JP2004261945A - Polishing abrasive grain and polishing tool - Google Patents

Polishing abrasive grain and polishing tool Download PDF

Info

Publication number
JP2004261945A
JP2004261945A JP2003057101A JP2003057101A JP2004261945A JP 2004261945 A JP2004261945 A JP 2004261945A JP 2003057101 A JP2003057101 A JP 2003057101A JP 2003057101 A JP2003057101 A JP 2003057101A JP 2004261945 A JP2004261945 A JP 2004261945A
Authority
JP
Japan
Prior art keywords
particles
abrasive grains
polishing
oxide
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057101A
Other languages
Japanese (ja)
Other versions
JP2004261945A5 (en
JP4301434B2 (en
Inventor
Susumu Cho
軍 張
Toshiyuki Enomoto
俊之 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003057101A priority Critical patent/JP4301434B2/en
Publication of JP2004261945A publication Critical patent/JP2004261945A/en
Publication of JP2004261945A5 publication Critical patent/JP2004261945A5/ja
Application granted granted Critical
Publication of JP4301434B2 publication Critical patent/JP4301434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide abrasive grains to realize polishing performance higher than conventional one without spoiling excellent worked surface quality in a nanometer order, a polishing tool manufacturable at low cost and easily and its manufacturing method, by taking notice of polishing characteristics of the abrasive grains forming composite particles by mixing fine oxide particles of more than two kinds having first oxide particles strong in mechanical removing action and second oxide particles strong in chemical action. <P>SOLUTION: The abrasive grains 1 are mode of particular porous bodies in which a large number of primary particles 11, 12 provided by heat treatment of secondary particles formed by coagulation of a large number of the primary particles 11, 12 at temperature to form a neck at at connecting points of the primary particles are partly connected to each other in a state where cavities are formed among them. The primary particles are the composite particles simultaneously using more than two kinds of the oxide particles having the first oxide particles strong in the mechanical removing action and the second oxide particles strong in the chemical action against a work, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、シリコン、ガラス等の硬脆材料や、鉄鋼、アルミニウム等の金属材料を仕上げ加工するための研磨具およびその製造方法に関するものであり、殊に研磨加工の高品位化、高能率化を図るとともに、耐用寿命が長い研磨フィルム及びその製造方法を提供するものである。
【0002】
【従来の技術】
シリコンウェーハやガラスディスクをはじめ、各種硬脆材料や金属材料からなる部品の最終仕上げには、研磨剤スラリーを用いた研磨加工が用いられてきた。この加工法では微細な砥粒を使用しやすいため優れた仕上げ面粗さを容易に得ることができ、また大量の研磨剤スラリーを使用することで安定した加工特性を維持することができるので、多くの加工現場で慣用されている。
しかし、研磨加工においては大量の研磨剤スラリーを要するとともに、大量の廃液を排出するので、環境への負荷が極めて高く、また加工能率を格別に向上させることはできない。そのために、研磨加工能率に優れ、優れた仕上げ面粗さが得られる固定砥粒加工工具の研究開発が盛んに行われている。
【0003】
砥粒加工において良好な加工面粗さを得るには、通常、微細な砥粒を使用するのが有利であり、固定砥粒加工工具においても同様である。しかし、鏡面のような優れた加工面を得るために、固定砥粒加工工具において粒径数μm以下の砥粒を使用すると、加工時に砥粒結合材と工作物との接触が生じやすく、その結果、加工抵抗の急増、砥粒の脱落等が生じ、最悪の場合には加工不可の状態に陥ってしまう。また切りくずなどによる目詰まりは、加工能率を低下させてしまうばかりでなく、反った研磨加工面にスクラッチ、傷等を与えてしまうという問題がある。
【0004】
これらの問題を解決するものとして、微細な砥粒を造粒し、凝集した状態の粉末を砥粒として使用する固定砥粒加工工具があり、特開2000−190228号公報、特開2000−237962号公報、特願2001−221811号明細書に記載されたものは、凝集砥粒を基材上にバインダ樹脂で固定化して研磨具を構成したものである。これらの固定砥粒加工工具においては、微細な一次粒子の作用により優れた加工面粗さが得られ、同時に凝集した砥粒による高い加工能率が実現される。さらに、特願2001−221811号明細書に、一次粒子同士の結合力(凝集力)と加工能率との関係が記載され、また、加工面品位を損なうことなく、加工能率を向上させるには一次粒子同士の結合力を適正化するのが有効であることが記載されている。
【0005】
しかし、特願2001−221811号明細書に記載されているように、加工面品位を損なうことなしに、加工能率を向上させるには限界がある。なぜならば、一次粒子同士の結合力(凝集力)があまり弱すぎると、凝集砥粒(二次粒子)自身が破壊され、加工能率が極めて低く、加工物の前加工面を完全に除去することができない。その反面、一次粒子同士の結合力(凝集力)が高くなればなるほど、その凝集砥粒本来の特徴がなくなり、上記の通常の大粒径単粒子砥粒に近づき、加工能率は向上されるものの、スクラッチなどが発生しやすくなり、加工面品位が大きく劣化してしまう。
【0006】
また、特開2000−190228号公報、特開2000−237962、特願2001−221811号明細書に記載されたものは、いずれもその砥粒が単一成分のものであって、砥粒材質の如何とその加工特性との関連についての配慮はなされていない。
様々に試行を重ね分析を行った結果、加工対象物にもよるが、一次粒子の材質が非常に重要なファクターとして関係することが判明し、さらに、二次粒子が単成分の酸化物一次粒子によるものでなく、加工物に対して、それぞれ機械的除去作用の強い第1の酸化物粒子とケミカル作用の強い第2の酸化物粒子を有する2種類以上の微細な酸化物粒子を混合して複合粒子を形成したものの方が高加工面品位を損なうことなしに、加工能率を更に向上させるのに、極めて効果的であることが判明した。
【0007】
【特許文献1】特開2000−190228号公報
【特許文献2】特開2000−237962号公報
【特許文献2】特願2001−221811号明細書
【0008】
【発明が解決しようとする課題】
この発明の課題は、機械的除去作用の強い第1の酸化物粒子とケミカル作用の強い第2の酸化物粒子を有する2種類以上の微細な酸化物粒子を混合して複合粒子を形成した砥粒の研磨特性に着目して、ナノメータオーダの優れた加工面品位を損なうことなく、従来よりさらに高研磨能率を実現できる砥粒を提供することであり、また安価でかつ簡単に製造できる研磨具およびその製造方法を提供することである。
【0009】
【課題解決のために講じた手段】
【解決手段】(請求項1に対応)
上記課題を解決するために講じた手段は、多数の一次粒子が凝集して形成された二次粒子が一次粒子同士の結合点にネックが形成される温度で加熱処理して得た、多数の一次粒子が部分的に、かつ、その間に空隙が形成された状態で結合している粒状の多孔質体からなる砥粒であることを前提として、上記一次粒子は加工物に対して、それぞれ機械的除去作用の強い第1の酸化物粒子とケミカル作用の強い第2の酸化物粒子を有する2種類以上の酸化物粒子を同時に用いた複合粒子であることを特徴とすることである。
【0010】
【作用】
上記多数の一次微細研磨材粒子が部分的に、かつ、その間に空隙が形成された多孔質体であるから、微細な一次粒子の作用により優れた加工面粗さが得られ、同時に結合された多孔質体による高い加工能率が実現される。また、切りくずは超微細研磨材粒子とともに加工面から離脱しやすく、目詰まりなどによる加工ダメージを生じる可能性が著しく低減される。さらに、上記一次粒子は加工物に対して、それぞれ機械的除去作用の強い第1の酸化物粒子とケミカル作用の強い第2の酸化物粒子を設けることによって、上記第2の酸化物粒子は加工物表面と化学作用を起し、柔らかい化学反応層、あるいは水和層を生じさせ、上記機械的除去作用の強い第1の酸化物粒子により、メカニカル的(機械的)に除去することができる。また、二つ機能を持つ酸化物粒子を複合することによって、加工中に常に加工点において、二つの機能を持つ酸化物粒子を供給することができ、同時にこの二つの機能を果たすことができるから、加工物表面を均一に加工することができる。この手法では、上記従来技術では困難な加工能率の向上に、極めて有効である。つまり、従来技術と同様に高加工面品位を損なうことなしに、加工能率を顕著に向上させることができる。
【0011】
【実施態様1】(請求項2に対応)
実施態様1は、解決手段について、その複合粒子の酸化物粒子が酸化ジルコニウム、酸化セリウム、シリカの混合物であることである。
【作用】
加工物にもよるが、金属酸化物は古くから砥粒として用いられている。例えば、Al、CeO、ZrO、SiO 、Fe、TiO、Crなどがある。ガラスや石英やSiの酸化膜などのガラス質のワークに対して、酸化セリウムはもっとも化学的な作用が高いと知られている。ここで、酸化ジルコニウムを機械的除去作用の強い第一酸化物粒子と酸化セリウムをケミカル作用の強い第2の酸化物粒子と混合することで、ガラス質のワーク加工において、確実に高加工面品位を極めて高い研磨能率で得ることができる。同様に、Siに対して、ケミカル作用が知られているSiOをZrO粒子と混合し、確実に高加工面品位を高い研磨能率で得ることができる。
【0012】
【実施態様2】(請求項3に対応)
実施態様2は、解決手段について、ケミカル作用の強い第2の酸化物粒子が機械的除去作用の強い第1の酸化物粒子に固溶していないことである。
【作用】
高加工面品位を損なうことなく、さらに加工能率を加工させるためには、加工物に応じて、ケミカルと機械的作用はそれぞれの酸化物粒子で選択的に担うことがより効果的である。しかし、両粒子が多孔質体に単独で存在するのではなく、固溶してしまうと、各金属酸化物粒子それぞれ本来の役割を果たすことができなくなる。
【0013】
【実施態様3】(請求項4に対応)
実施態様3は、解決手段又は上記実施態様1について、その複合粒子の上記一次粒子同士がバインダを介することなく互いに結合されていることである。
【作用】
一次粒子同士を結合するためのバインダを含まないことから、加工時におけるバインダと加工物表面との接触による研磨抵抗の増加、あるいは切りくずがバインダに付着することによる加工面品位の劣化を回避することができる。また、バインダを含まないため、一次粒子同士の結合力がより調整しやすく、研磨中に確実に砥粒の磨耗を起こし、加工点に確実に新しい切刃を供給することで、より確実に高加工面品位を高加工能率で達成できる。
【0014】
【実施態様4】(請求項5に対応)
実施態様4は、解決手段、上記実施態様1、上記実施態様2について、その一次粒子の平均粒径が5μm以下であることである。
【作用】
一次粒子の平均粒径が5μm以下であることから、より高加工面品位を得ることができる。5μmよりも大きい粒子を用いると、加工面に加工による新たにスクラッチなどの加工ダメージをもたらす恐れがある。
【0015】
【実施態様5】(請求項6に対応)
実施態様5は、解決手段1、上記実施態様1乃至上記実施態様3について、その複合粒子の圧縮破壊強度が20MPa乃至300MPaであることである。
【作用】
複合粒子の圧縮破壊強度が20MPa以上300MPa以下であることから、高加工面品位と高加工能率を両立して実現できる。圧縮破壊強度が20MPaよりも小さい場合は、複合粒子自身が加工中につぶされて、ワークの前加工面を完全に除去することができない。一方、圧縮破壊強度が300MPaよりも大きい場合、今度機械的な除去作用が強すぎて、加工による新たなスクラッチなどのダメージをもたらしてしまう。
【0016】
【実施態様6】(請求項7に対応)
実施態様6は、解決手段又は上記実施態様1について、その圧縮破壊強度が20MPa乃至160MPaであることである。
【作用】
圧縮破壊強度が20MPa乃至160MPaであることから、より確実に高加工面品位と高加工能率を両立して実現できる。
【0017】
【実施態様7】(請求項8に対応)
実施態様7は、解決手段、上記実施態様1乃至実施態様6の砥粒を研磨面に有する研磨具である。
【作用】
砥粒を研磨面に有する研磨具を用いて加工することで、高能率で、かつ、高品位な加工面を得ることが可能となり、研磨具も長寿命となる。また、固定砥粒研磨具によってスラリーが不要となり、環境負荷が大幅に低減される。
【0018】
【実施態様8】(請求項9に対応)
実施態様8は、上記実施態様6について、その複合粒子の含有率が10体積%乃至90体積%であることである。
【作用】
複合粒子の含有率が10体積%以上90体積%以下であることにより、高能率で、かつ、高品位な加工面を得ることが特に効果的に達成される。前記複合粒子の添加率が10体積%未満であると添加の効果がなく、90体積%をこえると研磨具の結合剤量が少なすぎて、砥粒保持強度が著しく低下し、工具として用いることができない。
【0019】
【実施態様9】(請求項10に対応)
実施態様9は、上記研磨具が研磨フィルムであって、上記記砥粒を基材フィルムに固定するためのバインダ層の厚さが該砥粒の最大直径よりも小さいことである。
【作用】
上記砥粒を基材フィルムに固定するためのバインダ層の厚さが該砥粒の最大直径よりも小さいことで、砥粒の突き出し量が保証され、バインダが加工面と接触しにくくなり、加工面品位の低下を防止することが可能となる。
【0020】
【実施の形態】
以下、本発明の実施の形態を説明する。
砥粒としては、加工対象物にもよるが、一般には硬質無機材料であって、平均粒径が5μm以下の一次粒子の微細粉末が凝集して、平均粒径10〜300μm程度、さらに好ましくは平均粒径40〜100μm程度の二次粒子を備えたものが適する。通常の砥粒に供する酸化物材料は、シリカ、セリア、アルミナ、酸化ジルコニウム、酸化チタン等である。凝集体はゾルゲル法、スプレードライヤー等の手段でつくることができる。
【0021】
【実施例1】
次いで、本発明の実施例を説明する。
まずは、50〜90nmからなる超微細粒子ZrOとCeO粉末(CeOは10mol%の比率で)を混合し、有機結合剤、例えば樹脂などを用いず、水で泥しょう化し、スプレードライヤーで噴霧させて、所望のサイズを有する、例えば上記一次粒子11,12の平均粒径で50μmのZrOをベースとしたZrO−CeOの複合二次粒子(顆粒)1を得る(一般的に、1μm〜300μmまでのサイズが得られる(粒度分布がシャープでないときに、分級プロセスを加える))。平均粒径は堀場製作所製レーザ回折/散乱式粒度分布測定装置LA−920を用いて、乾式で測定を行った。上記平均粒径の値は頻度積算50%のところの粒径を用いた(通常、メジアン径とも言う)。しかし、通常スプレードライヤーでバインダなしで作製した顆粒の一次粒子同士の結合力は弱すぎる場合もある。従って、必要に応じて、ZrO−CeO複合粒子を電気炉の中に入れ、焼成を行った。
【0022】
一次粒子が加熱処理により成長するが、当該一次粒子がその構成物質の物質移動により成長するのみならず、粒子同士の結合箇所は、粒子の構成物質の物質移動により太くなり、不連続点のないなだらかな曲面となり、1葉双曲面状(鼓状)にくびれた、いわゆる「ネック」状となる(図8参照)。この加熱処理時の物質移動による一次粒子の成長及び「ネック」形成については、株式会社産業技術センター発行「セラミック材料技術集成」(昭和54年4月10日初版第1刷発行)の「2.3 物質移動の機構と焼結のモデル」に詳細に記載されている。この焼成工程においては、加熱温度および保持時間の度合いが一番重要な要素である。
【0023】
図9には焼成温度と一次粒子同士の結合力との関係の模式図を示している。焼成温度が高いほど、一次粒子同士の焼結が進み、それらの間の空隙がなくなり、多孔質体構造が失われて、完全な焼結体となるので、結合力が増大していく。また、一次粒子は2種類以上であるため、さらに状態図に従って加熱工程を設定して、CeOがZrOに固溶しないように工夫するのがもっとも重要である。焼成で得た複合二次粒子の結合力を評価するために、1個1個の粒子をピックアップし、圧縮破壊試験を行った。この圧縮破壊強度試験は、平松、岡、木山による報告(日本鉱業会誌、81、1024(1965))に基づく島津製作所(株)製微小圧縮試験機MCTM500PCを用いて行った。試験条件として、試験荷重を10〜1000mN、負荷速度は0.446mN/secとし、平面圧子を用いて、被測定複合二次粒子に対して圧縮を行い、複合二次粒子が圧縮破壊されたときの強度を測定する。
【0024】
さらに、焼成を行った後X線を用いて測定したところ、機械的作用が強いZrO粒子11とケミカル作用が強いCeO12が単体で存在し、お互いに固溶していないことが確認された。
【0025】
次に、このようにして得た圧縮破壊強度が67MPaで、平均粒径が50μmの本発明による複合二次粒子1(図1)を、粒子の体積比が35体積%になるように、液状のウレタン樹脂と混合し、さらに有機溶媒を加え、溶液粘度を調整した後、撹拌機を用いて10分程度混合撹拌して混合物を作製した。撹拌は、室温で、回転数は砥粒を破壊しない程度として50rpmで行った。
この混合物を基材(厚さ約75μmのPETフィルム)22上にワイヤバーコータを用いて塗布し、その後、60℃に保った恒温槽内で1時間乾燥させ、研磨具である研磨フィルムAを得た(図2)。得られた塗布層(砥粒を有する部分)2の最大厚さは粒度分布を持つ本発明に係る砥粒(複合二次粒子1)の最大径にほぼ等しい厚さになる(上記のように溶媒を併用することによりバインダ層21の厚さを薄くすることが容易となる)。このように作製した研磨フィルムAを図3に示す加工装置のラップ定盤32に取り付け、最大高さ粗さRyが2μmとなるように調整した光学ガラスディスク(硼珪酸クラウンガラス(BK7相当品))31を研磨加工(加工条件:定盤回転数120rpm、加工圧力50kPa)した。その結果、1分間でスクラッチのない、最大高さ粗さRyが30nm以下の鏡面を得ることができた。
【0026】
ワークの表面写真および粗さチャートを図4に示す。また、引き続きBK7を10枚研磨加工しても、加工能率や加工面粗さの大きな低下は認められなかった。
このように高能率で高加工面品位を得られたのは、複合二次粒子を構成するZrOとCeOによるそれぞれの寄与によるものと考えられる。CeOは遊離砥粒としてもっとも使用されている砥粒種である。CeOはガラスよりも硬さが遥かに低く、また、ガラスとの化学作用がもっとも大きいとことが知られている。本発明の複合粒子は、CeO粒子がZrOに固溶することなく、独立して存在するので、研磨加工中にBK7ガラスの表面に化学反応層を形成させ、そして、その化学反応層は複合粒子の中に存在するZrOの微細粒子あるいは複合粒子自身により機械的に除去されるから、極めて高い加工能率で高加工面粗さを得ることができたものと考えられる。
【0027】
【比較例1及び比較例2】
上記実施例1と同じ方法で複合粒子を作製したが、圧縮破壊強度をそれぞれ16.2MPa(比較例1)と310.2MPa(比較例2)にした。そして、それぞれ研磨フィルムBとCを作製した。実施例1と同じように、ラップ定盤32に取り付け、最大高さ粗さRyが2μmとなるように調整した光学ガラスディスク(硼珪酸クラウンガラス(BK7相当品))31を1分間加工した(加工条件:定盤回転数120rpm、加工圧力50kPa)。研磨フィルムBの場合は、加工面粗さは多少改善された(0.23μmRy)が、しかし、鏡面には至らなかった。他方、研磨フィルムCの場合は、加工によって新たにスクラッチが発生し、加工面粗さが劣化してしまった(2.5μmRy)。この結果から、圧縮破壊強度が低すぎると複合粒子自身がつぶされてワークへの切込みが弱くなり物理的(機械的)な除去作用が失われ、前加工面を完全に除去することができなかったものと推測され、一方、圧縮破壊強度が高すぎると、ワーク表面の切込みが強すぎることになり、加工により新たなスクラッチをもたらすものと推測される。
従って、適切な一次粒子同士の結合力を有する二次粒子からなる砥粒だけが、高加工面品位(鏡面)を高能率で達成できるものと考えられる。そして、焼成条件を調整し、それぞれ圧縮破壊強度の異なるZrO−CeO複合粒子を作製し、研磨フィルムにしBK7ガラスに加工を適用したところ、図6に示す結果となった。
【0028】
複合粒子の圧縮破壊強度が20MPa以上300MPa以下であることから、高加工面品位と高加工能率を両立して実現できる。圧縮破壊強度が20MPaよりも小さい場合は、複合粒子自身が加工中につぶされて、ワークの前加工面を完全に除去することができない。一方、圧縮破壊強度が300MPaよりも大きい場合、今度機械的な除去作用が強すぎて、加工による新たなスクラッチなどのダメージをもたらしてしまう。
【0029】
【比較例3】
前記実施例1と同様な成分構成を用いたが、CeOをZrOに完全固溶化させた複合粒子βを作製した。また、上記実施例1と同じように圧縮破壊強度を測ったところ、96.5MPaである。そして、実施例1と同じようにそれを用いて同じ構成で研磨フィルムDを作製した。そして図3の加工装置を用いて同じようBK7ワークに対して、適用した結果、鏡面が得られなかった。そして、さらに加工時間を10分に延ばしても同じ結果であった。図7にBK7の前加工面と10分加工後の表面写真を示している。この結果から、ケミカル作用の強いCeOが機械的作用の強いZrOに完全に固溶してしまうと、CeO本来のケミカル作用が失われて、加工中にBK7ガラスの表面と反応せず、柔らかい反応層が生じなくなり、あるいは少なくなり、複合粒子の働きがなくなり、全体的に研磨能率が下がったため、BK7ワークの前加工面を完全に除去することができなかったことが理解される。
以上の比較から、複合二次粒子を構成する第1相(ZrO)と第2相(CeO)がお互いに固溶することなく、単独に存在することによってのみ、両成分それぞれの役割を果たすことができ、高加工面品位を極めて高い加工能率で達成できることが明らかである。
【0030】
【比較例4及び比較例5】
ZrO単成分(圧縮破壊強度は64MPa)による研磨フィルムEを上記実施例1と同じ方法で作製した(比較例4)。上記実施例1と同じ条件で、最大高さ粗さRyが2μmとなるように調整した光学ガラスディスク(硼珪酸クラウンガラス(BK7相当品))31を研磨加工(加工条件:定盤回転数120rpm、加工圧力50kPa)した。その結果、2分間でスクラッチのない、最大高さ粗さRyが30nm以下の鏡面を得ることができた。しかし、加工能率の点において、実施例1に比して劣る。換言すれば、複合粒子を用いた実施例1の場合はケミカル作用と機械的除去作用を併用することで、加工面品位を損なうことなしに、研磨能率が高く、比較例4の場合は加工能率は実施例1のほぼ1/2である。
【0031】
また、この研磨フィルムEを用いて、上記実施例1の加工方法で、加工中に、5wt%CeOのスラリーを研磨フィルムの上に流しながら加工を行った(比較例5)。その結果、実施例1とほぼ同じ研磨能率が得られたが、しかし、加工面にスクラッチの発生が確認された。
複合粒子の砥粒の場合、加工点に同時に、確実に二つの機能を持つ酸化物粒子が同時に供給されるから、ケミカル作用による反応層が瞬時に程度よく機械的作用の強い粒子に除去されるが、しかし、比較例5のように遊離砥粒を添加した場合、砥粒とワークとの加工点にケミカル作用の強い酸化物粒子が均等に供給されるわけではなく、また、遊離砥粒が供給された場合は、ワーク全面に柔らかい反応層が生じ、機械的作用の強い粒子により、スクラッチをより容易にもたらす可能性が高くなるものと考えられる。そして、上記従来技術の項で述べたように、加工後の洗浄工程に多くの時間が要した。つまり、複合粒子の形態ではなく、機械的作用の強い酸化物粒子を固定砥粒工具にし、ケミカル作用の強い酸化物粒子を遊離砥粒として添加することは、結局のところ、従来の遊離砥粒と同じ構成となり、固定砥粒のメリットが得られなくなるのである。
【0032】
【実施例2】
まずは、50〜90nmからなる超微細粒子ZrOと70〜90nmからなるSiO超微細粒子(SiOは40mol%の比率で)を混合し、有機結合剤、例えば樹脂などを用いず、水で泥しょう化し、スプレードライヤーで噴霧させて、所望のサイズを有する、例えば平均粒径で30μmのZrOをベースとしたZrO−SiO複合二次粒子(顆粒)を得る。上記実施例1と同じように、平均粒径は堀場製作所製レーザ回折/散乱式粒度分布測定装置(LA−920)を用いて、乾式で測定した(なお、平均粒径の値は、いわゆるメジアン径、すなわち頻度積算50%のところの粒径を用いた)。
そして、同じように、ZrO−SiO複合二次粒子を電気炉の中に入れ、焼成を行った。この焼成工程においては、同じく加熱温度および保持時間が一番肝心であるので、基本的に状態図に従って加熱工程を設定しているが、第2相であるSiOが第1層であるZrOに固溶しないように工夫するのがもっとも重要である。焼成した複合二次粒子をX線で測定したところ両者の生成物であるZrSiOは存在せず、SiOが単体で存在し、ZrOに固溶していないことを確認した。そして、上記実施例1と同じように、焼成した複合二次粒子の圧縮破壊強度を測定した。
【0033】
このようにして得られた圧縮破壊強度が112.5MPaの、平均粒径30μmの本発明に係る複合二次粒子βをその体積比が40体積%となるように液状のウレタン樹脂と混合し、さらに有機溶媒を加え、溶液粘度を調整した後、撹拌機を用いて10分程度混合撹拌して混合物を作製した。撹拌は、室温で、回転速度については砥粒を破壊しない程度の50rpmで行った。そして、以下は上記実施例1と同じように、この混合物を基材上(厚さ約75μmのPETフィルム)にワイヤバーコータを用いて塗布し、その後、60℃に保った恒温槽内で1時間乾燥させ、研磨具である研磨フィルムFを得た。得られた塗布層(砥粒を有する部分)の最大厚さは粒度分布を持つ本発明に係る砥粒の最大径にほぼ等しい厚さになる(上記のように溶媒を併用することによりバインダ層の厚さを薄くすることが容易となる)。
【0034】
そして研磨フィルムFを図3に示す加工装置のラップ定盤に取り付け、#2000相当の砥石で研削加工した直径50mmのシリコンウェーハを研磨加工した結果、5分間の加工時間で加工マーク(スクラッチ)のない、加工面粗さ20nmRy以下の鏡面が得られた。また、引き続きシリコンウェーハを10枚研磨加工しても、加工能率や加工面粗さの低下は認められなかった。
なお、本発明は一次粒子である砥粒の種類、造粒凝集方法、添加物の種類、研磨具結合材の種類、加工工具の形状、加工対象物において、上記の実施例に限定されるものではない。
【0035】
【発明の効果】
この発明の効果は、各請求項に係る発明毎に整理すれば、次のとおりである。
1.請求項1に係る発明の効果
複合二次粒子が、多数の一次粒子が部分的に結合していてその間に空隙が形成されている粒状の多孔質体であって、上記一次粒子は少なくとも2種類以上の酸化物粒子を用いた複合二次粒子であるので、これを用いて研磨加工する時に、上記一次粒子がそれぞれの成分の機能、すなわち、一方がケミカル作用の機能を奏し、他方が機械的除去作用の機能を奏することができ、これらの機能の複合作用によって高い能率で優れた加工面品位が得られる。
【0036】
2.請求項2、請求項3に係る発明の効果
上記複合二次粒子を構成する酸化物粒子は酸化ジルコニウム、酸化セリウム、シリカの混合物であり、ケミカル作用の強い酸化物粒子は他方の機械的作用の強い酸化物粒子に固溶しておらず、それぞれの物性を保持しているので、確実に各酸化物粒子のそれぞれの機能を奏することができる。例えばガラス加工において、ZrO−CeO複合粒子の場合、CeO粒子は主にガラスとの化学反応層を形成させ、ZrOは機械的な除去作用を起こすという機能である。シリコンウェーハの加工においては、ZrO−SiO複合二次粒子の場合、SiO粒子は化学作用、ZrO粒子は機械的除去作用を奏することになる。
因みに、ケミカル作用の強い酸化物が機械的除去作用の強い酸化物に固溶していると、各粒子本来の物性が保持されないので、それぞれの物性による機能を奏することができない。
【0037】
3.請求項4に係る発明の効果
一次粒子同士を結合するためのバインダを含まないことから、加工時におけるバインダと加工物表面との接触による研磨抵抗の増加、あるいは切りくずがバインダに付着することによる加工面品位の劣化を回避することができる。また、バインダを含まないため、一次粒子同士の結合力がより調整しやすく、研磨中に確実に磨耗を起こし、加工点に確実に新しい切刃を供給することで、高加工面品位の向上と高加工能率の向上が確実に実現される。
【0038】
4.請求項5に係る発明の効果
一次粒子の平均粒径が5μm以下であることから、より高加工面品位を得ることができる。5μmよりも大きい粒子を用いると、加工面に加工による新たにスクラッチ等の加工ダメージをもたらす恐れがある。
【0039】
5.請求項6に係る発明の効果
複合二次粒子の圧縮破壊強度が20MPa以上300MPa以下であることから、高加工面品位と高加工能率をともに実現できる。圧縮破壊強度が20MPaよりも小さい場合は、複合二次粒子が加工中につぶされて、ワークの前加工面を完全に除去することができない。一方、圧縮破壊強度が300MPaよりも大きい場合、今度機械的な除去作用が強すぎて、加工による新たなスクラッチなどのダメージをもたらしてしまう。
【0040】
6.請求項7に係る発明の効果
複合二次粒子の圧縮破壊強度が20MPa以上160MPa以下であることから、より確実に高加工面品位と高加工能率をともに実現できる。
【0041】
7.請求項8に係る発明の効果
請求項1ないし請求項7のいずれかに記載の砥粒を研磨面に有する研磨具を用いて加工することで、高能率で、かつ、高品位な加工面を得ることが可能となり、研磨具も長寿命となる。また、固定砥粒研磨具によってスラリーが不要となり、環境負荷が大幅に低減となる。
【0042】
8.請求項9に係る発明の効果
複合二次粒子の含有率が10体積%乃至90体積%であることによって、高能率化し、かつ加工面の高品位化が図られ、実用的な研磨工具を実現することができる。すなわち、上記複合二次粒子の添加率が10体積%未満であると複合二次粒子の添加効果がほとんどなく、90体積%を超えると研磨具の結合剤量が少なすぎて砥粒保持強度が著しく低下し、その結果、研磨機能が著しく低下し、工具としての実用に耐えられない。
【0043】
9.請求項10に係る発明の効果
上記研磨具が研磨フィルムであって、前記砥粒を基材フィルムに固定するためのバインダ層の厚さが該砥粒の最大直径よりも小さいことで、バインダが加工面と直接接触することを回避し、バインダ層が直接接触することによる加工面品位の低下を防止することができる。
【図面の簡単な説明】
【図1】は、複合二次粒子の断面構造を模式的に示す断面図である。
【図2】は、複合二次砥粒をフィルム基材に固定した研磨フィルムの断面構造を模式的に示す実施例の断面図である。
【図3】は、研磨装置を模式的に示す断面図である。
【図4】(a)は、研磨加工試験片の加工前の表面形状を示す写真であり、(b)はその表面粗さ測定結果を示す図である。
【図5】(a)は、研磨試験加工後の同試験片の表面形状の写真、(b)はその表面粗さ測定結果を示す図である。
【図6】は、複合二次粒子の破壊圧縮強度と被加工面の表面粗さとの関係を示すグラフである。
【図7】は、ケミカル作用の強いCeOが機械的除去作用の強いZrOに固溶した砥粒の加工結果であり、(a)は、研磨加工試験片の加工前の表面形状を示す写真であり、(b)は10min加工後の写真である。
【図8】は、一次粒子が加熱処理により成長する様子を示す模式図であり、(a)は加熱処理前の模様、(b)は加熱処理後の模様である。
【図9】は、加熱処理と砥粒の一次粒子同士の結合力との関係を概略的に示すグラフである。
【符号の説明】
1:複合二次砥粒
2:塗布層(砥粒を有する部分)
11,12:一次粒子
21:バインダ層
22:基材
31:光学ガラスディスク
32:ラップ定盤
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing tool for finishing hard and brittle materials such as silicon and glass, and metal materials such as steel and aluminum, and a method for manufacturing the same. And a polishing film having a long service life and a method for producing the same.
[0002]
[Prior art]
Polishing using an abrasive slurry has been used for final finishing of parts made of various hard and brittle materials and metal materials, such as silicon wafers and glass disks. In this processing method, excellent finished surface roughness can be easily obtained because fine abrasive grains are easily used, and stable processing characteristics can be maintained by using a large amount of abrasive slurry, It is used in many processing sites.
However, in the polishing process, a large amount of abrasive slurry is required and a large amount of waste liquid is discharged, so that the burden on the environment is extremely high and the processing efficiency cannot be particularly improved. For this reason, research and development of a fixed abrasive processing tool that is excellent in polishing efficiency and obtains excellent finished surface roughness has been actively conducted.
[0003]
In order to obtain good machined surface roughness in abrasive grain machining, it is usually advantageous to use fine abrasive grains, as is the case with fixed abrasive machining tools. However, in order to obtain an excellent machined surface such as a mirror surface, if abrasive grains having a grain size of several μm or less are used in a fixed abrasive tool, contact between the abrasive binder and the workpiece tends to occur at the time of machining. As a result, a sharp increase in the processing resistance, dropping of the abrasive grains, etc. occur, and in the worst case, the state falls into a state in which processing is impossible. In addition, clogging due to chips or the like not only lowers the processing efficiency but also causes problems such as scratching, scratching, and the like on the warped polished surface.
[0004]
As a means for solving these problems, there is a fixed abrasive processing tool in which fine abrasive grains are granulated and a powder in an agglomerated state is used as abrasive grains, and Japanese Patent Application Laid-Open Nos. 2000-190228 and 2000-237962. Japanese Patent Application Publication No. 2001-221811 discloses a polishing tool in which aggregated abrasive grains are fixed on a base material with a binder resin. In these fixed abrasive processing tools, excellent processing surface roughness is obtained by the action of fine primary particles, and at the same time, high processing efficiency is realized by agglomerated abrasive grains. Further, Japanese Patent Application No. 2001-221811 describes the relationship between the bonding force (cohesion) between the primary particles and the processing efficiency. In order to improve the processing efficiency without deteriorating the processing surface quality, It is described that it is effective to optimize the bonding force between particles.
[0005]
However, as described in Japanese Patent Application No. 2001-221811, there is a limit in improving the processing efficiency without deteriorating the quality of the processed surface. This is because if the bonding force (cohesion) between the primary particles is too weak, the coagulated abrasive grains (secondary particles) themselves are destroyed, the processing efficiency is extremely low, and the pre-processed surface of the workpiece is completely removed. Can not. On the other hand, the higher the bonding force (cohesion) between the primary particles, the more the inherent characteristics of the cohesive abrasive grains are lost and approach the above-mentioned ordinary large-size single-particle abrasive grains, and the processing efficiency is improved. In addition, scratches and the like are likely to occur, and the quality of the machined surface is greatly deteriorated.
[0006]
In addition, JP-A-2000-190228, JP-A-2000-237962, and those described in Japanese Patent Application No. 2001-221811 each have a single abrasive component, and the abrasive material is No consideration is given to how it relates to its processing characteristics.
As a result of repeated trials and analyzes, it was found that the material of the primary particles was a very important factor, depending on the workpiece, and the secondary particles were composed of single-component oxide primary particles. Instead of the above, two or more types of fine oxide particles each having a first oxide particle having a strong mechanical removal action and a second oxide particle having a strong chemical action are mixed with a workpiece. It has been found that the composite particles are more effective for further improving the processing efficiency without deteriorating the quality of the high processing surface.
[0007]
[Patent Document 1] JP-A-2000-190228
[Patent Document 2] JP-A-2000-237962
[Patent Document 2] Japanese Patent Application No. 2001-221811
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an abrasive in which two or more types of fine oxide particles having a first oxide particle having a strong mechanical removal action and a second oxide particle having a strong chemical action are mixed to form composite particles. Focusing on the polishing characteristics of the grains, it is an object to provide abrasive grains that can achieve higher polishing efficiency than before without impairing the excellent processed surface quality on the order of nanometers, and are inexpensive and easy to manufacture polishing tools And a method for producing the same.
[0009]
[Measures taken to solve the problem]
SOLUTION: (corresponding to claim 1)
Means taken to solve the above problems, a number of secondary particles formed by aggregation of a large number of primary particles obtained by heat treatment at a temperature at which a neck is formed at the bonding point of the primary particles, a large number of Assuming that the primary particles are partially and abrasive grains made of a granular porous material bonded in a state in which a void is formed therebetween, the primary particles are mechanically It is characterized in that it is a composite particle using two or more kinds of oxide particles simultaneously having a first oxide particle having a strong removal action and a second oxide particle having a strong chemical action.
[0010]
[Action]
Since the large number of primary fine abrasive particles are partially, and a porous body in which voids are formed therebetween, excellent processing surface roughness is obtained by the action of the fine primary particles, and they are simultaneously bonded. High processing efficiency is realized by the porous body. In addition, the chips are easily separated from the processing surface together with the ultrafine abrasive particles, and the possibility of processing damage due to clogging or the like is significantly reduced. Further, the primary particles are provided with a first oxide particle having a strong mechanical removal action and a second oxide particle having a strong chemical action with respect to a workpiece, whereby the second oxide particles are processed. A chemical reaction occurs with the surface of the object, a soft chemical reaction layer or a hydrated layer is generated, and the first oxide particles having a strong mechanical removal action can be removed mechanically (mechanically). Also, by combining the oxide particles having two functions, the oxide particles having two functions can be supplied at the processing point during the processing, and the two functions can be simultaneously performed. In addition, the workpiece surface can be uniformly processed. This method is extremely effective in improving the processing efficiency, which is difficult with the above-mentioned conventional technology. That is, the processing efficiency can be remarkably improved without impairing the quality of the high processing surface as in the related art.
[0011]
Embodiment 1 (corresponding to claim 2)
Embodiment 1 is a solution, wherein the oxide particles of the composite particles are a mixture of zirconium oxide, cerium oxide, and silica.
[Action]
Metal oxides have long been used as abrasive grains, depending on the workpiece. For example, Al2O3, CeO2, ZrO2, SiO , Fe2O2, TiO2, Cr2O3and so on. Cerium oxide is known to have the highest chemical action on glassy works such as glass, quartz, and oxide films of Si. Here, by mixing zirconium oxide with the first oxide particles having a strong mechanical removal action and cerium oxide with the second oxide particles having a strong chemical action, high machining surface quality can be ensured in the processing of glassy workpieces. Can be obtained with extremely high polishing efficiency. Similarly, SiO has a known chemical action on Si.2To ZrO2By mixing with the particles, it is possible to reliably obtain a high processed surface quality with a high polishing efficiency.
[0012]
Embodiment 2 (corresponding to claim 3)
The second embodiment is that the second oxide particles having a strong chemical action are not dissolved in the first oxide particles having a strong mechanical removal action.
[Action]
In order to further process the work efficiency without deteriorating the high processed surface quality, it is more effective that the chemical and mechanical actions are selectively performed by the respective oxide particles depending on the work. However, if both particles do not exist alone in the porous body but form a solid solution, each metal oxide particle cannot fulfill its original role.
[0013]
Embodiment 3 (corresponding to claim 4)
A third embodiment is that, in the solution or the first embodiment, the primary particles of the composite particles are bonded to each other without a binder.
[Action]
Since a binder for bonding the primary particles is not included, it is possible to avoid an increase in polishing resistance due to contact between the binder and the surface of the workpiece at the time of processing, or deterioration of a processed surface quality due to chips being attached to the binder. be able to. In addition, since it does not contain a binder, the bonding force between primary particles is easier to adjust, abrasive grains are surely worn during polishing, and a new cutting edge is reliably supplied to the processing point, so that the height is more reliably improved. Achieves high surface quality with high processing efficiency.
[0014]
Embodiment 4 (corresponding to claim 5)
Embodiment 4 is that the average particle diameter of the primary particles of the solving means, Embodiment 1 and Embodiment 2 is 5 μm or less.
[Action]
Since the average particle size of the primary particles is 5 μm or less, higher processed surface quality can be obtained. When particles larger than 5 μm are used, processing damage such as scratches may be newly caused by processing on the processing surface.
[0015]
Embodiment 5 (corresponding to claim 6)
A fifth embodiment is the solution 1, the first to third embodiments, wherein the composite particles have a compressive breaking strength of 20 MPa to 300 MPa.
[Action]
Since the compression fracture strength of the composite particles is 20 MPa or more and 300 MPa or less, it is possible to achieve both high processing surface quality and high processing efficiency. If the compressive fracture strength is less than 20 MPa, the composite particles themselves are crushed during processing, and the pre-processed surface of the work cannot be completely removed. On the other hand, when the compressive breaking strength is greater than 300 MPa, the mechanical removal action is too strong, which causes damage such as new scratches due to processing.
[0016]
Embodiment 6 (corresponding to claim 7)
Embodiment 6 is that the compressive breaking strength of the solution means or Embodiment 1 is 20 MPa to 160 MPa.
[Action]
Since the compressive fracture strength is from 20 MPa to 160 MPa, it is possible to more reliably realize both high processing surface quality and high processing efficiency.
[0017]
Embodiment 7 (corresponding to claim 8)
A seventh embodiment is a polishing tool having a solution, the abrasive grains of the first to sixth embodiments on a polishing surface.
[Action]
By processing using a polishing tool having abrasive grains on the polishing surface, a highly efficient and high-quality processed surface can be obtained, and the polishing tool also has a long life. In addition, the use of the fixed abrasive polishing tool eliminates the need for slurry, and greatly reduces the environmental burden.
[0018]
Embodiment 8 (corresponding to claim 9)
Embodiment 8 is the embodiment 6 in which the content of the composite particles is 10% by volume to 90% by volume.
[Action]
When the content of the composite particles is 10% by volume or more and 90% by volume or less, it is possible to particularly effectively attain a highly efficient and high-quality processed surface. When the addition rate of the composite particles is less than 10% by volume, the effect of the addition is ineffective. Can not.
[0019]
Embodiment 9 (corresponding to claim 10)
Embodiment 9 is that the polishing tool is a polishing film, and the thickness of a binder layer for fixing the abrasive grains to the base film is smaller than the maximum diameter of the abrasive grains.
[Action]
Since the thickness of the binder layer for fixing the abrasive grains to the base film is smaller than the maximum diameter of the abrasive grains, the protrusion amount of the abrasive grains is guaranteed, and the binder is hardly brought into contact with the processing surface, and the processing is performed. It is possible to prevent a decrease in surface quality.
[0020]
Embodiment
Hereinafter, embodiments of the present invention will be described.
The abrasive grains, although depending on the object to be processed, are generally hard inorganic materials, and a fine powder of primary particles having an average particle diameter of 5 μm or less is aggregated to have an average particle diameter of about 10 to 300 μm, more preferably Those having secondary particles having an average particle size of about 40 to 100 μm are suitable. The oxide material used for ordinary abrasive grains is silica, ceria, alumina, zirconium oxide, titanium oxide, or the like. Aggregates can be formed by means such as a sol-gel method or a spray dryer.
[0021]
Embodiment 1
Next, examples of the present invention will be described.
First, ultrafine particles ZrO of 50-90 nm2And CeO2Powder (CeO2Is mixed in a ratio of 10 mol%), without using an organic binder, for example, a resin, etc., and pulverized with water and sprayed with a spray drier to obtain a desired size, for example, the average of the primary particles 11 and 12 described above. 50 μm particle size ZrO2ZrO based on2-CeO2(In general, a size of 1 μm to 300 μm is obtained (when the particle size distribution is not sharp, a classification process is added)). The average particle size was measured dry using a laser diffraction / scattering type particle size distribution analyzer LA-920 manufactured by Horiba, Ltd. As the value of the average particle diameter, a particle diameter at a frequency integration of 50% was used (usually also referred to as a median diameter). However, the bonding force between the primary particles of granules usually produced without a binder by a spray dryer may be too weak. Therefore, if necessary, ZrO2-CeO2The composite particles were placed in an electric furnace and fired.
[0022]
Although the primary particles grow by heat treatment, not only the primary particles grow due to mass transfer of the constituent material, but also the bonding points between the particles become thicker due to the mass transfer of the constituent material of the particle, and there are no discontinuities. It becomes a gentle curved surface, and becomes a so-called "neck" shape which is constricted in a one-lobe hyperboloidal shape (a drum shape) (see FIG. 8). The growth of primary particles and the formation of a “neck” due to mass transfer during this heat treatment are described in “2. Ceramic Materials Technology Gathering” (published on April 10, 1979, first edition, first edition) published by the Industrial Technology Center. 3. Model of mass transfer mechanism and sintering. In this firing step, the degree of the heating temperature and the holding time are the most important factors.
[0023]
FIG. 9 is a schematic diagram showing the relationship between the firing temperature and the bonding force between the primary particles. As the firing temperature increases, sintering of the primary particles progresses, voids between them disappear, the porous structure is lost, and the sintered body becomes a complete sintered body, so that the bonding force increases. In addition, since there are two or more types of primary particles, a heating step is further set according to a phase diagram to obtain CeO.2Is ZrO2It is most important to devise a solution so that it does not form a solid solution. In order to evaluate the bonding strength of the composite secondary particles obtained by firing, each particle was picked up and subjected to a compression fracture test. This compression breaking strength test was performed using a micro compression tester MCTM500PC manufactured by Shimadzu Corporation based on a report by Hiramatsu, Oka and Kiyama (Journal of the Japan Mining Association, 81, 1024 (1965)). As test conditions, the test load is 10 to 1000 mN, the load speed is 0.446 mN / sec, and the composite secondary particles to be measured are compressed using a plane indenter, and the composite secondary particles are compressed and fractured. Measure the strength of
[0024]
Further, after sintering, measurement was performed using X-rays.2CeO with strong chemical action with particles 112It was confirmed that Compound 12 was present alone and did not form a solid solution with each other.
[0025]
Next, the composite secondary particles 1 according to the present invention (FIG. 1) having a compressive breaking strength of 67 MPa and an average particle size of 50 μm obtained as described above were mixed with a liquid so that the volume ratio of the particles was 35% by volume. , And after adding an organic solvent to adjust the solution viscosity, the mixture was mixed and stirred for about 10 minutes using a stirrer to prepare a mixture. The stirring was performed at room temperature and at a rotation speed of 50 rpm so as not to break the abrasive grains.
This mixture is applied on a base material (PET film having a thickness of about 75 μm) 22 using a wire bar coater, and then dried for 1 hour in a constant temperature bath maintained at 60 ° C. to obtain a polishing film A as a polishing tool. (FIG. 2). The maximum thickness of the obtained coating layer (portion having abrasive grains) 2 is substantially equal to the maximum diameter of the abrasive grains (composite secondary particles 1) according to the present invention having a particle size distribution (as described above). By using a solvent together, it becomes easy to reduce the thickness of the binder layer 21). An optical glass disk (borosilicate crown glass (equivalent to BK7)) in which the polishing film A thus produced is mounted on the lapping plate 32 of the processing apparatus shown in FIG. 3 and the maximum height roughness Ry is adjusted to 2 μm ) 31 was polished (processing conditions: platen rotation speed 120 rpm, processing pressure 50 kPa). As a result, it was possible to obtain a mirror surface having a maximum height roughness Ry of 30 nm or less without scratches in one minute.
[0026]
FIG. 4 shows a surface photograph and a roughness chart of the work. Further, even if 10 BK7s were subsequently polished, no significant reduction in the processing efficiency or the processed surface roughness was observed.
The high efficiency and high processed surface quality were obtained because of the ZrO constituting the composite secondary particles.2And CeO2Is considered to be due to each contribution. CeO2Is the most widely used abrasive grain type. CeO2Is known to have much lower hardness than glass and to have the greatest chemical action with glass. The composite particles of the present invention are CeO2Particles are ZrO2Independently of the solid solution, a chemical reaction layer is formed on the surface of the BK7 glass during the polishing process, and the chemical reaction layer is formed in the ZrO 2 present in the composite particles.2It is considered that since the particles were mechanically removed by the fine particles or the composite particles themselves, high processed surface roughness could be obtained with extremely high processing efficiency.
[0027]
[Comparative Example 1 and Comparative Example 2]
Composite particles were produced in the same manner as in Example 1 above, but the compressive breaking strength was 16.2 MPa (Comparative Example 1) and 310.2 MPa (Comparative Example 2), respectively. Then, polishing films B and C were produced, respectively. In the same manner as in Example 1, an optical glass disk (borosilicate crown glass (BK7 equivalent)) 31 attached to the lapping plate 32 and adjusted to have a maximum height roughness Ry of 2 μm was processed for 1 minute ( Processing conditions: platen rotation speed 120 rpm, processing pressure 50 kPa). In the case of the polishing film B, the processed surface roughness was slightly improved (0.23 μmRy), but did not reach the mirror surface. On the other hand, in the case of the polishing film C, scratches were newly generated by the processing, and the processed surface roughness was deteriorated (2.5 μmRy). From this result, if the compressive breaking strength is too low, the composite particles themselves will be crushed, the cut into the work will be weakened, and the physical (mechanical) removal action will be lost, and the pre-processed surface cannot be completely removed. On the other hand, if the compressive breaking strength is too high, it is presumed that the cut on the work surface is too strong, and a new scratch is caused by the working.
Therefore, it is considered that only abrasive grains composed of secondary particles having an appropriate bonding force between primary particles can achieve high machining surface quality (mirror surface) with high efficiency. Then, the sintering conditions are adjusted, and the ZrO 2 having different compressive fracture strengths is adjusted.2-CeO2When composite particles were prepared, processed into a polishing film and applied to BK7 glass, the results shown in FIG. 6 were obtained.
[0028]
Since the compression fracture strength of the composite particles is 20 MPa or more and 300 MPa or less, it is possible to achieve both high processing surface quality and high processing efficiency. If the compressive fracture strength is less than 20 MPa, the composite particles themselves are crushed during processing, and the pre-processed surface of the work cannot be completely removed. On the other hand, when the compressive breaking strength is greater than 300 MPa, the mechanical removal action is too strong, which causes damage such as new scratches due to processing.
[0029]
[Comparative Example 3]
The same component composition as in Example 1 was used, but CeO2To ZrO2To prepare a composite particle β completely dissolved. Moreover, when the compressive breaking strength was measured in the same manner as in Example 1 above, it was 96.5 MPa. Then, a polishing film D was produced with the same configuration using the same as in Example 1. Then, as a result of applying the same method to the BK7 work using the processing apparatus of FIG. 3, no mirror surface was obtained. The same result was obtained even if the processing time was further extended to 10 minutes. FIG. 7 shows a pre-processed surface of BK7 and a photograph of the surface after processing for 10 minutes. From these results, it can be seen that CeO, which has strong chemical action,2Is ZrO with strong mechanical action2Is completely dissolved in CeO2Since the original chemical action is lost, it does not react with the surface of the BK7 glass during processing, a soft reaction layer is not generated or reduced, the function of the composite particles is lost, and the polishing efficiency is reduced as a whole. It was understood that the pre-processed surface could not be completely removed.
From the above comparison, the first phase (ZrO 2) constituting the composite secondary particles was2) And the second phase (CeO2) Do not form a solid solution with each other, but only when they exist independently, can play the role of each of the two components, and it is clear that a high processed surface quality can be achieved with extremely high processing efficiency.
[0030]
[Comparative Example 4 and Comparative Example 5]
ZrO2A polishing film E of a single component (compression breaking strength was 64 MPa) was produced in the same manner as in Example 1 (Comparative Example 4). The optical glass disk (borosilicate crown glass (equivalent to BK7)) 31 adjusted to have a maximum height roughness Ry of 2 μm under the same conditions as in Example 1 described above was polished (processing conditions: platen rotation speed 120 rpm) , Processing pressure 50 kPa). As a result, it was possible to obtain a mirror surface having a maximum height roughness Ry of 30 nm or less without scratching in 2 minutes. However, it is inferior to Example 1 in terms of processing efficiency. In other words, in the case of Example 1 using the composite particles, by using both the chemical action and the mechanical removal action, the polishing efficiency is high without deteriorating the quality of the processed surface, and in the case of Comparative Example 4, the processing efficiency is high. Is approximately の of that of the first embodiment.
[0031]
In addition, using this polishing film E, 5 wt% CeO2The processing was performed while flowing the slurry on the polishing film (Comparative Example 5). As a result, almost the same polishing efficiency as in Example 1 was obtained, however, occurrence of scratches on the processed surface was confirmed.
In the case of abrasive grains of composite particles, since the oxide particles having two functions are surely supplied simultaneously to the processing point at the same time, the reaction layer due to the chemical action is instantaneously and appropriately removed to particles having strong mechanical action. However, when free abrasive grains are added as in Comparative Example 5, oxide particles having a strong chemical action are not uniformly supplied to the processing point between the abrasive grains and the work. When supplied, a soft reaction layer is formed on the entire surface of the work, and it is considered that particles having strong mechanical action are more likely to cause scratching more easily. And, as described in the section of the related art, much time is required for the cleaning step after processing. In other words, the use of oxide particles with strong mechanical action as a fixed abrasive tool and the addition of oxide particles with strong chemical action as free abrasive grains, rather than the form of composite particles, is, in the end, the conventional loose abrasive Therefore, the merit of the fixed abrasive cannot be obtained.
[0032]
Embodiment 2
First, ultrafine particles ZrO of 50-90 nm2And SiO consisting of 70 to 90 nm2Ultrafine particles (SiO2In a proportion of 40 mol%), without organic binders, such as resins, etc., slurried with water and sprayed with a spray drier to obtain ZrO having the desired size, for example 30 μm in average particle size.2ZrO based on2-SiO2Obtain composite secondary particles (granules). As in Example 1 above, the average particle size was measured by a dry method using a laser diffraction / scattering type particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.). Diameter, ie, the particle size at 50% frequency integration).
And, similarly, ZrO2-SiO2The composite secondary particles were placed in an electric furnace and fired. In this firing step, the heating temperature and the holding time are also the most important, so the heating step is basically set according to the phase diagram.2Is the first layer, ZrO2It is most important to devise a solution so that it does not form a solid solution. When the calcined composite secondary particles were measured by X-ray, both products, ZrSiO4Does not exist and SiO2Exists alone and ZrO2It was confirmed that no solid solution was formed. Then, in the same manner as in Example 1 above, the compressive breaking strength of the fired composite secondary particles was measured.
[0033]
The composite secondary particles β according to the present invention having a compressive breaking strength of 112.5 MPa and an average particle diameter of 30 μm thus obtained are mixed with a liquid urethane resin so that the volume ratio thereof is 40% by volume, Further, after adding an organic solvent to adjust the solution viscosity, the mixture was mixed and stirred for about 10 minutes using a stirrer to prepare a mixture. The stirring was performed at room temperature and at a rotation speed of 50 rpm at which the abrasive grains were not destroyed. Then, in the same manner as in Example 1 described above, this mixture was applied onto a substrate (a PET film having a thickness of about 75 μm) using a wire bar coater, and then placed in a thermostat kept at 60 ° C. After drying for an hour, a polishing film F as a polishing tool was obtained. The maximum thickness of the obtained coating layer (portion having abrasive grains) is substantially equal to the maximum diameter of the abrasive grains according to the present invention having a particle size distribution (the binder layer is formed by using a solvent together as described above). Can be easily reduced).
[0034]
Then, the polishing film F was attached to the lap surface plate of the processing apparatus shown in FIG. 3, and a silicon wafer having a diameter of 50 mm ground by a grinding stone of # 2000 was polished. As a result, the processing mark (scratch) was formed in a processing time of 5 minutes. No mirror surface having a processed surface roughness of 20 nm Ry or less was obtained. In addition, even if 10 silicon wafers were continuously polished, no reduction in processing efficiency or processed surface roughness was observed.
In addition, the present invention is limited to the above-described examples in the types of abrasive grains that are primary particles, the granulation and aggregation method, the types of additives, the types of abrasive bonding materials, the types of processing tools, and the objects to be processed. is not.
[0035]
【The invention's effect】
The effects of the present invention are as follows, organized for each invention according to each claim.
1. Effect of the invention according to claim 1
The composite secondary particles are granular porous bodies in which a large number of primary particles are partially bonded and voids are formed therebetween, and the primary particles use at least two or more types of oxide particles. Since it is a composite secondary particle, when polishing using this, the primary particle may function as a component, that is, one may have a function of a chemical action and the other may have a function of a mechanical removal action. The combination of these functions can provide high efficiency and excellent processed surface quality.
[0036]
2. Advantageous Effects of the Inventions According to Claims 2 and 3
The oxide particles constituting the composite secondary particles are a mixture of zirconium oxide, cerium oxide and silica, and the oxide particles having a strong chemical action are not dissolved in the other oxide particles having a strong mechanical action, Since each property is maintained, each function of each oxide particle can be reliably achieved. For example, in glass processing, ZrO2-CeO2In the case of composite particles, CeO2The particles mainly form a chemical reaction layer with glass, and ZrO2Is a function that causes a mechanical removal action. In processing silicon wafers, ZrO2-SiO2In the case of composite secondary particles, SiO2Particles are chemically active, ZrO2The particles will exert a mechanical removal action.
By the way, if an oxide having a strong chemical action is dissolved in an oxide having a strong mechanical removal action, the intrinsic properties of each particle are not maintained, so that a function based on each property cannot be exhibited.
[0037]
3. Effect of the invention according to claim 4
Since a binder for bonding the primary particles is not included, it is possible to avoid an increase in polishing resistance due to contact between the binder and the surface of the workpiece at the time of processing, or deterioration of a processed surface quality due to chips being attached to the binder. be able to. In addition, since it does not contain a binder, the bonding force between primary particles can be adjusted more easily, causing abrasion during polishing, and supplying a new cutting edge to the processing point to improve the quality of the high processed surface. High processing efficiency is surely achieved.
[0038]
4. Effect of the invention according to claim 5
Since the average particle size of the primary particles is 5 μm or less, higher processed surface quality can be obtained. When particles larger than 5 μm are used, processing damage such as scratches may be newly caused on the processing surface by processing.
[0039]
5. Effect of the invention according to claim 6
Since the composite secondary particles have a compressive fracture strength of 20 MPa or more and 300 MPa or less, both high processing surface quality and high processing efficiency can be realized. If the compressive breaking strength is less than 20 MPa, the composite secondary particles are crushed during processing, and the pre-processed surface of the work cannot be completely removed. On the other hand, when the compressive breaking strength is greater than 300 MPa, the mechanical removal action is too strong, which causes damage such as new scratches due to processing.
[0040]
6. Effect of the invention according to claim 7
Since the composite secondary particles have a compressive breaking strength of 20 MPa or more and 160 MPa or less, both high working surface quality and high working efficiency can be more reliably realized.
[0041]
7. Effect of the invention according to claim 8
By processing using the polishing tool having the abrasive grains according to any one of claims 1 to 7 on the polishing surface, it is possible to obtain a high-efficiency and high-quality processed surface, and the polishing tool Also has a long life. In addition, the use of a fixed abrasive polishing tool eliminates the need for a slurry, thereby greatly reducing the environmental burden.
[0042]
8. Effect of the invention according to claim 9
When the content of the composite secondary particles is 10% by volume to 90% by volume, high efficiency and high quality of the processed surface can be achieved, and a practical polishing tool can be realized. That is, when the addition ratio of the composite secondary particles is less than 10% by volume, the effect of adding the composite secondary particles is almost negligible. As a result, the polishing function is remarkably reduced, and the tool cannot be put to practical use.
[0043]
9. Effect of the invention according to claim 10
The polishing tool is a polishing film, the thickness of the binder layer for fixing the abrasive grains to the base film is smaller than the maximum diameter of the abrasive grains, so that the binder is in direct contact with the processing surface. By avoiding this, it is possible to prevent the quality of the processed surface from deteriorating due to the direct contact of the binder layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a composite secondary particle.
FIG. 2 is a sectional view of an example schematically showing a sectional structure of a polishing film in which composite secondary abrasive grains are fixed to a film substrate.
FIG. 3 is a cross-sectional view schematically showing a polishing apparatus.
FIG. 4A is a photograph showing a surface shape of a polished test piece before processing, and FIG. 4B is a view showing a measurement result of the surface roughness.
FIG. 5 (a) is a photograph of the surface shape of the same test piece after polishing test processing, and FIG. 5 (b) is a view showing the results of surface roughness measurement.
FIG. 6 is a graph showing the relationship between the breaking compressive strength of the composite secondary particles and the surface roughness of the surface to be processed.
FIG. 7 shows CeO having strong chemical action.2Has strong mechanical removal action2(A) is a photograph showing the surface shape of the polished test piece before processing, and (b) is a photograph after processing for 10 minutes.
FIGS. 8A and 8B are schematic diagrams showing a state in which primary particles grow by heat treatment, wherein FIG. 8A shows a pattern before heat treatment, and FIG. 8B shows a pattern after heat treatment.
FIG. 9 is a graph schematically showing a relationship between a heat treatment and a bonding force between primary particles of abrasive grains.
[Explanation of symbols]
1: Composite secondary abrasive
2: Coating layer (part having abrasive grains)
11, 12: primary particles
21: Binder layer
22: Substrate
31: Optical glass disk
32: Lap surface plate

Claims (10)

多数の一次粒子が凝集して形成された二次粒子が一次粒子同士の結合点にネックが形成される温度で加熱処理して得た砥粒であり、その多数の一次粒子が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体からなる砥粒であって、
上記一次粒子は加工物に対して、それぞれ機械的除去作用の強い第1の酸化物粒子とケミカル作用の強い第2の酸化物粒子を有する2種類以上の酸化物粒子を同時に用いた複合粒子であることを特徴とする砥粒。
Secondary particles formed by aggregation of a large number of primary particles are abrasive grains obtained by heat treatment at a temperature at which a neck is formed at a bonding point between the primary particles, and the large number of primary particles are partially And, abrasive grains made of a granular porous body that is bonded in a state where voids are formed therebetween,
The primary particles are composite particles using two or more types of oxide particles each having a first oxide particle having a strong mechanical removal action and a second oxide particle having a strong chemical action with respect to a workpiece. Abrasive grains characterized by being present.
上記複合粒子の酸化物粒子が酸化ジルコニウム、酸化セリウム、シリカの混合物であることを特徴とする請求項1の砥粒。2. The abrasive grain according to claim 1, wherein the oxide particles of the composite particles are a mixture of zirconium oxide, cerium oxide, and silica. 上記複合粒子のケミカル作用の強い第2の金属酸化物粒子は機械的除去作用の強い第1の金属酸化物粒子に固溶していないことを特徴とする請求項1の砥粒。2. The abrasive grain according to claim 1, wherein the second metal oxide particles having a strong chemical action of the composite particles are not dissolved in the first metal oxide particles having a strong mechanical removal action. 上記複合粒子の上記一次粒子同士がバインダを介することなく互いに結合されていることを特徴とする請求項1又は請求項2の砥粒。The abrasive grain according to claim 1 or 2, wherein the primary particles of the composite particles are bonded to each other without passing through a binder. 上記一次粒子の平均粒径が5μm以下であることを特徴とする請求項1ないし請求項3の砥粒。4. The abrasive grain according to claim 1, wherein the primary particles have an average particle size of 5 μm or less. 上記複合粒子の圧縮破壊強度が20MPa乃至300MPaであることを特徴とする請求項1ないし請求項4の砥粒。The abrasive grain according to any one of claims 1 to 4, wherein the composite particles have a compressive breaking strength of 20 MPa to 300 MPa. 上記圧縮破壊強度が20MPa乃至160MPaであることを特徴とする請求項1または請求項2の砥粒。The abrasive grain according to claim 1 or 2, wherein the compressive breaking strength is from 20 MPa to 160 MPa. 上記請求項1ないし請求項7の砥粒を研磨面に有する研磨具。A polishing tool having the abrasive grains according to claim 1 on a polishing surface. 上記複合粒子の含有率が10体積%乃至90体積%であることを特徴とする請求項7の研磨具。The polishing tool according to claim 7, wherein the content of the composite particles is 10% by volume to 90% by volume. 上記砥粒を基材フィルムに固定したものであって、砥粒を基材フィルムに固定するためのバインダ層の厚さが該砥粒の最大直径よりも小さいことを特徴とする請求項8の研磨具。9. The method according to claim 8, wherein the abrasive grains are fixed to a base film, and a thickness of a binder layer for fixing the abrasive grains to the base film is smaller than a maximum diameter of the abrasive grains. Polishing tool.
JP2003057101A 2003-03-04 2003-03-04 Polishing abrasive grains and polishing tool Expired - Lifetime JP4301434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057101A JP4301434B2 (en) 2003-03-04 2003-03-04 Polishing abrasive grains and polishing tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057101A JP4301434B2 (en) 2003-03-04 2003-03-04 Polishing abrasive grains and polishing tool

Publications (3)

Publication Number Publication Date
JP2004261945A true JP2004261945A (en) 2004-09-24
JP2004261945A5 JP2004261945A5 (en) 2005-10-27
JP4301434B2 JP4301434B2 (en) 2009-07-22

Family

ID=33120608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057101A Expired - Lifetime JP4301434B2 (en) 2003-03-04 2003-03-04 Polishing abrasive grains and polishing tool

Country Status (1)

Country Link
JP (1) JP4301434B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192546A (en) * 2005-01-14 2006-07-27 Ricoh Co Ltd Surface polishing method and device therefor
JP2008006559A (en) * 2006-06-30 2008-01-17 Hitachi Maxell Ltd Mirror-finishing method and machining body for mirror-finishing
JP2009218555A (en) * 2008-02-14 2009-09-24 Hitachi Chem Co Ltd Cmp polishing solution and polishing method
WO2009120804A2 (en) * 2008-03-28 2009-10-01 Applied Materials, Inc. Improved pad properties using nanoparticle additives
CN106661428A (en) * 2014-07-31 2017-05-10 Hoya株式会社 Method for producing polishing slurry, polishing abrasive grains, polishing slurry, and method for producing glass substrate
JP2020070380A (en) * 2018-10-31 2020-05-07 信越化学工業株式会社 Abrasive particle for polishing synthetic quartz glass substrate and manufacturing method thereof, and method for polishing synthetic quartz glass substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192546A (en) * 2005-01-14 2006-07-27 Ricoh Co Ltd Surface polishing method and device therefor
JP4646638B2 (en) * 2005-01-14 2011-03-09 株式会社リコー Surface polishing processing method and processing apparatus
JP2008006559A (en) * 2006-06-30 2008-01-17 Hitachi Maxell Ltd Mirror-finishing method and machining body for mirror-finishing
JP2009218555A (en) * 2008-02-14 2009-09-24 Hitachi Chem Co Ltd Cmp polishing solution and polishing method
WO2009120804A2 (en) * 2008-03-28 2009-10-01 Applied Materials, Inc. Improved pad properties using nanoparticle additives
WO2009120804A3 (en) * 2008-03-28 2010-01-14 Applied Materials, Inc. Improved pad properties using nanoparticle additives
CN106661428A (en) * 2014-07-31 2017-05-10 Hoya株式会社 Method for producing polishing slurry, polishing abrasive grains, polishing slurry, and method for producing glass substrate
JPWO2016017819A1 (en) * 2014-07-31 2017-05-25 Hoya株式会社 Polishing slurry preparation method, polishing abrasive grains, polishing slurry, and glass substrate manufacturing method
CN106661428B (en) * 2014-07-31 2020-01-31 Hoya株式会社 Method for producing polishing slurry, polishing abrasive grains, polishing slurry, and method for producing glass substrate
JP2020070380A (en) * 2018-10-31 2020-05-07 信越化学工業株式会社 Abrasive particle for polishing synthetic quartz glass substrate and manufacturing method thereof, and method for polishing synthetic quartz glass substrate
JP7074644B2 (en) 2018-10-31 2022-05-24 信越化学工業株式会社 A method for manufacturing abrasive particles for polishing a synthetic quartz glass substrate, and a method for polishing a synthetic quartz glass substrate.
US11661539B2 (en) 2018-10-31 2023-05-30 Shin-Etsu Chemical Co., Ltd. Method for manufacturing polishing particles and method for polishing synthetic quartz glass substrate

Also Published As

Publication number Publication date
JP4301434B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
TWI661039B (en) Abrasive particles, manufacturing method thereof, polishing method, polishing device and slurry
JP2006186381A (en) Cmp product
JP2000336344A (en) Abrasive
KR101022982B1 (en) Polishing slurries and methods for utilizing same
US7141086B2 (en) Abrasive grain and method for producing it, polishing tool and method for producing it, grinding wheel and method for producing it, and polishing apparatus
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JP4301434B2 (en) Polishing abrasive grains and polishing tool
JP2004082323A (en) Grinding tool and manufacturing method therefor
JP2006326787A (en) Grinding/polishing tool with fixed abrasive grains
JP4290799B2 (en) Precision polishing composition for lithium tantalate / lithium niobate single crystal material and precision polishing method for lithium tantalate / lithium niobate single crystal material using the same
JP2001121425A (en) Hybrid type resinoid bonded grinding wheel
JP3990936B2 (en) Abrasive grain and manufacturing method thereof, polishing tool and manufacturing method thereof, polishing grindstone and manufacturing method thereof, and polishing apparatus
JP7391850B2 (en) Agglomerated abrasive grain
JP4849590B2 (en) Polishing tool and manufacturing method thereof
JP6054341B2 (en) Abrasive grains, manufacturing method thereof, polishing method, polishing member and slurry
JP2011524260A (en) Self-bonding foam abrasive article and machining using such article
JP2008006559A (en) Mirror-finishing method and machining body for mirror-finishing
JP2005349542A (en) Grindstone and method of producing the same
JP4621441B2 (en) Polishing tool and method for manufacturing polishing tool
JP4601317B2 (en) Polishing tool and manufacturing method thereof
JP2008221353A (en) Polishing device and method of manufacturing same
JP2000190228A (en) Fixed abrasive grain work tool
JP3040441B2 (en) Precision polishing method for ceramics
JP6916634B2 (en) Abrasive grains for polishing
JP2975033B2 (en) Vitrified super abrasive whetstone

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

EXPY Cancellation because of completion of term