JP2004262613A - Elevator operation control device - Google Patents

Elevator operation control device Download PDF

Info

Publication number
JP2004262613A
JP2004262613A JP2003055588A JP2003055588A JP2004262613A JP 2004262613 A JP2004262613 A JP 2004262613A JP 2003055588 A JP2003055588 A JP 2003055588A JP 2003055588 A JP2003055588 A JP 2003055588A JP 2004262613 A JP2004262613 A JP 2004262613A
Authority
JP
Japan
Prior art keywords
isolation structure
elevator
car
seismic isolation
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055588A
Other languages
Japanese (ja)
Other versions
JP4265920B2 (en
Inventor
Osamu Komatsu
理 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003055588A priority Critical patent/JP4265920B2/en
Publication of JP2004262613A publication Critical patent/JP2004262613A/en
Application granted granted Critical
Publication of JP4265920B2 publication Critical patent/JP4265920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an elevator operation control device capable of securing the safety of passengers and preventing breakage of a car and a balance weight by safely running an elevator even when sway of a building is detected in the building having a seismically isolated structure. <P>SOLUTION: The elevator operation control device is provided with a seismically isolated structure position storage means 3 beforehand storing a position of a seismically isolated structure part absorbing correlative story displacement generated between a high-rise part and a low-rise part in the building, an earthquake detection means 2 detecting an earthquake, a virtual seismically isolated structure position detection means 5 detecting a virtual seismically isolated structure position of the car when the balance weight is positioned in the seismically isolated structure part, and a car operation control means 6 controlling control operation of the elevator when the earthquake is detected on the basis of the position of the seismically isolated structure part, the virtual seismically isolated structure position and a car position. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、高層部と低層部との間で生じた相関変位を吸収する免震構造部を有する建物に設置されたエレベータの管制運転を制御するエレベータの運転制御装置に関するものである。
【0002】
【従来の技術】
従来、高層部と低層部との間で生じた相関変位を吸収する免震構造部を有する建物に設置されたエレベータの管制運転を制御するエレベータの運転制御装置がある(例えば、特許文献1参照)。このような免震構造の建造物においては、地震発生時には免震構造になっている部分の昇降路ガイドレールが歪む可能性がある。エレベータの地震時の管制運転は、エレベータ協会の地震管制運転にも示されるように、走行時に地震を検出すると、停止可能な最寄階まで走行させて停止する。また、最寄階まで所定時間以上ある場合はその場で急停止させるようになっている。さらに、急停止後は、監視盤などの運転スイッチにより、低速で走行させるようになっている。このようにすることで、安全にエレベータを運行でき、地震または台風等で建物の揺れを検出した際、乗客を安全に救出すると共に、安心感を与えることができる。
【0003】
【特許文献1】
特開2001−122554号公報
【0004】
【発明が解決しようする課題】
現在のエレベータの大部分は、かご及び釣合いオモリを、ロープを介して巻上機により上下させる方式をとっている。この方式のエレベータは、かごばかりでなく釣合いオモリもまた、昇降路ガイドレールに沿って昇降する。このため、地震や台風等で建物の揺れを検出したとき、免震構造部の昇降路ガイドレールの歪みが大きいと、釣合いオモリが免震構造位置を通過する際ガイドレールから外たりし、外れたまま走行を継続するとかごと衝突する危険性がある。
【0005】
この発明は上述した点に鑑みてなされたもので、免震構造の建造物において建物の揺れを検出した場合でも安全にエレベータを運行させることができ、乗客の安全の確保及びかごと釣合いオモリの破損防止を図ることができるエレベータの運転制御装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係るエレベータの運転制御装置は、建物の高層部と低層部との間で生じた相関変位を吸収する免震構造部の位置を予め記憶した免震構造位置記憶手段と、建物の揺れを検出する揺れ検出手段と、釣合いオモリが前記免震構造部の位置にあるときのかごの仮想免震構造位置を検出する仮想免震構造位置検出手段と、前記免震構造位置記憶手段に記憶された免震構造部の位置と、前記仮想免震構造位置検出手段により検出される仮想免震構造位置及び当該建物に設置されたエレベータのかご位置とに基づいて前記揺れ検出手段により揺れを検出した時にエレベータの管制運転を制御する制御手段とを備えたものである。
【0007】
【発明の実施の形態】
図1は、この発明の実施の形態1に係るエレベータ装置の運転制御装置の構成を示すブロック図である。図1に示すエレベータ装置の運転制御装置は、建物の揺れを感知する地震感知器1と、地震感知器1からの信号を検出する揺れ検出手段としての地震検出手段2と、ビルのどの位置に免震構造が設置されているかを予め記憶している免震構造位置記憶手段3と、ロープの伸びを検出するロープ伸び検出装置4と、釣合いオモリが免震構造位置にいる時のかご位置を予め記憶している仮想免震構造位置記憶手段5と、地震検出手段2で地震を検出すると、停止可能な最寄階の情報と免震構造位置記憶手段3及び仮想免震構造位置記憶手段5の情報から地震時管制運転を制御するかご運転制御手段6と、運転の状態により管理人室やかご内に警報を出したり、表示やアナウンスを行うようにしたりする発報制御手段7とを備えている。
【0008】
ここで、ロープ伸び検出装置4と仮想免震構造位置記憶手段5は、釣合いオモリが免震構造部の位置にあるときのかごの仮想免震構造位置を検出する仮想免震構造位置検出手段を構成するもので、仮想免震構造位置記憶手段5は、ロープ伸び検出装置4により検出されるロープの伸びが所定値以上になったときに記憶された仮想免震構造位置を変更するようになされている。
【0009】
また、図2は、エレベータの運転を示す説明図である。図2には、乗場の階床10と、エレベータのかご11と、釣合いオモリ13が示されている。また、走行中は、速度と減速時間からかごが停止可能階12を演算しながら走行する。この例では、免震構造部14が3階に、仮想免震構造部15が8階に設定されている。
【0010】
次に、この発明の実施の形態1に係るエレベータ装置の運転制御装置の具体的な動作を、図3に示すフローチャートに従って説明する。基本はエレベータ協会の地震時管制運転が基本になっている。まず、発止する地震の感度により感知する地震感知器1が異なり、これを地震検出手段2により判断する(ステップS1,S2)。図1に示す例では、地震感知器1として、特低感度を超える地震を感知する地震感知器と、特低の感度を超えさらに低の感度を超える地震を感知する地震感知器と、さらに高の感度を超える地震を感知する地震感知器を有する。地震が特低以下の感度であればステップS3に進み、通常の運転を継続する。他方、地震が特低の感度を超え低の感度であればステップS4以下を実行し、地震が特低の感度を超えるが、低以下の感度であればステップS13以下を実行する。
【0011】
ステップS4では、エレベータの運行状態を判断し、走行中であればステップS5に進む。ステップS5では、かごが停止できる停止可能階12とかご位置11の間に免震構造部14または仮想免震構造部15があるかを判断し、図2に示すような場合、つまり仮想免震構造部15がある場合はステップS6に進み、エレベータを非常停止させる。上記以外の場合は、エレベータ協会で定められた通常の地震時管制運転を行う。
【0012】
ここで、かごと釣合いオモリ13を連結するロープ16は、経年変化の為伸びる傾向にある。図1のロープ伸び検出手段4により、ロープ伸びが所定値以上となると、仮想免震構造部15の位置を8階の上下1階分までの7,8,9階に変更する。これにより、ステップS5におけるロープ伸びによる釣合いオモリ13の免震構造位置への突入範囲を広くし、建物の揺れを検出した時の安全性を確保することができる。
【0013】
通常の地震時管制運転では、ステップS5において、免震構造位置または仮想免震構造位置に突入しなければ、ステップS7に進み、かごが最寄階に停止するまでに例えば10秒以上走行するかを判断する。10秒以上かかる場合はステップS6に進み、エレベータを非常停止させる。10秒以内の場合はステップS8に進み最寄階に停止させる。
【0014】
最寄階に停止後はステップS9でかごの戸を開き、乗客を降ろす。また、ステップS4でかごが走行中でない場合もこのステップS9に進んでくる。その後、ステップS10で所定時間経過後、かごの戸を閉める。ステップS11でまだ降りてない乗客が戸開釦を押せばステップS9まで戻るが、かご内から戸開釦が押されない限りはステップS12でかご内に乗客のいない状態にして運転を休止させる。
【0015】
ステップS2で低の感度の地震感知器が動作しなければステップS13に進み、エレベータかごが走行中か否かを判断する。かごが走行中であれば、ステップS14で最寄階に停止させ、ステップS15でかごの戸を開き、乗客を降ろす。ステップS13でかごが走行中でない場合もこのステップS15に進んでくる。その後、ステップS16で所定時間経過後かごの戸を閉める。ステップS17でまだ降りてない乗客が戸開釦を押せばステップS15まで戻るが、かご内から戸開釦が押されない限りは乗客のいない状態として運転を休止させる。ステップS18で特低の感度の地震感知器を自動または手動でリセットすればステップS19で平常運転に復帰する。
【0016】
次に、図4は、非常停止をした後の手順を示すフローチャートである。エレベータが非常停止した後は、ステップS20に進み、各種安全回路のチェックを行い、安全であればステップS21に進み、感度が高(所定値)以上の地震感知器が動作したか否かを判断する。感度が高以上の地震感知器が動作した場合はステップS22に進み、かごの停止した位置が免震構造位置または仮想免震構造位置かどうかを判断する。ここで、かごが免震構造位置に停止していればステップS23に進み、管理人室や保守会社に警報を出すと共に、かご内の乗客にエレベータを休止させることの表示・報知を行う。その後、ステップS24に進み、エレベータは運転を休止する。ステップS22でかごの停止位置が免震構造位置または仮想免震構造位置でなければステップS25、S26、S27と進み、救出運転に移行する。ステップS21で感度が高(所定値)以上の地震感知器が動作しなければ約1分後に自動的にかごとオモリが離れる方向に低速(例えば45m/min)で走行し、ステップS29で最寄階に停止させる。
【0017】
さらに、図5は、救出運転時の動作を示すフローチャートである。ステップS30ではかごの停止位置が中間位置より上か下かを判断し、かごの位置が中間位置より上にいればステップS31に進み、UP方向の最寄階を検索し、かご位置から最寄階までに走行する間に仮想免震構造位置を通過するか否かを判定する。通過する際はステップS32に進み、DN(ダウン)方向の走行条件を判断する。ステップS32では、かごを下方向に動かして最寄階に停止させる場合、かごと重りが交差しない位置(中間位置)を超えて運転する必要があるか否かを判断する。交差する場合はステップS33に進み、停止状態でエレベータを休止させる。中間階を超えない場合はステップS38に進み、DN方向にエレベータを走行させる。また、ステップS31でUP走行方向に仮想免震構造位置がなければステップS34でUP方向を設定しエレベータを走行させる。かごの停止位置が中間階より下の場合は上記と逆の運転を行う(ステップS35、S36、S37、S34)。
【0018】
【発明の効果】
以上のように、この発明によれば、免震構造の建造物において建物の揺れを検出した場合でも安全にエレベータを運行させることができ、乗客の安全の確保及びかご・釣合いオモリ等のエレベータ機器破損防止を促進することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係るエレベータ装置の運転制御装置の構成を示すブロック図である。
【図2】エレベータの運転を示す説明図である。
【図3】この発明の実施の形態1に係るエレベータ装置の運転制御装置の具体的な動作を示すフローチャートである。
【図4】図3における非常停止をした後の手順を示すフローチャートである。
【図5】図4における救出運転時の動作を示すフローチャートである。
【符号の説明】
1 地震感知器、2 地震検出手段、3 免震構造位置記憶手段、4 ロープ伸び検出装置、5 仮想免震構造位置記憶手段、6 かご運転制御手段、7 発報制御手段、14 免震構造部、15 仮想免震構造部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an elevator operation control apparatus for controlling the control operation of an elevator installed in a building having a seismic isolation structure that absorbs a correlation displacement generated between a high-rise part and a low-rise part.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is an elevator operation control device that controls the control operation of an elevator installed in a building having a seismic isolation structure that absorbs a correlation displacement generated between a high-rise part and a low-rise part (see, for example, Patent Document 1). ). In such a base-isolated structure, there is a possibility that the hoistway guide rail of the part having the base isolation structure is distorted when an earthquake occurs. As shown in the earthquake control operation of the Elevator Association, the control operation at the time of the earthquake of the elevator is stopped by traveling to the nearest floor that can be stopped when an earthquake is detected during the travel. In addition, when there is a predetermined time or more to the nearest floor, a sudden stop is made on the spot. Further, after a sudden stop, the vehicle is driven at a low speed by an operation switch such as a monitoring panel. By doing in this way, an elevator can be operated safely, and when a shake of a building is detected by an earthquake or a typhoon, a passenger can be rescued safely and a sense of security can be given.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-122554
[Problems to be solved by the invention]
Most of current elevators use a system in which a car and a balance weight are moved up and down by a hoisting machine via a rope. In this type of elevator, not only the car but also the balance weight moves up and down along the hoistway guide rail. For this reason, when a building shake is detected due to an earthquake or typhoon, if the distortion of the hoistway guide rail of the seismic isolation structure is large, the balance weight will be detached from the guide rail when passing through the seismic isolation structure position. There is a danger of collision with the car if you continue running.
[0005]
The present invention has been made in view of the above points, and even in the case of detecting a shaking of a building in a base-isolated structure, the elevator can be operated safely, ensuring the safety of passengers and the balance of the car and the balance weight. It is an object of the present invention to obtain an elevator operation control device capable of preventing breakage.
[0006]
[Means for Solving the Problems]
An elevator operation control apparatus according to the present invention includes a base-isolated structure position storage unit that pre-stores a position of a base-isolated structure that absorbs a correlation displacement generated between a high-rise part and a low-rise part of a building, Sway detection means for detecting the position, virtual seismic isolation structure position detection means for detecting the virtual seismic isolation structure position of the car when the balance weight is at the position of the seismic isolation structure section, and storage in the seismic isolation structure position storage means Sway is detected by the sway detection means on the basis of the position of the seismically isolated structure portion, the virtual base isolation structure position detected by the virtual base isolation structure position detection means, and the position of the elevator car installed in the building And a control means for controlling the control operation of the elevator.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
1 is a block diagram showing a configuration of an operation control apparatus for an elevator apparatus according to Embodiment 1 of the present invention. The operation control apparatus for an elevator apparatus shown in FIG. 1 includes an earthquake detector 1 that senses a shake of a building, an earthquake detection means 2 that detects a signal from the earthquake detector 1, and a position of the building. The seismic isolation structure position storage means 3 that stores in advance whether the base isolation structure is installed, the rope elongation detection device 4 that detects the elongation of the rope, and the car position when the balance weight is at the base isolation structure position When an earthquake is detected by the virtual seismic isolation structure position storage means 5 and the earthquake detection means 2 stored in advance, information on the nearest floor that can be stopped, the seismic isolation structure position storage means 3 and the virtual isolation structure position storage means 5 The car operation control means 6 for controlling the control operation at the time of the earthquake from the information of the above, and the alarm control means 7 for issuing an alarm, displaying or making an announcement in the manager's room or the car according to the operation state. ing.
[0008]
Here, the rope stretch detection device 4 and the virtual seismic isolation structure position storage means 5 are virtual seismic isolation structure position detection means for detecting the virtual seismic isolation structure position of the car when the balance weight is at the position of the seismic isolation structure. The virtual seismic isolation structure position storage means 5 is configured to change the stored virtual seismic isolation structure position when the rope elongation detected by the rope elongation detection device 4 exceeds a predetermined value. ing.
[0009]
FIG. 2 is an explanatory view showing the operation of the elevator. FIG. 2 shows a landing floor 10, an elevator car 11, and a balance weight 13. During traveling, the car travels while calculating the stoppable floor 12 from the speed and deceleration time. In this example, the seismic isolation structure 14 is set on the third floor, and the virtual seismic isolation structure 15 is set on the eighth floor.
[0010]
Next, the specific operation of the operation control apparatus for an elevator apparatus according to Embodiment 1 of the present invention will be described with reference to the flowchart shown in FIG. The basic operation is based on the Elevator Association's earthquake control operation. First, the seismic detector 1 to be detected differs depending on the sensitivity of the earthquake to be stopped, and this is judged by the earthquake detecting means 2 (steps S1 and S2). In the example shown in FIG. 1, as the earthquake detector 1, an earthquake detector that detects an earthquake exceeding an extra low sensitivity, an earthquake detector that detects an earthquake exceeding an extra low sensitivity and an even lower sensitivity, It has an earthquake detector that detects earthquakes exceeding the sensitivity of. If the earthquake has an extra low sensitivity, the process proceeds to step S3 and normal operation is continued. On the other hand, if the earthquake exceeds the low sensitivity and the sensitivity is low, step S4 and subsequent steps are executed. If the earthquake exceeds the low sensitivity and the sensitivity is low, step S13 and subsequent steps are executed.
[0011]
In step S4, the operation state of the elevator is determined. If the vehicle is running, the process proceeds to step S5. In step S5, it is determined whether there is a seismic isolation structure 14 or a virtual seismic isolation structure 15 between the stoppable floor 12 where the car can be stopped and the car position 11, and in the case shown in FIG. When there is the structure part 15, it progresses to step S6 and makes an emergency stop of an elevator. In other cases, the normal seismic control operation specified by the Elevator Association is performed.
[0012]
Here, the rope 16 that connects the car and the balance weight 13 tends to extend due to secular change. When the rope elongation reaches a predetermined value or more by the rope elongation detecting means 4 in FIG. 1, the position of the virtual seismic isolation structure 15 is changed to the seventh, eighth, and ninth floors up to the upper and lower floors of the eighth floor. Thereby, the entry range to the seismic isolation structure position of the balance weight 13 by the rope elongation in step S5 can be widened, and the safety when the shaking of the building is detected can be ensured.
[0013]
In normal seismic control operation, if it does not enter the seismic isolation structure position or the virtual seismic isolation structure position in step S5, the process proceeds to step S7, for example, whether the car travels for 10 seconds or more before stopping at the nearest floor. Judging. If it takes 10 seconds or more, the process proceeds to step S6, and the elevator is stopped emergencyly. If it is within 10 seconds, the process proceeds to step S8 and stops at the nearest floor.
[0014]
After stopping at the nearest floor, the car door is opened in step S9 and the passengers are lowered. If the car is not traveling in step S4, the process proceeds to step S9. Then, after a predetermined time has passed in step S10, the car door is closed. If a passenger who has not yet got off in step S11 presses the door open button, the process returns to step S9. However, unless the door open button is pressed from within the car, in step S12, the passenger is put in a state where no passenger is in the car and the operation is suspended.
[0015]
If the low-sensitivity seismic detector does not operate in step S2, the process proceeds to step S13 to determine whether the elevator car is traveling. If the car is running, the car is stopped at the nearest floor in step S14, the car door is opened in step S15, and the passenger is lowered. If the car is not traveling in step S13, the process proceeds to step S15. Thereafter, the door of the car is closed after a predetermined time has passed in step S16. If a passenger who has not yet got off in step S17 presses the door open button, the process returns to step S15. However, as long as the door open button is not pressed from within the car, the operation is suspended as there is no passenger. If the seismic detector with extra low sensitivity is automatically or manually reset in step S18, normal operation is resumed in step S19.
[0016]
Next, FIG. 4 is a flowchart showing a procedure after an emergency stop. After the emergency stop, proceed to step S20 to check various safety circuits. If it is safe, proceed to step S21 to determine whether or not an earthquake sensor having a high sensitivity (predetermined value) or more has been operated. To do. If a seismic detector having a high sensitivity or higher operates, the process proceeds to step S22, and it is determined whether the position where the car has stopped is the seismic isolation structure position or the virtual seismic isolation structure position. Here, if the car has stopped at the seismic isolation structure position, the process proceeds to step S23, where an alarm is given to the manager room and the maintenance company, and the passengers in the car are displayed and notified that the elevator is suspended. Then, it progresses to step S24 and an elevator stops driving | operation. If the stop position of the car is not the seismic isolation structure position or the virtual seismic isolation structure position in step S22, the process proceeds to steps S25, S26, and S27, and the rescue operation is started. If a seismic detector with high sensitivity (predetermined value) or higher does not operate in step S21, the vehicle automatically runs at a low speed (for example, 45 m / min) in the direction in which the car and the weight are separated after about 1 minute. Stop on the floor.
[0017]
Furthermore, FIG. 5 is a flowchart showing the operation during the rescue operation. In step S30, it is determined whether the stop position of the car is above or below the intermediate position. If the car position is above the intermediate position, the process proceeds to step S31, the nearest floor in the UP direction is searched, and the nearest car position is reached. It is determined whether or not the vehicle passes through the virtual seismic isolation structure position while traveling to the floor. When it passes, it progresses to step S32 and the driving condition of a DN (down) direction is judged. In step S32, when the car is moved downward and stopped at the nearest floor, it is determined whether or not it is necessary to drive beyond the position where the car and the weight do not intersect (intermediate position). When it crosses, it progresses to Step S33 and stops an elevator in a stop state. If it does not exceed the intermediate floor, the process proceeds to step S38, and the elevator travels in the DN direction. If there is no virtual seismic isolation structure position in the UP travel direction in step S31, the UP direction is set in step S34 and the elevator travels. When the stop position of the car is below the intermediate floor, the reverse operation is performed (steps S35, S36, S37, S34).
[0018]
【The invention's effect】
As described above, according to the present invention, it is possible to safely operate an elevator even when a shaking of a building is detected in a base-isolated structure, and to ensure the safety of passengers and elevator equipment such as a car and a balance weight. Damage prevention can be promoted.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an operation control apparatus for an elevator apparatus according to Embodiment 1 of the present invention.
FIG. 2 is an explanatory diagram showing operation of the elevator.
FIG. 3 is a flowchart showing a specific operation of the operation control apparatus for an elevator apparatus according to Embodiment 1 of the present invention.
4 is a flowchart showing a procedure after an emergency stop in FIG. 3;
FIG. 5 is a flowchart showing an operation during the rescue operation in FIG. 4;
[Explanation of symbols]
1 earthquake detector, 2 earthquake detection means, 3 base isolation structure position storage means, 4 rope stretch detection device, 5 virtual base isolation structure position storage means, 6 car operation control means, 7 alarm control means, 14 base isolation structure 15 Virtual seismic isolation structure.

Claims (5)

建物の高層部と低層部との間で生じた相関変位を吸収する免震構造部の位置を予め記憶した免震構造位置記憶手段と、
建物の揺れを検出する揺れ検出手段と、
釣合いオモリが前記免震構造部の位置にあるときのかごの仮想免震構造位置を検出する仮想免震構造位置検出手段と、
前記免震構造位置記憶手段に記憶された免震構造部の位置と、前記仮想免震構造位置検出手段により検出される仮想免震構造位置及び当該建物に設置されたエレベータのかご位置とに基づいて前記揺れ検出手段により揺れを検出した時にエレベータの管制運転を制御する制御手段と
を備えたエレベータの運転制御装置。
Seismic isolation structure position storage means for storing in advance the position of the base isolation structure that absorbs the correlation displacement generated between the high and low levels of the building;
Shaking detection means for detecting the shaking of the building;
Virtual seismic isolation structure position detecting means for detecting the virtual seismic isolation structure position of the car when the balance weight is at the position of the base isolation structure;
Based on the position of the base isolation structure portion stored in the base isolation structure position storage means, the virtual base isolation structure position detected by the virtual base isolation structure position detection means, and the elevator car position installed in the building An elevator operation control device comprising: control means for controlling the control operation of the elevator when shaking is detected by the shaking detection means.
請求項1に記載のエレベータの運転制御装置において、
前記仮想免震構造位置検出手段は、かごと釣合いオモリを連結するロープの伸びを検出するロープ伸び検出手段と、釣合いオモリが前記免震構造部の位置にあるときのかごの仮想免震構造位置を予め記憶し、前記ロープ伸び検出手段により検出されるロープの伸びが所定値以上になったときに記憶された仮想免震構造位置を変更する仮想免震構造位置記憶手段とを備えてなり、
前記制御手段は、前記仮想免震構造位置記憶手段に記憶された仮想免震構造位置に応じて地震を検出した時の管制運転を制御する
ことを特徴とするエレベータの運転制御装置。
In the elevator operation control device according to claim 1,
The virtual seismic isolation structure position detection means includes a rope extension detection means for detecting an extension of a rope connecting the car and the balance weight, and a virtual base isolation structure position of the car when the balance weight is at the position of the base isolation structure portion. And a virtual seismic isolation structure position storage means for changing the virtual seismic isolation structure position stored when the rope elongation detected by the rope elongation detection means exceeds a predetermined value,
The elevator operation control apparatus, wherein the control means controls the control operation when an earthquake is detected according to the virtual seismic isolation structure position stored in the virtual seismic isolation structure position storage means.
請求項1または2に記載のエレベータの運転制御装置において、
前記制御手段は、エレベータが走行中に建物の揺れを検出して最寄階に停止させる場合、最寄階までに、釣合いオモリが免震構造位置を通過する場合はエレベータを急停止させる
ことを特徴とするエレベータの運転制御装置。
In the elevator operation control device according to claim 1 or 2,
The control means detects the shaking of the building while the elevator is running and stops the elevator at the nearest floor, and suddenly stops the elevator when the balance weight passes the seismic isolation structure position by the nearest floor. Elevator operation control device characterized.
請求項1または2に記載のエレベータの運転制御装置において、
前記制御手段は、かごが停止した位置が免震構造部の位置であれば、運転を休止させると共に、外部に免震構造位置で停止したことを発報すると共に、乗客にも休止することを表示・報知する
ことを特徴とするエレベータの運転制御装置。
In the elevator operation control device according to claim 1 or 2,
If the position where the car stops is the position of the seismic isolation structure, the control means stops the operation, and notifies the outside that the car has stopped at the seismic isolation structure position, and also stops the passenger. An elevator operation control device characterized by displaying and notifying.
請求項1または2に記載のエレベータの運転制御装置において、
前記制御手段は、救出のため低速で走行する場合、釣合いオモリの走行方向に免震構造位置があれば、逆方向に走行させる
ことを特徴とするエレベータの運転制御装置。
In the elevator operation control device according to claim 1 or 2,
When the control means travels at a low speed for rescue, if there is a seismic isolation structure position in the traveling direction of the balance weight, the operation means travels in the reverse direction.
JP2003055588A 2003-03-03 2003-03-03 Elevator operation control device Expired - Fee Related JP4265920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055588A JP4265920B2 (en) 2003-03-03 2003-03-03 Elevator operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055588A JP4265920B2 (en) 2003-03-03 2003-03-03 Elevator operation control device

Publications (2)

Publication Number Publication Date
JP2004262613A true JP2004262613A (en) 2004-09-24
JP4265920B2 JP4265920B2 (en) 2009-05-20

Family

ID=33119559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055588A Expired - Fee Related JP4265920B2 (en) 2003-03-03 2003-03-03 Elevator operation control device

Country Status (1)

Country Link
JP (1) JP4265920B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161378A (en) * 2005-12-12 2007-06-28 Mitsubishi Electric Corp Elevator emergency control operation system for earthquake and elevator system
JP2009012931A (en) * 2007-07-04 2009-01-22 Toshiba Elevator Co Ltd Elevator control device
JP2011026076A (en) * 2009-07-27 2011-02-10 Hitachi Ltd Elevator control device for building having base isolation structure part
RU2467942C2 (en) * 2008-03-17 2012-11-27 Отис Элевейтэ Кампэни Method of controlling elevator system and elevator system
JP6648864B1 (en) * 2019-03-07 2020-02-14 三菱電機ビルテクノサービス株式会社 Elevator equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743027B2 (en) * 2012-05-22 2015-07-01 三菱電機株式会社 Elevator control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161378A (en) * 2005-12-12 2007-06-28 Mitsubishi Electric Corp Elevator emergency control operation system for earthquake and elevator system
JP2009012931A (en) * 2007-07-04 2009-01-22 Toshiba Elevator Co Ltd Elevator control device
RU2467942C2 (en) * 2008-03-17 2012-11-27 Отис Элевейтэ Кампэни Method of controlling elevator system and elevator system
JP2011026076A (en) * 2009-07-27 2011-02-10 Hitachi Ltd Elevator control device for building having base isolation structure part
JP6648864B1 (en) * 2019-03-07 2020-02-14 三菱電機ビルテクノサービス株式会社 Elevator equipment
WO2020179062A1 (en) * 2019-03-07 2020-09-10 三菱電機ビルテクノサービス株式会社 Elevator device

Also Published As

Publication number Publication date
JP4265920B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
KR100896872B1 (en) Elevator controller and method of operating elevator
JP4716669B2 (en) Elevator operation control device
JP2007091460A (en) Elevator device and its control method
JP2002128411A (en) Machine-roomless elevator
CN101386387B (en) Elevator controlling apparatus
WO2007013434A1 (en) System for controlling elevator in strong wind
JP2011230920A (en) Elevator inspection work safety device
JP4265920B2 (en) Elevator operation control device
CN103648951B (en) Lift appliance
JP2014114157A (en) Elevator control device
JP4265938B2 (en) Elevator emergency operation device
JP2011148591A (en) Control device of elevator
JP6776457B2 (en) Elevator controls, elevators, and elevator control methods
JPS60171980A (en) Operation method on earthquake of elevator
JPH08301545A (en) Earthquake time control operating device for elevator
JP4939698B2 (en) Elevator rope elongation detecting device and safe driving method
JP2007331902A (en) Control device of elevator
JPH04365768A (en) Control device for elevator
JP5955071B2 (en) Elevator passenger confirmation system and method
JPH06271224A (en) Cage-in preventing control device for elevator
JP2006131403A (en) Elevator device
KR101924942B1 (en) Automatic rescue apparatus for elevator
JP3327019B2 (en) Elevator equipment
KR100809373B1 (en) Automatic Rescue Circuit of Elevator
JP5966872B2 (en) Elevator control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Ref document number: 4265920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees