JP2004260376A - Laminated strip line filter - Google Patents

Laminated strip line filter Download PDF

Info

Publication number
JP2004260376A
JP2004260376A JP2003046813A JP2003046813A JP2004260376A JP 2004260376 A JP2004260376 A JP 2004260376A JP 2003046813 A JP2003046813 A JP 2003046813A JP 2003046813 A JP2003046813 A JP 2003046813A JP 2004260376 A JP2004260376 A JP 2004260376A
Authority
JP
Japan
Prior art keywords
rectangular
short
open
electrodes
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046813A
Other languages
Japanese (ja)
Inventor
Shigetoshi Ogawa
成敏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003046813A priority Critical patent/JP2004260376A/en
Publication of JP2004260376A publication Critical patent/JP2004260376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized laminated strip line filter which can provide filter characteristics having attenuation poles of different frequencies. <P>SOLUTION: The laminated strip line filter has first to third dielectric layers 10-12 that are sequentially laminated. In the layers 10-12, first and second resonators 30, 31 are disposed in parallel with the second dielectric layer 11 inserted between them so that they are at least partly overlapped as seen from the laminating direction, the first and third resonators 30, 32 are disposed in parallel with the second dielectric layer 11 inserted between them so that they are at least partly overlapped as seen from the laminating direction, and rectangular resonance electrodes forming the resonators have different widths and different widths of overlapped portions thereof. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば携帯電話や無線LAN等の無線通信機器その他の各種通信機器等において使用される積層ストリップラインフィルタに関するものである。
【0002】
【従来の技術】
近年、携帯電話機等の移動体通信機器等に使用されるフィルタは、移動体通信機器等の薄型化・小型化の要求に伴い、誘電体同軸型共振器を用いたフィルタから分布定数回路を共振器に用いた積層ストリップラインフィルタへと進展してきている。
【0003】
このような積層ストリップラインフィルタとして、図4に透視斜視図、図5に透視平面図、図6に図5におけるb−b’線断面図で示す構成のものが提案されている(例えば、特許文献1参照)。
【0004】
図4〜図6において、40は第1の誘電体層、41は第1の誘電体層40の上に積層された第2の誘電体層、42は第2の誘電体層41の上に積層された第3の誘電体層、50は第1の誘電体層40の下面に配された第1の接地電極、51は第3の誘電体層42の上面に配された第2の接地電極、52および53は第1および第2の誘電体層40・41の間に配した第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極、54および55は第2および第3の誘電体層41・42の間に配した第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極、56および57は第2および第3の誘電体層41・42の間に配した第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極、58は第1〜第3の片端開放矩形状共振電極52・54・56のそれぞれの開放端、59は第1〜第3の片端短絡矩形状共振電極53・55・57のそれぞれの短絡端である。
【0005】
そして、図5および図6のWA・WB・WC・WDに示すように、第1および第2の片端開放矩形状共振電極52・54は第2の誘電体層41を挟んでそれぞれの少なくとも一部が積層方向から見てWAの幅で重なるように平行に配されるとともに、第1および第3の片端開放矩形状共振電極52・56は第2の誘電体層41を挟んでそれぞれの少なくとも一部が積層方向から見てWBの幅で重なるように平行に配されている。また、第1および第2の片端短絡矩形状共振電極53・55は第2の誘電体層41を挟んでそれぞれの少なくとも一部が積層方向から見てWCの幅で重なるように平行に配されるとともに、第1および第3の片端短絡矩形状共振電極53・57は第2の誘電体層41を挟んでそれぞれの少なくとも一部が積層方向から見てWDの幅で重なるように平行に配されている。
【0006】
また、第1および第2の接地電極50・51は積層方向から見て第1〜第3の片端開放矩形状共振電極52・54・56ならびに第1〜第3の片端短絡矩形状共振電極53・55・57を覆うように配されている。
【0007】
そして、第1の片端開放矩形状共振電極52の開放端58と反対側の端部と、第1の片端短絡矩形状共振電極53の短絡端59と反対側の端部とを電気的に接続して第1の共振器を形成し、第2の片端開放矩形状共振電極54の開放端58と反対側の端部と、第2の片端短絡矩形状共振電極55の短絡端59と反対側の端部とを電気的に接続して第2の共振器を形成し、第3の片端開放矩形状共振電極56の開放端58と反対側の端部と、第3の片端短絡矩形状共振電極57の短絡端59と反対側の端部とを電気的に接続して第3の共振器を形成している。
【0008】
そして、第2の共振器と第3の共振器は中心軸c−c’に関して線対称な形状で対称な位置に配され、また、第1の共振器は中心軸c−c’に関して線対称な形状に形成されている。
【0009】
そして、さらに、第2の共振器に入力(出力)端子が電気的に接続され、第3の共振器に出力(入力)端子が電気的に接続されている。
【0010】
そして、第2の片端開放矩形状共振電極54と第3の片端開放矩形状共振電極56との距離Wopenまたは、第2の片端開短絡形状共振電極55と第3の片端短絡矩形状共振電極57との距離Wshortを調整することにより、通過帯域に対して高域側もしくは低域側にそれぞれ減衰極を1個有するフィルタ特性を実現していた。また、共振器を追加して複数用いることで、異なる周波数の減衰極を2個以上有するフィルタ特性を実現していた。
【0011】
【特許文献1】
特開平8−70201号公報
【0012】
【発明が解決しようとする課題】
しかしながらこのような従来の積層ストリップラインフィルタは、線対称な構造であるので、電極形状や共振器電極の重なり部分の形状WA・WB・WC・WDが、中心軸c−c’に関して左右同一にならざるを得ない。フィルタ特性の減衰極は各共振電極の重なり部分での電磁界結合によって発生するが、従来の構造では中心軸c−c’に関して左右の重なり部分の形状が同一であるので電磁界結合量が同じになり、その結果減衰極の周波数が単一の特性しか得られず、異なる複数の減衰極をもつフィルタ特性を実現できないという問題点があった。また、異なる複数の減衰極をもつフィルタ特性を実現するには、重なり部分の形状が異なる軸対称な構造の共振器を追加しなければならず、フィルタ全体の外形が大型化してしまうという問題点があった。
【0013】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、積層ストリップラインフィルタにおいて、小型で、異なる周波数の減衰極をもつフィルタ特性を実現することのできる積層ストリップラインフィルタを提供することにある。
【0014】
【課題を解決するための手段】
本発明の積層ストリップラインフィルタは、第1の誘電体層と、この第1の誘電体層の上に積層された第2の誘電体層と、この第2の誘電体層の上に積層された第3の誘電体層と、前記第1の誘電体層の下面に配された第1の接地電極と、前記第1および第2の誘電体層の間に配された第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極と、前記第2および第3の誘電体層の間に配された、第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極、ならびに第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極と、前記第4の誘電体層の上面に配された第2の接地電極とから成り、前記第1および第2の片端開放矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端開放矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配され、前記第1および第2の片端短絡矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端短絡矩形状共振電極は前記第2の誘電体層を挟んでそれぞれ少なくとも一部が積層方向から見て重なるように平行に配され、前記第1および第2の接地電極は積層方向から見て前記第1乃至第3の片端開放矩形状共振電極ならびに前記第1乃至第3の片端短絡矩形状共振電極を覆うように配され、前記第1の片端開放矩形状共振電極の開放端と反対側の端部と、前記第1の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第1の共振器を形成し、前記第2の片端開放矩形状共振電極の開放端と反対側の端部と、前記第2の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第2の共振器を形成し、前記第3の片端開放矩形状共振電極の開放端と反対側の端部と、前記第3の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第3の共振器を形成し、前記第1の片端開放矩形状共振電極と前記第2および第3の片端開放矩形状共振電極との重なり幅を、それぞれ異なる寸法とするとともに、前記第1の片端短絡矩形状共振電極と前記第2および第3の片端短絡矩形状共振電極との重なり幅を、それぞれ異なる寸法としており、前記第2の共振器に入力端子ならびに前記第3の共振器に出力端子が電気的に接続されるか、または前記第2の共振器に出力端子ならびに前記第3の共振器に入力端子が電気的に接続されていることを特徴とするものである。
【0015】
本発明の積層ストリップラインフィルタによれば、前記第1の片端開放矩形状共振電極と前記第2および第3の片端開放矩形状共振電極との重なり幅は、それぞれ異なる寸法とするとともに、前記第1の片端短絡矩形状共振電極と前記第2および第3の片端短絡矩形状共振電極との重なり幅は、それぞれ異なる寸法としていることから、第1と第2ならびに第1と第3の共振電極のそれぞれの重なり部分の形状が異なり、この結果、第1と第2ならびに第1と第3の共振電極間の電磁界結合量が異なることとなるので、互いに周波数の異なる減衰極を発生させることができる。
【0016】
また、本発明の積層ストリップラインフィルタは、上記構成において、前記各接地電極が、または前記各片端短絡矩形状共振電極の前記短絡端および前記各接地電極が、前記誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体により積層方向に電気的に接続されていることを特徴とするものである。
【0017】
これにより、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するとともに、小型で高性能な積層ストリップラインフィルタを提供することができる。
【0018】
【発明の実施の形態】
以下、本発明の積層ストリップラインフィルタを図面を参照しつつ説明する。
【0019】
図1は本発明の積層ストリップラインフィルタの実施の形態の一例を示す透視斜視図であり、図2は図1を積層方向から見た透視平面図、図3は図2におけるa−a’線断面図である。図1〜図3において、10は第1の誘電体層、11は第1の誘電体層10の上に積層された第2の誘電体層、12は第2の誘電体層11の上に積層された第3の誘電体層、20は第1の誘電体層10の下面に配された第1の接地電極、21は第3の誘電体層12の上面に配された第2の接地電極、22および23は第1および第2の誘電体層10・11の間に配した第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極、24および25は第2および第3の誘電体層11・12の間に配した第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極、26および27は第2および第3の誘電体層11・12の間に配した第3の片端開放矩形状共振電極、および第3の片端短絡矩形状共振電極、28は第1〜第3の片端開放矩形状共振電極22・24・26のそれぞれの開放端、29は第1〜第3の片端短絡矩形状共振電極23・25・27のそれぞれの短絡端である。第1〜第3の片端短絡矩形状共振電極23・25・27は、第1の接地電極20および第2の接地電極21に電気的に接続されて短絡されている(図示せず)。
【0020】
そして、図2および図3のWA・WB・WC・WDに示すように、第1および第2の片端開放矩形状共振電極22・24は、第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見てWAの幅で重なるような重なり幅で平行に配されるとともに、第1および第3の片端開放矩形状共振電極22・26は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見てWBの幅で重なるような重なり幅で平行に配されている。また、第1および第2の片端短絡矩形状共振電極23・25は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見てWCの幅で重なるような重なり幅で平行に配されるとともに、第1および第3の片端短絡矩形状共振電極23・27は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見てWDの幅で重なるような重なり幅で平行に配されている。また、第1および第2の接地電極20・21は積層方向から見て第1〜第3の片端開放矩形状共振電極22・24・26ならびに第1〜第3の片端短絡矩形状共振電極23・25・27を覆うように配されている。
【0021】
そして、第1の片端開放矩形状共振電極22の開放端28と反対側の端部と、第1の片端短絡矩形状共振電極23の短絡端29と反対側の端部とを電気的に接続して第1の共振器30を形成し、第2の片端開放矩形状共振電極24の開放端28と反対側の端部と、第2の片端短絡矩形状共振電極25の短絡端29と反対側の端部とを電気的に接続して第2の共振器31を形成し、第3の片端開放矩形状共振電極26の開放端28と反対側の端部と、第3の片端短絡矩形状共振電極27の短絡端29と反対側の端部とを電気的に接続して第3の共振器32を形成している。
【0022】
さらに、第1の片端開放矩形状共振電極22と第2および第3の片端開放矩形状共振電極24・26とが積層方向から見て重なる部分の幅、すなわち重なり幅WA・WBをそれぞれ異なる寸法とするとともに、第1の片端短絡矩形状共振電極23と第2および第3の片端短絡矩形状共振電極とが積層方向から見て重なる部分の重なり幅WC・WDを、それぞれ異なる寸法としてある。
【0023】
第1〜第3の片端開放矩形状共振電極の幅W22・W24・W26をそれぞれ異なる寸法とし、第1〜第3の片端短絡矩形状共振電極の幅W23・W25・W27をそれぞれ異なる寸法とすることにより、または、これら第1〜第3の片端開放矩形状共振電極および片端短絡矩形状共振電極22〜27の幅方向の配置を変更することにより、または、これらを組み合わせることにより、第1の片端開放矩形状共振電極22と第2および第3の片端開放矩形状共振電極24・26との重なり幅WA・WBを異なる寸法とするとともに、第1の片端短絡矩形状共振電極23と第2および第3の片端短絡矩形状共振電極25・27との重なり幅WC・WDを異なる寸法とすることができて、重なり幅WAと重なり幅WCとで、また重なり幅WBと重なり幅WDとで形成される部分の面積が異なることとなり、この部分で生じる電磁界結合量を相互に異なったものとすることができる。
【0024】
そして、第1の片端開放矩形状共振電極22と第2の片端開放矩形状共振電極24との重なり幅WAおよび第1の片端短絡矩形状共振電極23と第2の片端短絡矩形状共振電極25との重なり幅WCによって第1と第2の共振器30・31間に電磁界結合による共振回路を形成することができ、第1の減衰極を発生させることができる。また、第1の片端開放矩形状共振電極22と第3の片端開放矩形状共振電極26との重なり幅WBおよび第1の片端短絡矩形状共振電極23と第3の片端短絡矩形状共振電極27との重なり幅WDによって第1と第3の共振器30・32間に先の電磁界結合と異なる電磁界結合量によるもう一つの共振回路を形成することができ、第2の減衰極を発生させることができる。
【0025】
なお、第1〜第3の片端開放矩形状電極22・24・26の幅W22・W24・W26に対する第1〜第3の片端短絡矩形状共振電極23・25・27の幅W23・W25・W27、ならびに第1の片端開放矩形状共振電極22と第2および第3の片端開放矩形状共振電極24・26との重なり幅WA・WBに対する第1の片端短絡矩形状共振電極23と第2および第3の片端短絡矩形状共振電極との重なり幅WC・WDとは、実現するフィルタ特性によってそれぞれ異なる寸法に形成される。
【0026】
そして、さらに、第2の共振器31に入力端子33が電気的に接続され、第3の共振器32に出力端子34が電気的に接続されて外部回路に接続される。なお、必要に応じて入力端子33を出力端子とし、出力端子34を入力端子とすることもできる。
【0027】
このような構成の本発明の積層ストリップラインフィルタは、第1および第2の接地電極20・21が、または第1および第2の接地電極20・21および第1〜第3の片端短絡矩形状共振電極23・25・27の短絡端29が、誘電体層の内部に形成された貫通導体(図示せず)により、または誘電体層の側面に形成された側面導体(図示せず)により、またはこれら貫通導体および側面導体により積層方向に電気的に接続される構成とすることにより、適用するフィルタの構造に対して適宜3次元的な配線設計が可能となるので、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上し、小型で高性能な積層ストリップラインフィルタを提供することができる。
【0028】
本発明の積層ストリップラインフィルタを形成するに当たり、第1〜第3の誘電体層10〜12、第1および第2の接地電極20・21、第1〜第3の片端開放矩形状共振電極22・24・26、第1〜第3の片端短絡矩形状共振電極23・25・27は、周知の高周波用配線基板に使用される種々の材料・形態のものを使用することができる。
【0029】
本発明の積層ストリップラインフィルタに用いる第1〜第3の誘電体層10〜12としては、例えばアルミナセラミックス・ムライトセラミックス等のセラミックス材料やガラスセラミックス等の無機系材料、あるいは四ふっ化エチレン樹脂(ポリテトラフルオロエチレン;PTFE)・四ふっ化エチレン−エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE)・四ふっ化エチレン−パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂やガラスエポキシ樹脂・ポリイミド等の樹脂系材料等が用いられる。これらの材料による第1〜第3の誘電体層10〜11の形状や寸法(厚みや幅・長さ)は、使用される周波数や用途等に応じて設定される。
【0030】
本発明の積層ストリップラインフィルタにおける第1および第2の接地電極20・21、第1〜第3の片端開放矩形状共振電極22・24・26、第1〜第3の片端短絡矩形状共振電極23・25・27、貫通導体または側面導体は、高周波信号伝送用の金属材料の導体層、例えばCu層・Mo−Mnのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Wのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Cr−Cu合金層・Cr−Cu合金層上にNiメッキ層およびAuメッキ層を被着させたもの・TaN層上にNi−Cr合金層およびAuメッキ層を被着させたもの・Ti層上にPt層およびAuメッキ層を被着させたもの、またはNi−Cr合金層上にPt層およびAuメッキ層を被着させたもの等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ法等により形成される。その厚みや幅も、伝送される高周波信号の周波数や用途等に応じて設定される。
【0031】
本発明の積層ストリップラインフィルタに用いる第1〜第3の誘電体層10〜12の作製にあたっては、例えば誘電体層がガラスセラミックスから成る場合であれば、まず誘電体層となるガラスセラミックスのグリーンシートを準備し、これに所定の打ち抜き加工を施して貫通導体となる貫通孔を形成した後、スクリーン印刷法によりCu等の導体ペーストを貫通孔に充填するとともに、所定の伝送線路パターンおよびその他の導体層のパターンを印刷塗布する。次に、850〜1000℃で焼成を行ない、最後に外表面に露出している導体層上にNiメッキおよびAuメッキを施す。
【0032】
【実施例】
実施例として、図1〜図3に示す構成の本発明の積層ストリップラインフィルタにおいて、通過帯域に対して高域側と低域側にそれぞれ減衰極を1個ずつ有するフィルタ特性を実現する構造モデルを、3次元電磁界解析シミュレータ上に作製し、シミュレーション解析を行なった。
【0033】
例えば、図1〜図3に示す構成の本発明の積層ストリップラインフィルタにおけるシミュレーションの場合、第1〜第3の誘電体層10〜12の厚みをそれぞれ第1の誘電体層h1=0.2mm、第2の誘電体層h2=0.2mm、第3の誘電体層h3=0.2mm、とし、
第1〜第3の片端開放矩形状共振電極22・24・26の各共振電極の幅W22・W24・W26ならびに各共振電極の長さL22・L24・L26をそれぞれ、W22=2.35mm、W24=1.2mm、W26=1.34mm、L22=L24=L26=2.367mmとし、
第1〜第3の片端短絡矩形状共振電極23・25・27の各共振電極の幅W23・W25・W27ならびに各共振電極の長さL23・L25・L27をそれぞれ、W23=2.35mm、W25=1.34mm、W27=1.2m、L23=L25=L27=2.367mmとし、
第1および第2の片端開放矩形状共振電極22・24が積層方向から見て重なる部分の幅WA=0.55mm、第1および第2の片端短絡矩形状共振電極23・25が積層方向から見て重なる部分の重なり幅WC=0.22mmとし、
第1および第3の片端開放矩形状共振電極22・26が積層方向から見て重なる部分の幅WB=0.22mm、第1および第3の片端短絡矩形状共振電極23・27が積層方向から見て重なる部分の重なり幅WD=0.55mmとしている。シミュレーションの際に用いた各誘電体層の比誘電率は7.7に設定した。
【0034】
図7に上記条件でのシミュレーション結果を示す。図7において、横軸は周波数(単位:GHz)を、縦軸は挿入損失(単位:dB)を表す。図7に示す結果から分かるように、通過帯域に対し低域側と高域側にそれぞれ異なる周波数の減衰極fr1およびfr2が発生していることが分かる。
【0035】
減衰極は、第1の片端開放(短絡)矩形状共振電極22(23)と第2および第3の片端開放(短絡)矩形状共振電極24(25)・26(27)との重なり部分での電極間の電磁界結合量を、重なり部分の面積を大きくしてより強い電磁界結合量を得るか、または重なり部分の面積を小さくしてより弱い電磁界結合量を得ることによって、電磁界結合による共振回路を形成する分布定数的なLおよびCの値を変化させることができるので、減衰極を高域側もしくは低域側に変化させることができる。本実施例における本発明の積層ストリップラインフィルタにおいて、異なる減衰極を有するフィルタ特性を実現できるのは、第1〜第3の片端開放(短絡)矩形状共振電極の幅W22〜W27、および第1の片端開放(短絡)矩形状共振電極22(23)と第2および第3の片端開放(短絡)矩形状共振電極24(25)・26(27)との重なり幅を、それぞれ異なる寸法で形成・配置したことから、共振電極の各々の重なり部分の形状が異なり、この結果、共振電極間の電磁界結合量もそれぞれ異なることから、互いに周波数の異なる減衰極を発生させることができるからである。
【0036】
また、本発明の積層ストリップラインフィルタは、上記構成において、第1および第2の接地電極20・21を積層方向に電気的に接続する接続導体、または第1〜第3の片端短絡矩形状共振電極23・25・27の短絡端29および第1および第2の接地電極20・21を積層方向に電気的に接続する接続導体が誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体であることを特徴とするものであり、これにより、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するとともに、小型で高性能な積層ストリップラインフィルタを提供することができる。
【0037】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を加えることは何ら差し支えない。
【0038】
例えば、減衰極をさらに発生させたい場合、形状の異なる新たな共振器を追加してもよい。
【0039】
【発明の効果】
本発明の積層ストリップラインフィルタによれば、第1の片端開放(短絡)矩形状共振電極と第2および第3の片端開放(短絡)矩形状共振電極との重なり幅をそれぞれ異なる寸法で形成したことから、第1と第2ならびに第1と第3の共振電極のそれぞれの重なり部分の形状が異なり、この結果、第1と第2ならびに第1と第3の共振電極間の電磁界結合量が異なることとなるので、互いに周波数の異なる減衰極を発生させることができる。
【0040】
また、本発明の積層ストリップラインフィルタによれば、上記構成において、各接地電極が、または各片端短絡矩形状共振電極の短絡端および各接地電極が、誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体により積層方向に電気的に接続されているときには、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するとともに、小型で高性能な積層ストリップラインを提供することができる。
【0041】
以上のように、本発明によれば、積層ストリップラインフィルタにおいて、小型で、異なる周波数の減衰極をもつフィルタ特性を実現することのできる積層ストリップラインフィルタを提供することができた。
【図面の簡単な説明】
【図1】本発明の積層ストリップラインフィルタの実施の形態の一例を示す透視斜視図である。
【図2】本発明の積層ストリップラインフィルタの実施の形態の一例を示す透視平面図である。
【図3】図2におけるa−a’線断面図である。
【図4】従来の積層ストリップラインフィルタの例を示す透視斜視図である。
【図5】従来の積層ストリップラインフィルタの例を示す透視平面図である。
【図6】図5におけるb−b’線断面図である。
【図7】本発明の積層ストリップラインフィルタにおける挿入損失の例を示す線図である。
【符号の説明】
10・・・第1の誘電体層
11・・・第2の誘電体層
12・・・第3の誘電体層
20・・・第1の接地電極
21・・・第2の接地電極
22・・・第1の片端開放矩形状共振電極
23・・・第1の片端短絡矩形状共振電極
24・・・第2の片端開放矩形状共振電極
25・・・第2の片端短絡矩形状共振電極
26・・・第3の片端開放矩形状共振電極
27・・・第3の片端短絡矩形状共振電極
28・・・開放端
29・・・短絡端
30・・・第1の共振器
31・・・第2の共振器
32・・・第3の共振器
33・・・入力端子(出力端子)
34・・・出力端子(入力端子)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated strip line filter used in a wireless communication device such as a mobile phone and a wireless LAN, and various other communication devices.
[0002]
[Prior art]
In recent years, filters used in mobile communication devices such as mobile phones have been resonating from distributed filters using filters using dielectric coaxial resonators in response to demands for thinner and smaller mobile communication devices. To the multilayer stripline filter used in the vessel.
[0003]
FIG. 4 is a perspective view, FIG. 5 is a perspective plan view, and FIG. 6 is a cross-sectional view taken along line bb ′ in FIG. 5 as such a laminated strip line filter. Reference 1).
[0004]
4 to 6, reference numeral 40 denotes a first dielectric layer, 41 denotes a second dielectric layer laminated on the first dielectric layer 40, and 42 denotes a second dielectric layer on the second dielectric layer 41. The laminated third dielectric layer, 50 is a first ground electrode disposed on the lower surface of the first dielectric layer 40, and 51 is the second ground electrode disposed on the upper surface of the third dielectric layer 42 The electrodes, 52 and 53, are a first one-end open rectangular resonance electrode and a first one-end short-circuit rectangular resonance electrode disposed between the first and second dielectric layers 40, 41. The second one-end open rectangular resonance electrode and the second one-end short-circuit rectangular resonance electrode 56 and 57 disposed between the third dielectric layers 41 and 42 are the second and third dielectric layers 41 and 42. A third one-end open rectangular resonance electrode and a third one-end short-circuited rectangular resonance electrode 58 disposed between the first one end and the third one end Each of the open ends of the rectangular resonant electrode 52, 54, 56 release, 59 is a respective short-circuit ends of the first to third one end shorted rectangular resonant electrode 53, 55, 57.
[0005]
As shown in WA, WB, WC, and WD in FIGS. 5 and 6, the first and second rectangular open-ended resonant electrodes 52 and 54 each have at least one of the respective electrodes sandwiching the second dielectric layer 41. The portions are arranged in parallel so as to overlap by the width of WA when viewed from the laminating direction, and the first and third open-ended rectangular resonant electrodes 52 and 56 are at least each of which sandwiches the second dielectric layer 41. Some are arranged in parallel so that they may overlap with the width of WB when viewed from the laminating direction. Further, the first and second one-end short-circuited rectangular resonance electrodes 53 and 55 are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps with the width WC when viewed from the lamination direction. At the same time, the first and third single-ended short-circuited rectangular resonant electrodes 53 and 57 are arranged in parallel with the second dielectric layer 41 interposed therebetween so that at least a part thereof overlaps with the width of WD when viewed in the laminating direction. Have been.
[0006]
The first and second ground electrodes 50 and 51 are first to third open-ended rectangular resonant electrodes 52, 54 and 56, and first to third single-ended short-circuited rectangular resonant electrodes 53 when viewed from the stacking direction.・ It is arranged to cover 55 and 57.
[0007]
Then, an end of the first one-end open rectangular resonance electrode 52 opposite to the open end 58 and an end of the first one-end short-circuit rectangular resonance electrode 53 opposite to the short-circuit end 59 are electrically connected. To form a first resonator, and an end opposite to the open end 58 of the second one-end open rectangular resonance electrode 54 and an end opposite to the short-circuit end 59 of the second one-end short-circuit rectangular resonance electrode 55. Are electrically connected to each other to form a second resonator, and an end of the third one-end open rectangular resonance electrode 56 opposite to the open end 58 is connected to the third one-end short-circuit rectangular resonance. The third resonator is formed by electrically connecting the short-circuit end 59 of the electrode 57 to the opposite end.
[0008]
The second resonator and the third resonator are arranged at symmetrical positions in a line-symmetric shape with respect to the central axis cc ′, and the first resonator is line-symmetric with respect to the central axis cc ′. It is formed in a suitable shape.
[0009]
Further, an input (output) terminal is electrically connected to the second resonator, and an output (input) terminal is electrically connected to the third resonator.
[0010]
The distance Wopen between the second one-end open rectangular resonance electrode 54 and the third one-end open rectangular resonance electrode 56, or the second one-end open short-circuit resonance electrode 55 and the third one-end short-circuit rectangular resonance electrode 57 By adjusting the distance Wshort with respect to the pass band, a filter characteristic having one attenuation pole on each of the high band side and the low band side with respect to the pass band is realized. Further, by using a plurality of additional resonators, a filter characteristic having two or more attenuation poles having different frequencies has been realized.
[0011]
[Patent Document 1]
JP-A-8-70201
[Problems to be solved by the invention]
However, since such a conventional laminated strip line filter has a line-symmetric structure, the shapes WA, WB, WC, and WD of the overlapping portions of the resonator electrodes are the same on the left and right with respect to the center axis cc ′. I have to be. The attenuation pole of the filter characteristic is generated by the electromagnetic field coupling at the overlapping portion of the respective resonance electrodes. As a result, there is a problem that only a single characteristic is obtained for the frequency of the attenuation pole, and a filter characteristic having a plurality of different attenuation poles cannot be realized. In addition, in order to realize a filter characteristic having a plurality of different attenuation poles, it is necessary to add a resonator having an axially symmetric structure in which overlapping portions have different shapes, resulting in an increase in the overall size of the filter. was there.
[0013]
The present invention has been devised in view of the above problems, and an object of the present invention is to provide a multilayer strip line filter that is small in size and can realize filter characteristics having attenuation poles of different frequencies. To provide.
[0014]
[Means for Solving the Problems]
The laminated strip line filter of the present invention has a first dielectric layer, a second dielectric layer laminated on the first dielectric layer, and a laminated layer on the second dielectric layer. A third dielectric layer, a first ground electrode disposed on a lower surface of the first dielectric layer, and a first open end disposed between the first and second dielectric layers. A rectangular resonant electrode and a first one-end short-circuited rectangular resonant electrode, and a second open-ended rectangular resonant electrode and a second short-circuited one-end rectangular disposed between the second and third dielectric layers A resonance electrode, a third one-end open rectangular resonance electrode, a third one-end short-circuit rectangular resonance electrode, and a second ground electrode disposed on the upper surface of the fourth dielectric layer. And at least part of each of the second one-end open rectangular resonance electrodes is laminated with the second dielectric layer interposed therebetween. And the first and third one-end open rectangular resonance electrodes are overlapped with each other with the second dielectric layer interposed therebetween when viewed from the laminating direction. And the first and second one-end short-circuited rectangular resonance electrodes are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the lamination direction with the second dielectric layer interposed therebetween. The first and third one-end short-circuited rectangular resonance electrodes are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the lamination direction, with the second dielectric layer interposed therebetween. The ground electrode is disposed so as to cover the first to third single-ended rectangular resonant electrodes and the first to third single-ended short-circuited rectangular resonant electrodes when viewed from the lamination direction, and the first single-ended open rectangular shape. Open end of resonance electrode The first end is formed by electrically connecting the end on the side of the first side and the end on the side opposite to the short-circuited end of the first one-end short-circuited rectangular resonance electrode, and the second end-opened rectangular shape is formed. An end opposite to the open end of the resonance electrode and an end opposite to the short-circuit end of the second one-end short-circuited rectangular resonance electrode are electrically connected to form a second resonator; An end opposite to the open end of the third one-end open rectangular resonance electrode and an end opposite to the short-circuit end of the third one-end short-circuit rectangular resonance electrode are electrically connected to each other to form a third end. A resonator is formed, overlapping widths of the first open-ended rectangular resonant electrode and the second and third open-ended rectangular resonant electrodes are different from each other, and the first open-ended rectangular resonant electrode is different from each other. The overlap widths of the shape resonance electrode and the second and third one-end short-circuited rectangular resonance electrodes have different dimensions, respectively. The input terminal of the second resonator and the output terminal of the third resonator are electrically connected, or the output terminal of the second resonator and the input terminal of the third resonator are electrically connected. It is characterized by the fact that the connection is made.
[0015]
According to the laminated strip line filter of the present invention, the overlapping widths of the first open-ended rectangular resonant electrode and the second and third open-ended rectangular resonant electrodes have different dimensions, and The overlapping widths of the first single-ended short-circuited rectangular resonant electrode and the second and third single-ended short-circuited rectangular resonant electrodes have different dimensions, so that the first and second and the first and third resonant electrodes are different. Are different from each other in shape, and as a result, the amount of electromagnetic field coupling between the first and second and first and third resonance electrodes is different, so that attenuation poles having different frequencies are generated. Can be.
[0016]
Further, in the laminated strip line filter of the present invention, in the above-described configuration, each of the ground electrodes, or each of the short-circuited ends of each of the short-circuited rectangular resonance electrodes and each of the ground electrodes is formed inside the dielectric layer. Characterized in that they are electrically connected in the stacking direction by the through conductor and / or the side conductor formed on the side surface.
[0017]
Thereby, the degree of freedom in designing the laminated strip line filter formed inside the plurality of laminated dielectric layers is improved, and a compact and high-performance laminated strip line filter can be provided.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the laminated strip line filter of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a perspective view showing an example of an embodiment of the laminated strip line filter of the present invention. FIG. 2 is a perspective plan view of FIG. 1 viewed from the laminating direction. FIG. 3 is a line aa ′ in FIG. It is sectional drawing. 1 to 3, reference numeral 10 denotes a first dielectric layer, 11 denotes a second dielectric layer laminated on the first dielectric layer 10, and 12 denotes a second dielectric layer on the second dielectric layer 11. The laminated third dielectric layer, 20 is a first ground electrode disposed on the lower surface of the first dielectric layer 10, and 21 is the second ground electrode disposed on the upper surface of the third dielectric layer 12. The electrodes, 22 and 23, are a first one-end open rectangular resonance electrode and a first one-end short-circuit rectangular resonance electrode disposed between the first and second dielectric layers 10 and 11, and 24 and 25 are the second and The second one-end open rectangular resonance electrode and the second one-end short-circuit rectangular resonance electrode, 26 and 27, disposed between the third dielectric layers 11 and 12, respectively, are the second and third dielectric layers 11 and 12. A third one-end open rectangular resonance electrode and a third one-end short-circuit rectangular resonance electrode, which are disposed between the first and third pieces Each of the open end of the open rectangular resonant electrode 22, 24, and 26, 29 are each of a short-circuit ends of the first to third one end shorted rectangular resonant electrodes 23, 25 and 27. The first to third one-end short-circuited rectangular resonance electrodes 23, 25, and 27 are electrically connected to the first ground electrode 20 and the second ground electrode 21, and are short-circuited (not shown).
[0020]
Then, as shown in WA, WB, WC, and WD in FIGS. 2 and 3, the first and second rectangular open-ended resonant electrodes 22 and 24 each have at least each of the second dielectric layers 11 interposed therebetween. A part thereof is arranged in parallel with an overlapping width so as to overlap with the width of WA when viewed from the laminating direction, and the first and third open-ended rectangular resonant electrodes 22 and 26 sandwich the second dielectric layer 11 therebetween. Are arranged in parallel with an overlapping width such that at least a part of each overlaps with the width of WB when viewed from the stacking direction. The first and second one-end short-circuited rectangular resonant electrodes 23 and 25 are parallel with an overlapping width such that at least a part of each of the first and second short-circuited rectangular resonant electrodes overlaps with the width of WC when viewed from the laminating direction. And the first and third single-ended short-circuited rectangular resonance electrodes 23 and 27 are arranged such that at least a part of each of the first and third short-circuited rectangular resonance electrodes overlaps with the width of WD when viewed from the lamination direction with the second dielectric layer 11 interposed therebetween. They are arranged in parallel with the overlap width. Further, the first and second ground electrodes 20 and 21 are first to third single-ended rectangular resonant electrodes 22, 24 and 26, and first to third single-ended short-circuited rectangular resonant electrodes 23 when viewed from the lamination direction.・ It is arranged to cover 25 and 27.
[0021]
Then, an end of the first one-end open rectangular resonance electrode 22 opposite to the open end 28 and an end of the first one-end short-circuit rectangular resonance electrode 23 opposite to the short-circuit end 29 are electrically connected. To form a first resonator 30, which is opposite to the end of the second one-end open rectangular resonance electrode 24 opposite to the open end 28 and the short-circuit end 29 of the second one-end short-circuit rectangular resonance electrode 25. The other end is electrically connected to form a second resonator 31, and the end of the third one-end open rectangular resonance electrode 26 opposite to the open end 28 is connected to the third one-end short-circuited rectangular. A third resonator 32 is formed by electrically connecting the short-circuited end 29 of the shape resonance electrode 27 and the opposite end.
[0022]
Further, the width of the portion where the first open-ended rectangular resonant electrode 22 and the second and third open-ended rectangular resonant electrodes 24 and 26 overlap each other when viewed in the laminating direction, that is, the overlapping widths WA and WB are different from each other. The overlapping widths WC and WD of the portions where the first one-end short-circuited rectangular resonance electrode 23 and the second and third one-end short-circuited rectangular resonance electrodes overlap each other when viewed in the laminating direction are different from each other.
[0023]
The widths W22, W24, and W26 of the first to third one-end open rectangular resonance electrodes have different dimensions, and the widths W23, W25, and W27 of the first to third one-end short-circuit rectangular resonance electrodes have different dimensions. By changing the arrangement in the width direction of the first to third one-end open rectangular resonance electrodes and the one-end short-circuit rectangular resonance electrodes 22 to 27, or by combining them, the first The overlapping widths WA and WB of the one-end open rectangular resonance electrode 22 and the second and third one-end open rectangular resonance electrodes 24 and 26 have different dimensions, and the first one-end short-circuit rectangular resonance electrode 23 and the second And the overlapping widths WC and WD with the third single-ended short-circuited rectangular resonant electrodes 25 and 27 can be different in size, so that the overlapping width WA and the overlapping width WC and the overlapping width WB overlap. Ri is the area of the portion to be formed becomes different between the width WD, it can be made to different electromagnetic coupling amount generated in this portion to each other.
[0024]
The overlap width WA of the first one-end open rectangular resonance electrode 22 and the second one-end open rectangular resonance electrode 24, the first one-end short-circuit rectangular resonance electrode 23, and the second one-end short-circuit rectangular resonance electrode 25 Can form a resonance circuit between the first and second resonators 30 and 31 by electromagnetic field coupling, and can generate the first attenuation pole. Also, the overlap width WB of the first open-ended rectangular resonant electrode 22 and the open-ended rectangular resonant electrode 26, the first open-ended rectangular resonant electrode 23, and the open-ended rectangular resonant electrode 27 Another resonance circuit having an electromagnetic field coupling amount different from the previous electromagnetic field coupling can be formed between the first and third resonators 30 and 32 by the overlap width WD of the first and third resonators 30 and 32, and the second attenuation pole is generated. Can be done.
[0025]
The widths W23, W25, and W27 of the first to third single-ended short-circuited rectangular resonant electrodes 23, 25, and 27 with respect to the widths W22, W24, and W26 of the first to third single-ended rectangular electrodes 22, 24, and 26, respectively. And the first one-ended short-circuited rectangular resonance electrode 23 and the second and third electrodes for the overlap width WA / WB of the first one-ended open rectangular resonance electrode 22 and the second and third one-ended open rectangular resonance electrodes 24 and 26. The overlap widths WC and WD with the third one-end short-circuited rectangular resonance electrode are formed to have different dimensions depending on the filter characteristics to be realized.
[0026]
Further, the input terminal 33 is electrically connected to the second resonator 31, and the output terminal 34 is electrically connected to the third resonator 32, and is connected to an external circuit. Note that the input terminal 33 can be an output terminal and the output terminal 34 can be an input terminal as necessary.
[0027]
In the laminated strip line filter of the present invention having such a configuration, the first and second ground electrodes 20 and 21 or the first and second ground electrodes 20 and 21 and the first to third single-ended short-circuited rectangular shapes are provided. The short-circuited ends 29 of the resonance electrodes 23, 25, 27 are formed by through conductors (not shown) formed inside the dielectric layer, or by side conductors (not shown) formed on the side surfaces of the dielectric layer. Alternatively, by using a configuration in which the through conductors and the side conductors are electrically connected in the stacking direction, a three-dimensional wiring design can be appropriately performed for the filter structure to be applied. The design flexibility of the laminated strip line filter formed inside the body layer is improved, and a compact and high-performance laminated strip line filter can be provided.
[0028]
In forming the laminated strip line filter of the present invention, first to third dielectric layers 10 to 12, first and second ground electrodes 20 and 21, first to third open-ended rectangular resonant electrodes 22 24, 26 and the first to third single-ended short-circuited rectangular resonance electrodes 23, 25, 27 can be made of various materials and forms used for known high-frequency wiring boards.
[0029]
As the first to third dielectric layers 10 to 12 used in the laminated strip line filter of the present invention, for example, ceramic materials such as alumina ceramics and mullite ceramics, inorganic materials such as glass ceramics, and ethylene tetrafluoride resin ( Polytetrafluoroethylene; PTFE) / ethylene tetrafluoride-ethylene copolymer resin (tetrafluoroethylene-ethylene copolymer resin; ETFE) / ethylene tetrafluoride-perfluoroalkoxyethylene copolymer resin (tetrafluoroethylene-perfluoroalkyl) Fluororesins such as vinyl ether copolymer resin (PFA) and resin materials such as glass epoxy resin and polyimide are used. The shapes and dimensions (thickness, width, and length) of the first to third dielectric layers 10 to 11 made of these materials are set according to the frequency used, the application, and the like.
[0030]
The first and second ground electrodes 20 and 21, the first to third one-end open rectangular resonant electrodes 22, 24 and 26, and the first to third one-end short-circuit rectangular resonant electrodes in the laminated strip line filter of the present invention. 23, 25, 27, through conductors or side conductors are obtained by applying a Ni plating layer and an Au plating layer on a conductor layer of a metal material for high-frequency signal transmission, for example, a Cu layer / Mo-Mn metallized layer. Ni plating layer and Au plating layer deposited on W metallized layer Cr-Cu alloy layer Ni plating layer and Au plating layer deposited on Cr-Cu alloy layer Ta 2 N A Ni-Cr alloy layer and an Au plating layer deposited on a layer; a Pt layer and an Au plating layer deposited on a Ti layer; or a Pt layer and an Au plating layer on a Ni-Cr alloy layer Adhere to Using what was the like, and is formed by a thick film printing method or various thin film forming method or a plating method or the like. The thickness and width are also set according to the frequency of the transmitted high-frequency signal, the application, and the like.
[0031]
In producing the first to third dielectric layers 10 to 12 used in the laminated strip line filter of the present invention, for example, when the dielectric layer is made of glass ceramic, first, a green ceramic glass to be a dielectric layer is used. A sheet is prepared, and a predetermined punching process is performed on the sheet to form a through hole serving as a through conductor. Then, the through hole is filled with a conductive paste such as Cu by a screen printing method, and a predetermined transmission line pattern and other Print and apply the conductor layer pattern. Next, baking is performed at 850 to 1000 ° C., and finally Ni plating and Au plating are performed on the conductor layer exposed on the outer surface.
[0032]
【Example】
As an embodiment, in the laminated strip line filter of the present invention having the configuration shown in FIGS. 1 to 3, a structural model for realizing filter characteristics having one attenuation pole on each of a high band side and a low band side with respect to a pass band. Was fabricated on a three-dimensional electromagnetic field analysis simulator, and simulation analysis was performed.
[0033]
For example, in the case of the simulation in the laminated strip line filter of the present invention having the configuration shown in FIGS. 1 to 3, the thickness of each of the first to third dielectric layers 10 to 12 is set to the first dielectric layer h1 = 0.2 mm. , The second dielectric layer h2 = 0.2 mm, the third dielectric layer h3 = 0.2 mm,
The width W22, W24, W26 of each of the first to third one-end open rectangular resonance electrodes 22, 24, 26 and the length L22, L24, L26 of each resonance electrode are W22 = 2.35 mm, W24. = 1.2 mm, W26 = 1.34 mm, L22 = L24 = L26 = 2.367 mm,
The width W23 / W25 / W27 of each of the first to third one-end short-circuited rectangular resonance electrodes 23/25/27 and the length L23 / L25 / L27 of each resonance electrode are W23 = 2.35 mm and W25, respectively. = 1.34 mm, W27 = 1.2 m, L23 = L25 = L27 = 2.367 mm,
The width WA of the portion where the first and second open-ended rectangular resonant electrodes 22 and 24 overlap when viewed in the stacking direction is 0.55 mm, and the first and second short-circuited rectangular resonant electrodes 23 and 25 are stacked from the stacking direction. It is assumed that the overlap width WC of the overlapping portions is 0.22 mm,
The width WB = 0.22 mm of the portion where the first and third one-end open rectangular resonant electrodes 22 and 26 overlap when viewed from the laminating direction, and the first and third one-end short-circuit rectangular resonant electrodes 23 and 27 are from the laminating direction. The overlapping width WD of the overlapping portions is set to 0.55 mm. The relative dielectric constant of each dielectric layer used in the simulation was set to 7.7.
[0034]
FIG. 7 shows a simulation result under the above conditions. In FIG. 7, the horizontal axis represents frequency (unit: GHz), and the vertical axis represents insertion loss (unit: dB). As can be seen from the results shown in FIG. 7, it can be seen that attenuation poles fr1 and fr2 having different frequencies are generated on the low band side and the high band side with respect to the pass band.
[0035]
The attenuation pole is an overlapping portion between the first one-end open (short-circuit) rectangular resonance electrode 22 (23) and the second and third one-end open (short-circuit) rectangular resonance electrodes 24 (25) and 26 (27). The electromagnetic field coupling between the electrodes can be increased by increasing the area of the overlapping portion to obtain a stronger electromagnetic field coupling, or by reducing the area of the overlapping portion to obtain a weaker electromagnetic field coupling. Since the values of L and C, which are distributed constants that form a resonance circuit by coupling, can be changed, the attenuation pole can be changed to a high frequency side or a low frequency side. In the laminated strip line filter of the present invention in this embodiment, filter characteristics having different attenuation poles can be realized by the widths W22 to W27 of the first to third one-end open (short-circuited) rectangular resonance electrodes, and the first to third resonance electrodes. And the second and third single-ended (short-circuited) rectangular resonant electrodes 24 (25) and 26 (27) are formed with different dimensions, respectively. The reason for this is that, because of the arrangement, the shapes of the respective overlapping portions of the resonance electrodes are different, and as a result, the amount of electromagnetic field coupling between the resonance electrodes is also different, so that attenuation poles having different frequencies can be generated. .
[0036]
Further, in the laminated strip line filter of the present invention, in the above-described configuration, the connection conductor for electrically connecting the first and second ground electrodes 20 and 21 in the lamination direction, or the first to third single-ended short-circuited rectangular resonances are provided. Connection conductors for electrically connecting the short-circuited ends 29 of the electrodes 23, 25 and 27 and the first and second ground electrodes 20 and 21 in the laminating direction are provided on the through conductors and / or side surfaces formed inside the dielectric layer. It is characterized by being formed side conductors, thereby improving the design flexibility of a laminated strip line filter formed inside a plurality of laminated dielectric layers, and having a small size and high performance. A laminated stripline filter can be provided.
[0037]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes and improvements may be made without departing from the spirit of the present invention.
[0038]
For example, when it is desired to further generate an attenuation pole, a new resonator having a different shape may be added.
[0039]
【The invention's effect】
According to the laminated strip line filter of the present invention, the overlapping widths of the first one-end open (short-circuit) rectangular resonance electrode and the second and third one-end open (short-circuit) rectangular resonance electrodes are formed with different dimensions. Therefore, the shapes of the overlapping portions of the first and second and first and third resonance electrodes are different from each other. As a result, the electromagnetic field coupling amount between the first and second and first and third resonance electrodes is different. Therefore, attenuation poles having different frequencies can be generated.
[0040]
Further, according to the laminated strip line filter of the present invention, in the above-described configuration, each ground electrode, or the short-circuited end of each one-end short-circuited rectangular resonance electrode and each ground electrode are formed in the through conductor formed inside the dielectric layer. And / or when electrically connected in the laminating direction by side conductors formed on the side surfaces, the degree of freedom in designing a laminated strip line filter formed inside a plurality of laminated dielectric layers is improved, and the size is reduced. And a high-performance laminated strip line can be provided.
[0041]
As described above, according to the present invention, it is possible to provide a multilayer strip line filter that is small and can realize filter characteristics having attenuation poles of different frequencies.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a laminated strip line filter of the present invention.
FIG. 2 is a perspective plan view showing an example of an embodiment of the laminated strip line filter of the present invention.
FIG. 3 is a sectional view taken along line aa ′ in FIG. 2;
FIG. 4 is a perspective view showing an example of a conventional laminated strip line filter.
FIG. 5 is a perspective plan view showing an example of a conventional laminated strip line filter.
FIG. 6 is a sectional view taken along line bb ′ in FIG. 5;
FIG. 7 is a diagram showing an example of insertion loss in the laminated strip line filter of the present invention.
[Explanation of symbols]
Reference Signs List 10 first dielectric layer 11 second dielectric layer 12 third dielectric layer 20 first ground electrode 21 second ground electrode 22 ..First one-end open rectangular resonance electrode 23... First one-end short-circuit rectangular resonance electrode 24... Second one-end open rectangular resonance electrode 25. 26 third third-end open rectangular resonant electrode 27 third third short-circuited rectangular resonant electrode 28 open end 29 short-circuit end 30 first resonator 31 -Second resonator 32 ... Third resonator 33 ... Input terminal (output terminal)
34 output terminal (input terminal)

Claims (2)

第1の誘電体層と、該第1の誘電体層の上に積層された第2の誘電体層と、該第2の誘電体層の上に積層された第3の誘電体層と、前記第1の誘電体層の下面に配された第1の接地電極と、前記第1および第2の誘電体層の間に配された第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極と、前記第2および第3の誘電体層の間に配された、第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極、ならびに第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極と、前記第4の誘電体層の上面に配された第2の接地電極とから成り、
前記第1および第2の片端開放矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端開放矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配され、
前記第1および第2の片端短絡矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端短絡矩形状共振電極は前記第2の誘電体層を挟んでそれぞれ少なくとも一部が積層方向から見て重なるように平行に配され、
前記第1および第2の接地電極は積層方向から見て前記第1乃至第3の片端開放矩形状共振電極ならびに前記第1乃至第3の片端短絡矩形状共振電極を覆うように配され、
前記第1の片端開放矩形状共振電極の開放端と反対側の端部と、前記第1の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第1の共振器を形成し、
前記第2の片端開放矩形状共振電極の開放端と反対側の端部と、前記第2の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第2の共振器を形成し、
前記第3の片端開放矩形状共振電極の開放端と反対側の端部と、前記第3の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第3の共振器を形成し、
前記第1の片端開放矩形状共振電極と前記第2および第3の片端開放矩形状共振電極との重なり幅を、それぞれ異なる寸法とするとともに、前記第1の片端短絡矩形状共振電極と前記第2および第3の片端短絡矩形状共振電極との重なり幅を、それぞれ異なる寸法としており、
前記第2の共振器に入力端子ならびに前記第3の共振器に出力端子が電気的に接続されるか、または前記第2の共振器に出力端子ならびに前記第3の共振器に入力端子が電気的に接続されていることを特徴とする積層ストリップラインフィルタ。
A first dielectric layer, a second dielectric layer laminated on the first dielectric layer, a third dielectric layer laminated on the second dielectric layer, A first ground electrode disposed on the lower surface of the first dielectric layer, a first open-ended rectangular resonant electrode disposed between the first and second dielectric layers, and a first end A short-circuit rectangular resonance electrode, a second one-end open rectangular resonance electrode, a second one-end short-circuit rectangular resonance electrode, and a third one-end open disposed between the second and third dielectric layers. A rectangular resonance electrode, a third one-end short-circuited rectangular resonance electrode, and a second ground electrode disposed on the upper surface of the fourth dielectric layer;
The first and second open-ended rectangular resonant electrodes are arranged in parallel so that at least a part of each of the first and second rectangular open-ended resonant electrodes overlaps when viewed from the laminating direction, and the first and second open-ended resonant electrodes are arranged in parallel. 3, the one end open rectangular resonance electrodes are arranged in parallel so that at least a part of each of the two end resonance electrodes overlaps when viewed from the laminating direction, with the second dielectric layer interposed therebetween.
The first and second one-end short-circuited rectangular resonance electrodes are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the laminating direction, with the second dielectric layer interposed therebetween. 3 is arranged in parallel so that at least a part of each of the short-circuited rectangular resonant electrodes overlaps with the second dielectric layer interposed therebetween when viewed from the laminating direction.
The first and second ground electrodes are disposed so as to cover the first to third single-ended rectangular resonant electrodes and the first to third single-ended short-circuited rectangular resonant electrodes when viewed from the lamination direction,
An end opposite to the open end of the first one-end open rectangular resonance electrode and an end opposite to the short-circuit end of the first one-end short-circuit rectangular resonance electrode are electrically connected to each other to form a first end. Forming a resonator of
An end of the second one-end open rectangular resonance electrode opposite to the open end and an end of the second one-end short-circuit rectangular resonance electrode opposite to the short-circuit end are electrically connected to form a second end. Forming a resonator of
An end of the third one-end open rectangular resonance electrode opposite to the open end and an end of the third one-end short-circuit rectangular resonance electrode opposite to the short-circuit end are electrically connected to form a third end. Forming a resonator of
The overlapping widths of the first open-ended rectangular resonant electrode and the second and third open-ended rectangular resonant electrodes have different dimensions, respectively, and the first open-ended rectangular resonant electrode and the first open-ended rectangular resonant electrode have different widths. The overlapping widths of the second and third one-end short-circuited rectangular resonance electrodes are different from each other,
An input terminal is electrically connected to the second resonator and an output terminal is electrically connected to the third resonator, or an output terminal is electrically connected to the second resonator and an input terminal is electrically connected to the third resonator. A laminated strip line filter, which is electrically connected.
前記各接地電極が、または前記各片端短絡矩形状共振電極の前記短絡端および前記各接地電極が、前記誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体により積層方向に電気的に接続されていることを特徴とする請求項1記載の積層ストリップラインフィルタ。The respective ground electrodes or the short-circuited ends of the single-ended rectangular resonant electrodes and the respective ground electrodes are laminated by a through conductor formed inside the dielectric layer and / or a side conductor formed on a side surface. 2. The multilayer strip line filter according to claim 1, wherein the filter is electrically connected in the directions.
JP2003046813A 2003-02-25 2003-02-25 Laminated strip line filter Pending JP2004260376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046813A JP2004260376A (en) 2003-02-25 2003-02-25 Laminated strip line filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046813A JP2004260376A (en) 2003-02-25 2003-02-25 Laminated strip line filter

Publications (1)

Publication Number Publication Date
JP2004260376A true JP2004260376A (en) 2004-09-16

Family

ID=33113220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046813A Pending JP2004260376A (en) 2003-02-25 2003-02-25 Laminated strip line filter

Country Status (1)

Country Link
JP (1) JP2004260376A (en)

Similar Documents

Publication Publication Date Title
JP2004180032A (en) Dielectric filter
JP4895982B2 (en) Filter device
JP3858852B2 (en) 2-port isolator and communication device
JP4986882B2 (en) Filter device
JP4628262B2 (en) Filter device
JP4009178B2 (en) Low pass filter
JP2004260376A (en) Laminated strip line filter
JP4157439B2 (en) Multilayer stripline filter
JP5606199B2 (en) Filter device
JP2004350143A (en) Balun transformer
JP4336319B2 (en) Multilayer stripline filter
JP3898590B2 (en) Multilayer stripline filter
JP2004153416A (en) Balanced lamination strip line filter
JP2003023332A (en) Wiring board for electronic circuit
JP5489745B2 (en) Filter device
JP2004180035A (en) Laminated strip line filter
JP2004282676A (en) Laminated strip line filter
JP4303664B2 (en) Filter device
JP2004296927A (en) Wiring board for housing electronic component
JP3808386B2 (en) Multilayer stripline filter
JP4284151B2 (en) Filter device
JP4336321B2 (en) Multilayer stripline filter
JP4511397B2 (en) Multilayer stripline filter
JP5361639B2 (en) Filter device
JP5361660B2 (en) Filter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Effective date: 20060414

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060811