JP2004134090A - Manufacturing method and manufacturing device of stainless steel separator for solid polymer fuel cell - Google Patents

Manufacturing method and manufacturing device of stainless steel separator for solid polymer fuel cell Download PDF

Info

Publication number
JP2004134090A
JP2004134090A JP2002294450A JP2002294450A JP2004134090A JP 2004134090 A JP2004134090 A JP 2004134090A JP 2002294450 A JP2002294450 A JP 2002294450A JP 2002294450 A JP2002294450 A JP 2002294450A JP 2004134090 A JP2004134090 A JP 2004134090A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
stainless steel
manufacturing
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002294450A
Other languages
Japanese (ja)
Other versions
JP3965102B2 (en
Inventor
Yuichi Yoshida
吉田 裕一
Noriyuki Suzuki
鈴木 規之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002294450A priority Critical patent/JP3965102B2/en
Publication of JP2004134090A publication Critical patent/JP2004134090A/en
Application granted granted Critical
Publication of JP3965102B2 publication Critical patent/JP3965102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing device of a separator applicable to a low-cost and high-durability solid polymer fuel cell free from warping or rippling of the separator as a whole. <P>SOLUTION: In the manufacturing method of the stainless steel separator for the solid polymer fuel cell having a flat part at a periphery as well as a projection part and a recess part to become a gas flow channel at the part except the periphery, a material part fitted with the projection part and the recess part to become the gas flow channel is heated to 60°C to 150°C, a part or whole part of the material part to become the flat part at the periphery is cooled to 0°C to 20°C to give the material a temperature gradient, and is later overhung molded in a repeated cross section shape of a projection part and a recess part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電力を駆動源とする自動車、小規模の発電システムなどに用いられる固体高分子型燃料電池に用いられるステンレスセパレータの製造方法および装置に関する。
【0002】
【従来の技術】
環境保全に対する意識の高まりから、化石燃料を利用した現行の内燃機関から水素を利用した固体高分子型燃料電池による電気駆動型の自動車や、分散型コジェネシステムへの移行が世界的に検討されている。これらの新技術を広く一般に利用できるようにするためには、低コスト化と高信頼化に関わる技術開発を燃料供給システムも含めて推進する必要がある。
近年、固体高分子材料の開発成功を契機に電気自動車用燃料電池の開発が急速に進展し始めている。
【0003】
固体高分子型燃料電池とは、従来のアルカリ型燃料電池、燐酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池などと異なり、水素イオン選択透過型の有機物膜を電解質として用いることを特徴とする燃料電池であり、燃料には純水素のほか、アルコール類の改質によって得た水素ガスなどを用い、空気中の酸素との反応を電気化学的に制御することによって電力を取り出すシステムである。固体高分子膜は薄くても十分に機能し、電解質が膜中に固定されていることから、電池内の露点を制御すれば電解質として機能するため、水溶液系電解質や溶融塩系電解質など流動性のある媒体を使う必要がなく、電池自体をコンパクトに単純化して設計できることも特徴である。
固体高分子型燃料電池は、水素の流路を持つセパレータ、燃料極、固体高分子膜、空気(酸素)極、空気(酸素)の流路を持つセパレータよりなるサンドイッチ構造を単セルとして、実際にはこの単セルを積層したスタックが用いられる。したがって、セパレータの両面は独立した流路を持ち、片面が水素、もう一方の片面が空気および生成した水の流路となる。
【0004】
冷却用水溶液の沸点以下の領域で稼働する固体高分子型燃料電池の構成材料としては、温度がさほど高くないこと、その環境下で耐食性・耐久性を十分に発揮させることが可能であること、さらに、任意の流路形状を形成するため炭素系の材料を切削加工などにより加工して使用されてきているが、より低コスト化や小型化、すなわちセパレータの薄肉化を目指してステンレス鋼やチタンの適用に関する技術開発が進んでいる。
【0005】
従来、燃料電池用ステンレス鋼としては、特許文献1(特開平4−247852号公報)、特許文献2(特開平4−358044号公報)、特許文献3(特開平7−188870号公報)、特許文献4(特開平8−165546号公報)、特許文献5(特開平8−225892号公報)、特許文献6(特開平8−311620号公報)などに開示されているように、高い耐食性が要求される溶融炭酸塩環境で稼働する燃料電池用ステンレス鋼がある。
また、特許文献7(特開平6−264193号公報)、特許文献8(特開平6−293941号公報)、特許文献9(特開平9−67672号公報)などに開示されているように、数百度の高温で稼働する固体電解質型燃料電池材料の発明がなされてきた。
【0006】
さらに、特許文献10(特開平10−228914号公報)には、単位電池の電極との接触抵抗の小さい燃料電池用セパレータを得ることを目的に、ステンレス鋼(SUS304)を張出し成形(プレス成形ともいう)することにより、内周部に多数個の凹凸からなる膨出成形部を形成し、膨出成形部の膨出先端側端面に0.01〜0.02μmの厚さの金メッキ層を形成したことを特徴とする燃料電池用セパレータが開示され、その使用法として燃料電池を形成する際に燃料電池用セパレータを積層された単位電池の間に介在させ、単位電池の電極と膨出成形部の膨出先端側端面に形成された金メッキ層とが当接するように配設し、燃料電池用セパレータと電極との間に反応ガス通路を画成する技術が開示されている。また、特許文献11(特開平5−29009号公報)では、安価に加工するため、プレス加工した波形状の穴明きバイポーラ板が開示されている。ロールを用いた成形に関しては、特許文献12(特開2000−202532号公報)で、平板を金型に挟み込み、圧延ロールで金型を圧縮する製造方法が開示されている。
【0007】
また、温間加工に関しては、特許文献13(特開平6−234025号公報)で金型加熱用ヒーター,素材加熱用ヒーターにより大形部材を均熱化し、熱間加工のブロー成形,真空成形法より変形抵抗を小さくして大形部材を張出し加工する成形法が開示されており、特許文献14(特開平6−304672号公報)で、加熱した加圧媒体を用いて板材を加熱した高温バルジ成形法により、板材の大きな変形量を得ると共に、成形に要する加圧力を低減する成形方法が開示されている。さらに、特許文献15(特開平7−47431号公報)では、金型パンチに高圧高温気体吹出し口及び発熱体を設けたプレス成形金型装置を用いて、加工時の耐力を低下させ成形性を良くし、スプリングバックを減らす温間成形方法が開示されている。
【0008】
しかし、これらの技術をもとに実際に固体高分子型燃料電池を試作すると、以下の技術的問題があることがわかった。
a)セパレータはプレス成形により内周部に多数個の凹凸からなる膨出成形部を形成した形を想定しているが、実際に四周に平坦部をもつ当該部材の加工を試みると、凹凸からなる膨出成形部において延性割れを生じ、とくに凹凸部の角部は曲げ歪みが大きくなるため破断が生じ易い。さらに、長期信頼性向上のために合金組成を上げたステンレス鋼は、SUS304に比べ加工性が低下することから、この形状にプレス成形することが困難である。
b)プレス成形により凹凸の繰り返し形状を成形する方法は、セパレータが大型化すると、プレス荷重が増大して、大がかりな設備を要する。
c)金型をロールで圧縮する製造方法は、金型の開閉、材料ハンドリング等で、生産性が低いこと、また金型の剛性のため、圧下荷重を精度良く加えることが困難になる。
d)バルジ成形やブロー成形では片側方向に張出し成形するには適するが、凹凸の繰り返し形状を有するセパレータの張出し成形では、極薄板を両方向に均一に張出し成形することが困難になる。
e)ガス流路となる凸部及び凹部の周囲にある平坦部の材料が成形加工時、セパレータ周囲平坦部の波打ち形状が生じ、図2のごとく燃料電池スタックを構築した場合、密着性,シール性が悪化し、ガス漏れ,水漏れが発生する。
【0009】
【特許文献1】特開平4−247852号公報
【特許文献2】特開平4−358044号公報
【特許文献3】特開平7−188870号公報
【特許文献4】特開平8−165546号公報
【特許文献5】特開平8−225892号公報
【特許文献6】特開平8−311620号公報
【特許文献7】特開平6−264193号公報
【特許文献8】特開平6−293941号公報
【特許文献9】特開平9−67672号公報
【特許文献10】特開平10−228914号公報
【特許文献11】特開平5−29009号公報
【特許文献12】特開2000−202532号公報
【特許文献13】特開平6−234025号公報
【特許文献14】特開平6−304672号公報
【特許文献15】特開平7−47431号公報
【0010】
【発明が解決しようとする課題】
本発明は、前記の問題点に鑑み、低コスト・高耐久型の固体高分子型燃料電池に適用できる、割れ,破断が生じない安定した成形加工が可能であると共に、プレス荷重を軽減し、凹凸部を均一に成形し、周囲平坦部の波打ち形状の少ないセパレータの製造方法及びその製造装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述の課題を解決するため、固体高分子型燃料電池の作用原理に基づき、成形加工時の材料挙動を詳細に検討した結果、本発明を完成させたもので、その要旨とするところは以下の通りである。
(1)周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用ステンレスセパレータの製造方法において、材料を60℃〜150℃に加熱し、その後凸部と凹部の繰り返し断面形状に張出し成形することを特徴とする固体高分子型燃料電池用ステンレスセパレータ製造方法。
(2)周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用ステンレスセパレータの製造方法において、ガス流路となる凸部及び凹部を施される材料部分を60℃〜150℃に加熱し、周辺の平坦部となる材料部分の一部又は全部を前記加熱温度より40〜150℃低くなるように冷却して材料に温度勾配をつけて、その後凸部と凹部の繰り返し断面形状に張出し成形することを特徴とする固体高分子型燃料電池用セパレータ製造方法。
(3)周辺の平坦部となる材料部分の一部又は全部を0℃〜20℃に冷却することを特徴とする前記(1)記載の固体高分子型燃料電池用ステンレスセパレータ製造方法。
(4)前段に材料加熱装置を有し、後段にセパレータの凸部及び凹部の繰り返し断面形状と相似形の凹凸加工を表面に施した上下一対の圧下ロールを有することを特徴とする固体高分子型燃料電池用ステンレスセパレータ製造装置。
(5)前段に材料加熱装置と材料冷却装置を有し、後段にセパレータの凸部及び凹部の繰り返し断面形状と相似形の凹凸加工を表面に施した上下一対の圧下ロールを有することを特徴とする固体高分子型燃料電池用ステンレスセパレータ製造装置。
【0012】
【発明の実施の形態】
以下に、本発明の詳細について説明する。
前記のごとく、凹凸部の繰り返し断面形状を有するセパレータの成形過程において、周囲平坦部の波打ち形状が生じる問題が発生することがある。
本発明者らは、従来、被加工材料の変形抵抗の低減や、耐力を低下させることによるスプリングバックの低減の対策として用いられてきた温間加工に着目し、種々の形状についてロール金型を試作し、ロール金型の前段に材料を温間加熱する機能を設け成形加工を行った結果、セパレータ全体の波打ち、割れ、破断を低減できることを見出した。本発明に係るセパレータ1の断面図の例を図1に示す。ステンレス鋼は、流動応力の温度依存性が存在し、特にオーステナイト系のステンレス鋼はマルテンサイト相変態による加工硬化を室温で生じやすく、温間加工で相変態を抑制することにより流動性を向上することができる。また、フェライト系のステンレス鋼についても加工硬化の主因である転位の移動に基づくすべり変形も温度依存性を有するので、温間加工のより流動性が向上する。従って温間加工による流動性の向上により、変形抵抗が低下し、材料の伸びが向上するため、セパレータの凸部及び凹部の繰り返し断面形状を、割れ,破断が無く安定して成形加工することができる。温間加工の温度は、あまり上げすぎると軟化により破断力が低下し、温度が低すぎると流動性が向上しないので、60℃〜150℃が望ましい。
【0013】
本発明者らは、さらに、ガス流路となる凸部及び凹部に加工される部分のみを局所的に温間加熱し、周囲の平坦部20の一部又は全部を局所的に冷却して凹凸部の加熱温度より40〜150℃低くして、流動性を低下させて平坦部の材料が中央へ引き込まれないようにし、セパレータの波打ち形状を低減することができることを見出した。平坦部の温度が凹凸部の加熱温度より40℃以上低くないとセパレータの波打ち形状の低減が十分ではなく、凹凸部の加熱温度より150℃を超えて低いと加工しにくく、脆性破壊が生じ易くなるので、前記の温度範囲となるように平坦部の一部又は全部を冷却することが好ましい。平坦部を冷却する範囲は全部とすることが好ましいが、一部を冷却することでも上記の効果を得ることができる。また、一部を冷却する場合は、より中央部への引き込みが大きい凹凸部の溝形状の長手方向に平行な面を冷却することが好ましい。
周囲の平坦部の温度は、下げすぎると脆性破壊が生じるため、0℃〜20℃に冷却することが更に望ましい。
セパレータの材質は、電子伝導性、耐食性、気密性の観点から、グラファイト板、金属板等を使用できるが、薄くできてプレス加工が可能なステンレス鋼製とする。
【0014】
次に本発明の製造装置について説明する。
図3は、上ロール31a及び下ロール31bの中心軸からそれぞれ片側の断面形状の例を示したもので、周囲平坦部を圧延加工するためのロール平坦部41を有している。ロール平坦部41のロールギャップhは被加工物である板材料の元厚より小さく設定し、圧延加工が施せるようにしており、ロールギャップhは板材料の厚さの90.0〜99.8%が望ましい。中央部の凹凸加工部のロールギャップh1は頂部の平坦な接触抵抗の少ない(接触面積の大きい)良好なセパレータ形状が得られるために、被加工物である板材料の元厚さの70〜90%が望ましい。また、ロール平坦部41の幅Bは、過度に大きくするとロール胴長が長くなりロールたわみ量が増し、成形加工が不均一になる。ロール平坦部41の幅Bは、ロール中央凹凸部42の幅B1に対して5〜20%が望ましい。
【0015】
図4には、表面に凹凸の加工を施してある一対の成形用圧下ロール31a、31bで、圧下して表面の凹凸部35の模様を板材料に転写させながら回転することにより、セパレータを連続的に製造する製造装置のうち圧下ロールの例を示す。成形用圧下ロール31a、31bの直前には、板材料の蛇行を防ぐために、縦ロールの中央部に板厚程度の溝が切られたサイドガイド32a,32bが設けられている。
また、予め板材料の両端に一定のピッチでスプロケット穴33を打ち抜き加工しておき、スプロケットホイール34a、34bで位置決めする方式を用いることができる。図5にはスプロケットホイールによる位置決め機構の一例を示す。図中の矢印は、板材料の搬送方向を示す。ステンレスの板材料を、表面に凹凸の加工を施してある一対の成形用圧下ロール31a、31bで、圧下して表面の凹凸模様3を薄板に転写させながら回転することにより、セパレータを連続的に製造することができる。
【0016】
図6は、最終成形用圧下ロール表面形状の一例を示す模式図である。 成形用圧下ロール31a、31bの凹凸の形状は、圧下ロールの軸方向に沿って凸部及び凹部が繰り返し構造となっている。
【0017】
図7は、加熱ロール式の材料加熱装置51と成形用圧下ロール31a,31bを組み合わせた製造装置の模式図である。加熱ロール51はシーズヒーターをロールに組み込む電気加熱式や、油、温水などの熱媒体を循環させる熱媒循環式、蒸気加熱式等を用いる。加熱ロール51の接触面の材質は熱良導体の銅合金等が望ましい。加熱ロール51の設定温度は、板材料の加工温度、雰囲気温度、加熱ロール51と成形圧下ロール31a,31bとの距離L、通板速度等を考慮して決定する。
材料の全部を加熱するためには、加熱ロール51の幅を材料の幅以上とすれば良く、また、セパレータの凹凸部のみ加熱し、平坦部の一部又は全部を冷却するのであれば、加熱ロール51の対応する材料の幅のみ加熱手段を設ければ良く、平坦部に対応する箇所は所定の温度差が付くように、必要に応じて冷却手段を設ければ良い。
また、成形用圧下ロールに前記の加熱方式の温間加熱装置を組み込み、成形加工してもよい。
【0018】
図8は、温水シャワー式の材料加熱装置52と成形用圧下ロール31a,31bを組み合わせた製造装置の模式図である。
図9は、ヒーター式の材料加熱装置53と成形用圧下ロールを組み合わせた製造装置の模式図である。ヒーター53には、ランプヒーター、セラミックヒーター等を用いて局所的に加熱する。
図10は、加熱ロール式の材料加熱装置51及び材料冷却装置54と、成形用圧下ロール31a,31bを組あわせた製造装置の模式図である。図10においては材料加熱装置に加熱ロール51を用いているが、前記の温水シャワー式、ヒーター式、成形用圧下ロールに加熱装置を組み込んだ方式を用いてもよい。加熱ロール51および冷却ロール54の設定温度は、板材料の加工温度、雰囲気温度、加熱ロール51と冷却ロール54との距離L1、冷却ロール54と成形圧下ロール31a,31bとの距離L2、通板速度等を考慮して決定する。冷却ロールの冷却方式は、ガスや水などの冷媒を用いた方式を用いる。
【0019】
図11は、局所加熱ロール、図12は局所冷却ロールの概観図で、伝熱表面部55,56により材料を局所的に加熱および抜熱を行い、その他の部分は室温とする。伝熱表面部は、熱良導体の銅合金などで形成され、伝熱表面部の境界には断熱部57を設けることが好ましい。
【0020】
(実施例)
直径200mm、長さ300mmの一対の成形用圧下ロール表面に、図13に示すような凹凸パターンを機械加工により形成した。断面形状は図4に示すもので、凹凸部は幅250mm、長さ(弧長)150mmである。一方、成形用圧下ロールの凸部は、曲率半径0.5mmの凸形状であり、底部は幅0.5mmの平滑面で、溝深さは0.5mmである。また、ロールギャップhは0.095mm、ロール平坦部Bは30mmである。
図4、図10に示すような装置を用い、板幅290mm、板厚0.1mmのオーステナイト系ステンレス鋼SUS316のコイルから連続的に板を供給し、成形用上下圧下ロール31a,31bの凹凸部のロールギャップh1を0.08mmとして加工を行った。圧下ロールの材質はSKD11とした。また、加熱ロール51および冷却ロール54の伝熱表面55、56の材質は黄銅C2600とし、加熱ロール51は、直径100mm、長さ250mm、伝熱部幅W1は200mmとし、冷却ロール54は直径100mm、長さ100mm、伝熱部幅W2は25mmとした。加熱ロール51と冷却ロール54の間隔L1は50mm、冷却ロール54と上下圧下ロール31a,31bとの間隔L2は200mmとした。通板速度は400mm/sec,加熱ロール温度は110℃、冷却ロール温度は2℃に設定し、加熱又は冷却以外の部分は室温とした。成形加工時の板材料の温度は、中央部で約90℃、周辺平坦部で約10℃となった。上下圧下ロールはサーボモータによる回転同期手段を設け、ロール軸方向に相対変位を発生しないように、圧下ロールの軸受けに精度等級の高い玉軸受けを設けた。
【0021】
凹凸形状が割れ・破断を生ずることなく成形された板は、燃料ガスおよび冷却水等の導入および排出のための穴あけ加工を行った後、所定の長さ毎に切断し、単位セルのセパレータが製造できた。また切断後も、当初は数mm存在した波打ち形状は本装置を用いることにより、数μm以下となり、良好な形状が得られた。 その後、適当な表面処理等を施した後、燃料電池スタックを構成し性能試験を行ったところ、ガス漏れや水漏れも発生せず、本発明の製造方法によるセパレータを用いて燃料電池として良好に機能することが確認された。
本発明の方法による成形加工は、幅250mm×長さ150mmの同様の凹凸形状を、加熱及び冷却ロールを用いない通常のプレス加工で行った場合に比較すると、波打ちの発生率は1/1000以下に低下し、通常の1段プレスでは、約5000ton もの荷重が必要であったのに対して、本発明では約40ton 程度であり、極めて安価な装置で製造が可能である。
【0022】
【発明の効果】
本発明は、固体高分子型燃料電池用ステンレスセパレータの高精度なプレス成形加工を容易に可能にするものであり、低コスト固体高分子型燃料電池を実現する技術として極めて有効なものである。
【図面の簡単な説明】
【図1】本発明により製造したセパレータの断面図の例である。
【図2】本発明により製造したセパレータを用いて固体高分子型燃料電池スタックを構築する一例を示した模式図である。
【図3】本発明のうち、圧下ロールの断面形状の例を示す模式図である。
【図4】本発明に係るセパレータ製造装置のうち、圧下ロールの例を示す模式図である。
【図5】スプロケットホイールによる材料の位置決め機構の一例を示す模式図である。
【図6】本発明に係るセパレータ製造装置のうち、圧下ロール表面形状の一例を示す模式図である。
【図7】加熱ロール式の材料加熱装置と成形用圧下ロールを組み合わせた製造装置の模式図である。
【図8】温水シャワー式の材料加熱装置と成形用圧下ロールを組み合わせた製造装置の模式図である。
【図9】ヒーター式の材料加熱装置と成形用圧下ロールを組み合わせた製造装置の模式図である。
【図10】加熱ロール式の材料加熱装置及び材料冷却装置と、成形用圧下ロールを組み合わせた製造装置の模式図である。
【図11】局所加熱ロールの概観図である。
【図12】局所冷却ロールの概観図である。
【図13】本発明のうち、別の成形用圧下ロール表面形状の例を示す模式図である。
【符号の説明】
1:セパレータ
7:凹部(燃料ガス流路)    8:凸部(酸素(空気)流路)
9:セパレータ四周平坦部    10:シール板
11:電極(炭素繊維集電体)   12:固体高分子膜
20:平坦部
31a、31b:成形用圧下ロール
32a、32b:サイドガイド
33:スプロケット穴
34a、34b:スプロケットホイール
35:凹凸部
41:ロール平坦部
42:ロール中央凹凸部
43:凹凸加工部
51:加熱ロール
52:温水シャワー
53:ヒーター
54:冷却ロール
55:加熱ロールの伝熱表面
56:冷却ロールの伝熱表面
57:断熱部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a stainless steel separator used in a polymer electrolyte fuel cell used for an automobile driven by electric power, a small-scale power generation system, and the like.
[0002]
[Prior art]
With increasing awareness of environmental conservation, the transition from the current internal combustion engine using fossil fuels to electric drive type vehicles using hydrogen-based polymer electrolyte fuel cells and distributed cogeneration systems is being considered worldwide. I have. In order to make these new technologies widely available to the general public, it is necessary to promote the development of technologies related to cost reduction and high reliability, including the fuel supply system.
In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly with the success of the development of solid polymer materials.
[0003]
Unlike polymer electrolyte fuel cells, which are conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid electrolyte fuel cells, solid polymer fuel cells use a hydrogen ion selective permeation type organic membrane as the electrolyte. A fuel cell characterized by the fact that, in addition to pure hydrogen, hydrogen gas obtained by reforming alcohols is used as fuel, and power is extracted by electrochemically controlling the reaction with oxygen in the air. System. Solid polymer membranes function well even when they are thin, and since the electrolyte is fixed in the membrane, they function as electrolytes when the dew point in the battery is controlled, so fluidity such as aqueous electrolytes and molten salt electrolytes Another feature is that the battery itself can be designed to be compact and simple without the need to use a medium having a certain size.
The polymer electrolyte fuel cell is a single cell with a sandwich structure consisting of a separator having a hydrogen flow path, a fuel electrode, a solid polymer membrane, an air (oxygen) electrode, and a separator having an air (oxygen) flow path. A stack in which the single cells are stacked is used. Therefore, both sides of the separator have independent flow paths, one side is a hydrogen path, and the other side is a flow path of air and generated water.
[0004]
As a constituent material of the polymer electrolyte fuel cell that operates in a region below the boiling point of the cooling aqueous solution, the temperature is not so high, and it is possible to sufficiently exhibit corrosion resistance and durability under the environment, Furthermore, carbon-based materials have been used by machining to form an arbitrary flow path shape, such as by cutting, but stainless steel and titanium have been used to reduce costs and downsize, that is, to make separators thinner. Technological development for the application of is progressing.
[0005]
Conventionally, as stainless steels for fuel cells, Patent Document 1 (Japanese Patent Application Laid-Open No. Hei 4-247852), Patent Document 2 (Japanese Patent Application Laid-Open No. Hei 4-358844), Patent Document 3 (Japanese Patent Application Laid-Open No. Hei 7-188870), Patent As disclosed in Document 4 (JP-A-8-165546), Patent Document 5 (JP-A-8-225892), and Patent Document 6 (JP-A-8-31620), high corrosion resistance is required. There are stainless steels for fuel cells that operate in a molten carbonate environment.
Further, as disclosed in Patent Document 7 (Japanese Patent Application Laid-Open No. 6-264193), Patent Document 8 (Japanese Patent Application Laid-Open No. 6-293914), and Patent Document 9 (Japanese Patent Application Laid-Open No. 9-67672), The invention of a solid oxide fuel cell material operating at a high temperature of one hundred degrees has been made.
[0006]
Further, Patent Document 10 (Japanese Patent Application Laid-Open No. 10-228914) discloses that a stainless steel (SUS304) is stretch-formed (also referred to as press-formed) for the purpose of obtaining a fuel cell separator having low contact resistance with an electrode of a unit cell. ) To form a bulged portion formed of a large number of irregularities on the inner peripheral portion, and form a gold plating layer having a thickness of 0.01 to 0.02 μm on the bulging tip side end surface of the bulged formed portion. A fuel cell separator is disclosed, wherein the fuel cell separator is interposed between the stacked unit cells when forming the fuel cell, and the electrodes of the unit cell and the bulging molded portion are used. There is disclosed a technique in which a gold plating layer formed on an end surface of a bulging tip side is disposed so as to abut, and a reaction gas passage is defined between a fuel cell separator and an electrode. In addition, Patent Document 11 (Japanese Patent Application Laid-Open No. 5-29909) discloses a press-processed corrugated bipolar plate having a wavy shape for processing at low cost. Regarding molding using a roll, Patent Document 12 (Japanese Patent Application Laid-Open No. 2000-202532) discloses a manufacturing method in which a flat plate is sandwiched between dies and the dies are compressed by rolling rolls.
[0007]
As for warm working, a large member is soaked by a mold heating heater and a material heating heater in Patent Document 13 (Japanese Patent Application Laid-Open No. 6-234025), and the hot working blow molding and vacuum forming methods are used. A molding method for extending a large-sized member with a smaller deformation resistance is disclosed. Patent Document 14 (Japanese Patent Application Laid-Open No. 6-304672) discloses a high-temperature bulge in which a plate material is heated using a heated pressurized medium. A forming method is disclosed in which a large deformation amount of a plate material is obtained by a forming method and a pressing force required for forming is reduced. Further, in Patent Document 15 (Japanese Patent Application Laid-Open No. 7-47431), using a press-molding die apparatus provided with a high-pressure high-temperature gas outlet and a heating element in a die punch, the proof stress during processing is reduced to improve the formability. A warm forming method is disclosed which improves and reduces springback.
[0008]
However, when a polymer electrolyte fuel cell was actually manufactured based on these technologies, the following technical problems were found.
a) The separator is assumed to have a shape in which a bulge-formed portion composed of a large number of irregularities is formed on the inner peripheral portion by press molding. Ductile cracking occurs in the bulging formed portion, and particularly, corner portions of the uneven portion are apt to break because bending distortion is increased. Further, since stainless steel having an increased alloy composition for improving long-term reliability has lower workability than SUS304, it is difficult to press-mold into this shape.
b) In the method of forming a repetitive shape of irregularities by press molding, when the separator becomes large, the press load increases and large-scale equipment is required.
c) In the manufacturing method of compressing the mold with a roll, the productivity is low in opening and closing the mold, material handling, and the like, and the rigidity of the mold makes it difficult to accurately apply a rolling load.
d) In bulge molding or blow molding, it is suitable for stretch forming in one direction. However, in stretch forming of a separator having a repeating shape of irregularities, it becomes difficult to stretch and form an ultrathin plate uniformly in both directions.
e) When the material of the flat portion around the convex portion and the concave portion serving as the gas flow path is formed by processing, a flat portion around the separator has a wavy shape, and when the fuel cell stack is constructed as shown in FIG. Gas performance and water leakage occur.
[0009]
[Patent Document 1] JP-A-4-247852 [Patent Document 2] JP-A-4-358844 [Patent Document 3] JP-A-7-188870 [Patent Document 4] JP-A-8-165546 [Patent] Reference 5 Japanese Patent Application Laid-Open No. 8-225892 [Patent Document 6] Japanese Patent Application Laid-Open No. 8-31620 [Patent Document 7] Japanese Patent Application Laid-Open No. 6-264193 [Patent Document 8] Japanese Patent Application Laid-Open No. 6-293940 [Patent Document 9] Japanese Patent Application Laid-Open No. 9-67672 [Patent Document 10] Japanese Patent Application Laid-Open No. 10-228914 [Patent Document 11] Japanese Patent Application Laid-Open No. 5-29909 [Patent Document 12] Japanese Patent Application Laid-Open No. 2000-202532 [Patent Document 13] [Patent Document 14] Japanese Patent Application Laid-Open No. 6-304672 [Patent Document 15] Japanese Patent Application Laid-Open No. 7-47431
[Problems to be solved by the invention]
In view of the above problems, the present invention can be applied to a low-cost, high-durability type polymer electrolyte fuel cell. It is an object of the present invention to provide a method and apparatus for manufacturing a separator in which uneven portions are uniformly formed and a peripheral flat portion has a small wavy shape.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, based on the operation principle of the polymer electrolyte fuel cell, a detailed study of the material behavior at the time of molding processing has resulted in the completion of the present invention. It is on the street.
(1) In a method of manufacturing a stainless steel separator for a polymer electrolyte fuel cell having a flat portion in the periphery and a convex portion and a concave portion serving as a gas flow path in a portion excluding the periphery, the material is heated to 60 ° C to 150 ° C. And thereafter, forming a stainless steel separator for a polymer electrolyte fuel cell by stretch forming into a repetitive cross-sectional shape of a convex portion and a concave portion.
(2) In the method for manufacturing a stainless steel separator for a polymer electrolyte fuel cell, which has a flat portion in the periphery and a portion excluding the periphery has a convex portion and a concave portion serving as a gas channel, the convex portion and the concave portion serving as a gas channel. Is heated to 60 ° C. to 150 ° C., and a part or the whole of the material portion to be a flat portion around the periphery is cooled so as to be 40 to 150 ° C. lower than the heating temperature, so that a temperature gradient is applied to the material. A method for manufacturing a separator for a polymer electrolyte fuel cell, comprising: forming a protrusion and a recess in a repetitive cross section.
(3) The method for producing a stainless steel separator for a polymer electrolyte fuel cell according to the above (1), wherein a part or all of a material portion to be a peripheral flat portion is cooled to 0 ° C to 20 ° C.
(4) A solid polymer having a material heating device at the front stage and a pair of upper and lower pressing rolls on the surface of which the surface has been subjected to uneven processing similar to the repetitive cross-sectional shape of the projections and recesses of the separator at the latter stage. For manufacturing stainless steel separators for portable fuel cells.
(5) It has a material heating device and a material cooling device at the front stage, and has a pair of upper and lower pressing rolls on the surface of which the surface has been subjected to uneven processing similar to the repetitive cross-sectional shape of the projections and recesses of the separator at the latter stage. For manufacturing stainless steel separators for polymer electrolyte fuel cells.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, details of the present invention will be described.
As described above, in the process of forming the separator having the repetitive cross-sectional shape of the concave-convex portion, a problem may occur in which the peripheral flat portion has a wavy shape.
The present inventors have focused on warm working, which has conventionally been used as a countermeasure for reducing the deformation resistance of the work material and reducing the springback by reducing the proof stress, and designed roll dies for various shapes. As a result of forming a prototype and providing a function of warmly heating the material in the preceding stage of the roll mold and performing forming processing, it has been found that the entire separator can be reduced in waving, cracking, and breaking. FIG. 1 shows an example of a sectional view of the separator 1 according to the present invention. Stainless steel has temperature dependency of flow stress, especially austenitic stainless steel tends to cause work hardening due to martensite phase transformation at room temperature, and improves fluidity by suppressing phase transformation by warm working. be able to. In addition, with respect to ferritic stainless steel, since slip deformation due to the movement of dislocations, which is a main cause of work hardening, also has temperature dependence, the fluidity of warm working is improved. Therefore, since the deformation resistance is reduced and the elongation of the material is improved due to the improvement of the fluidity due to the warm working, it is possible to stably form the repetitive cross-sectional shape of the protrusions and the recesses of the separator without cracking or breaking. it can. If the temperature of the warm working is too high, the breaking force is reduced due to softening, and if the temperature is too low, the fluidity is not improved.
[0013]
The present inventors further locally warm only the portions to be processed into the convex portions and concave portions serving as gas flow paths, and locally cool part or all of the surrounding flat portions 20 to form irregularities. It has been found that by lowering the heating temperature of the flat part by 40 to 150 ° C., the fluidity is reduced so that the material of the flat part is not drawn into the center, and the wavy shape of the separator can be reduced. If the temperature of the flat portion is not lower than the heating temperature of the uneven portion by 40 ° C. or more, the reduction of the wavy shape of the separator is not sufficient, and if the temperature is lower than the heating temperature of the uneven portion by more than 150 ° C., it is difficult to process and brittle fracture easily occurs. Therefore, it is preferable to cool part or all of the flat portion so as to be in the above-mentioned temperature range. It is preferable that the entire area for cooling the flat portion is set, but the above effect can be obtained by cooling a part of the flat area. In the case where a part is cooled, it is preferable to cool a surface parallel to the longitudinal direction of the groove shape of the concavo-convex portion that is more easily drawn into the central portion.
If the temperature of the surrounding flat portion is too low, brittle fracture occurs, so it is more desirable to cool to 0 ° C to 20 ° C.
As a material of the separator, a graphite plate, a metal plate, or the like can be used from the viewpoints of electron conductivity, corrosion resistance, and airtightness.
[0014]
Next, the manufacturing apparatus of the present invention will be described.
FIG. 3 shows an example of the cross-sectional shape on one side from the center axis of the upper roll 31a and the lower roll 31b, and has a roll flat portion 41 for rolling a flat flat portion. The roll gap h of the roll flat portion 41 is set to be smaller than the original thickness of the plate material to be processed so that rolling can be performed, and the roll gap h is 90.0 to 99.8 of the thickness of the plate material. % Is desirable. The roll gap h1 of the uneven portion at the center portion is 70 to 90 times the original thickness of the plate material to be processed in order to obtain a good separator shape having a flat top and low contact resistance (large contact area). % Is desirable. On the other hand, if the width B of the roll flat portion 41 is excessively large, the roll body length becomes longer, the amount of roll deflection increases, and the forming process becomes uneven. The width B of the roll flat portion 41 is preferably 5 to 20% of the width B1 of the roll central uneven portion 42.
[0015]
In FIG. 4, the separator is continuously rotated by a pair of molding press rolls 31 a and 31 b having a surface with irregularities, and rotating while transferring the pattern of the irregularities 35 on the surface to the plate material. An example of a rolling roll in a manufacturing apparatus to be manufactured in a typical manner is shown. Immediately before the press-down rolls 31a, 31b, side guides 32a, 32b each having a groove having a thickness of about the plate are provided at the center of the vertical roll in order to prevent meandering of the plate material.
Alternatively, a method may be used in which the sprocket holes 33 are punched at both ends of the plate material at a fixed pitch in advance, and the sprocket wheels 34a and 34b position the sprocket holes 33. FIG. 5 shows an example of a positioning mechanism using a sprocket wheel. The arrows in the figure indicate the direction of transport of the plate material. The separator is continuously formed by rotating the stainless steel plate material by a pair of shaping pressing rolls 31a and 31b whose surfaces have been subjected to unevenness while transferring the unevenness pattern 3 on the surface to the thin plate. Can be manufactured.
[0016]
FIG. 6 is a schematic diagram illustrating an example of the surface shape of the final forming press roll. The irregularities of the pressing rolls 31a and 31b for forming have a structure in which convex portions and concave portions are repeated along the axial direction of the pressing rolls.
[0017]
FIG. 7 is a schematic diagram of a manufacturing apparatus in which a heating-roll-type material heating device 51 is combined with press-down rolls 31a and 31b. As the heating roll 51, an electric heating type in which a sheathed heater is incorporated in the roll, a heating medium circulation type in which a heating medium such as oil or hot water is circulated, a steam heating type, or the like is used. The material of the contact surface of the heating roll 51 is desirably a copper alloy of a good heat conductor. The set temperature of the heating roll 51 is determined in consideration of the processing temperature of the plate material, the ambient temperature, the distance L between the heating roll 51 and the forming rolls 31a and 31b, the passing speed, and the like.
In order to heat all of the material, the width of the heating roll 51 may be set to be equal to or greater than the width of the material, and if only the uneven portion of the separator is heated and part or all of the flat portion is cooled, heating may be performed. The heating means may be provided only for the width of the material corresponding to the roll 51, and the cooling means may be provided as needed so that a predetermined temperature difference is provided at a portion corresponding to the flat portion.
Further, the above-mentioned heating type warm heating device may be incorporated into the pressing roll for molding to carry out molding.
[0018]
FIG. 8 is a schematic diagram of a manufacturing apparatus in which a hot water shower-type material heating device 52 is combined with a pressing roll 31a, 31b.
FIG. 9 is a schematic diagram of a manufacturing apparatus in which a heater-type material heating device 53 and a pressing roll for forming are combined. The heater 53 is locally heated using a lamp heater, a ceramic heater, or the like.
FIG. 10 is a schematic diagram of a manufacturing apparatus in which a heating roll type material heating device 51 and a material cooling device 54 are combined with the pressing rolls 31a and 31b for molding. In FIG. 10, the heating roll 51 is used as the material heating device, but a hot water shower type, a heater type, or a method in which a heating device is incorporated in a pressing roll for molding may be used. The set temperatures of the heating roll 51 and the cooling roll 54 are as follows: the processing temperature of the sheet material, the ambient temperature, the distance L1 between the heating roll 51 and the cooling roll 54, the distance L2 between the cooling roll 54 and the forming press rolls 31a and 31b, Determined in consideration of speed, etc. As a cooling method of the cooling roll, a method using a refrigerant such as gas or water is used.
[0019]
FIG. 11 is a schematic view of a local heating roll, and FIG. 12 is a schematic view of a local cooling roll. The material is locally heated and removed by the heat transfer surface portions 55 and 56, and the other portions are at room temperature. It is preferable that the heat transfer surface portion is formed of a copper alloy of a good heat conductor or the like, and a heat insulating portion 57 is provided at a boundary of the heat transfer surface portion.
[0020]
(Example)
An uneven pattern as shown in FIG. 13 was formed by machining on a pair of forming rolls having a diameter of 200 mm and a length of 300 mm. The cross-sectional shape is as shown in FIG. 4, and the uneven portion has a width of 250 mm and a length (arc length) of 150 mm. On the other hand, the convex portion of the pressing roll for molding has a convex shape with a radius of curvature of 0.5 mm, the bottom portion is a smooth surface with a width of 0.5 mm, and the groove depth is 0.5 mm. The roll gap h is 0.095 mm, and the roll flat portion B is 30 mm.
Using a device as shown in FIGS. 4 and 10, a plate is continuously supplied from a coil of austenitic stainless steel SUS316 having a plate width of 290 mm and a plate thickness of 0.1 mm, and the uneven portions of the upper and lower pressing rolls 31 a and 31 b for forming. The processing was performed with the roll gap h1 of 0.08 mm. The material of the rolling roll was SKD11. The material of the heat transfer surfaces 55 and 56 of the heating roll 51 and the cooling roll 54 is brass C2600. The heating roll 51 has a diameter of 100 mm, a length of 250 mm, the heat transfer portion width W1 is 200 mm, and the cooling roll 54 has a diameter of 100 mm. , Length 100 mm, and heat transfer part width W2 were 25 mm. The interval L1 between the heating roll 51 and the cooling roll 54 was 50 mm, and the interval L2 between the cooling roll 54 and the vertical pressing rolls 31a and 31b was 200 mm. The passing speed was set to 400 mm / sec, the temperature of the heating roll was set to 110 ° C., the temperature of the cooling roll was set to 2 ° C., and the portions other than heating or cooling were set to room temperature. The temperature of the sheet material during the forming process was about 90 ° C. in the central part and about 10 ° C. in the peripheral flat part. The vertical rolling roll was provided with a rotation synchronizing means by a servomotor, and a ball bearing of high accuracy grade was provided on the rolling roll bearing so as not to generate a relative displacement in the roll axis direction.
[0021]
The plate formed without irregularities cracking or breaking, after drilling for introduction and discharge of fuel gas and cooling water, etc., cut at predetermined length, the unit cell separator It could be manufactured. Further, even after cutting, the wavy shape which was initially several mm was reduced to several μm or less by using the present apparatus, and a good shape was obtained. Thereafter, after performing appropriate surface treatments and the like, the fuel cell stack was constructed and performance tests were performed.No gas leakage or water leakage occurred, and the fuel cell was favorably used as a fuel cell using the separator according to the manufacturing method of the present invention. It was confirmed to work.
The forming process by the method of the present invention has a corrugation generation rate of 1/1000 or less, when compared to a case where a similar uneven shape having a width of 250 mm x a length of 150 mm is performed by a normal press working without using a heating and cooling roll. The conventional single-stage press required a load of about 5,000 tons, whereas the present invention requires about 40 tons, and can be manufactured with an extremely inexpensive apparatus.
[0022]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention facilitates highly accurate press forming of a stainless steel separator for a polymer electrolyte fuel cell, and is extremely effective as a technique for realizing a low-cost polymer electrolyte fuel cell.
[Brief description of the drawings]
FIG. 1 is an example of a cross-sectional view of a separator manufactured according to the present invention.
FIG. 2 is a schematic view showing an example of constructing a polymer electrolyte fuel cell stack using a separator manufactured according to the present invention.
FIG. 3 is a schematic view showing an example of a cross-sectional shape of a pressing roll in the present invention.
FIG. 4 is a schematic view showing an example of a pressing roll in the separator manufacturing apparatus according to the present invention.
FIG. 5 is a schematic view showing an example of a material positioning mechanism using a sprocket wheel.
FIG. 6 is a schematic view showing an example of the surface shape of a pressing roll in the separator manufacturing apparatus according to the present invention.
FIG. 7 is a schematic view of a manufacturing apparatus in which a heating-roll-type material heating apparatus and a forming-down roll are combined.
FIG. 8 is a schematic diagram of a manufacturing apparatus in which a hot water shower-type material heating apparatus and a pressing roll for forming are combined.
FIG. 9 is a schematic diagram of a manufacturing apparatus in which a heater-type material heating apparatus and a forming draft roll are combined.
FIG. 10 is a schematic diagram of a manufacturing apparatus in which a heating roll type material heating device and a material cooling device are combined with a pressing roll for forming.
FIG. 11 is a schematic view of a local heating roll.
FIG. 12 is a schematic view of a local cooling roll.
FIG. 13 is a schematic view showing another example of the surface shape of a pressing roll for molding in the present invention.
[Explanation of symbols]
1: Separator 7: concave portion (fuel gas flow channel) 8: convex portion (oxygen (air) flow channel)
9: flat part around the separator 10: seal plate 11: electrode (carbon fiber current collector) 12: solid polymer film 20: flat parts 31a, 31b: pressing rolls 32a, 32b for molding: side guide 33: sprocket hole 34a, 34b: sprocket wheel 35: uneven portion 41: roll flat portion 42: roll center uneven portion 43: uneven portion 51: heating roll 52: hot water shower 53: heater 54: cooling roll 55: heat transfer surface 56 of heating roll: cooling Roll heat transfer surface 57: heat insulation

Claims (5)

周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用ステンレスセパレータの製造方法において、材料を60℃〜150℃に加熱し、その後凸部と凹部の繰り返し断面形状に張出し成形することを特徴とする固体高分子型燃料電池用ステンレスセパレータ製造方法。In the method for manufacturing a stainless steel separator for a polymer electrolyte fuel cell having a flat portion in the periphery and a portion excluding the periphery having a convex portion and a concave portion serving as a gas flow path, the material is heated to 60 ° C. to 150 ° C. A method for producing a stainless steel separator for a polymer electrolyte fuel cell, wherein the stainless steel separator is stretched and formed into a repetitive cross-sectional shape of a projection and a depression. 周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用ステンレスセパレータの製造方法において、ガス流路となる凸部及び凹部を施される材料部分を60℃〜150℃に加熱し、周辺の平坦部となる材料部分の一部又は全部を前記加熱温度より40〜150℃低くなるように冷却して材料に温度勾配をつけて、その後凸部と凹部の繰り返し断面形状に張出し成形することを特徴とする固体高分子型燃料電池用セパレータ製造方法。In the method for manufacturing a stainless steel separator for a polymer electrolyte fuel cell having a flat portion in the periphery and a portion excluding the periphery having a convex portion and a concave portion serving as a gas flow channel, a convex portion and a concave portion serving as a gas flow channel are provided. The material part to be heated is heated to 60 ° C. to 150 ° C., and a part or all of the material part to be a flat part in the periphery is cooled so as to be 40 to 150 ° C. lower than the heating temperature, thereby giving a temperature gradient to the material, Thereafter, a method for producing a separator for a polymer electrolyte fuel cell, comprising forming a projection into a repetitive cross-sectional shape of a convex portion and a concave portion. 周辺の平坦部となる材料部分の一部又は全部を0℃〜20℃に冷却することを特徴とする請求項2記載の固体高分子型燃料電池用ステンレスセパレータ製造方法。3. The method for producing a stainless steel separator for a polymer electrolyte fuel cell according to claim 2, wherein a part or all of a material portion to be a peripheral flat portion is cooled to 0C to 20C. 前段に材料加熱装置を有し、後段にセパレータの凸部及び凹部の繰り返し断面形状と相似形の凹凸加工を表面に施した上下一対の圧下ロールを有することを特徴とする固体高分子型燃料電池用ステンレスセパレータ製造装置。A polymer electrolyte fuel cell having a material heating device in the first stage, and a pair of upper and lower pressing rolls on the surface of which the surface is subjected to uneven processing similar to the repetitive cross-sectional shape of the convex and concave portions of the separator in the subsequent stage. For manufacturing stainless steel separator. 前段に材料加熱装置と材料冷却装置を有し、後段にセパレータの凸部及び凹部の繰り返し断面形状と相似形の凹凸加工を表面に施した上下一対の圧下ロールを有することを特徴とする固体高分子型燃料電池用ステンレスセパレータ製造装置。A solid height characterized by having a material heating device and a material cooling device in the first stage, and a pair of upper and lower pressing rolls on the surface of which the surface has been subjected to unevenness processing similar to the repeated cross-sectional shape of the convex and concave portions of the separator in the subsequent stage. Equipment for manufacturing stainless steel separators for molecular fuel cells.
JP2002294450A 2002-10-08 2002-10-08 Method for manufacturing stainless separator for polymer electrolyte fuel cell and apparatus for manufacturing the same Expired - Fee Related JP3965102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294450A JP3965102B2 (en) 2002-10-08 2002-10-08 Method for manufacturing stainless separator for polymer electrolyte fuel cell and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294450A JP3965102B2 (en) 2002-10-08 2002-10-08 Method for manufacturing stainless separator for polymer electrolyte fuel cell and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004134090A true JP2004134090A (en) 2004-04-30
JP3965102B2 JP3965102B2 (en) 2007-08-29

Family

ID=32284983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294450A Expired - Fee Related JP3965102B2 (en) 2002-10-08 2002-10-08 Method for manufacturing stainless separator for polymer electrolyte fuel cell and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3965102B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004291A (en) * 2006-06-20 2008-01-10 Toyota Motor Corp Manufacturing method of press metal separator for fuel cell
JP2009187758A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
WO2010010705A1 (en) * 2008-07-25 2010-01-28 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
JP2013152941A (en) * 2013-03-14 2013-08-08 Nissan Motor Co Ltd Method and apparatus of manufacturing metal separator for fuel cell
WO2014188800A1 (en) * 2013-05-22 2014-11-27 日産自動車株式会社 Forming device for metal separator and forming method for same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004291A (en) * 2006-06-20 2008-01-10 Toyota Motor Corp Manufacturing method of press metal separator for fuel cell
JP2009187758A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
WO2010010705A1 (en) * 2008-07-25 2010-01-28 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
JP2010033737A (en) * 2008-07-25 2010-02-12 Ihi Corp Method and plant for manufacturing separator for polymer electrolyte fuel cell
CN102165635A (en) * 2008-07-25 2011-08-24 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
TWI384681B (en) * 2008-07-25 2013-02-01 Ihi Corp Method and facility for producing separator for polymer electrolyte fuel cell
US8820132B2 (en) 2008-07-25 2014-09-02 Ihi Corporation Method and facility for producing separator for use in polymer electrolyte fuel cell
JP2013152941A (en) * 2013-03-14 2013-08-08 Nissan Motor Co Ltd Method and apparatus of manufacturing metal separator for fuel cell
WO2014188800A1 (en) * 2013-05-22 2014-11-27 日産自動車株式会社 Forming device for metal separator and forming method for same
JPWO2014188800A1 (en) * 2013-05-22 2017-02-23 日産自動車株式会社 Metal separator molding apparatus and molding method
US9884357B2 (en) 2013-05-22 2018-02-06 Nissan Motor Co., Ltd. Metal separator molding device and method for molding metal separator

Also Published As

Publication number Publication date
JP3965102B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP2002313354A (en) Manufacturing method and device for separator for solid polymer fuel cell
Jin et al. Fabrication of titanium bipolar plates by rubber forming and performance of single cell using TiN-coated titanium bipolar plates
JP2002190305A (en) Manufacturing apparatus for solid polymer fuel cell separator
CN105514460B (en) A kind of efficient rolling forming technology of high conductivity metal bipolar plates
US6709781B2 (en) Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
US8778567B1 (en) Unique pre-form design for two-step forming of stainless steel fuel cell bipolar plates
KR101321125B1 (en) Continuous fabrication method of with micro channel bipolar plate for lage area
JP4846247B2 (en) Mold roll and method for forming uneven plate
US20220077474A1 (en) Method for forming flow channel on metal bipolar plate of fuel cell
CN107864686B (en) Treatment process of bipolar plate of fuel cell stack
JP4700393B2 (en) Multi-stage roll forming equipment
CN110534765B (en) Forming method of high-precision metal bipolar plate required by fuel cell
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
Guo et al. Hot stamping of ultra-thin stainless steel sheets for bipolar plates
JP2004134090A (en) Manufacturing method and manufacturing device of stainless steel separator for solid polymer fuel cell
JP4046550B2 (en) Solid polymer fuel cell metal separator with less warpage and method for producing the same
JP5262149B2 (en) Manufacturing method and manufacturing apparatus for metal separator for fuel cell
JP4231398B2 (en) Separator manufacturing method and manufacturing apparatus for polymer electrolyte fuel cell
JP5169480B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP2004119235A (en) Separator for solid polymer fuel cell, its manufacturing device and manufacturing method
JP2002025586A (en) Separator for solid high polymer molecule fuel cell and fuel cell
JP5163028B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2008004291A (en) Manufacturing method of press metal separator for fuel cell
JP4180929B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP4280226B2 (en) Solid polymer fuel cell separator manufacturing method and reduction roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070525

R151 Written notification of patent or utility model registration

Ref document number: 3965102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees