vessel. As a result, the outer shell of the fluid separation element was ruptured, and the inner membrane was ruptured.

(比較例2)
外側シェルにも端板部にも本出願の連通孔のない通常の流体分離素子(東レ(株)社製 TM820−400)を6本準備した。
(Comparative Example 2)
Six normal fluid separation elements (TM820-400, manufactured by Toray Industries, Inc.) having no communication hole of the present application in both the outer shell and the end plate portion were prepared.

ブラインシールを加工して上下流どちらにも液密となるようにして、流体分離素子上流部に装着した。6本入り直列の圧力容器に6本の流体分離素子を装填した。このとき、流体分離素子列上・下流側にスラストリングを装着し、圧力容器の蓋で流体分離素子列を3mm圧縮し、流体分離素子の内と圧力容器の隙間の間が略液密となるようにした。   The brine seal was processed so as to be liquid-tight in both the upstream and downstream, and attached to the upstream portion of the fluid separation element. Six fluid separation elements were loaded in a series of six pressure vessels. At this time, a thrust ring is mounted on the upstream side and the downstream side of the fluid separation element row, the fluid separation element row is compressed by 3 mm with the lid of the pressure vessel, and the space between the inside of the fluid separation device and the pressure vessel becomes substantially liquid tight. I did it.

原水供給条件は、ブライン80L/min、全溶質濃度3.5重量%の海水、5.5MPaの条件とし、スタートから5分かけて立ち上げた。   The raw water supply conditions were as follows: brine 80 L / min, seawater with a total solute concentration of 3.5% by weight, and 5.5 MPa, and 5 minutes from the start.

スタート後5分から6分の間に3度破裂音がしたため装置を停止し、圧力容器から流体分離素子を取り出し、破損状況を確認した。上流側から1、3、4本目の計3本の流体分離素子の外側シェルが破裂し、中の膜が裂けてとびだしていた。   Since there was a popping sound 3 times between 5 and 6 minutes after the start, the device was stopped and the fluid separation element was taken out of the pressure vessel to check the damage status. The outer shells of a total of three fluid separation elements, the first, third, and fourth, from the upstream side burst, and the inner membrane was torn out.

本発明の一実施態様により製造される流体分離素子の概略一部展開図である。It is a general | schematic partially expanded view of the fluid separation element manufactured by one embodiment of this invention. 従来形状の端板を使用し直列に装填した図である。It is the figure loaded in series using the end plate of a conventional shape. 従来形状の端板を使用し直列に装填した流体分離素子の下流側流体分離素子の最下流にスラストリングを使用し図である。It is a figure which uses the thrust ring in the most downstream of the downstream fluid separation element of the fluid separation element loaded in series using the end plate of the conventional shape. テレスコープ防止板に圧力容器と流体分離素子の隙間に連通通路をあけた図である。It is the figure which opened the communicating path in the clearance gap between a pressure vessel and a fluid separation element in a telescope prevention plate. テレスコープ防止板の表面に溝を刻んで直列に装填した図である。It is the figure which cut the groove | channel on the surface of the telescope prevention board and loaded in series. テレスコープ防止板の表面に凸部をつくり直列に装填した図である。It is the figure which made the convex part on the surface of the telescope prevention board and loaded in series. テレスコープ防止板の下流側表面のみに溝を刻んで直列に装填した図である。It is the figure which carved the groove | channel only in the downstream surface of the telescope prevention board, and was loaded in series. 下流側テレスコープ防止板付近の外側シェルに連通する通路をあけた図である。It is the figure which opened the channel | path connected to the outer shell near downstream telescope prevention board. 下流側テレスコープ防止板から20mmの所の外側シェルにφ2の孔をあけ上下流両方にブラインシールをして装填した図である。It is the figure which carried out the hole seal of the φ2 in the outer shell of the place 20 mm from the downstream telescope prevention plate, and was filled with the brine seals on both the upstream and downstream sides. 比較例で流体分離素子の上下流両側のテレスコープ防止板にブラインシールを装着して装填した図である。It is the figure which mounted | wore with the telescope prevention board of the upstream and downstream both sides of the fluid separation element with a brine seal in the comparative example, and was loaded.

符号の説明Explanation of symbols

1:集水管
2:供給液
3:第1の分離膜
4:第2の分離膜
5:透過液流路材
6:供給液流路材
7:濃縮液
8:透過液
9:テレスコープ防止板
10:ブラインシール
11:外側シェル
12:隙間
13:連通通路
14:スラストリング
15:溝
16:凸部
1: Water collecting pipe 2: Supply liquid 3: First separation membrane 4: Second separation membrane 5: Permeate flow path material 6: Supply liquid flow path material 7: Concentrated liquid 8: Permeate 9: Telescope prevention plate 10: brine seal 11: outer shell 12: gap 13: communication passage 14: thrust ring 15: groove 16: convex portion

Claims (5)

分離膜と原水流路材、透過水流路材をスパイラル状に巻回し、圧力容器に装填して使用する流体分離素子において、流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が確保されており、前記流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路がテレスコープ防止板に設けられていることを特徴とする流体分離素子。 In the fluid separation element that is used by winding the separation membrane, the raw water flow path material, and the permeate flow path material in a spiral shape and loading the pressure container, the flow separation between the raw water side flow path of the fluid separation element, the fluid separation element, and the pressure vessel A passage communicating with the gap is ensured, and a passage communicating with the gap between the raw water-side flow path of the fluid separation element and the fluid separation element and the pressure vessel is provided in the telescope prevention plate. Fluid separation element. 流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が、テレスコープ防止板のブラインシール装填シール部より長手方向端部側に開けられた孔であることを特徴とする請求項1に記載の流体分離素子。 The passage connected to the raw water side flow path of the fluid separation element and the gap between the fluid separation element and the pressure vessel is a hole opened on the end side in the longitudinal direction from the brine seal loading seal portion of the telescope prevention plate. The fluid separation element according to claim 1. 流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が、テレスコープ防止板表面に刻まれた溝であることを特徴とする請求項1に記載の流体分離素子。 2. The fluid separation according to claim 1, wherein the passage communicating with the raw water side channel of the fluid separation element and the gap between the fluid separation element and the pressure vessel is a groove carved in the surface of the telescope prevention plate. element. 流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が、テレスコープ防止板表面に設けられた凸部同志があわされてテレスコープ防止板の間に形成された隙間であることを特徴とする請求項1に記載の流体分離素子。 A gap formed between the telescope prevention plate with a passage communicating with the raw water side flow path of the fluid separation element and a gap between the fluid separation element and the pressure vessel formed by protrusions provided on the surface of the telescope prevention plate The fluid separation element according to claim 1, wherein: 分離膜と原水流路材、透過水流路材をスパイラル状に巻回し、圧力容器に装填して使用する流体分離素子において、流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が確保されており、前記流体分離素子の原水側流路と流体分離素子と圧力容器の間の隙間に連通する通路が下流側のテレスコープ防止板またはテレスコープ防止板付近に設けられたことを特徴とする流体分離素子。 In the fluid separation element that is used by winding the separation membrane, the raw water flow path material, and the permeate flow path material in a spiral shape and loading the pressure container, the flow separation between the raw water side flow path of the fluid separation element, the fluid separation element, and the pressure vessel A passage communicating with the gap is secured, and the passage communicating with the gap between the raw water side flow path of the fluid separation element and the fluid separation element and the pressure vessel is located near the telescope prevention plate on the downstream side or the telescope prevention plate. A fluid separation element provided.
JP2005026340A 2005-02-02 2005-02-02 Fluid separation element Pending JP2006212514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026340A JP2006212514A (en) 2005-02-02 2005-02-02 Fluid separation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026340A JP2006212514A (en) 2005-02-02 2005-02-02 Fluid separation element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010107972A Division JP5287789B2 (en) 2010-05-10 2010-05-10 Fluid separation element and fluid separation device
JP2011081542A Division JP2011152538A (en) 2011-04-01 2011-04-01 Fluid separation element and fluid separation apparatus

Publications (1)

Publication Number Publication Date
JP2006212514A true JP2006212514A (en) 2006-08-17

Family

ID=36976160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026340A Pending JP2006212514A (en) 2005-02-02 2005-02-02 Fluid separation element

Country Status (1)

Country Link
JP (1) JP2006212514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110112321A (en) 2009-02-06 2011-10-12 도레이 카부시키가이샤 Liquid separating element, anti-telescoping plate for liquid separating elements and liquid separating device
WO2012046388A1 (en) * 2010-10-04 2012-04-12 日東電工株式会社 Separation membrane module
CN101918116B (en) * 2008-02-25 2013-09-04 日东电工株式会社 Connection member and separation membrane module using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195601A (en) * 1982-05-08 1983-11-14 三菱電機株式会社 Track branching apparatus of magnetically floating type railroad
JPH04330921A (en) * 1990-12-27 1992-11-18 Millipore Corp Spiral filter
JP2005111473A (en) * 2003-09-17 2005-04-28 Nitto Denko Corp Membrane element and sealing material holding member therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195601A (en) * 1982-05-08 1983-11-14 三菱電機株式会社 Track branching apparatus of magnetically floating type railroad
JPH04330921A (en) * 1990-12-27 1992-11-18 Millipore Corp Spiral filter
JP2005111473A (en) * 2003-09-17 2005-04-28 Nitto Denko Corp Membrane element and sealing material holding member therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918116B (en) * 2008-02-25 2013-09-04 日东电工株式会社 Connection member and separation membrane module using the same
US8568589B2 (en) 2008-02-25 2013-10-29 Nitto Denko Corporation Connection member and separation membrane module using the same
KR20110112321A (en) 2009-02-06 2011-10-12 도레이 카부시키가이샤 Liquid separating element, anti-telescoping plate for liquid separating elements and liquid separating device
CN102307652A (en) * 2009-02-06 2012-01-04 东丽株式会社 Liquid separating element, anti-telescoping plate for liquid separating elements and liquid separating device
JPWO2010090251A1 (en) * 2009-02-06 2012-08-09 東レ株式会社 Fluid separation element, telescope prevention plate for fluid separation element, and fluid separation device
US8377300B2 (en) 2009-02-06 2013-02-19 Toray Industries, Inc. Fluid separation element, anti-telescoping device for fluid separation element, and fluid separation device
JP5594138B2 (en) * 2009-02-06 2014-09-24 東レ株式会社 Fluid separation element, telescope prevention plate for fluid separation element, and fluid separation device
KR101656902B1 (en) 2009-02-06 2016-09-12 도레이 카부시키가이샤 Liquid separating element, anti-telescoping plate for liquid separating elements and liquid separating device
WO2012046388A1 (en) * 2010-10-04 2012-04-12 日東電工株式会社 Separation membrane module
US9061247B2 (en) 2010-10-04 2015-06-23 Nitto Denko Corporation Separation membrane module

Similar Documents

Publication Publication Date Title
US9901878B2 (en) Membrane separation device and operation method for membrane separation device
KR102502797B1 (en) Flexible adjustable membrane cartridges for separation of fluids
AU2017204109B2 (en) Improved contactors, cartridges, components, systems, and related methods
JP5287789B2 (en) Fluid separation element and fluid separation device
US9993776B2 (en) Separation membrane module, method for driving same, separation membrane element, thrust load maintaining member, and thrust load adjustment maintaining member
KR101382473B1 (en) Fluid distribution apparatus for hollow fiber membrane
JP2006212514A (en) Fluid separation element
KR101421911B1 (en) Separation membrane module
JP2011152538A (en) Fluid separation element and fluid separation apparatus
JP2006281125A (en) Spiral type membrane module
US11097224B2 (en) Fluid separating element and telescoping prevention plate
US11938449B2 (en) Ceramic membrane filtration assembly with multi port endcap and related methods
EP2821123B1 (en) Separation membrane module and replacement method for separation membrane element
JP2011152538A5 (en)
US10744462B2 (en) Separation membrane module
JP2006334507A (en) Spiral type separation membrane element
JP4688141B2 (en) Liquid separator
JPH11300173A (en) Hollow fiber membrane module
JP2015089536A (en) Separation membrane element and separation membrane module
US20190060837A1 (en) Spiral wound separation membrane module
JP2015033673A (en) Membrane separation apparatus and operation method of membrane separation apparatus
WO2020067223A1 (en) Fluid separation element
WO2019208275A1 (en) Separation membrane module
JP2013202562A (en) Spiral type fluid separation element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830