JP2004265856A - Solid polymer fuel cell separator, its manufacturing method, manufacturing device for same, and solid polymer fuel cell - Google Patents

Solid polymer fuel cell separator, its manufacturing method, manufacturing device for same, and solid polymer fuel cell Download PDF

Info

Publication number
JP2004265856A
JP2004265856A JP2003420358A JP2003420358A JP2004265856A JP 2004265856 A JP2004265856 A JP 2004265856A JP 2003420358 A JP2003420358 A JP 2003420358A JP 2003420358 A JP2003420358 A JP 2003420358A JP 2004265856 A JP2004265856 A JP 2004265856A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
polymer electrolyte
electrolyte fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003420358A
Other languages
Japanese (ja)
Other versions
JP4231399B2 (en
Inventor
Mitsuharu Yamagata
光晴 山形
Noriyuki Suzuki
規之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003420358A priority Critical patent/JP4231399B2/en
Publication of JP2004265856A publication Critical patent/JP2004265856A/en
Application granted granted Critical
Publication of JP4231399B2 publication Critical patent/JP4231399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a solid polymer fuel cell with a low cost and high durability, which is capable of improving the characteristics of the cell by reducing a contact resistance thereof by increasing a contact area of an indented part with an electrode. <P>SOLUTION: The separator for a solid polymer fuel cell has a flat part at a peripheral part, and indented parts serving as gas passages at the part excluding the flat part. An angle between a vertical wall part of the indentation and a horizontal part is 100° or less, and the contact area with the electrode is 30% or more of a projected area of an electrode part forming the gas flow passage. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電力を駆動源とする自動車、小規模の発電システムなどに用いられる固体高分子型燃料電池に用いられるセパレータ、その製造装置、製造方法及びそのセパレータを用いた固体高分子型燃料電池に関する。   The present invention relates to a separator used in a polymer electrolyte fuel cell used in an automobile, a small-scale power generation system and the like using electric power as a drive source, a manufacturing apparatus, a manufacturing method thereof, and a polymer electrolyte fuel cell using the separator About.

環境保全に対する意識の高まりから、化石燃料を利用した現行の内燃機関から水素を利用した固体高分子型燃料電池による電気駆動型の自動車や、分散型コジェネシステムへの移行が世界的に検討されている。これらの新技術を広く一般に利用できるようにするためには、低コスト化と高信頼化に関わる技術開発を燃料供給システムも含めて推進する必要がある。   Due to the growing awareness of environmental conservation, the transition from current internal combustion engines using fossil fuels to electrically driven vehicles using solid polymer fuel cells using hydrogen and distributed cogeneration systems is being studied worldwide. Yes. In order to make these new technologies widely available to the general public, it is necessary to promote technological development related to cost reduction and high reliability, including fuel supply systems.

近年、固体高分子材料の開発成功を契機に電気自動車用燃料電池の開発が急速に進展し始めている。
固体高分子型燃料電池とは、従来のアルカリ型燃料電池、燐酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池などと異なり、水素イオン選択透過型の有機物膜を電解質として用いることを特徴とする燃料電池であり、燃料には純水素のほか、アルコール類の改質によって得た水素ガスなどを用い、空気中の酸素との反応を電気化学的に制御することによって電力を取り出すシステムである。固体高分子膜は薄くても十分に機能し、電解質が膜中に固定されていることから、電池内の露点を制御すれば電解質として機能するため、水溶液系電解質や溶融塩系電解質など流動性のある媒体を使う必要がなく、電池自体をコンパクトに単純化して設計できることも特徴である。
In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly with the successful development of solid polymer materials.
Unlike conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., solid polymer fuel cells use a hydrogen ion permselective organic membrane as the electrolyte. In addition to pure hydrogen, the fuel cell uses hydrogen gas, etc. obtained by reforming alcohol, and takes out electric power by electrochemically controlling the reaction with oxygen in the air. System. Solid polymer membranes function well even if they are thin, and the electrolyte is fixed in the membrane, so it functions as an electrolyte if the dew point in the battery is controlled, so fluidity such as aqueous electrolytes and molten salt electrolytes Another characteristic is that the battery itself can be designed in a compact and simplified manner.

固体高分子型燃料電池は、水素の流路を持つセパレータ、燃料極、固体高分子膜、空気(酸素)極、空気(酸素)の流路を持つセパレータよりなるサンドイッチ構造を単セルとして、実際にはこの単セルを積層したスタックが用いられる。したがって、セパレータの両面は独立した流路を持ち、片面が水素、もう一方の片面が空気および生成した水の流路となる。
冷却用水溶液の沸点以下の領域で稼働する固体高分子型燃料電池の構成材料としては、温度がさほど高くないこと、その環境下で耐食性・耐久性を十分に発揮させることが可能であること、さらに、任意の流路形状を形成するため炭素系の材料を切削加工などにより加工して使用されてきているが、より低コスト化や小型化、すなわちセパレータの薄肉化を目指してステンレス鋼やチタンの適用に関する技術開発が進んでいる。
The polymer electrolyte fuel cell is actually a single cell with a sandwich structure consisting of a separator having a hydrogen flow path, a fuel electrode, a solid polymer membrane, an air (oxygen) electrode, and a separator having an air (oxygen) flow path. A stack in which the single cells are stacked is used. Therefore, both surfaces of the separator have independent flow paths, one side being hydrogen and the other side being a flow path of air and generated water.
As a constituent material of a polymer electrolyte fuel cell that operates in the region below the boiling point of the cooling aqueous solution, the temperature is not so high, and it is possible to sufficiently exhibit corrosion resistance and durability in that environment, Furthermore, carbon-based materials have been used by cutting to form an arbitrary flow path shape, but stainless steel and titanium have been used with the aim of reducing costs and downsizing, that is, reducing the thickness of separators. Technological development related to the application of

従来、燃料電池用ステンレス鋼としては、例えば特許文献1に開示されているように、高い耐食性が要求される溶融炭酸塩環境で稼働する燃料電池用ステンレス鋼がある。
また、特許文献2などに開示されているように、数百度の高温で稼働する固体電解質型燃料電池用ステンレス鋼の発明がなされてきた。
さらに、特許文献3には、単位電池の電極との接触抵抗の小さい燃料電池用セパレータを得ることを目的に、ステンレス鋼(SUS304)を張出し成形(プレス成形ともいう)することにより、内周部に多数個の凹凸からなる膨出成形部を形成し、膨出成形部の膨出先端側端面に0.01〜0.02μmの厚さの金メッキ層を形成したことを特徴とする燃料電池用セパレータが開示され、その使用法として燃料電池を形成する際に燃料電池用セパレータを積層された単位電池の間に介在させ、単位電池の電極と膨出成形部の膨出先端側端面に形成された金メッキ層とが当接するように配設し、燃料電池用セパレータと電極との間に反応ガス通路を画成する技術が開示されている。
また、特許文献4では、安価に加工するため、プレス加工した波形状の穴明きバイポーラ板が開示されている。
特開平4−247852号公報 特開平6−264193号公報 特開平10−228914号公報 特開平5−29009号公報
Conventionally, as stainless steel for fuel cells, for example, as disclosed in Patent Document 1, there is stainless steel for fuel cells that operates in a molten carbonate environment where high corrosion resistance is required.
Further, as disclosed in Patent Document 2 and the like, the invention of stainless steel for solid oxide fuel cells that operates at a high temperature of several hundred degrees has been made.
Further, in Patent Document 3, for the purpose of obtaining a separator for a fuel cell having a low contact resistance with an electrode of a unit cell, an inner peripheral portion is formed by stretching (also referred to as press molding) stainless steel (SUS304). And a bulge-molded portion comprising a large number of irregularities is formed, and a gold plating layer having a thickness of 0.01 to 0.02 μm is formed on the bulge tip side end surface of the bulge-molded portion. A separator is disclosed, and when a fuel cell is formed, a separator for a fuel cell is interposed between stacked unit cells, and is formed on an end surface of a bulging tip of a unit cell electrode and a bulging molded portion. In addition, a technique is disclosed in which a reaction gas passage is defined between a fuel cell separator and an electrode so as to be in contact with the gold plating layer.
Moreover, in patent document 4, in order to process cheaply, the corrugated perforated bipolar plate which was press-processed is disclosed.
JP-A-4-247852 JP-A-6-264193 JP-A-10-228914 JP-A-5-29909

長期信頼性向上のためにCr、Ni、Moなど合金組成を上げたステンレス鋼は、SUS304に比べ加工性が低下することから、波形状にプレス成形することが困難である。また、断面が波形状であると電解質膜との接触面積が小さくなり燃料電池特性が低下する。
本発明は、成形中に破断することなく上述の固体高分子型燃料電池用セパレータに対して、凸部及び凹部と電極との接触面積を増加させ接触抵抗を減ずることにより、固体高分子型燃料電池の電池特性を向上させることを目的とする。
Stainless steel with an increased alloy composition such as Cr, Ni, and Mo to improve long-term reliability has a lower workability than SUS304, so it is difficult to press-mold into a corrugated shape. In addition, when the cross section is corrugated, the contact area with the electrolyte membrane is reduced and the fuel cell characteristics are deteriorated.
The present invention provides a polymer electrolyte fuel by increasing the contact area between the convex part and the concave part and the electrode and reducing the contact resistance with respect to the solid polymer fuel cell separator described above without breaking during molding. It aims at improving the battery characteristic of a battery.

上述の課題を解決するため、種々の金型形状、成形条件の解析、試作を通じて詳細に検討した結果、本発明を完成させたもので、その要旨とするところは以下の通りである。
(1)周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有し、凸部及び凹部の縦壁部と水平部のなす角度が80°〜100°であり、凸部又は凹部における水平部と電極との接触面積が電極への凹凸部の投影面積の30〜50%であることを特徴とする固体高分子型燃料電池用セパレータ。
(2)材質がステンレス鋼製又はチタン製であることを特徴とする(1)に記載の固体高分子型燃料電池用セパレータ。
(3)周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用セパレータの製造装置において、凹凸部の縦壁部のクリアランスc(mm)、肩部r(mm)、溝深さd(mm)、溝周期p(mm)が、それぞれ(1)〜(4)式を満たすことを特徴とする固体高分子型燃料電池用セパレータ製造装置。
1.1<c/t<1.6 (1)
2<r/t<5 (2)
2<d/t<8 (3)
2<p/t<24 (4)
但し、t:被加工材の板厚(mm)
(4)(3)記載の製造装置を用いて、被加工材の板厚を元の0.5〜1.0倍までコイニング加工することを特徴とする(1)又は(2)記載の固体高分子型燃料電池用セパレータの製造方法。
(5)被加工材に鉱油系潤滑剤または固体系潤滑剤を塗布してコイニング加工することを特徴とする(4)記載の固体高分子型燃料電池用セパレータの製造方法。
(6)(1)又は(2)記載の固体高分子型燃料電池用セパレータを用いることを特徴とする固体高分子型燃料電池。
In order to solve the above-mentioned problems, the present invention has been completed as a result of detailed examination through various mold shapes, analysis of molding conditions, and trial production. The gist of the present invention is as follows.
(1) It has a flat part in the periphery, and the part excluding the periphery has a convex part and a concave part to be a gas flow path, and the angle formed by the vertical wall part and the horizontal part of the convex part and the concave part is 80 ° to 100 °. A solid polymer fuel cell separator, wherein a contact area between a horizontal portion and an electrode in a convex portion or a concave portion is 30 to 50% of a projected area of the concave and convex portion on the electrode.
(2) The solid polymer fuel cell separator according to (1), wherein the material is made of stainless steel or titanium.
(3) In the apparatus for manufacturing a polymer electrolyte fuel cell separator, which has a flat portion around the periphery, and a portion excluding the periphery has a convex portion and a concave portion that serve as a gas flow path, the clearance c ( mm), shoulder r (mm), groove depth d (mm), and groove period p (mm) satisfy the equations (1) to (4), respectively. manufacturing device.
1.1 <c / t <1.6 (1)
2 <r / t <5 (2)
2 <d / t <8 (3)
2 <p / t <24 (4)
Where t: plate thickness of workpiece (mm)
(4) The solid according to (1) or (2), wherein the manufacturing apparatus according to (3) is used for coining to a thickness of 0.5 to 1.0 times the original thickness of the workpiece. A method for producing a polymer fuel cell separator.
(5) The method for producing a separator for a polymer electrolyte fuel cell according to (4), wherein a mineral oil lubricant or a solid lubricant is applied to a workpiece and coining is performed.
(6) A polymer electrolyte fuel cell comprising the polymer electrolyte fuel cell separator according to (1) or (2).

本発明により、固体高分子型燃料電池用セパレータの凸部及び凹部と電極との接触面積を増加させ接触抵抗を減ずることにより、固体高分子型燃料電池の電池特性を向上させる技術として極めて有効なものである。   INDUSTRIAL APPLICABILITY According to the present invention, it is extremely effective as a technique for improving the cell characteristics of a solid polymer fuel cell by increasing the contact area between the convex and concave portions of the solid polymer fuel cell separator and the electrode and reducing the contact resistance. Is.

以下に、本発明の詳細について説明する。
本発明に係る固体高分子型燃料電池用セパレータの断面図の例を図1に示す。
本発明者らは、周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用セパレータ1において、凸部及び凹部の縦壁部3と水平部2のなす角度αが100°以下であり、凸部又は凹部における水平部2と電極(後述の図3中の16)との接触面積が、電極への凹凸部の投影面積の30%以上を満たすことにより、セパレータの凸部及び凹部と電極との接触面積を増加させ、固体高分子型燃料電池の電池特性を向上させることができることを知見した。
Details of the present invention will be described below.
An example of a cross-sectional view of a separator for a polymer electrolyte fuel cell according to the present invention is shown in FIG.
In the solid polymer fuel cell separator 1 having a flat portion around the periphery, and a portion excluding the periphery having a convex portion and a concave portion serving as a gas flow path, the vertical wall portion 3 of the convex portion and the concave portion. The angle α formed by the horizontal portion 2 is 100 ° or less, and the contact area between the horizontal portion 2 and the electrode (16 in FIG. 3 described later) in the convex portion or the concave portion is 30 of the projected area of the concave and convex portion on the electrode. It has been found that by satisfying% or more, the contact area between the projections and depressions of the separator and the electrode can be increased, and the cell characteristics of the polymer electrolyte fuel cell can be improved.

一方、凹凸部の縦壁部3と水平部2のなす角度αが80°未満では成形中に被加工材が破断してしまうので、角度αは80°以上と規定する。また、凸部又は凹部における水平部2と電極との接触面積が電極への凹凸部の投影面積の50%超になると、化学反応を促進し所定の起電力を得、燃料ガスが電極面全体に均一に供給されなくなるため、50%以下と規定する。   On the other hand, if the angle α formed by the vertical wall portion 3 and the horizontal portion 2 of the concavo-convex portion is less than 80 °, the workpiece is broken during molding, so the angle α is defined as 80 ° or more. Further, when the contact area between the horizontal part 2 and the electrode in the convex part or the concave part exceeds 50% of the projected area of the concave and convex part on the electrode, the chemical reaction is promoted to obtain a predetermined electromotive force, and the fuel gas flows over the entire electrode surface Therefore, it is defined as 50% or less.

本発明に係る製造装置の金型の断面図を図2に示す。上下一対をなす上側金型6及び下側金型7の凹凸形状の肩部r(12、13)、溝深さd(10、11)、溝周期p(8、9)は等しい。被加工材の板厚をt(mm)としたとき、上側及び下側金型の凹凸部の縦壁部クリアランスc(14)、肩部r、溝深さd、溝周期pはそれぞれ(1)〜(4)式を満たすことにより、破断なくセパレータを成形することができる。
1.1<c/t<1.6 (1)
2<r/t<5 (2)
2<d/t<8 (3)
2<p/t<24 (4)
前記範囲外の組み合わせでは被加工材(ステンレス鋼もしくはチタン)が割れ、破断が生ずることなく縦壁部の角度を100°以下に成形することは極めて難しい。
FIG. 2 shows a sectional view of the mold of the manufacturing apparatus according to the present invention. The concave and convex shoulders r (12, 13), the groove depth d (10, 11), and the groove period p (8, 9) of the upper mold 6 and the lower mold 7 forming a pair of upper and lower sides are equal. When the thickness of the workpiece is t (mm), the vertical wall clearance c (14), shoulder r, groove depth d, and groove period p of the concave and convex portions of the upper and lower molds are (1 ) To (4), the separator can be molded without breakage.
1.1 <c / t <1.6 (1)
2 <r / t <5 (2)
2 <d / t <8 (3)
2 <p / t <24 (4)
If the combination is outside the above range, it is extremely difficult to form the vertical wall portion at an angle of 100 ° or less without causing the work material (stainless steel or titanium) to crack or break.

前記の凹凸形状を有する金型を用いて、被加工材板厚を元の1.0倍以下までコイニング加工することにより、前記(1)又は(2)の本発明に係る特徴を有しかつ割れ、破断などの不良部のない固体高分子型燃料電池用セパレータ1が成形可能である。一方、被加工材板厚を元の0.5倍未満までコイニング加工すると割れが発生し易くなるので、被加工材の板厚を元の0.5倍以上とする。
また、鉱油系潤滑剤、または二硫化モリブデンなどの固体系潤滑剤を被加工材に塗布し、加工面の摩擦力を低下させることにより、割れ、破断などの低減と、コイニング加工時の縦壁部への被加工材料の材料流入による、縦壁部の角度増加が計れる。鉱油系潤滑剤として、一般的な金属加工用の潤滑剤や防錆油等を使用することができる。潤滑剤の一例として、出光興産(株)製、製品名:ダフニ−オイルコートZ−3が上げられる。
本発明に係る固体高分子型燃料電池用セパレータを固体高分子型燃料電池に用いることにより、軽量、高効率、高信頼性の燃料電池を得ることができる。
By using the mold having the concavo-convex shape to coining the workpiece plate thickness to 1.0 times or less of the original thickness, (1) or (2) according to the present invention, The polymer electrolyte fuel cell separator 1 having no defective parts such as cracks and fractures can be formed. On the other hand, cracking is likely to occur when the workpiece thickness is coined to less than 0.5 times the original thickness, so the thickness of the workpiece is set to 0.5 times or more the original thickness.
Also, by applying a mineral lubricant or solid lubricant such as molybdenum disulfide to the work material and reducing the frictional force on the work surface, cracks and fractures can be reduced, and the vertical wall during coining The angle of the vertical wall can be increased due to the material flowing into the part. As a mineral oil-based lubricant, a general metal processing lubricant, rust preventive oil, or the like can be used. As an example of the lubricant, Idemitsu Kosan Co., Ltd., product name: Daphne Oil Coat Z-3 can be mentioned.
By using the polymer electrolyte fuel cell separator according to the present invention for a polymer electrolyte fuel cell, a lightweight, highly efficient and highly reliable fuel cell can be obtained.

被加工物の板厚0.1mmを基準として、縦壁部クリアランスc(14)=0.12mm、肩部r(12、13)=0.25mm、溝深さd(10、11)=0.5mm、溝周期p(8、9)=2.0mm、セパレータ部寸法150mm×250mm、凹凸部寸法100mm×200mmの金型を製作した。金型6、7の材質はSKD11、被加工物はオーステナイト系ステンレス鋼SUS316とした。   The vertical wall clearance c (14) = 0.12 mm, the shoulder r (12,13) = 0.25 mm, and the groove depth d (10,11) = 0 based on the workpiece thickness 0.1 mm. A mold having a thickness of 0.5 mm, a groove period p (8,9) = 2.0 mm, a separator size of 150 mm × 250 mm, and an unevenness size of 100 mm × 200 mm was manufactured. The materials of the molds 6 and 7 were SKD11, and the workpiece was austenitic stainless steel SUS316.

金型6、7の溝深さd(10、11)=0.5mmとし、被加工材の板厚を元の0.5倍となる0.55mm押し込みコイニング加工することにより、凸部及び凹部の繰返し構造となるガス流路横断面の縦壁部と水平部のなす角度αが85°であり、凹部又は凸部の水平部と電極との接触面積が電極への凹凸部の投影面積のそれぞれ40%となる固体高分子型燃料電池用セパレータ1を成形した。本発明に係る固体高分子型燃料電池用セパレータの製造に際し、計500枚製造しても割れ、破断の発生確率は0.8%以下であった。
また、前記と同一条件で、鉱油系潤滑剤の石油系炭化水素を潤滑基油とした一般的な防錆油を刷毛塗りにて、凹凸部加工面に均一に塗布することにより割れ、破断の発生確率は0.4%以下に改善された。
By setting the groove depth d (10, 11) of the molds 6 and 7 to 0.5 mm and performing coining processing by 0.55 mm, which is 0.5 times the original thickness of the workpiece, convex portions and concave portions are formed. The angle α formed by the vertical wall portion and the horizontal portion of the cross section of the gas flow path having the repeated structure is 85 °, and the contact area between the horizontal portion of the concave portion or convex portion and the electrode is the projected area of the concave and convex portion on the electrode Solid polymer fuel cell separators 1 of 40% each were formed. In the production of the polymer electrolyte fuel cell separator according to the present invention, even when a total of 500 sheets were produced, the probability of occurrence of cracks and breaks was 0.8% or less.
In addition, under the same conditions as described above, by applying a general rust preventive oil using a petroleum-based hydrocarbon of a mineral oil-based lubricant as a lubricating base oil to the uneven surface of the concavo-convex portion with a brush, The probability of occurrence was improved to 0.4% or less.

その後、セパレータ表面に金属メッキ処理を施した後、図3に示すように、セパレータ1の間に耐酸性ゴム製のシール板15、炭素繊維集電体からなる電極16、フッ素系樹脂製の固体高分子膜17、前記電極16、前記シール板15を挟んだAサイクルに、冷却水流路を含むBサイクルを4回に1回の割合で積層した多層からなる燃料電池スタックを構成し性能試験を行ったところ、計5000時間運転してもガス漏れや水漏れも発生せず、本発明の製造装置により製造したセパレータを用いて燃料電池として良好に機能することが確認された。   Thereafter, the separator surface was subjected to metal plating treatment, and then, as shown in FIG. 3, an acid-resistant rubber seal plate 15, an electrode 16 made of a carbon fiber current collector, a fluororesin solid, as shown in FIG. A fuel cell stack consisting of a multilayer in which a B cycle including a cooling water flow path is laminated at a rate of once every four times on an A cycle with the polymer membrane 17, the electrode 16 and the seal plate 15 sandwiched therebetween is tested. As a result, it was confirmed that neither gas leakage nor water leakage occurred even when the operation was performed for a total of 5000 hours, and that the fuel cell functioned well using the separator manufactured by the manufacturing apparatus of the present invention.

本発明により製造したセパレータの断面図の例である。It is an example of sectional drawing of the separator manufactured by this invention. 本発明のうち、金型断面形状の例を示す模式図である。It is a schematic diagram which shows the example of metal mold | die cross-sectional shape among this invention. 本発明により製造したセパレータを用いて固体高分子型燃料電池スタックを構築する一例を示した模式図である。It is the schematic diagram which showed an example which builds a polymer electrolyte fuel cell stack using the separator manufactured by this invention.

符号の説明Explanation of symbols

1:セパレータ 2:水平部
3:縦壁部 4:溝深さ
5:溝周期 6:上側金型
7:下側金型 8:溝周期(上側金型)
9:溝周期(下側金型) 10:溝深さ(上側金型)
11:溝深さ(下側金型) 12:肩部(上側金型)
13:肩部(下側金型) 14:縦壁部クリアランス
15:シール板 16:電極(炭素繊維集電体)
17:固体高分子膜 α:縦壁部と水平部のなす角度
1: Separator 2: Horizontal part 3: Vertical wall part 4: Groove depth 5: Groove period 6: Upper mold 7: Lower mold 8: Groove period (upper mold)
9: Groove period (lower mold) 10: Groove depth (upper mold)
11: Groove depth (lower mold) 12: Shoulder (upper mold)
13: Shoulder (lower mold) 14: Vertical wall clearance 15: Seal plate 16: Electrode (carbon fiber current collector)
17: Solid polymer film α: Angle between vertical wall and horizontal

Claims (6)

周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有し、凸部及び凹部の縦壁部と水平部のなす角度が80°〜100°であり、凸部又は凹部における水平部と電極との接触面積が電極への凹凸部の投影面積の30〜50%であることを特徴とする固体高分子型燃料電池用セパレータ。 The periphery has a flat part, and the part other than the periphery has a convex part and a concave part that serve as a gas flow path, and the angle formed by the vertical wall part and the horizontal part of the convex part and the concave part is 80 ° to 100 °. A separator for a polymer electrolyte fuel cell, wherein a contact area between a horizontal portion and an electrode in a portion or a recess is 30 to 50% of a projected area of an uneven portion on the electrode. 材質がステンレス鋼製又はチタン製であることを特徴とする請求項1に記載の固体高分子型燃料電池用セパレータ。 2. The polymer electrolyte fuel cell separator according to claim 1, wherein the material is made of stainless steel or titanium. 周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用セパレータの製造装置において、凹凸部の縦壁部のクリアランスc(mm)、肩部の半径r(mm)、溝深さd(mm)、溝周期p(mm)が、それぞれ(1)〜(4)式を満たすことを特徴とする固体高分子型燃料電池用セパレータ製造装置。
1.1<c/t<1.6 (1)
2<r/t<5 (2)
2<d/t<8 (3)
2<p/t<24 (4)
但し、t:被加工材の板厚(mm)
In the apparatus for manufacturing a polymer electrolyte fuel cell separator having a flat portion at the periphery and a portion excluding the periphery having a convex portion and a concave portion that serve as a gas flow path, the clearance c (mm) of the vertical wall portion of the concave and convex portion, Production of a separator for a polymer electrolyte fuel cell, wherein the shoulder radius r (mm), groove depth d (mm), and groove period p (mm) satisfy the equations (1) to (4), respectively. apparatus.
1.1 <c / t <1.6 (1)
2 <r / t <5 (2)
2 <d / t <8 (3)
2 <p / t <24 (4)
Where t: plate thickness of workpiece (mm)
請求項3記載の製造装置を用いて、被加工材の板厚を元の0.5〜1.0倍までコイニング加工することを特徴とする請求項1又は2記載の固体高分子型燃料電池用セパレータの製造方法。 The solid polymer fuel cell according to claim 1 or 2, wherein the manufacturing apparatus according to claim 3 is used for coining to a plate thickness of a workpiece of 0.5 to 1.0 times the original thickness. Manufacturing method for the separator. 被加工材に鉱油系潤滑剤または固体系潤滑剤を塗布してコイニング加工することを特徴とする請求項4記載の固体高分子型燃料電池用セパレータの製造方法。 5. The method for producing a separator for a polymer electrolyte fuel cell according to claim 4, wherein the workpiece is coated with a mineral oil lubricant or a solid lubricant and coined. 請求項1又は2記載の固体高分子型燃料電池用セパレータを用いることを特徴とする固体高分子型燃料電池。 3. A polymer electrolyte fuel cell using the polymer electrolyte fuel cell separator according to claim 1.
JP2003420358A 2003-02-12 2003-12-18 Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell Expired - Lifetime JP4231399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420358A JP4231399B2 (en) 2003-02-12 2003-12-18 Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003033203 2003-02-12
JP2003420358A JP4231399B2 (en) 2003-02-12 2003-12-18 Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004265856A true JP2004265856A (en) 2004-09-24
JP4231399B2 JP4231399B2 (en) 2009-02-25

Family

ID=33133857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420358A Expired - Lifetime JP4231399B2 (en) 2003-02-12 2003-12-18 Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4231399B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289447A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Multiple-stage roll forming device
JP2009076304A (en) * 2007-09-20 2009-04-09 Hitachi Cable Ltd Metal separator for fuel cell and its manufacturing method
CN102082282A (en) * 2009-11-26 2011-06-01 丰田纺织株式会社 Separator for fuel cell and manufacturing method of the same
KR20170003668A (en) 2014-06-24 2017-01-09 신닛테츠스미킨 카부시키카이샤 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
EP3136490A1 (en) * 2014-04-23 2017-03-01 Sumitomo Electric Industries, Ltd. Bipolar plate, redox flow cell, and method for producing bipolar plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289447A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Multiple-stage roll forming device
JP4700393B2 (en) * 2005-04-12 2011-06-15 新日本製鐵株式会社 Multi-stage roll forming equipment
JP2009076304A (en) * 2007-09-20 2009-04-09 Hitachi Cable Ltd Metal separator for fuel cell and its manufacturing method
CN102082282A (en) * 2009-11-26 2011-06-01 丰田纺织株式会社 Separator for fuel cell and manufacturing method of the same
JP2011113806A (en) * 2009-11-26 2011-06-09 Toyota Boshoku Corp Separator for fuel cell and method of manufacturing the same
DE102010061802A1 (en) 2009-11-26 2011-09-01 Toyota Boshoku Kabushiki Kaisha Separator for a fuel cell and its production process
US8828622B2 (en) 2009-11-26 2014-09-09 Toyota Boshoku Kabushiki Kaisha Separator for fuel cell and manufacturing method of the same
DE102010061802B4 (en) * 2009-11-26 2015-10-22 Toyota Boshoku Kabushiki Kaisha Process for producing a separator for a fuel cell
EP3136490A1 (en) * 2014-04-23 2017-03-01 Sumitomo Electric Industries, Ltd. Bipolar plate, redox flow cell, and method for producing bipolar plate
EP3136490A4 (en) * 2014-04-23 2017-05-03 Sumitomo Electric Industries, Ltd. Bipolar plate, redox flow cell, and method for producing bipolar plate
US10218007B2 (en) 2014-04-23 2019-02-26 Sumitomo Electric Industries, Ltd. Bipolar plate, redox flow battery, and method for producing bipolar plate
KR20170003668A (en) 2014-06-24 2017-01-09 신닛테츠스미킨 카부시키카이샤 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator

Also Published As

Publication number Publication date
JP4231399B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP3958929B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
US20020004158A1 (en) Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
JP2002313354A (en) Manufacturing method and device for separator for solid polymer fuel cell
CN101504984B (en) Metallic bipolar plate forming mold for fuel cell and forming method
JP4395053B2 (en) Metal separator for fuel cell and processing method thereof
JP5110958B2 (en) Sealed battery
JP4231399B2 (en) Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell
CN109524684A (en) It is a kind of with the bionical fuel battery double plates from drain function and from water discharge method
JP7031455B2 (en) Manufacturing method of metal separator for fuel cell
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
EP1686641A4 (en) Separator and production method for separator
JP4046550B2 (en) Solid polymer fuel cell metal separator with less warpage and method for producing the same
JP5169480B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP2006289447A (en) Multiple-stage roll forming device
JP4180929B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
EP1383184A4 (en) Electrode for fuel cell and method of manufacturing the electrode
JP2017208336A (en) Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part
JP4231398B2 (en) Separator manufacturing method and manufacturing apparatus for polymer electrolyte fuel cell
JP4280226B2 (en) Solid polymer fuel cell separator manufacturing method and reduction roll
JP2016095981A (en) Planar member for fuel battery and manufacturing method of planar member
JP5163028B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2002025586A (en) Separator for solid high polymer molecule fuel cell and fuel cell
JP2004119235A (en) Separator for solid polymer fuel cell, its manufacturing device and manufacturing method
CA2656517C (en) Conducting plates for fuel cell elements
JP2004134090A (en) Manufacturing method and manufacturing device of stainless steel separator for solid polymer fuel cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R151 Written notification of patent or utility model registration

Ref document number: 4231399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350