JP2002025586A - Separator for solid high polymer molecule fuel cell and fuel cell - Google Patents

Separator for solid high polymer molecule fuel cell and fuel cell

Info

Publication number
JP2002025586A
JP2002025586A JP2000206602A JP2000206602A JP2002025586A JP 2002025586 A JP2002025586 A JP 2002025586A JP 2000206602 A JP2000206602 A JP 2000206602A JP 2000206602 A JP2000206602 A JP 2000206602A JP 2002025586 A JP2002025586 A JP 2002025586A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
polymer electrolyte
electrolyte fuel
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000206602A
Other languages
Japanese (ja)
Other versions
JP3400976B2 (en
Inventor
Noriyuki Suzuki
規之 鈴木
Yuichi Yoshida
裕一 吉田
Tsutomu Namieno
勉 波江野
Hiroshi Kihira
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000206602A priority Critical patent/JP3400976B2/en
Priority to CA002352443A priority patent/CA2352443C/en
Priority to DE10132841A priority patent/DE10132841B4/en
Priority to US09/900,657 priority patent/US6709781B2/en
Publication of JP2002025586A publication Critical patent/JP2002025586A/en
Application granted granted Critical
Publication of JP3400976B2 publication Critical patent/JP3400976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a separator which enable stamped out and is applicable to a low cost and highly durable solid high polymer molecule fuel cell which can be put under press processing, and a fuel cell. SOLUTION: The separator is characterized in having two or more continuous slots composed of an even peripheral part and an uneven section used as gas paths having different surfaces in their front and back in the center section. And, the separator is also characterized in having a slanted shape at an end part of the slot and having a sealing component sealing both sides of the surrounding flat sections. Further, the separator is made of stainless steel, or titanium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力を直接的駆動
源とする自動車、小規模の発電システムなどに用いられ
る固体高分子型燃料電池に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell used for an automobile driven directly by electric power, a small-scale power generation system, and the like.

【0002】[0002]

【従来の技術】環境保全に対する意識の高まりから、化
石燃料を利用した現行の内燃機関から水素を利用した固
体高分子型燃料電池による電気駆動型の自動車や、分散
型コジェネシステムへの移行が世界的に検討されてい
る。これらの新技術が広く一般に利用できるようにする
ためには、低コスト化と高信頼化に関わる技術開発を燃
料供給システムも含めて推進する必要がある。
2. Description of the Related Art With the increasing awareness of environmental conservation, the transition from the current internal combustion engine using fossil fuels to electric drive type automobiles using solid polymer fuel cells using hydrogen and distributed cogeneration systems is on the rise. Is being considered. In order to make these new technologies widely available to the general public, it is necessary to promote technology development related to cost reduction and high reliability, including the fuel supply system.

【0003】近年、電気自動車用燃料電池の開発が固体
高分子材料の開発成功を契機に急速に進展し始めてい
る。固体高分子型燃料電池とは、従来のアルカリ型燃料
電池、燐酸型燃料電池、溶融炭酸塩型燃料電池、固体電
解質型燃料電池などと異なり、水素イオン選択透過型の
有機物膜を電解質として用いることを特徴とする燃料電
池であり、燃料には純水素のほか、アルコール類の改質
によって得た水素ガスなどを用い、空気中の酸素との反
応を電気化学的に制御することによって電力を取り出す
システムである。
In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly with the success of the development of solid polymer materials. Solid polymer fuel cells are different from conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., in that they use a hydrogen ion selective permeation type organic membrane as the electrolyte. A fuel cell characterized by the fact that, in addition to pure hydrogen, hydrogen gas or the like obtained by reforming alcohols is used as fuel, and power is extracted by electrochemically controlling the reaction with oxygen in the air. System.

【0004】固体高分子膜は薄くても十分に機能し、電
解質が膜中に固定されていることから、電池内の露点を
制御してやれば電解質として機能するため、水溶液系電
解質や溶融塩系電解質など流動性のある媒体を使う必要
がなく、電池自体をコンパクトに単純化して設計できる
ことも特徴である。
[0004] The solid polymer membrane functions satisfactorily even if it is thin, and since the electrolyte is fixed in the membrane, the solid polymer membrane functions as an electrolyte if the dew point in the battery is controlled. For example, there is no need to use a fluid medium, and the battery itself can be designed to be compact and simple.

【0005】固体高分子型燃料電池は、水素の流路を持
つセパレータ、燃料極、固体高分子膜、空気(酸素)
極、空気(酸素)の流路を持つセパレータよりなるサン
ドイッチ構造を単セルとして、実際にはこの単セルを積
層したスタックが用いられる。したがって、セパレータ
の両面は独立した流路を持ち、片面が水素、もう一方の
片面が空気および生成した水の流路となる。
A polymer electrolyte fuel cell includes a separator having a hydrogen flow path, a fuel electrode, a polymer electrolyte membrane, and air (oxygen).
In practice, a stack in which the single cells are stacked is used as a single cell having a sandwich structure including a pole and a separator having a flow path of air (oxygen). Therefore, both sides of the separator have independent flow paths, one side is a hydrogen path, and the other side is a flow path of air and generated water.

【0006】冷却用水溶液の沸点以下の領域で稼働する
固体高分子型燃料電池の構成材料としては、温度がさほ
ど高くないこと、その環境下で耐食性・耐久性を十分に
発揮させることが可能であること、さらに、任意の流路
形状を形成するため炭素系の材料を切削加工などにより
加工して使用されてきているが、より低コスト化や小型
化、すなわちセパレータの薄肉化を目指してステンレス
鋼やチタンの適用に関する技術開発が進んでいる。
As a constituent material of a polymer electrolyte fuel cell that operates in a region below the boiling point of an aqueous solution for cooling, the temperature is not so high, and it is possible to sufficiently exhibit corrosion resistance and durability under the environment. In addition, carbon-based materials have been used by machining, etc. to form an arbitrary flow path shape, but stainless steel has been used to reduce cost and size, that is, to make separators thinner. Technical development on the application of steel and titanium is progressing.

【0007】従来、燃料電池用ステンレス鋼としては、
特開平4−247852号、同4−358044号、同
7−188870号、同8−165546号、同8−2
25892号、同8−311620号などの公報に開示
されているように、高い耐食性が要求される溶融炭酸塩
環境で稼働する燃料電池用ステンレス鋼がある。また特
開平6−264193号、同6−293941号、同9
−67672号などの公報に開示されているように、数
百度の高温で稼働する固体電解質型燃料電池材料の発明
がなされてきた。
Conventionally, as stainless steel for fuel cells,
JP-A-4-247852, JP-A-4-358044, JP-A-7-188870, JP-A-8-165546 and JP-A-8-2
As disclosed in Japanese Patent Publication Nos. 25892 and 8-31620, there is a stainless steel for a fuel cell which operates in a molten carbonate environment where high corrosion resistance is required. JP-A-6-264193, JP-A-6-293954, and JP-A-6-293940
As disclosed in the official gazettes of US Pat. No. 6,672,672 and the like, the invention of a solid oxide fuel cell material operating at a high temperature of several hundred degrees has been made.

【0008】また特開平10−228914号公報に
は、単位電池の電極との接触抵抗の小さい燃料電池用セ
パレータを得ることを目的に、ステンレス鋼(SUS3
04)をプレス成形することにより内周部に多数個の凹
凸からなる膨出成形部を形成し、膨出成形部の膨出先端
側端面に0.01〜0.02μmの厚さの金メッキ層を
形成したことを特徴とする燃料電池用セパレータを提案
し、その使用法として燃料電池を形成する際に燃料電池
用セパレータを積層された単位電池の間に介在させ、単
位電池の電極と膨出成形部の膨出先端側端面に形成され
た金メッキ層とが当接するように配設し、燃料電池用セ
パレータと電極との間に反応ガス通路を画成する技術が
開示されている。
Japanese Patent Application Laid-Open No. Hei 10-228914 discloses a stainless steel (SUS3 stainless steel) for the purpose of obtaining a fuel cell separator having a small contact resistance with an electrode of a unit cell.
04) is press-formed to form a bulged portion formed of a large number of irregularities on the inner peripheral portion, and a gold plating layer having a thickness of 0.01 to 0.02 μm is formed on the bulging tip side end surface of the bulged portion. A fuel cell separator characterized in that a fuel cell separator is formed, and as a method of using the fuel cell separator, a fuel cell separator is interposed between the stacked unit cells when forming the fuel cell, and the electrodes of the unit cell are bulged. There is disclosed a technique in which a gold plating layer formed on an end surface of a bulging tip side of a molding portion is disposed so as to abut, and a reaction gas passage is defined between a fuel cell separator and an electrode.

【0009】しかし、この技術をもとに実際に固体高分
子型燃料電池を試作すると、以下4点の技術的問題があ
ることがわかった。 a)長期耐久性が求められる固体高分子型燃料電池の環
境において、ステンレス製セパレータの合金成分として
は一般汎用鋼種であるSUS304では不十分となる場
合があり、その対策としてCr,Ni,Moなどの含有
量を上げる必要がある。 b)Cr,Ni,Moなどの合金組成を上げたステンレ
ス鋼の場合、湿式の金メッキ法だけでは金メッキ層とス
テンレス鋼基板の間に、ステンレス鋼の不働態酸化皮膜
がメッキ処理中に完全に還元されずに残留し、ステンレ
ス鋼と金メッキ層の間の層間抵抗が生じ、電力ロスの原
因となることがある。その対策として、皮膜を除去しな
がら貴金属を付着させる必要がある。
However, when a polymer electrolyte fuel cell was actually manufactured on a trial basis based on this technique, it was found that there were the following four technical problems. a) In a polymer electrolyte fuel cell environment where long-term durability is required, SUS304, which is a general-purpose steel type, may not be sufficient as an alloy component of a stainless steel separator. Cr, Ni, Mo, etc. Need to be increased. b) In the case of stainless steel with an increased alloy composition of Cr, Ni, Mo, etc., the passive oxide film of the stainless steel is completely reduced between the gold plating layer and the stainless steel substrate by the wet gold plating method alone during the plating process. However, it may remain without being generated, causing interlayer resistance between the stainless steel and the gold plating layer, which may cause power loss. As a countermeasure, it is necessary to attach a noble metal while removing the film.

【0010】c)セパレータは、プレス成形により内周
部に多数個の凹凸からなる膨出成形部を形成した形を想
定しているが、実際に四周に平坦部をもつ当該部材の加
工を試みると、凹凸からなる膨出成形部において延性割
れを生じ、さらに、長期信頼性向上のために合金組成を
上げたステンレス鋼は、SUS304に比べ加工性が低
下することから、この形状にプレス成形することが困難
である。 d)セパレータは内周部に多数個の凹凸からなる膨出成
形部を形成した形を想定しており、セパレータと電極と
の間を反応ガスが自由に流れる構造となっているが、こ
の場合、ガスの流入口から流出口まで均一にガスを流す
ことが困難であり、反応効率が低下すること、またガス
の流速が低く、酸素側で生成した水を排出することが困
難になる、という問題がある。 発明者らは既に、前記a)やb)の問題点に対しては、
その解決手段を特願平11−62813号、同11−1
70142号などで提案している。
C) The separator is assumed to have a shape in which a bulge formed from a large number of irregularities is formed on the inner peripheral portion by press molding, but an attempt is made to actually process the member having flat portions on the four circumferences. Since ductile cracks occur in the bulge formed by irregularities, and the workability of stainless steel with an increased alloy composition for improving long-term reliability is lower than that of SUS304, press-forming into this shape is performed. It is difficult. d) The separator is assumed to have a shape in which a bulging portion formed of a large number of irregularities is formed on the inner peripheral portion, and the structure is such that a reaction gas freely flows between the separator and the electrode. It is difficult to flow the gas uniformly from the gas inlet to the gas outlet, reducing the reaction efficiency, and the gas flow rate is low, making it difficult to discharge water generated on the oxygen side. There's a problem. The inventors have already solved the above problems a) and b).
The solution is disclosed in Japanese Patent Application Nos. 11-62813 and 11-1.
No. 70142.

【0011】[0011]

【発明が解決しようとする課題】本発明は、前記c)お
よびd)の問題に鑑み、低コスト・高耐久型の固体高分
子型燃料電池に適用できる、プレス加工が可能なセパレ
ータ及び燃料電池を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems c) and d), the present invention provides a press-workable separator and a fuel cell which can be applied to a low cost and high durability type polymer electrolyte fuel cell. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】上述の課題を解決するた
め、固体高分子型燃料電池の作用原理に基づき、プレス
成型時の材料挙動を詳細に検討した結果、本発明を完成
させたもので、その要旨とするところは以下の通りであ
る。 (1)周辺部が平坦で、中央部に表裏面が異なるガスの
流路となる凸部と凹部からなる複数の連続的な溝を有
し、かつ溝端部の形状が傾斜していることを特徴とする
固体高分子型燃料電池用セパレータ。 (2)周辺の平坦部の両面をシールするシール部材を有
することを特徴とする前記(1)記載の固体高分子型燃
料電池用セパレータ。 (3)セパレータがステンレス鋼製もしくはチタン製で
あることを特徴とする前記(1)又は(2)記載の固体
高分子型燃料電池用セパレータ。 (4)溝端部の傾斜角を、溝ごとに変化させることを特
徴とする前記(1)〜(3)の何れか1項に記載の固体
高分子型燃料電池用セパレータ。 (5)溝ピッチP(mm)、肩部半径R(mm)、平行部長
さW(mm)、板厚t(mm)、材料の伸びEL(%)、降
伏応力YS(kgf/mm2 )として、溝深さH(mm)を次
式で計算される値以下とすることを特徴とする前記
(1)〜(4)の何れか1項に記載の固体高分子型燃料
電池用セパレータ。 H=2×W×(EL/YS)1.01×(R/t)0.318 ×
(1−W/P)2.66 (6)肩部半径R(mm)、平行部長さW(mm)、板厚t
(mm)、材料の伸びEL(%)、降伏応力YS(kgf/mm
2 )として、溝端部の傾斜角θ(度)を次式で計算され
る値以下とすることを特徴とする前記(1)〜(4)の
何れか1項に記載の固体高分子型燃料電池用セパレー
タ。 θ=90×(EL/YS)0.372 ×(R/t)0.270 ×
(W/t)-0.265 (7)溝の断面積を、流路の下流に行くに従い、次第に
広くすることを特徴とする前記(1)〜(4)の何れか
1項に記載の固体高分子型燃料電池用セパレータ。 (8)前記(1)〜(7)の何れか1項に記載の固体高
分子型燃料電池用セパレータを用いることを特徴とする
固体高分子型燃料電池。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has been completed as a result of a detailed study of material behavior during press molding based on the operating principle of a polymer electrolyte fuel cell. The summary is as follows. (1) The peripheral portion is flat, the central portion has a plurality of continuous grooves including convex portions and concave portions serving as gas flow paths having different front and back surfaces, and the shape of the groove end is inclined. Characteristic separator for polymer electrolyte fuel cell. (2) The separator for a polymer electrolyte fuel cell according to the above (1), further comprising a sealing member for sealing both surfaces of the peripheral flat portion. (3) The separator for a polymer electrolyte fuel cell according to the above (1) or (2), wherein the separator is made of stainless steel or titanium. (4) The separator for a polymer electrolyte fuel cell according to any one of (1) to (3), wherein the inclination angle of the groove end is changed for each groove. (5) Groove pitch P (mm), shoulder radius R (mm), parallel portion length W (mm), plate thickness t (mm), material elongation EL (%), yield stress YS (kgf / mm 2 ) The separator for polymer electrolyte fuel cells according to any one of the above (1) to (4), wherein the groove depth H (mm) is equal to or less than a value calculated by the following equation. H = 2 × W × (EL / YS) 1.01 × (R / t) 0.318 ×
(1-W / P) 2.66 (6) Shoulder radius R (mm), parallel portion length W (mm), plate thickness t
(Mm), material elongation EL (%), yield stress YS (kgf / mm
2 ) The solid polymer fuel according to any one of (1) to (4), wherein the inclination angle θ (degree) of the groove end is set to be equal to or less than a value calculated by the following equation. Battery separator. θ = 90 × (EL / YS) 0.372 × (R / t) 0.270 ×
(7) The solid height according to any one of (1) to (4), wherein the cross-sectional area of the groove is gradually increased toward the downstream of the flow path. Separator for molecular fuel cells. (8) A polymer electrolyte fuel cell using the polymer electrolyte fuel cell separator according to any one of (1) to (7).

【0013】[0013]

【発明の実施の形態】以下に図面を用いて詳細を説明す
る。前記(1)〜(4)記載のセパレータ1の平面図の
例を図1に、また溝端部6におけるセパレータ1、シー
ル板10、および電極である炭素繊維集電体11の具体
的積層構造の一例を図2および図3に示す。ここで、ガ
スの流入孔2,3から供給された水素を含む燃料ガス又
は酸素(空気)が、それぞれセパレータの凹部表面側7
のみ又は凸部裏面側8のみを流れ、流出孔4又は5から
排出される。溝端部における表面側のガスの流れを図2
中に矢印で示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details will be described below with reference to the drawings. FIG. 1 shows an example of a plan view of the separator 1 described in the above (1) to (4), and a specific laminated structure of the separator 1, the sealing plate 10, and the carbon fiber current collector 11 as an electrode at the groove end 6. One example is shown in FIGS. Here, the fuel gas or the oxygen (air) containing hydrogen supplied from the gas inflow holes 2 and 3 is respectively supplied to the concave surface side 7 of the separator.
And flows only through the back surface 8 of the convex portion and is discharged from the outflow holes 4 or 5. Fig. 2 shows the flow of gas on the surface side at the groove end.
Shown by arrows inside.

【0014】溝端部において、凸部および凹部の傾斜角
を、1本おきに緩急差をつけることにより、ガスが下流
側へ短絡することを抑制し、溝端部で折り返し、セパレ
ータのガス流路全面にわたり、ほぼ一筆書きの形状で均
一にガスを流すことが可能である。またガスの流速を上
げられることから、酸素側で生成された水の排出も容易
となる。シール板10は、セパレータ1の溝高さより僅
かに厚く、シール板の中央部くり抜き部の端面の角度
を、前述した溝端部の最大傾斜角より僅かに大きくする
ことにより、ガスの下流側への短絡はさらに抑制され
る。
At the end of the groove, the inclination angle of the projections and the depressions is made to have a steep or steep difference every other line so that short-circuiting of the gas to the downstream side is suppressed. It is possible to flow the gas uniformly in a substantially one-stroke shape. Further, since the flow rate of the gas can be increased, the water generated on the oxygen side can be easily discharged. The seal plate 10 is slightly thicker than the groove height of the separator 1 and the angle of the end face of the central hollow portion of the seal plate is made slightly larger than the above-mentioned maximum inclination angle of the groove end portion, so that the gas toward the downstream side of the gas flows toward the downstream side. Short circuits are further suppressed.

【0015】図4および図5には、溝端部において、凸
部および凹部の傾斜角を4本おきに緩急差をつける溝配
列の例を示す。溝端部における表面側のガスの流れを図
5中に矢印で示す。この例では、2本の溝を並列にガス
が流れ、端部の折り返し部では、ガスが混合され、再び
2本に分岐して流れる流路構造を形成する。前述した図
1の配列に比較して、溝の平行部における流速は若干低
下するが、圧損が少なくなるという効果が得られる。い
うまでもなく、緩急差をつける溝配列は、ここで示され
た2例に限定されるものではなく、ガスの供給装置の能
力、発電効率等から任意に選択されるべきものである。
このように溝端部に緩急差をつけることにより、多様な
流路パターンを形成できる。
FIGS. 4 and 5 show examples of groove arrangements in which the inclination angles of the convex portions and the concave portions are gradually and steeply changed every four lines at the groove end. The flow of gas on the surface side at the end of the groove is indicated by an arrow in FIG. In this example, the gas flows in parallel through the two grooves, and the gas is mixed at the folded portion at the end to form a flow path structure that branches and flows again into two. Compared with the arrangement of FIG. 1 described above, the flow velocity in the parallel portion of the groove is slightly reduced, but the effect of reducing the pressure loss is obtained. Needless to say, the arrangement of the grooves providing the steepness difference is not limited to the two examples shown here, and should be arbitrarily selected from the capacity of the gas supply device, the power generation efficiency, and the like.
Thus, by providing a gentle and sharp difference at the end of the groove, various flow path patterns can be formed.

【0016】セパレータの材質は、電子伝導性、耐食
性、気密性の観点から、グラファイト板、金属板等を使
用できるが、薄くできてプレス加工が可能なステンレス
鋼製又はチタン製であることが好ましい。
The material of the separator may be a graphite plate, a metal plate, or the like from the viewpoints of electron conductivity, corrosion resistance, and airtightness, but is preferably made of stainless steel or titanium, which can be made thin and can be pressed. .

【0017】図6には、前記(1)〜(4)記載のセパ
レータおよびシール板を用いた、前記(6)記載の燃料
電池スタックの構造を示す。セパレータ1、シール板1
0、電極である炭素繊維集電体11の積層構造で、両面
に電極触媒が塗布された固体高分子膜12をサンドイッ
チすることで、単セルが形成される。図中のAサイクル
を繰り返し積層することで燃料電池スタックが構成され
る。また、固体高分子型燃料電池においては反応に伴う
発熱があり、固体高分子膜を適切な温度に保つためにス
タックを冷却する必要があるが、このセパレータの溝は
冷却水の流路とすることも可能であり、スタックサイク
ルの適当な間隔で、冷却水流路を含むBサイクルを挿入
することで、スタックの冷却が可能となる。
FIG. 6 shows the structure of the fuel cell stack according to the above (6) using the separator and the sealing plate according to the above (1) to (4). Separator 1, seal plate 1
0, a single cell is formed by sandwiching the solid polymer film 12 having an electrode catalyst coated on both sides in the laminated structure of the carbon fiber current collector 11 as an electrode. The fuel cell stack is formed by repeatedly stacking the cycle A in the figure. Further, in the polymer electrolyte fuel cell, there is heat generated by the reaction, and it is necessary to cool the stack in order to keep the solid polymer membrane at an appropriate temperature. It is also possible to cool the stack by inserting a B cycle including a cooling water channel at an appropriate interval of the stack cycle.

【0018】シール板の材質は、適度な弾性を有し、冷
却水の沸点以下で分解・塑性変形が起きない材料であれ
ばよく、シリコン樹脂、ブタジエンゴム系樹脂、フッ素
系樹脂などが適用可能で、溝高さより僅かに厚いシール
板を締め付けることによりガスがシールされ、また適度
な弾性を有することで、セパレータ等の微小な変形にも
追従することが可能となる。図中、固体高分子膜を挟ん
で、水素側および酸素側の流路が対向する形式としてい
るが、これに限定されることなく、両者が交差する形式
でもかまわない。
The material of the seal plate may be a material having a suitable elasticity and not decomposing or plastically deforming below the boiling point of the cooling water. Silicon resin, butadiene rubber resin, fluorine resin and the like can be used. Thus, the gas is sealed by tightening the seal plate slightly thicker than the groove height, and it has a suitable elasticity, so that it is possible to follow a minute deformation of the separator or the like. In the figure, the hydrogen-side and oxygen-side flow paths are opposed to each other with a solid polymer film interposed therebetween. However, the present invention is not limited to this.

【0019】図7には、前記(5)記載の溝の断面形状
を示す。セパレータの溝周期は、ガス供給の均一性と集
電効率の観点からより小さいことが望ましく、また接触
抵抗低減の観点から、電極との接触面積が大きいことが
望ましいが、板厚に比較して溝周期が小さくなると、曲
げ歪みが増加し、また、接触面積を増やすために角の曲
率半径を小さくしたり、平行部の長さを大きくすること
によっても歪みが増加し、加工中に破断して成形が困難
となる。一般には、溝周期は2〜3mmで、溝深さは最大
1mm程度のものが燃料電池用セパレータの流路として使
われるが、板厚0.1〜0.3mm程度の金属板を成形す
ると、板厚に比較して溝形状が微細で、角部の曲げ歪み
が大きくなり、成形中に角部で破断することが多かっ
た。
FIG. 7 shows a cross-sectional shape of the groove described in the above (5). The groove period of the separator is desirably smaller from the viewpoint of gas supply uniformity and current collection efficiency, and from the viewpoint of reducing contact resistance, the contact area with the electrode is desirably large, but compared with the plate thickness. As the groove period decreases, bending strain increases, and the distortion also increases by reducing the radius of curvature of the corner to increase the contact area or increasing the length of the parallel part, causing breakage during processing. Molding becomes difficult. Generally, a groove having a groove cycle of 2 to 3 mm and a groove depth of about 1 mm at the maximum is used as a flow path of a fuel cell separator. However, when a metal plate having a plate thickness of about 0.1 to 0.3 mm is formed, The groove shape was fine compared to the plate thickness, the bending distortion at the corners was large, and the corners were often broken during molding.

【0020】そこで、種々の形状について金型を試作
し、種々の材料を用いてプレスを行った結果、材料の板
厚、伸び、降伏応力に対して、溝周期、溝深さ、肩部曲
率半径、平行部長さを、適切な関係を保つように金型を
設計すれば、成形可能であることを見いだした。具体的
には、溝ピッチP(mm)、肩部半径R(mm)、平行部長
さW(mm)、板厚t(mm)、材料の伸びEL(%)、降
伏応力YS(kgf/mm2 )として、溝深さH(mm)が次式
で計算される値以下であれば破断することはなく、また
次式で計算される値程度にすることで、流路の断面積も
確保できることを見いだした。 H=2×W×(EL/YS)1.01×(R/t)0.318 ×
(1−W/P)2.66
Therefore, as a result of trial production of molds of various shapes and pressing using various materials, groove period, groove depth, shoulder curvature with respect to the material thickness, elongation and yield stress were determined. It has been found that the mold can be formed if the mold is designed so that the radius and the length of the parallel portion maintain an appropriate relationship. Specifically, groove pitch P (mm), shoulder radius R (mm), parallel portion length W (mm), plate thickness t (mm), material elongation EL (%), yield stress YS (kgf / mm) 2 ) As long as the groove depth H (mm) is less than the value calculated by the following equation, it will not break. I found what I could do. H = 2 × W × (EL / YS) 1.01 × (R / t) 0.318 ×
(1-W / P) 2.66

【0021】図8には、前記(6)記載の溝端部の形状
を示す。溝端部の形状すなわち傾斜角度は、ガスが下流
側へ短絡することを抑制する観点からは直角であること
が望ましいが、上述したように、傾斜角度を大きくする
と角部での曲げ歪みが大きくなり、成形中に角部で破断
することが多かった。そこで、種々の形状について金型
を試作し、種々の材料を用いてプレスを行った結果、材
料の板厚、伸び、降伏応力に対して、肩部曲率半径、平
行部長さを、適切な関係を保つように金型を設計すれ
ば、成形可能であることを見いだした。具体的には、肩
部半径R(mm)、平行部長さW(mm)、板厚t(mm)、
材料の伸びEL(%)、降伏応力YS(kgf/mm2 )とし
て、溝端部の傾斜角θ(度)が次式で計算される値以下
であれば、破断することはなく、また次式で計算される
値程度にすることで、ガスの下流側への短絡も低く抑え
られることを見いだした。 θ=90×(EL/YS)0.372 ×(R/t)0.270 ×
(W/t)-0.265
FIG. 8 shows the shape of the groove end described in the above (6). The shape of the groove end, that is, the inclination angle, is desirably a right angle from the viewpoint of suppressing the gas from short-circuiting to the downstream side, but as described above, increasing the inclination angle increases bending distortion at the corner. In many cases, breakage occurred at corners during molding. Therefore, prototypes of molds of various shapes were produced and pressed using various materials.As a result, the thickness of the material, the elongation, and the yield stress, the shoulder radius of curvature and the length of the parallel portion were appropriately determined. If a mold is designed so that it can be maintained, it can be molded. Specifically, shoulder radius R (mm), parallel portion length W (mm), plate thickness t (mm),
If the inclination angle θ (degree) of the groove end is not more than the value calculated by the following equation as the material elongation EL (%) and the yield stress YS (kgf / mm 2 ), there is no breakage and the following equation It was found that by setting the value to about the value calculated in the above, the short circuit of the gas to the downstream side can be suppressed low. θ = 90 × (EL / YS) 0.372 × (R / t) 0.270 ×
(W / t) -0.265

【0022】図9には、前記(7)記載の溝の断面積
を、流路の下流に行くに従い次第に大きくする溝配列の
例を示す。一般にガスの圧力は、流路に沿って下流に行
くに従って圧力損失により低下する。一方、触媒反応効
率の観点からは圧力が高い方が望ましく、また固体高分
子膜の強度の観点からは、水素側と酸素側の圧力差は小
さいことが望ましい。そこで、流路の断面積を流路の下
流に行くに従って次第に大きくすることにより、圧力低
下を低減することが可能となり、ガス供給のためのポン
プの能力を上げることなく、また固体高分子膜両面の圧
力差を低減することが可能となる。図では流路の幅を次
第に広げる形式を示しているが、流路の深さを次第に深
くするか、あるいは両者を同時に変化させてもかまわな
い。また、流路の幅や深さを漸増/漸減させる場合に
は、プレス成形加工において周囲からの材料の流入が促
進され、成形が容易になるという効果もある。
FIG. 9 shows an example of a groove arrangement in which the cross-sectional area of the groove described in (7) is gradually increased toward the downstream of the flow path. Generally, the pressure of the gas decreases due to pressure loss as it goes downstream along the flow path. On the other hand, it is desirable that the pressure be higher from the viewpoint of catalytic reaction efficiency, and that the pressure difference between the hydrogen side and the oxygen side be small from the viewpoint of the strength of the solid polymer membrane. Therefore, by gradually increasing the cross-sectional area of the flow passage toward the downstream of the flow passage, it is possible to reduce the pressure drop, without increasing the capacity of the pump for gas supply, and on both sides of the solid polymer membrane. Can be reduced. Although the figure shows a form in which the width of the flow path is gradually widened, the depth of the flow path may be gradually increased, or both may be changed simultaneously. In addition, when the width and depth of the flow path are gradually increased / decreased, the flow of material from the surroundings is promoted in the press forming, and there is also an effect that the forming is facilitated.

【0023】[0023]

【実施例】上述の発明を元に固体高分子型燃料電池を試
作し、ガスシール性能や発電性能を確認した。図10
は、図6に示した構成により積み上げた燃料電池スタッ
クであり、図6における上下方向が図10の矢印により
示されている。各部材の四周に位置決めと全圧をかける
目的でボルト穴を配し、高張力ボルトと剛性のある終端
板を用いてスタックの締め付けを行ったが、この図中に
はその様子を省略してある。スタックサイクルは図6に
示すAサイクルを4回毎にBサイクルを1回の割合で繰
り返し、単セルを合計200段積み上げる構成とした。
燃料電池の大きさは縦250mm×横250mm×高さ15
0mmとした。
EXAMPLE A polymer electrolyte fuel cell was prototyped based on the above-mentioned invention, and gas sealing performance and power generation performance were confirmed. FIG.
Are fuel cell stacks stacked by the configuration shown in FIG. 6, and the vertical direction in FIG. 6 is indicated by an arrow in FIG. Bolt holes were placed on the four circumferences of each member for the purpose of positioning and applying full pressure, and the stack was tightened using high-tensile bolts and rigid end plates, but this state is omitted in this figure. is there. The stack cycle was configured such that the A cycle shown in FIG. 6 was repeated every four times and the B cycle was repeated once, and a total of 200 single cells were stacked.
The size of the fuel cell is 250 mm long x 250 mm wide x 15 height
0 mm.

【0024】1枚のセパレータの流路部分の大きさは1
00mm×200mmとし、セパレータには、板厚0.2mm
の20Cr−15Ni−3Mo系オーステナイト系ステ
ンレス鋼を用い、固体高分子膜、電極触媒および炭素繊
維集電体は、市販のそれぞれパーフルオロスルホン酸系
イオン交換膜、カーボンブラックに白金を担持したも
の、多孔質カーボンペーパーを用いて、固体高分子燃料
電池を試作した。またセパレータの溝形状は次のよう
に、溝ピッチが一定のものと、下流側に行くに従いピッ
チが増大する、2種類のものを試作し、プレス成形によ
り加工を行った。
The size of the flow path portion of one separator is 1
00 mm x 200 mm, and the separator has a plate thickness of 0.2 mm
Using 20Cr-15Ni-3Mo-based austenitic stainless steel, the solid polymer membrane, the electrode catalyst and the carbon fiber current collector are commercially available perfluorosulfonic acid-based ion-exchange membranes, carbon black carrying platinum, A prototype of a polymer electrolyte fuel cell was fabricated using porous carbon paper. The groove shape of the separator was as follows, and two types of grooves having a constant groove pitch and a pitch increasing toward the downstream side were prototyped and processed by press molding.

【0025】溝配列として、実施例1は図1,図2,図
3に示す1本の溝を一筆書きの形状で流れるものとし、
端部傾斜角θの小さい方は5.7度(=0.5/5.
0)とした。また、実施例2では図9に示したと同様
に、1本の溝を一筆書きの形状で流れるものとし、端部
傾斜角θの小さい方は5.7度とした。またシール板に
は0.6mm厚のシリコーン樹脂を用いた。
In the groove arrangement, in the first embodiment, one groove shown in FIGS. 1, 2 and 3 flows in a one-stroke shape,
The smaller one of the end inclination angles θ is 5.7 degrees (= 0.5 / 5.
0). Further, in Example 2, as in the case shown in FIG. 9, it is assumed that one groove flows in a one-stroke shape, and the smaller one of the end inclination angles θ is 5.7 degrees. A 0.6 mm thick silicone resin was used for the seal plate.

【0026】図10の冷却水導入口17および冷却水排
出口18には、スタック側面から冷却水を供給・排出す
るための側面キャップを配し、スタックと接するキャッ
プ端部はシリコーン樹脂により水漏れしないようシール
した。13および15はそれぞれ燃料ガスの導入・排出
口であり、14および16は空気ガスの導入・排出口で
ある。
A cooling water inlet 17 and a cooling water outlet 18 shown in FIG. 10 are provided with side caps for supplying and discharging cooling water from the side surfaces of the stack. Sealed not to. Reference numerals 13 and 15 denote fuel gas inlet / outlet ports, respectively, and reference numerals 14 and 16 denote air gas inlet / outlet ports.

【0027】セパレータのプレス加工においては、破断
することなく成形され、このように試作した固体高分子
型燃料電池を80℃で稼働させ、燃料ガスである水素お
よび空気を90℃で加湿して供給することで電力発生を
行わせた。いずれの固体高分子型燃料電池においても、
ガス漏れや水漏れは発生せず、さらには開放電圧で約9
0V、短絡電流で約100Aの電力発生を確認した。こ
のように、本発明のセパレータを用いて燃料電池として
良好に機能することが確認された。
In the press working of the separator, the polymer electrolyte fuel cell fabricated without breaking is operated at 80 ° C., and hydrogen and air as fuel gas are humidified and supplied at 90 ° C. To generate power. In any polymer electrolyte fuel cell,
No gas leakage or water leakage occurs, and about 9 at open voltage
It was confirmed that about 100 A of power was generated at 0 V and a short-circuit current. Thus, it was confirmed that the separator of the present invention functions well as a fuel cell.

【0028】[0028]

【発明の効果】本発明は、固体高分子型燃料電池用セパ
レータとして高耐食ステンレス鋼やチタンのプレス成形
加工を可能にするものであり、低コスト固体高分子型燃
料電池を実現する技術として極めて有効なものである。
Industrial Applicability The present invention enables press forming of high corrosion resistant stainless steel or titanium as a separator for a polymer electrolyte fuel cell, and is extremely useful as a technology for realizing a low cost polymer electrolyte fuel cell. It is valid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセパレータの平面図の例である。FIG. 1 is an example of a plan view of a separator of the present invention.

【図2】本発明のセパレータを用いた積層構造の例を示
す模式図である。
FIG. 2 is a schematic diagram showing an example of a laminated structure using the separator of the present invention.

【図3】本発明のセパレータの溝端部の平面拡大図、お
よび本発明のセパレータを用いた積層構造の断面図であ
る。
FIG. 3 is an enlarged plan view of a groove end of the separator of the present invention, and a cross-sectional view of a laminated structure using the separator of the present invention.

【図4】本発明の別のセパレータの平面図の例である。FIG. 4 is an example of a plan view of another separator of the present invention.

【図5】本発明の別のセパレータの溝端部の拡大図であ
る。
FIG. 5 is an enlarged view of a groove end of another separator of the present invention.

【図6】本発明のセパレータを用いて固体高分子型燃料
電池スタックを構築する一例を示した模式図である。
FIG. 6 is a schematic view showing an example of constructing a polymer electrolyte fuel cell stack using the separator of the present invention.

【図7】本発明のセパレータの断面形状を示す模式図で
ある。
FIG. 7 is a schematic diagram showing a cross-sectional shape of the separator of the present invention.

【図8】本発明のセパレータの溝端部形状を示す模式図
である。
FIG. 8 is a schematic view showing a groove end shape of the separator of the present invention.

【図9】本発明のセパレータの別の例を示す平面図であ
る。
FIG. 9 is a plan view showing another example of the separator of the present invention.

【図10】本発明を適用して試作した固体高分子型燃料
電池の一例を示す外観模式図である。
FIG. 10 is a schematic external view showing an example of a polymer electrolyte fuel cell experimentally produced by applying the present invention.

【符号の説明】[Explanation of symbols]

1:セパレータ 2:燃料ガス流入孔 3:酸素(空気)流入孔 4:燃料ガス流出孔 5:酸素(空気)流出孔 6:溝端部 7:凹部(燃料ガス流路) 8:凸部(酸素(空
気)流路) 9:セパレータ四周平坦部 10:シール板 11:電極(炭素繊維集電体) 12:固体高分子膜 13:燃料ガス導入口 14:酸素(空気)導
入口 15:燃料ガス排出口 16:酸素(空気)お
よび生成水排出口 17:冷却水導入口 18:冷却水排出口 19:ガスの流れ
1: separator 2: fuel gas inflow hole 3: oxygen (air) inflow hole 4: fuel gas outflow hole 5: oxygen (air) outflow hole 6: groove end 7: concave portion (fuel gas flow path) 8: convex portion (oxygen (Air channel) 9: Four-round flat portion of separator 10: Seal plate 11: Electrode (carbon fiber current collector) 12: Solid polymer film 13: Fuel gas inlet 14: Oxygen (air) inlet 15: Fuel gas Outlet 16: Oxygen (air) and generated water outlet 17: Cooling water inlet 18: Cooling water outlet 19: Gas flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 波江野 勉 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 紀平 寛 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 5H026 AA06 CC03 EE02 EE08 HH02 HH03  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Tsutomu Hatano 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Division (72) Inventor Hiroshi Kihira 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation F-term in the Company Technology Development Division (reference) 5H026 AA06 CC03 EE02 EE08 HH02 HH03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 周辺部が平坦で、中央部に表裏面が異な
るガスの流路となる凸部と凹部からなる複数の連続的な
溝を有し、かつ溝端部の形状が傾斜していることを特徴
とする固体高分子型燃料電池用セパレータ。
1. A peripheral portion is flat, a central portion has a plurality of continuous grooves formed of a convex portion and a concave portion having different gas flow paths on the front and back surfaces, and the shape of the groove end is inclined. A separator for a polymer electrolyte fuel cell, comprising:
【請求項2】 周辺の平坦部の両面をシールするシール
部材を有することを特徴とする請求項1記載の固体高分
子型燃料電池用セパレータ。
2. The separator for a polymer electrolyte fuel cell according to claim 1, further comprising a sealing member for sealing both surfaces of the peripheral flat portion.
【請求項3】 セパレータがステンレス鋼製もしくはチ
タン製であることを特徴とする請求項1又は2記載の固
体高分子型燃料電池用セパレータ。
3. The separator for a polymer electrolyte fuel cell according to claim 1, wherein the separator is made of stainless steel or titanium.
【請求項4】 溝端部の傾斜角を、溝ごとに変化させる
ことを特徴とする請求項1〜3の何れか1項に記載の固
体高分子型燃料電池用セパレータ。
4. The polymer electrolyte fuel cell separator according to claim 1, wherein the inclination angle of the groove end is changed for each groove.
【請求項5】 溝ピッチP(mm)、肩部半径R(mm)、
平行部長さW(mm)、板厚t(mm)、材料の伸びEL
(%)、降伏応力YS(kgf/mm2 )として、溝深さH
(mm)を次式で計算される値以下とすることを特徴とす
る請求項1〜4の何れか1項に記載の固体高分子型燃料
電池用セパレータ。 H=2×W×(EL/YS)1.01×(R/t)0.318 ×
(1−W/P)2.66
5. A groove pitch P (mm), a shoulder radius R (mm),
Parallel part length W (mm), plate thickness t (mm), material elongation EL
(%), Yield stress YS (kgf / mm 2 ), groove depth H
The separator for a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein (mm) is equal to or less than a value calculated by the following equation. H = 2 × W × (EL / YS) 1.01 × (R / t) 0.318 ×
(1-W / P) 2.66
【請求項6】 肩部半径R(mm)、平行部長さW(m
m)、板厚t(mm)、材料の伸びEL(%)、降伏応力
YS(kgf/mm2 )として、溝端部の傾斜角θ(度)を次
式で計算される値以下とすることを特徴とする請求項1
〜4の何れか1項に記載の固体高分子型燃料電池用セパ
レータ。 θ=90×(EL/YS)0.372 ×(R/t)0.270 ×
(W/t)-0.265
6. A shoulder radius R (mm) and a parallel portion length W (m
m), the thickness t (mm), the material elongation EL (%), and the yield stress YS (kgf / mm 2 ). Claim 1 characterized by the following:
The separator for a polymer electrolyte fuel cell according to any one of claims 4 to 4. θ = 90 × (EL / YS) 0.372 × (R / t) 0.270 ×
(W / t) -0.265
【請求項7】 溝の断面積を、流路の下流に行くに従
い、次第に広くすることを特徴とする請求項1〜4の何
れか1項に記載の固体高分子型燃料電池用セパレータ。
7. The polymer electrolyte fuel cell separator according to claim 1, wherein the cross-sectional area of the groove is gradually increased as it goes downstream of the flow path.
【請求項8】 請求項1〜7の何れか1項に記載の固体
高分子型燃料電池用セパレータを用いることを特徴とす
る固体高分子型燃料電池。
8. A polymer electrolyte fuel cell using the polymer electrolyte fuel cell separator according to any one of claims 1 to 7.
JP2000206602A 2000-07-07 2000-07-07 Separator for polymer electrolyte fuel cell and fuel cell Expired - Fee Related JP3400976B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000206602A JP3400976B2 (en) 2000-07-07 2000-07-07 Separator for polymer electrolyte fuel cell and fuel cell
CA002352443A CA2352443C (en) 2000-07-07 2001-07-05 Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
DE10132841A DE10132841B4 (en) 2000-07-07 2001-07-06 Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
US09/900,657 US6709781B2 (en) 2000-07-07 2001-07-06 Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206602A JP3400976B2 (en) 2000-07-07 2000-07-07 Separator for polymer electrolyte fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2002025586A true JP2002025586A (en) 2002-01-25
JP3400976B2 JP3400976B2 (en) 2003-04-28

Family

ID=18703496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206602A Expired - Fee Related JP3400976B2 (en) 2000-07-07 2000-07-07 Separator for polymer electrolyte fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP3400976B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069440A1 (en) * 2005-12-16 2007-06-21 Toyota Jidosha Kabushiki Kaisha Separator for fuel cells
US7285352B2 (en) 2002-12-02 2007-10-23 Sanyo Electric Co., Ltd. Separator for fuel cell and fuel cell therewith
EP1852931A1 (en) * 2006-05-03 2007-11-07 Samsung SDI Co., Ltd. Separator for Fuel Cell
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
JP2017502473A (en) * 2014-01-07 2017-01-19 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Flow guide plate for fuel cell
JP2018097977A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Fuel cell separator and fuel cell
JP2021099975A (en) * 2019-12-24 2021-07-01 トヨタ車体株式会社 Separator for fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285352B2 (en) 2002-12-02 2007-10-23 Sanyo Electric Co., Ltd. Separator for fuel cell and fuel cell therewith
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8304141B2 (en) 2005-06-22 2012-11-06 Sintokogio Ltd. Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
WO2007069440A1 (en) * 2005-12-16 2007-06-21 Toyota Jidosha Kabushiki Kaisha Separator for fuel cells
US8012645B2 (en) 2005-12-16 2011-09-06 Toyota Jidosha Kabushiki Kaisha Separator of fuel cell
EP1852931A1 (en) * 2006-05-03 2007-11-07 Samsung SDI Co., Ltd. Separator for Fuel Cell
JP2007299726A (en) * 2006-05-03 2007-11-15 Samsung Sdi Co Ltd Separator for fuel cell
JP2017502473A (en) * 2014-01-07 2017-01-19 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Flow guide plate for fuel cell
JP2018097977A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Fuel cell separator and fuel cell
JP2021099975A (en) * 2019-12-24 2021-07-01 トヨタ車体株式会社 Separator for fuel cell
WO2021131138A1 (en) * 2019-12-24 2021-07-01 トヨタ車体株式会社 Separator for fuel battery

Also Published As

Publication number Publication date
JP3400976B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
US6709781B2 (en) Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
US8371587B2 (en) Metal bead seal for fuel cell plate
JP4899339B2 (en) Fuel cell separator
JP2002313354A (en) Manufacturing method and device for separator for solid polymer fuel cell
JP2002190305A (en) Manufacturing apparatus for solid polymer fuel cell separator
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
EP2022119B1 (en) Fuel cell, fuel cell stack and method of manufacturing the same
JP2002184422A (en) Separator for fuel cell
JP2000260439A (en) Stainless steel separator for solid polymer fuel cell, spacer, polymer film, and solid polymer fuel cell
JP3400976B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP4700393B2 (en) Multi-stage roll forming equipment
JP4041308B2 (en) Fuel cell separator
JPS6386361A (en) Manufacture of separator for stacked fuel cell and its structure
JP4046550B2 (en) Solid polymer fuel cell metal separator with less warpage and method for producing the same
JP2000323149A (en) Separator for fuel cell and manufacturing device thereof
CN111540923A (en) Fuel cell flow field structure, cathode plate, fuel cell bipolar plate and fuel cell
JP5169480B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP4110626B2 (en) Manufacturing method of current collector for fuel cell
JP2004119235A (en) Separator for solid polymer fuel cell, its manufacturing device and manufacturing method
JP6068218B2 (en) Operation method of fuel cell
JP2012089387A (en) Fuel battery cell, fuel battery stack, and separator
JP4180929B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP4451964B2 (en) Separator for polymer electrolyte fuel cell, gas channel spacer and polymer electrolyte fuel cell
CN2514499Y (en) Double polar plate for directly connecting methanol fuel cell to promote methanol utilization
JP2004134090A (en) Manufacturing method and manufacturing device of stainless steel separator for solid polymer fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030114

R151 Written notification of patent or utility model registration

Ref document number: 3400976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees