JP2004180035A - Laminated strip line filter - Google Patents

Laminated strip line filter Download PDF

Info

Publication number
JP2004180035A
JP2004180035A JP2002344688A JP2002344688A JP2004180035A JP 2004180035 A JP2004180035 A JP 2004180035A JP 2002344688 A JP2002344688 A JP 2002344688A JP 2002344688 A JP2002344688 A JP 2002344688A JP 2004180035 A JP2004180035 A JP 2004180035A
Authority
JP
Japan
Prior art keywords
rectangular
short
dielectric layer
open
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344688A
Other languages
Japanese (ja)
Inventor
Shigetoshi Ogawa
成敏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002344688A priority Critical patent/JP2004180035A/en
Publication of JP2004180035A publication Critical patent/JP2004180035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated strip line filter where the variance of an attenuation pole of filter characteristics caused by lamination deviation occurring in a process of laminating a plurality of dielectric layers can be reduced. <P>SOLUTION: The laminated strip line filter has first and second resonators 71 and 72 arranged in parallel in first to fourth successively laminated dielectric layers 40 to 43 so that the resonators at least partially overlap with the second dielectric layer 41 between them when viewed from the lamination direction and has first and third resonators 71 and 73 arranged in parallel so that the resonators at least partially overlap with second and third dielectric layer 41 and 42 between them when viewed from the lamination direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば携帯電話や無線LAN等の無線通信機器その他の各種通信機器等において使用される積層ストリップラインフィルタに関するものである。
【0002】
【従来の技術】
近年、携帯電話機等の移動体通信機器等に使用されるフィルタは、移動体通信機器等の薄型化・小型化の要求に伴い、誘電体同軸型共振器を用いたフィルタから分布定数回路を共振器に用いた積層ストリップラインフィルタへと進展してきている。
【0003】
この積層ストリップラインフィルタは、特開平8−70201号公報に、図4に透視斜視図、および図5に透視平面図、図6に図5におけるb−b’線断面図で示す構成のものが提案されている。
【0004】
図4〜図6において、10は第1の誘電体層、11は第1の誘電体層10の上に積層された第2の誘電体層、12は第2の誘電体層11の上に積層された第3の誘電体層、20は第1の誘電体層10の下面に配された第1の接地電極、21は第3の誘電体層12の上面に配された第2の接地電極、22および25は第1および第2の誘電体層10・11の間に配した第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極、23および26は第2および第3の誘電体層11・12の間に配した第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極、24および27は第2および第3の誘電体層11・12の間に配した第3の片端開放矩形状共振電極、および第3の片端短絡矩形状共振電極、28は第1〜第3の片端開放矩形状共振電極22〜24のそれぞれの開放端、29は第1〜第3の片端短絡矩形状共振電極25〜27のそれぞれの短絡端である。
【0005】
そして、図5および図6のWA〜WDに示すように、第1および第2の片端開放矩形状共振電極22・23は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、第1および第3の片端開放矩形状共振電極22・24は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されている。また、第1および第2の片端短絡矩形状共振電極25・26は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、第1および第3の片端短絡矩形状共振電極25・27は第2の誘電体層11を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されている。また、第1および第2の接地電極20・21は積層方向から見て第1〜第3の片端開放矩形状共振電極22〜24ならびに第1〜第3の片端短絡矩形状共振電極25〜27を覆うように配されている。
【0006】
そして、第1の片端開放矩形状共振電極22の開放端28と反対側の端部と、第1の片端短絡矩形状共振電極25の短絡端29と反対側の端部とを電気的に接続して第1の共振器を形成し、
第2の片端開放矩形状共振電極23の開放端28と反対側の端部と、第2の片端短絡矩形状共振電極26の短絡端29と反対側の端部とを電気的に接続して第2の共振器を形成し、
第3の片端開放矩形状共振電極24の開放端28と反対側の端部と、第3の片端短絡矩形状共振電極27の短絡端29と反対側の端部とを電気的に接続して第3の共振器を形成している。
【0007】
そして、さらに、第2の共振器に入力端子30が電気的に接続され、第3の共振器に出力端子31が電気的に接続されている。
【0008】
そして、第1〜第3の片端開放矩形状共振電極22〜24の幅W22〜W24、第1〜第3の片端短絡矩形状共振電極25〜27の幅W25〜W27、第1の片端開放矩形状共振電極22と第2の片端開放矩形状共振電極23とが第2の誘電体層11を挟んで互いに重なる幅WA、第1の片端開放矩形状共振電極22と第3の片端開放矩形状共振電極24とが第2の誘電体層11を挟んで互いに重なる幅WB、第1の片端短絡矩形状共振電極25と第2の片端開放矩形状共振電極26とが第2の誘電体層11を挟んで互いに重なる幅WC、第1の片端短絡矩形状共振電極25と第3の片端短絡矩形状共振電極27とが第2の誘電体層11を挟んで互いに重なる幅WDを調整することにより、通過帯域に対して高域側および低域側にそれぞれ減衰極を1個有するフィルタ特性を実現していた。
【0009】
【特許文献1】
特開平8−70201号公報
【0010】
【発明が解決しようとする課題】
しかしながら、このような従来の積層ストリップラインフィルタにおいては、所望のフィルタ特性を実現させるためには、第1の片端開放矩形状共振電極22と第2の片端開放矩形状共振電極23とが第2の誘電体層11を挟んで互いに重なる幅WAおよび、第1の片端開放矩形状共振電極22と第3の片端開放矩形状共振電極24とが第2の誘電体層11を挟んで互いに重なる幅WBおよび、第1の片端短絡矩形状共振電極25と第2の片端開放矩形状共振電極26とが第2の誘電体層11を挟んで互いに重なる幅WCおよび、第1の片端短絡矩形状共振電極25と第3の片端短絡矩形状共振電極27とが第2の誘電体層11を挟んで互いに重なる幅WDのいずれか、もしくはそのうちのいくつかの幅を狭く設定しなければならない場合があり、第1〜第3の誘電体層10〜12を積層する工程において発生する積層ずれにより、第1および第2の片端開放矩形状共振電極22・23間の電磁界結合量および、第1および第3の片端開放矩形状共振電極間22・24の電磁界結合量および、第1および第2の片端短絡矩形状共振電極間25・26の電磁界結合量および、第1および第3の片端短絡矩形状共振電極間25・27のいずれか、もしくはそのうちのいくつかの電磁界結合量の変化が大きくなり、このため、所望のフィルタ特性に対して減衰極が大きく変動するという問題があった。
【0011】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、積層ストリップラインフィルタにおいて、複数の誘電体層を積層する工程において発生する積層ずれによるフィルタ特性の減衰極の変動を低減することができる積層ストリップラインフィルタを提供することにある。
【0012】
【課題を解決するための手段】
本発明の積層ストリップラインフィルタは、第1の誘電体層と、この第1の誘電体層の上に積層された第2の誘電体層と、この第2の誘電体層の上に積層された第3の誘電体層と、この第3の誘電体層の上に積層された第4の誘電体層と、前記第1の誘電体層の下面に配された第1の接地電極と、前記第1および第2の誘電体層の間に配された第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極と、前記第2および第3の誘電体層の間に配された第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極と、前記第3および第4の誘電体層の間に配された第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極と、前記第4の誘電体層の上面に配された第2の接地電極とから成り、
前記第1および第2の片端開放矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端開放矩形状共振電極は前記第2および第3の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配され、
前記第1および第2の片端短絡矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端短絡矩形状共振電極は前記第2および第3の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配され、
前記第1および第2の接地電極は積層方向から見て前記第1〜第3の片端開放矩形状共振電極ならびに前記第1〜第3の片端短絡矩形状共振電極を覆うように配され、
前記第1の片端開放矩形状共振電極の開放端と反対側の端部と、前記第1の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第1の共振器を形成し、
前記第2の片端開放矩形状共振電極の開放端と反対側の端部と、前記第2の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第2の共振器を形成し、
前記第3の片端開放矩形状共振電極の開放端と反対側の端部と、前記第3の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第3の共振器を形成し、
前記第2の共振器に入力端子ならびに前記第3の共振器に出力端子が電気的に接続されるか、または前記第2の共振器に出力端子ならびに前記第3の共振器に入力端子が電気的に接続されていることを特徴とするものである。
【0013】
本発明の積層ストリップラインフィルタによれば、第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極を第2および第3の2層の誘電体層を挟んで配したことから、第1の片端開放矩形状共振電極と第3の片端開放矩形状共振電極とが第2の誘電体層および第3の誘電体層を挟んで互いに重なる幅および、第1の片端短絡矩形状共振電極と第3の片端短絡矩形状共振電極とが第2の誘電体層および第3の誘電体層を挟んで互いに重なる幅を十分確保することができ、積層ずれによる共振電極間の電磁界結合の変化に対する許容範囲を十分に確保することができ、この結果、フィルタ特性の減衰極の変動を低減することができる。
【0014】
また、本発明の積層ストリップラインフィルタは、上記構成において、前記各接地電極が、または前記各片端短絡矩形状共振電極の短絡端および前記各接地電極が、前記誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体により積層方向に電気的に接続されていることを特徴とするものである。
【0015】
これにより、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するとともに、小型で高性能な積層ストリップラインフィルタを提供することができる。
【0016】
【発明の実施の形態】
以下、本発明の積層ストリップラインフィルタを図面を参照しつつ説明する。
【0017】
図1は本発明の積層ストリップラインフィルタの実施の形態の一例を示す透視斜視図であり、図2は図1を積層方向から見た透視平面図、図3は図2におけるa−a’線断面図である。図1〜図3において、40は第1の誘電体層、41は第1の誘電体層40の上に積層された第2の誘電体層、42は第2の誘電体層41の上に積層された第3の誘電体層、43は第3の誘電体層42の上に積層された第4の誘電体層、50は第1の誘電体層40の下面に配された第1の接地電極、51は第4の誘電体層43の上面に配された第2の接地電極、52および55は第1および第2の誘電体層40・41の間に配した第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極、53および56は第2および第3の誘電体層41・42の間に配した第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極、54および59は第3および第4の誘電体層42・43の間に配した第3の片端開放矩形状共振電極、および第3の片端短絡矩形状共振電極、58は第1〜第3の片端開放矩形状共振電極52〜54のそれぞれの開放端、59は第1〜第3の片端短絡矩形状共振電極55〜57のそれぞれの短絡端である。
【0018】
そして、図2および図3のWA〜WDに示すように、第1および第2の片端開放矩形状共振電極52・53は第2の誘電体層41を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、第1および第3の片端開放矩形状共振電極52・54は第2および第3の誘電体層41・42を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されている。また、第1および第2の片端短絡矩形状共振電極55・56は第2の誘電体層41を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、第1および第3の片端短絡矩形状共振電極55・57は第2および第3の誘電体層41・42を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されている。また、第1および第2の接地電極50・51は積層方向から見て第1〜第3の片端開放矩形状共振電極52〜54ならびに第1〜第3の片端短絡矩形状共振電極55〜57を覆うように配されている。
【0019】
そして、第1の片端開放矩形状共振電極52の開放端58と反対側の端部と、第1の片端短絡矩形状共振電極55の短絡端59と反対側の端部とを電気的に接続して第1の共振器71を形成し、
第2の片端開放矩形状共振電極53の開放端58と反対側の端部と、第2の片端短絡矩形状共振電極56の短絡端59と反対側の端部とを電気的に接続して第2の共振器72を形成し、
第3の片端開放矩形状共振電極54の開放端58と反対側の端部と、第3の片端短絡矩形状共振電極57の短絡端59と反対側の端部とを電気的に接続して第3の共振器73を形成している。
【0020】
そして、さらに、第2の共振器72に入力端子60が電気的に接続され、第3の共振器73に出力端子61が電気的に接続されて外部回路に接続される。なお、必要に応じて入力端子を61の側とし、出力端子を60の側とすることもできる。
【0021】
このような構成の本発明の積層ストリップラインフィルタは、第1および第2の接地電極50・51間、または第1および第2の接地電極50・51および第1〜第3の片端短絡矩形状共振電極55〜57の短絡端59を積層方向に電気的に接続する接地接続導体として誘電体層の内部に形成された貫通導体(図示せず)および/または側面に形成された側面導体(図示せず)を用いて構成することにより、3次元的な配線設計が可能となり、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するので、小型で高性能な積層ストリップラインフィルタを提供することができる。
【0022】
本発明の積層ストリップラインフィルタを形成するに当たり、第1〜第4の誘電体層40〜43、第1および第2の接地電極50・51、第1〜第3の片端開放矩形状共振電極52〜54、第1〜第3の片端短絡矩形状共振電極55〜57は、周知の高周波用配線基板に使用される種々の材料・形態のものを使用することができる。
【0023】
本発明の積層ストリップラインフィルタに用いる第1〜第4の誘電体層40〜43としては、例えばアルミナセラミックス・ムライトセラミックス等のセラミックス材料やガラスセラミックス等の無機系材料、あるいは四ふっ化エチレン樹脂(ポリテトラフルオロエチレン;PTFE)・四ふっ化エチレン−エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE)・四ふっ化エチレン−パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルテロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂やガラスエポキシ樹脂・ポリイミド等の樹脂系材料等が用いられる。これらの材料による第1〜第4の誘電体層40〜43の形状や寸法(厚みや幅・長さ)は、使用される周波数や用途等に応じて設定される。
【0024】
本発明の積層ストリップラインフィルタにおける第1および第2の接地電極50・51・第1〜第3の片端開放矩形状共振電極52〜54・第1〜第3の片端短絡矩形状共振電極55〜57・貫通導体または側面導体は、高周波信号伝送用の金属材料の導体層、例えばCu層・Mo−Mnのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Wのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Cr−Cu合金層・Cr−Cu合金層上にNiメッキ層およびAuメッキ層を被着させたもの・TaN層上にNi−Cr合金層およびAuメッキ層を被着させたもの・Ti層上にPt層およびAuメッキ層を被着させたもの、またはNi−Cr合金層上にPt層およびAuメッキ層を被着させたもの等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ法等により形成される。その厚みや幅も、伝送される高周波信号の周波数や用途等に応じて設定される。
【0025】
本発明の積層ストリップラインフィルタに用いる第1〜第4の誘電体層40〜43の作製にあたっては、例えば誘電体層がガラスセラミックスから成る場合であれば、まず誘電体層となるガラスセラミックスのグリーンシートを準備し、これに所定の打ち抜き加工を施して貫通導体となる貫通孔を形成した後、スクリーン印刷法によりCu等の導体ペーストを貫通孔に充填するとともに、所定の伝送線路パターンおよびその他の導体層のパターンを印刷塗布する。次に、850〜1000℃で焼成を行ない、最後に外表面に露出している導体層上にNiメッキおよびAuメッキを施す。
【0026】
図1〜図3に示す構成の本発明の積層ストリップラインフィルタならびに図4〜図6に示す従来の積層ストリップラインフィルタは、同一のフィルタ特性を実現でき、図7はその代表的なフィルタ特性を示したものである。図7において横軸は周波数(単位:GHz)を、縦軸は挿入損失(単位:dB)を表す。第1および第2の共振器71・72間で形成される電磁界結合によって第1の減衰極fr1が発生し、第1および第3の共振器71・73間で形成される電磁界結合によって第2の減衰極fr2が発生する。
【0027】
実施例として、図1〜図3に示す構成の本発明の積層ストリップラインフィルタならびに図4〜図6に示す従来の積層ストリップラインフィルタにおいて図7のフィルタ特性を実現する構造モデルを3次元電磁界解析シミュレータで作成し、幅方向の積層ずれ量を考慮した場合のシミュレーション解析を行なった。
【0028】
例えば、図1〜図3に示す構成の本発明の積層ストリップラインフィルタにおけるシミュレーションの場合、第1〜第4の誘電体層40〜43の厚みをそれぞれ第1の誘電体層h1=0.2mm、第2の誘電体層h2=0.1mm、第3の誘電体層h3=0.1mm、第4の誘電体層h4=0.2mmとし、
第1〜第3の片端開放矩形状共振電極52〜54の各共振電極の幅W52〜W54ならびに各共振電極の長さL52〜L54をそれぞれ、W52=2.54mm、W53=1.19mm、W54=1.3mm、L52=L53=L54=2.367mmとし、
第1〜第3の片端短絡矩形状共振電極55〜57の各共振電極の幅W55〜W57ならびに各共振電極の長さL55〜L57をそれぞれ、W55=2.5mm、W56=1.33mm、W57=1.2m、L55=L56=L57=2.367mmとし、
第1および第2の片端開放矩形状共振電極52・53が積層方向から見て重なる部分の幅WA=0.55mm、第1および第2の片端短絡矩形状共振電極55・56が積層方向から見て重なる部分の幅WC=0.19mmとし、
第1および第3の片端開放矩形状共振電極52・54が積層方向から見て重なる部分の幅WB=0.23mm、第1および第3の片端短絡矩形状共振電極55・57が積層方向から見て重なる部分の幅WD=0.88mmとしている。
【0029】
また図4〜図6に示す従来の積層ストリップラインフィルタにおけるシミュレーションモデルの各寸法は、第1〜第3の誘電体層10〜12の厚みをそれぞれ第1の誘電体層h1=0.2mm、第2の誘電体層h2=0.1mm、第3の誘電体層h3=0.3mmとし、
第1〜第3の片端開放矩形状共振電極22〜24の各共振電極の幅W22〜W24ならびに各共振電極の長さL22〜L24をそれぞれ、W22=2.38mm、W23=1.19mm、W24=1.47mm、L52=L53=L54=2.367mmとし、第1〜第3の片端短絡矩形状共振電極25〜27の各共振電極の幅W25〜W27ならびに各共振電極の長さL25〜L27をそれぞれ、W25=2.45mm、W26=1.33mm、W27=1.25mm、L25=L26=L27=2.367mmとし、
第1および第2の片端開放矩形状共振電極22・23が積層方向から見て重なる部分の幅WA=0.54mm、第1および第2の片端短絡矩形状共振電極25・26が積層方向から見て重なる部分の幅WC=0.23mmとし、
第1および第3の片端開放矩形状共振電極22・24が積層方向から見て重なる部分の幅WB=0.04mm、第1および第3の片端短絡矩形状共振電25・27が積層方向から見て重なる部分の幅WD=を0.35mmとしている。
【0030】
そして、図1〜図3に示す構成の本発明の積層ストリップラインフィルタの第1の共振器がある面に対し、第2の共振器がある面ならびに第3の共振器がある面、および図4〜図6に示す従来の積層ストリップラインフィルタの、第1の共振器がある面に対し、第2および第3の共振器がある面が幅方向(紙面に平行な面で左右方向)に積層ずれした量として±50μmを考慮した場合についてシミュレーションを実施した。各シミュレーションの際に用いた各誘電体層の比誘電率は7.7に設定した。
【0031】
本実施例における本発明の積層ストリップラインフィルタモデルと従来の積層ストリップラインフィルタモデルとの大きな違いは、第1および第3の片端開放矩形状共振電極の重なり幅WBである。所望のフィルタ特性を実現するための第1および第3の片端開放矩形状共振電極の重なり幅WBは、従来の積層ストリップラインフィルタの場合はWB=40μmであり、本発明の積層ストリップラインフィルタの場合はWB=230μmである。WBは図7に示すフィルタ特性における減衰極fr2を形成する。よって、本発明の積層ストリップラインフィルタと従来の積層ストリップラインフィルタにおいて、減衰極fr2の積層ずれによる変化量の比較を実施した。
【0032】
図8において、横軸は幅方向(紙面に平行な面で左右方向)の積層ずれ量(単位:μm)を、縦軸は図7における減衰極fr2の変化量(単位:MHz)を表し、各特性曲線は、Bが図1〜図3に示す本発明の積層ストリップラインフィルタにおける第1の共振器71がある面に対し、第3の共振器73がある面が幅方向に±50μm積層ずれした場合の結果を、Aが図4〜図6に示す従来の積層ストリップラインフィルタにおける第1の共振器がある面に対し、第2および第3の共振器がある面が幅方向に±50μm積層ずれした場合の結果を示している。
【0033】
図8に示す結果から明らかなように、本発明の積層ストリップラインフィルタによれば、複数の誘電体層を積層する工程において発生する積層ずれによる、フィルタ特性の減衰極の変動を低減することができる。
【0034】
例えば、積層ずれ量−50μmにおける減衰極fr2の変化量についてみると、
A…減衰極fr2の変化量:−231MHz
B…減衰極fr2の変化量:−126MHz
である。従来の積層ストリップラインフィルタにおける減衰極の変化量の結果(A)に比べて、本発明の積層ストリップラインフィルタにおける減衰極の変化量の結果(B)で変動を低減できるのは、第1の共振器71と第3の共振器73を第2および第3の誘電体層41・42の2層を挟んで配したことから、1層を挟んで配した場合と同じ強さの容量性の電磁界結合量を確保するためには第1の共振器71および第3の共振器73の片端開放矩形状共振電極の重なり幅WBを大きく設定しなければならないこととなり、第1の共振器71および第3の共振器73の片端開放矩形状共振電極の重なり幅WBを十分確保することができることから、積層ずれによる共振電極間の電磁界結合の変化に対する許容範囲を十分に確保することができて、減衰極fr2の変化量を低減することができるからである。
【0035】
また、従来の積層ストリップラインフィルタでは第1の共振器71と第2の共振器72の片端開放(短絡)矩形状共振電極52・53(53・56)の重なり幅もしくは、第1の共振器および第3の共振器の片端開放(短絡)矩形状共振電極52・54(55・57)の重なり幅の一方を狭く設計しなければならない場合において、本発明の積層ストリップラインフィルタでは、重なり幅の狭い方の電極の側を第2の誘電体層41と第3の誘電体層42を挟んで配することにより、十分な重なり幅を確保することができ、結果として各々の電極同士の十分な重なり幅を同時に確保することができることとなる。
【0036】
例えば、図1における第1の片端開放矩形状共振電極52と第2の片端開放矩形状共振電極53とが第2の誘電体層41を挟んで互いに重なる幅WAおよび、第1の片端短絡矩形状共振電極55と第3の片端短絡矩形状共振電極56とが第2の誘電体層41を挟んで互いに重なる幅WCの幅が十分確保できない場合は、これら電極を上記説明の第1の片端開放(短絡)矩形状共振電極52(55)と第3の片端開放(短絡)矩形状共振電極54(57)との関係と同じと読み替えて、第2の片端開放矩形状共振電極53と第2の片端短絡矩形状共振電極56の方を第2の誘電体層41および第3の誘電体層42の2層を挟んで配し、第3の片端開放矩形状共振電極54と第3の片端短絡矩形状共振電極57の方を第2の誘電体層41を挟んで配しても差し支えない。
【0037】
また、本発明の積層ストリップラインフィルタは、上記構成において、第1および第2の接地電極50・51を積層方向に電気的に接続する接地接続導体および第1〜第3の片端短絡矩形状共振電極55〜57の短絡端59を積層方向に電気的に接続する接続導体が誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体であることを特徴とするものであり、これにより、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するとともに、小型で高性能な積層ストリップラインフィルタを提供することができる。
【0038】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を加えることは何ら差し支えない。
【0039】
また、第1の片端開放矩形状共振電極52と第2の片端開放矩形状共振電極53とが第2の誘電体層41を挟んで互いに重なる幅WAおよび、第1の片端短絡矩形状共振電極55と第2の片端短絡矩形状共振電極56とが第2の誘電体層41を挟んで互いに重なる幅WCおよび、第1の片端開放矩形状共振電極52と第3の片端開放矩形状共振電極54とが第2の誘電体層41および第3の誘電体層42を挟んで互いに重なる幅WBおよび、第1の片端短絡矩形状共振電極55と第3の片端短絡矩形状共振電極57とが第2の誘電体層41および第3の誘電体層42を挟んで互いに重なる幅WDを調整することにより、通過帯域に対して高域側および低域側にそれぞれ減衰極を1個有するフィルタまたは、通過帯域に対して高域側に減衰極を2個有するフィルタまたは、通過帯域に対して低域側に減衰極を2個有するフィルタ特性を実現することができる。
【0040】
【発明の効果】
本発明の積層ストリップラインフィルタによれば、第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極を第2および第3の2層の誘電体層を挟んで配したことから、第1の片端開放矩形状共振電極52と第3の片端開放矩形状共振電極54とが第2の誘電体層41および第3の誘電体層42を挟んで互いに重なる幅WBおよび、第1の片端短絡矩形状共振電極55と第3の片端短絡矩形状共振電極57とが第2の誘電体層41および第3の誘電体層42を挟んで互いに重なる幅WDを十分確保することができ、積層ずれによる共振電極間の電磁界結合の変化に対する許容範囲を十分に確保することができ、この結果、フィルタ特性の減衰極の変動を低減することができる積層ストリップラインフィルタを実現することができる。
【0041】
また、本発明の積層ストリップラインフィルタによれば、上記構成において、各接地電極が、または各片端短絡矩形状共振電極の短絡端および各接地電極が、誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体により積層方向に電気的に接続されているときには、積層された複数の誘電体層の内部に形成する積層ストリップラインフィルタの設計自由度が向上するとともに、小型で高性能な積層ストリップラインを提供することができる。
【0042】
以上のように、本発明によれば、積層ストリップラインフィルタにおいて、複数の誘電体層を積層する工程において発生する積層ずれによるフィルタ特性の減衰極の変動を低減することができる積層ストリップラインフィルタを提供することができた。
【図面の簡単な説明】
【図1】本発明の積層ストリップラインフィルタの実施の形態の一例を示す透視斜視図である。
【図2】本発明の積層ストリップラインフィルタの実施の形態の一例を示す透視平面図である。
【図3】本発明の積層ストリップラインフィルタの実施の形態の一例を示す図2におけるa−a’線断面図である。
【図4】従来の積層ストリップラインフィルタの例を示す透視斜視図である。
【図5】従来の積層ストリップラインフィルタの例を示す透視平面図である。
【図6】従来の積層ストリップラインフィルタの例を示す図5におけるb−b’線断面図である。
【図7】本発明の積層ストリップラインフィルタおよび従来の積層ストリップラインフィルタにおける挿入損失の例を示す線図である。
【図8】本発明の積層ストリップラインフィルタおよび従来の積層ストリップラインフィルタにおける幅方向の積層ずれ量に対する、減衰極fr2の変化量の例を示す線図である。
【符号の説明】
40・・・第1の誘電体層
41・・・第2の誘電体層
42・・・第3の誘電体層
43・・・第4の誘電体層
50・・・第1の接地電極
51・・・第2の接地電極
52・・・第1の片端開放矩形状共振電極
53・・・第2の片端開放矩形状共振電極
54・・・第3の片端開放矩形状共振電極
55・・・第1の片端短絡矩形状共振電極
56・・・第2の片端短絡矩形状共振電極
57・・・第3の片端短絡矩形状共振電極
58・・・開放端
59・・・短絡端
60・・・入力端子(出力端子)
61・・・出力端子(入力端子)
71・・・第1の共振器
72・・・第2の共振器
73・・・第3の共振器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated strip line filter used in a wireless communication device such as a mobile phone and a wireless LAN, and various other communication devices.
[0002]
[Prior art]
In recent years, filters used in mobile communication devices such as mobile phones have been resonating from distributed filters using filters using dielectric coaxial resonators in response to demands for thinner and smaller mobile communication devices. To the multilayer stripline filter used in the vessel.
[0003]
This laminated strip line filter has a configuration shown in FIG. 4 in a perspective view, FIG. 5 in a perspective plan view, and FIG. 6 in a sectional view taken along the line bb ′ in FIG. Proposed.
[0004]
4 to 6, reference numeral 10 denotes a first dielectric layer, 11 denotes a second dielectric layer laminated on the first dielectric layer 10, and 12 denotes a second dielectric layer on the second dielectric layer 11. The laminated third dielectric layer, 20 is a first ground electrode disposed on the lower surface of the first dielectric layer 10, and 21 is the second ground electrode disposed on the upper surface of the third dielectric layer 12. The electrodes, 22 and 25, are a first one-end open rectangular resonance electrode and a first one-end short-circuit rectangular resonance electrode disposed between the first and second dielectric layers 10, 11, and 23 and 26 are the second and The second one-end open rectangular resonance electrode and the second one-end short-circuit rectangular resonance electrode, 24 and 27, disposed between the third dielectric layers 11 and 12, respectively, are the second and third dielectric layers 11 and 12. A third one-end open rectangular resonance electrode and a third one-end short-circuit rectangular resonance electrode, which are disposed between the first and third pieces Each of the open end of the open rectangular shaped resonant electrodes 22 to 24, 29 are each of a short-circuit ends of the first to third one end shorted rectangular resonant electrodes 25-27.
[0005]
As shown in WA to WD in FIGS. 5 and 6, at least a part of each of the first and second rectangular open-ended resonant electrodes 22 and 23 sandwiches the second dielectric layer 11 in the stacking direction. The first and third open-ended rectangular resonant electrodes 22 and 24 have at least a part of each of the first and third open-ended rectangular resonant electrodes 22 and 24 with the second dielectric layer 11 interposed therebetween when viewed from the stacking direction. They are arranged in parallel so as to overlap. The first and second one-end short-circuited rectangular resonance electrodes 25 and 26 are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the lamination direction with the second dielectric layer 11 interposed therebetween. The first and third one-end short-circuited rectangular resonance electrodes 25 and 27 are arranged in parallel so that at least a part of each of them intersects with the second dielectric layer 11 therebetween when viewed from the lamination direction. Further, the first and second ground electrodes 20 and 21 are first to third single-ended rectangular resonant electrodes 22 to 24 and first to third single-ended short-circuit rectangular resonant electrodes 25 to 27 when viewed from the lamination direction. It is arranged to cover.
[0006]
Then, an end of the first one-end open rectangular resonance electrode 22 opposite to the open end 28 and an end of the first one-end short-circuit rectangular resonance electrode 25 opposite to the short-circuit end 29 are electrically connected. To form a first resonator,
An end of the second one-end open rectangular resonance electrode 23 opposite to the open end 28 and an end of the second one-end short-circuit rectangular resonance electrode 26 opposite to the short-circuit end 29 are electrically connected. Forming a second resonator;
An end of the third one-end open rectangular resonance electrode 24 opposite to the open end 28 and an end of the third one-end short-circuit rectangular resonance electrode 27 opposite to the short-circuit end 29 are electrically connected. A third resonator is formed.
[0007]
Further, the input terminal 30 is electrically connected to the second resonator, and the output terminal 31 is electrically connected to the third resonator.
[0008]
Then, the widths W22 to W24 of the first to third one-end open rectangular resonant electrodes 22 to 24, the widths W25 to W27 of the first to third one-end short-circuit rectangular resonant electrodes 25 to 27, and the first one-end open rectangular shape. The width WA in which the shape resonance electrode 22 and the second one end open rectangular resonance electrode 23 overlap each other with the second dielectric layer 11 interposed therebetween, the first one end open rectangular resonance electrode 22 and the third one end open rectangular shape The width WB of the resonance electrode 24 overlapping with the second dielectric layer 11 therebetween, and the first one-end short-circuited rectangular resonance electrode 25 and the second one-end open rectangular resonance electrode 26 are formed of the second dielectric layer 11. And the width WD of the first one-end short-circuited rectangular resonance electrode 25 and the third one-end short-circuited rectangular resonance electrode 27 overlapping each other with the second dielectric layer 11 interposed therebetween. , To the high band and low band with respect to the pass band. It was realized filter characteristic having one pole.
[0009]
[Patent Document 1]
JP-A-8-70201
[0010]
[Problems to be solved by the invention]
However, in such a conventional laminated strip line filter, in order to realize desired filter characteristics, the first one-end open rectangular resonance electrode 22 and the second one-end open rectangular resonance electrode 23 are connected to the second end. And a width where the first open-ended rectangular resonant electrode 22 and the third open-ended rectangular resonant electrode 24 overlap each other with the second dielectric layer 11 interposed therebetween. WB, the width WC where the first one-end short-circuited rectangular resonance electrode 25 and the second one-end open rectangular resonance electrode 26 overlap each other with the second dielectric layer 11 interposed therebetween, and the first one-end short-circuit rectangular resonance The electrode 25 and the third one-end short-circuited rectangular resonance electrode 27 may overlap with each other with the second dielectric layer 11 interposed therebetween. In addition, the electromagnetic coupling between the first and second open-ended rectangular resonant electrodes 22 and 23 and the first and second dielectric layers 10 and 12 caused by the misalignment occurring in the step of laminating the first to third dielectric layers 10 to 12 And the third one-side open rectangular resonance electrodes 22 and 24, the electromagnetic field coupling amount, the first and second one-side short-circuit rectangular resonance electrodes 25 and 26 the electromagnetic field coupling amount, and the first and third ones. The change in the amount of electromagnetic field coupling in one or some of the rectangular resonance electrodes 25 and 27 between one end short-circuited rectangular electrodes becomes large, and therefore, there is a problem that the attenuation pole greatly fluctuates with respect to desired filter characteristics. Was.
[0011]
The present invention has been devised in view of the above problems, and an object of the present invention is to provide a multilayer strip line filter that suppresses a variation in a filter characteristic attenuation pole due to a lamination shift generated in a step of laminating a plurality of dielectric layers. An object of the present invention is to provide a laminated strip line filter that can be reduced.
[0012]
[Means for Solving the Problems]
The laminated strip line filter of the present invention has a first dielectric layer, a second dielectric layer laminated on the first dielectric layer, and a laminated layer on the second dielectric layer. A third dielectric layer, a fourth dielectric layer laminated on the third dielectric layer, a first ground electrode disposed on a lower surface of the first dielectric layer, A first open-ended rectangular resonant electrode and a first short-circuited rectangular resonant electrode disposed between the first and second dielectric layers, and the second and third dielectric layers; A second one-end open rectangular resonance electrode and a second one-end short-circuit rectangular resonance electrode, and a third one-end open rectangular resonance electrode arranged between the third and fourth dielectric layers; A third short-circuited rectangular resonance electrode having one end, and a second ground electrode disposed on the upper surface of the fourth dielectric layer;
The first and second open-ended rectangular resonant electrodes are arranged in parallel so that at least a part of each of the first and second rectangular open-ended resonant electrodes overlaps when viewed from the laminating direction, and the first and second open-ended resonant electrodes are arranged in parallel. The three open-ended rectangular resonant electrodes are arranged in parallel so that at least a part of each of the two resonant electrodes sandwiches the second and third dielectric layers when viewed from the laminating direction.
The first and second one-end short-circuited rectangular resonance electrodes are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the laminating direction, with the second dielectric layer interposed therebetween. 3 is arranged in parallel so that at least a part of each of the two short-circuited rectangular resonant electrodes overlaps each other with the second and third dielectric layers interposed therebetween when viewed from the laminating direction.
The first and second ground electrodes are arranged so as to cover the first to third single-ended rectangular resonant electrodes and the first to third single-ended short-circuited rectangular resonant electrodes when viewed from the lamination direction,
An end opposite to the open end of the first one-end open rectangular resonance electrode and an end opposite to the short-circuit end of the first one-end short-circuit rectangular resonance electrode are electrically connected to each other to form a first end. Forming a resonator of
An end of the second one-end open rectangular resonance electrode opposite to the open end and an end of the second one-end short-circuit rectangular resonance electrode opposite to the short-circuit end are electrically connected to form a second end. Forming a resonator of
An end of the third one-end open rectangular resonance electrode opposite to the open end and an end of the third one-end short-circuit rectangular resonance electrode opposite to the short-circuit end are electrically connected to form a third end. Forming a resonator of
An input terminal is electrically connected to the second resonator and an output terminal is electrically connected to the third resonator, or an output terminal is electrically connected to the second resonator and an input terminal is electrically connected to the third resonator. It is characterized by the fact that the connection is made.
[0013]
According to the laminated strip line filter of the present invention, the third one-end open rectangular resonance electrode and the third one-end short-circuit rectangular resonance electrode are disposed with the second and third two dielectric layers interposed therebetween. A width at which the first open-ended rectangular resonant electrode and the third open-ended rectangular resonant electrode overlap each other with the second dielectric layer and the third dielectric layer interposed therebetween; The width of the resonance electrode and the third one-end short-circuited rectangular resonance electrode overlapping each other with the second dielectric layer and the third dielectric layer interposed therebetween can be sufficiently ensured. It is possible to sufficiently secure the allowable range for the change in coupling, and as a result, it is possible to reduce the fluctuation of the attenuation pole of the filter characteristic.
[0014]
Further, in the laminated strip line filter according to the present invention, in the above-described configuration, each of the ground electrodes, or each of the short-circuited ends of each of the short-circuited rectangular resonant electrodes and each of the ground electrodes is formed inside the dielectric layer. It is characterized by being electrically connected in the laminating direction by a through conductor and / or a side conductor formed on a side surface.
[0015]
Thereby, the degree of freedom in designing the laminated strip line filter formed inside the plurality of laminated dielectric layers is improved, and a compact and high-performance laminated strip line filter can be provided.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the laminated strip line filter of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a perspective view showing an example of an embodiment of the laminated strip line filter of the present invention. FIG. 2 is a perspective plan view of FIG. 1 viewed from the laminating direction. FIG. 3 is a line aa ′ in FIG. It is sectional drawing. 1 to 3, reference numeral 40 denotes a first dielectric layer, 41 denotes a second dielectric layer laminated on the first dielectric layer 40, and 42 denotes a second dielectric layer on the second dielectric layer 41. The laminated third dielectric layer, 43 is a fourth dielectric layer laminated on the third dielectric layer 42, and 50 is a first dielectric layer disposed on the lower surface of the first dielectric layer 40. A ground electrode, 51 is a second ground electrode disposed on the upper surface of the fourth dielectric layer 43, and 52 and 55 are first open ends disposed between the first and second dielectric layers 40, 41. The rectangular resonance electrode and the first one-end short-circuited rectangular resonance electrodes, 53 and 56, are a second one-end open rectangular resonance electrode and the second one end disposed between the second and third dielectric layers 41 and. Short-circuited rectangular resonant electrodes, 54 and 59 are third open-ended rectangular resonant electrodes disposed between the third and fourth dielectric layers 42 and 43; And third one-end short-circuited rectangular resonance electrodes 58, 58 are open ends of the first to third one-end open rectangular resonance electrodes 52 to 54, 59 is first to third one-end short-circuited rectangular resonance electrodes 55 to 55. 57 are short-circuit ends.
[0018]
As shown in WA to WD in FIGS. 2 and 3, at least a part of each of the first and second open-ended rectangular resonant electrodes 52 and 53 has the second dielectric layer 41 interposed therebetween. And the first and third rectangular open-ended resonant electrodes 52 and 54 are at least partially sandwiched between the second and third dielectric layers 41 and 42, respectively. They are arranged in parallel so as to overlap when viewed from the laminating direction. The first and second single-ended short-circuited rectangular resonance electrodes 55 and 56 are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the laminating direction with the second dielectric layer 41 interposed therebetween. The first and third one-end short-circuited rectangular resonance electrodes 55 and 57 are arranged in parallel with the second and third dielectric layers 41 and 42 interposed therebetween so that at least a part of each of them overlaps when viewed from the lamination direction. . The first and second ground electrodes 50 and 51 are formed of first to third single-ended rectangular resonant electrodes 52 to 54 and first to third single-ended short-circuited rectangular resonant electrodes 55 to 57 when viewed from the stacking direction. It is arranged to cover.
[0019]
Then, an end of the first one-end open rectangular resonance electrode 52 opposite to the open end 58 and an end of the first one-end short-circuit rectangular resonance electrode 55 opposite to the short-circuit end 59 are electrically connected. To form a first resonator 71,
An end of the second one-end open rectangular resonance electrode 53 opposite to the open end 58 and an end of the second one-end short-circuit rectangular resonance electrode 56 opposite to the short-circuit end 59 are electrically connected. Forming a second resonator 72,
An end of the third one-end open rectangular resonance electrode 54 opposite to the open end 58 and an end of the third one-end short-circuit rectangular resonance electrode 57 opposite to the short-circuit end 59 are electrically connected. A third resonator 73 is formed.
[0020]
Further, the input terminal 60 is electrically connected to the second resonator 72, and the output terminal 61 is electrically connected to the third resonator 73, and is connected to an external circuit. If necessary, the input terminal may be on the 61 side and the output terminal may be on the 60 side.
[0021]
The laminated strip line filter of the present invention having such a configuration has a rectangular shape between the first and second ground electrodes 50 and 51 or between the first and second ground electrodes 50 and 51 and the first to third single-ended short-circuits. A through conductor (not shown) formed inside the dielectric layer and / or a side conductor formed on the side surface as a ground connection conductor for electrically connecting the short-circuited ends 59 of the resonance electrodes 55 to 57 in the stacking direction. (Not shown), three-dimensional wiring design becomes possible, and the degree of freedom in designing a laminated strip line filter formed inside a plurality of laminated dielectric layers is improved. A high performance laminated strip line filter can be provided.
[0022]
In forming the laminated strip line filter of the present invention, the first to fourth dielectric layers 40 to 43, the first and second ground electrodes 50 and 51, and the first to third single-ended open rectangular resonant electrodes 52 are provided. As the first to third single-ended short-circuited rectangular resonance electrodes 55 to 57, various materials and forms used for a known high-frequency wiring board can be used.
[0023]
As the first to fourth dielectric layers 40 to 43 used in the laminated strip line filter of the present invention, for example, ceramic materials such as alumina ceramics and mullite ceramics, inorganic materials such as glass ceramics, or ethylene tetrafluoride resin ( Polytetrafluoroethylene; PTFE) / ethylene tetrafluoride-ethylene copolymer resin (tetrafluoroethylene-ethylene copolymer resin; ETFE) / ethylene tetrafluoride-perfluoroalkoxyethylene copolymer resin (tetrafluoroethylene-perflutero) Fluorine resins such as alkyl vinyl ether copolymer resins (PFA) and resin materials such as glass epoxy resins and polyimides are used. The shapes and dimensions (thickness, width and length) of the first to fourth dielectric layers 40 to 43 made of these materials are set according to the frequency used, the application, and the like.
[0024]
First and second ground electrodes 50 and 51, first to third one-end open rectangular resonance electrodes 52 to 54, and first to third one-end short-circuited rectangular resonance electrodes 55 to 55 in the laminated strip line filter of the present invention. 57-Through conductors or side conductors are conductor layers of a metal material for high frequency signal transmission, for example, a Cu layer, a Mo-Mn metallized layer with a Ni plated layer and an Au plated layer adhered, and a W metallized layer. A Ni-plated layer and an Au-plated layer are adhered thereon.- A Cr-Cu alloy layer- A Ni-plated layer and an Au-plated layer are deposited on a Cr-Cu alloy layer- Ta 2 Ni-Cr alloy layer and Au plating layer deposited on N layer-Pt layer and Au plating layer deposited on Ti layer, or Pt layer and Au plating on Ni-Cr alloy layer It is formed by a thick film printing method, various thin film forming methods, a plating method, or the like, using a material having a layer adhered thereto. The thickness and width are also set according to the frequency of the transmitted high-frequency signal, the application, and the like.
[0025]
In producing the first to fourth dielectric layers 40 to 43 used in the laminated strip line filter of the present invention, for example, when the dielectric layer is made of glass ceramic, first, a green ceramic glass to be a dielectric layer is used. A sheet is prepared, and a predetermined punching process is performed on the sheet to form a through hole serving as a through conductor. Then, the through hole is filled with a conductive paste such as Cu by a screen printing method, and a predetermined transmission line pattern and other Print and apply the conductor layer pattern. Next, baking is performed at 850 to 1000 ° C., and finally Ni plating and Au plating are performed on the conductor layer exposed on the outer surface.
[0026]
The multilayer strip line filter of the present invention having the configuration shown in FIGS. 1 to 3 and the conventional multilayer strip line filter shown in FIGS. 4 to 6 can realize the same filter characteristics, and FIG. It is shown. In FIG. 7, the horizontal axis represents frequency (unit: GHz), and the vertical axis represents insertion loss (unit: dB). The first attenuation pole fr1 is generated by the electromagnetic field coupling formed between the first and second resonators 71 and 72, and the first attenuation pole fr1 is generated by the electromagnetic field coupling formed between the first and third resonators 71 and 73. A second attenuation pole fr2 occurs.
[0027]
As an example, a three-dimensional electromagnetic field model is used to realize the filter characteristics of FIG. 7 in the multilayer strip line filter of the present invention having the configuration shown in FIGS. 1 to 3 and the conventional multilayer strip line filter shown in FIGS. A simulation analysis was performed using an analysis simulator, taking into account the amount of stacking deviation in the width direction.
[0028]
For example, in the case of the simulation in the laminated strip line filter of the present invention having the configuration shown in FIGS. 1 to 3, the thickness of each of the first to fourth dielectric layers 40 to 43 is set to the first dielectric layer h1 = 0.2 mm. , The second dielectric layer h2 = 0.1 mm, the third dielectric layer h3 = 0.1 mm, the fourth dielectric layer h4 = 0.2 mm,
The width W52 to W54 of each of the first to third one-end open rectangular resonance electrodes 52 to 54 and the length L52 to L54 of each resonance electrode are W52 = 2.54 mm, W53 = 1.19 mm, and W54. = 1.3 mm, L52 = L53 = L54 = 2.367 mm,
The width W55-W57 of each of the first through third one-end short-circuited rectangular resonance electrodes 55-57 and the length L55-L57 of each resonance electrode are W55 = 2.5 mm, W56 = 1.33 mm, W57, respectively. = 1.2m, L55 = L56 = L57 = 2.367mm,
The width WA of the portion where the first and second open-ended rectangular resonant electrodes 52 and 53 overlap when viewed in the stacking direction is 0.55 mm, and the first and second short-circuited rectangular resonant electrodes 55 and 56 are stacked in the stacked direction. The width WC of the overlapping part is set to 0.19 mm,
The width WB = 0.23 mm of the portion where the first and third open-ended rectangular resonant electrodes 52 and 54 overlap in the stacking direction, and the first and third short-circuited rectangular resonant electrodes 55 and 57 are stacked in the stacking direction. The width WD of the overlapping portion is set to 0.88 mm.
[0029]
In addition, each dimension of the simulation model in the conventional laminated strip line filter shown in FIGS. 4 to 6 is such that the thickness of the first to third dielectric layers 10 to 12 is the first dielectric layer h1 = 0.2 mm, respectively. The second dielectric layer h2 = 0.1 mm, the third dielectric layer h3 = 0.3 mm,
The width W22 to W24 of each of the first to third one-end open rectangular resonance electrodes 22 to 24 and the length L22 to L24 of each resonance electrode are W22 = 2.38 mm, W23 = 1.19 mm, and W24, respectively. = 1.47 mm, L52 = L53 = L54 = 2.367 mm, the width W25-W27 of each of the first through third one-end short-circuited rectangular resonance electrodes 25-27 and the length L25-L27 of each resonance electrode Are respectively set as W25 = 2.45 mm, W26 = 1.33 mm, W27 = 1.25 mm, L25 = L26 = L27 = 2.367 mm,
The width WA of the portion where the first and second one-end open rectangular resonant electrodes 22 and 23 overlap when viewed in the laminating direction is WA = 0.54 mm, and the first and second one-end short-circuit rectangular resonant electrodes 25 and 26 are arranged in the laminating direction. The width WC of the overlapping part is set to 0.23 mm,
The width WB of the portion where the first and third one-end open rectangular resonant electrodes 22 and 24 overlap when viewed in the laminating direction is WB = 0.04 mm, and the first and third one-end short-circuit rectangular resonant electrodes 25 and 27 are from the laminating direction. The width WD = of the overlapping portion is set to 0.35 mm.
[0030]
Then, in the laminated strip line filter of the present invention having the configuration shown in FIGS. 1 to 3, the surface where the first resonator is located, the surface where the second resonator is located, and the surface where the third resonator is located are illustrated. In the conventional laminated strip line filters shown in FIGS. 4 to 6, the surface on which the second and third resonators are located is in the width direction (the horizontal direction parallel to the paper surface) with respect to the surface on which the first resonator is located. A simulation was performed for a case where ± 50 μm was considered as the amount of misalignment. The relative dielectric constant of each dielectric layer used in each simulation was set to 7.7.
[0031]
The major difference between the laminated strip line filter model of the present invention and the conventional laminated strip line filter model in the present embodiment is the overlap width WB of the first and third one-end open rectangular resonant electrodes. The overlapping width WB of the first and third single-ended open rectangular resonance electrodes for realizing desired filter characteristics is WB = 40 μm in the case of the conventional multilayer strip line filter, and the overlap width WB of the multilayer strip line filter of the present invention is obtained. In this case, WB = 230 μm. WB forms the attenuation pole fr2 in the filter characteristics shown in FIG. Therefore, a comparison was made between the amount of change in the attenuation pole fr2 due to lamination displacement between the laminated strip line filter of the present invention and the conventional laminated strip line filter.
[0032]
8, the horizontal axis represents the amount of lamination deviation (unit: μm) in the width direction (the plane parallel to the paper surface and the horizontal direction), and the vertical axis represents the amount of change (unit: MHz) of the attenuation pole fr2 in FIG. In each characteristic curve, B indicates that the surface having the first resonator 71 and the surface having the third resonator 73 in the laminated strip line filter of the present invention shown in FIGS. The result in the case of displacement is that A is ±± in the width direction with respect to the plane where the first and second resonators exist in the conventional laminated strip line filter shown in FIGS. The result when the stacking displacement is 50 μm is shown.
[0033]
As is clear from the results shown in FIG. 8, according to the laminated strip line filter of the present invention, it is possible to reduce the fluctuation of the attenuation pole of the filter characteristic due to the lamination displacement occurring in the step of laminating a plurality of dielectric layers. it can.
[0034]
For example, when looking at the amount of change in the attenuation pole fr2 when the amount of stacking deviation is −50 μm,
A: Amount of change in attenuation pole fr2: -231 MHz
B: Amount of change in attenuation pole fr2: -126 MHz
It is. The first reason that the variation (A) of the variation of the attenuation pole in the multilayer strip line filter of the present invention can reduce the variation as compared with the variation (A) of the attenuation pole in the conventional multilayer strip line filter is as follows. Since the resonator 71 and the third resonator 73 are arranged with the two layers of the second and third dielectric layers 41 and 42 interposed therebetween, the capacitive element having the same strength as the case where one layer is interposed is provided. In order to secure the electromagnetic field coupling amount, it is necessary to set the overlap width WB of the rectangular resonator electrodes having one end open to the first resonator 71 and the third resonator 73 to be large. In addition, since the overlap width WB of the one-end open rectangular resonance electrode of the third resonator 73 can be sufficiently ensured, the allowable range for the change in the electromagnetic field coupling between the resonance electrodes due to the lamination displacement can be sufficiently ensured. And decay This is because it is possible to reduce the amount of change in fr2.
[0035]
Further, in the conventional laminated strip line filter, the overlapping width of the rectangular resonator electrodes 52 and 53 (53 and 56) with one end open (short-circuited) of the first resonator 71 and the second resonator 72 or the first resonator In the case where one of the overlapping widths of the rectangular resonator electrodes 52, 54 (55, 57) having one end open (short-circuited) of the third resonator must be designed to be narrow, the overlapping strip width of the laminated strip line filter of the present invention. By arranging the narrower electrode side with the second dielectric layer 41 and the third dielectric layer 42 interposed therebetween, a sufficient overlapping width can be ensured, and as a result, a sufficient overlap width between the electrodes can be secured. The overlapping width can be secured at the same time.
[0036]
For example, the width WA in which the first one-end open rectangular resonance electrode 52 and the second one-end open rectangular resonance electrode 53 in FIG. 1 overlap each other with the second dielectric layer 41 interposed therebetween, and the first one-end short-circuit rectangular If the width WC of the shape resonance electrode 55 and the third one-end short-circuited rectangular resonance electrode 56 overlapping each other with the second dielectric layer 41 interposed therebetween cannot be sufficiently ensured, these electrodes are connected to the first end of the above description. The same as the relationship between the open (short-circuit) rectangular resonance electrode 52 (55) and the third one-end open (short-circuit) rectangular resonance electrode 54 (57), the second single-end open rectangular resonance electrode 53 and the third The two single-ended short-circuited rectangular resonance electrodes 56 are disposed with the second dielectric layer 41 and the third dielectric layer 42 interposed therebetween. One end short-circuited rectangular resonance electrode 57 is sandwiched between second dielectric layers 41. No problem even if the.
[0037]
Further, in the laminated strip line filter of the present invention, in the above configuration, the ground connection conductor for electrically connecting the first and second ground electrodes 50 and 51 in the laminating direction and the first to third single-ended short-circuited rectangular resonances are provided. The connection conductor for electrically connecting the short-circuited ends 59 of the electrodes 55 to 57 in the stacking direction is a through conductor formed inside the dielectric layer and / or a side conductor formed on the side surface. With this, it is possible to improve the degree of freedom in designing a laminated strip line filter formed inside a plurality of laminated dielectric layers, and to provide a small and high performance laminated strip line filter.
[0038]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes and improvements may be made without departing from the spirit of the present invention.
[0039]
Further, a width WA in which the first open-ended rectangular resonant electrode 52 and the second open-ended rectangular resonant electrode 53 overlap each other with the second dielectric layer 41 interposed therebetween, and a first open-ended rectangular resonant electrode The width WC at which the 55 and the second one-end short-circuited rectangular resonance electrode 56 overlap each other with the second dielectric layer 41 interposed therebetween, and the first one-end open rectangular resonance electrode 52 and the third one-end open rectangular resonance electrode 54, a width WB overlapping each other with the second dielectric layer 41 and the third dielectric layer 42 interposed therebetween, and a first one-end short-circuited rectangular resonance electrode 55 and a third one-end short-circuited rectangular resonance electrode 57. By adjusting the width WD overlapping each other with the second dielectric layer 41 and the third dielectric layer 42 interposed therebetween, a filter having one attenuation pole on each of the high band side and the low band side with respect to the pass band or , The attenuation pole on the higher side of the pass band Pieces having filters or, it is possible to realize a filter characteristic having two attenuation poles on the lower-frequency side relative to the passband.
[0040]
【The invention's effect】
According to the laminated strip line filter of the present invention, the third one-end open rectangular resonance electrode and the third one-end short-circuit rectangular resonance electrode are disposed with the second and third two dielectric layers interposed therebetween. A width WB at which the first open-ended rectangular resonant electrode 52 and the third open-ended rectangular resonant electrode 54 overlap each other with the second dielectric layer 41 and the third dielectric layer 42 interposed therebetween; The width WD at which the single-ended short-circuited rectangular resonance electrode 55 and the third single-ended short-circuited rectangular resonance electrode 57 overlap each other with the second dielectric layer 41 and the third dielectric layer 42 interposed therebetween can be sufficiently ensured. Therefore, it is possible to sufficiently secure an allowable range for the change in the electromagnetic field coupling between the resonance electrodes due to the stacking deviation, and as a result, it is possible to realize a stacked stripline filter capable of reducing the fluctuation of the attenuation pole of the filter characteristic. Can .
[0041]
Further, according to the laminated strip line filter of the present invention, in the above-described configuration, each ground electrode, or the short-circuited end of each one-end short-circuited rectangular resonance electrode and each ground electrode are formed in the through conductor formed inside the dielectric layer. And / or when electrically connected in the laminating direction by side conductors formed on the side surfaces, the degree of freedom in designing a laminated strip line filter formed inside a plurality of laminated dielectric layers is improved, and the size is reduced. And a high-performance laminated strip line can be provided.
[0042]
As described above, according to the present invention, in a laminated strip line filter, there is provided a laminated strip line filter capable of reducing a variation in an attenuation pole of a filter characteristic due to a lamination shift generated in a step of laminating a plurality of dielectric layers. Could be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a laminated strip line filter of the present invention.
FIG. 2 is a perspective plan view showing an example of an embodiment of the laminated strip line filter of the present invention.
FIG. 3 is a cross-sectional view taken along the line aa ′ in FIG. 2 showing an example of the embodiment of the laminated strip line filter of the present invention.
FIG. 4 is a perspective view showing an example of a conventional laminated strip line filter.
FIG. 5 is a perspective plan view showing an example of a conventional laminated strip line filter.
FIG. 6 is a cross-sectional view taken along the line bb ′ in FIG. 5, illustrating an example of a conventional laminated strip line filter.
FIG. 7 is a diagram showing an example of insertion loss in the laminated strip line filter of the present invention and a conventional laminated strip line filter.
FIG. 8 is a diagram showing an example of a variation amount of an attenuation pole fr2 with respect to a lamination displacement amount in a width direction in a laminated strip line filter of the present invention and a conventional laminated strip line filter.
[Explanation of symbols]
40... First dielectric layer
41 ... second dielectric layer
42... Third dielectric layer
43... Fourth dielectric layer
50: first ground electrode
51... Second ground electrode
52 first rectangular open-ended resonant electrode at one end
53... 2nd open-ended rectangular resonant electrode
54... Third third open-ended rectangular resonant electrode
55... 1st one-end short-circuited rectangular resonance electrode
56... Second short-circuited rectangular resonant electrode at one end
57: third one-end short-circuited rectangular resonance electrode
58 ... open end
59 ・ ・ ・ Short-circuit end
60 ... input terminal (output terminal)
61 ・ ・ ・ Output terminal (input terminal)
71... First resonator
72... Second resonator
73... Third resonator

Claims (2)

第1の誘電体層と、該第1の誘電体層の上に積層された第2の誘電体層と、該第2の誘電体層の上に積層された第3の誘電体層と、該第3の誘電体層の上に積層された第4の誘電体層と、前記第1の誘電体層の下面に配された第1の接地電極と、前記第1および第2の誘電体層の間に配された第1の片端開放矩形状共振電極および第1の片端短絡矩形状共振電極と、前記第2および第3の誘電体層の間に配された第2の片端開放矩形状共振電極および第2の片端短絡矩形状共振電極と、前記第3および第4の誘電体層の間に配された第3の片端開放矩形状共振電極および第3の片端短絡矩形状共振電極と、前記第4の誘電体層の上面に配された第2の接地電極とから成り、
前記第1および第2の片端開放矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端開放矩形状共振電極は前記第2および第3の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配され、
前記第1および第2の片端短絡矩形状共振電極は前記第2の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配されるとともに、前記第1および第3の片端短絡矩形状共振電極は前記第2および第3の誘電体層を挟んでそれぞれの少なくとも一部が積層方向から見て重なるように平行に配され、
前記第1および第2の接地電極は積層方向から見て前記第1〜第3の片端開放矩形状共振電極ならびに前記第1〜第3の片端短絡矩形状共振電極を覆うように配され、
前記第1の片端開放矩形状共振電極の開放端と反対側の端部と、前記第1の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第1の共振器を形成し、
前記第2の片端開放矩形状共振電極の開放端と反対側の端部と、前記第2の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第2の共振器を形成し、
前記第3の片端開放矩形状共振電極の開放端と反対側の端部と、前記第3の片端短絡矩形状共振電極の短絡端と反対側の端部とを電気的に接続して第3の共振器を形成し、
前記第2の共振器に入力端子ならびに前記第3の共振器に出力端子が電気的に接続されるか、または前記第2の共振器に出力端子ならびに前記第3の共振器に入力端子が電気的に接続されていることを特徴とする積層ストリップラインフィルタ。
A first dielectric layer, a second dielectric layer laminated on the first dielectric layer, a third dielectric layer laminated on the second dielectric layer, A fourth dielectric layer laminated on the third dielectric layer, a first ground electrode disposed on the lower surface of the first dielectric layer, and the first and second dielectric layers A first open-ended rectangular resonant electrode and a first open-ended rectangular resonant electrode disposed between layers, and a second open-ended rectangular electrode disposed between the second and third dielectric layers. A shape resonance electrode and a second one-end short-circuited rectangular resonance electrode, and a third one-end open rectangular resonance electrode and a third one-end short-circuited rectangular resonance electrode disposed between the third and fourth dielectric layers. And a second ground electrode disposed on the upper surface of the fourth dielectric layer,
The first and second open-ended rectangular resonant electrodes are arranged in parallel so that at least a part of each of the first and second rectangular open-ended resonant electrodes overlaps when viewed from the laminating direction, and the first and second open-ended resonant electrodes are arranged in parallel. The three open-ended rectangular resonant electrodes are arranged in parallel so that at least a part of each of the two resonant electrodes sandwiches the second and third dielectric layers when viewed from the laminating direction.
The first and second one-end short-circuited rectangular resonance electrodes are arranged in parallel so that at least a part of each of the first and second short-circuited rectangular resonance electrodes overlaps when viewed from the laminating direction, with the second dielectric layer interposed therebetween. 3 is arranged in parallel so that at least a part of each of the two short-circuited rectangular resonant electrodes overlaps each other with the second and third dielectric layers interposed therebetween when viewed from the laminating direction.
The first and second ground electrodes are arranged so as to cover the first to third single-ended rectangular resonant electrodes and the first to third single-ended short-circuited rectangular resonant electrodes when viewed from the lamination direction,
An end opposite to the open end of the first one-end open rectangular resonance electrode and an end opposite to the short-circuit end of the first one-end short-circuit rectangular resonance electrode are electrically connected to each other to form a first end. Forming a resonator of
An end of the second one-end open rectangular resonance electrode opposite to the open end and an end of the second one-end short-circuit rectangular resonance electrode opposite to the short-circuit end are electrically connected to form a second end. Forming a resonator of
An end of the third one-end open rectangular resonance electrode opposite to the open end and an end of the third one-end short-circuit rectangular resonance electrode opposite to the short-circuit end are electrically connected to form a third end. Forming a resonator of
An input terminal is electrically connected to the second resonator and an output terminal is electrically connected to the third resonator, or an output terminal is electrically connected to the second resonator and an input terminal is electrically connected to the third resonator. A laminated strip line filter, which is electrically connected.
前記各接地電極が、または前記各片端短絡矩形状共振電極の前記短絡端および前記各接地電極が、前記誘電体層の内部に形成された貫通導体および/または側面に形成された側面導体により積層方向に電気的に接続されていることを特徴とする請求項1記載の積層ストリップラインフィルタ。The respective ground electrodes or the short-circuited ends of the single-ended rectangular resonant electrodes and the respective ground electrodes are laminated by a through conductor formed inside the dielectric layer and / or a side conductor formed on a side surface. 2. The multilayer strip line filter according to claim 1, wherein the filter is electrically connected in the directions.
JP2002344688A 2002-11-27 2002-11-27 Laminated strip line filter Pending JP2004180035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344688A JP2004180035A (en) 2002-11-27 2002-11-27 Laminated strip line filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344688A JP2004180035A (en) 2002-11-27 2002-11-27 Laminated strip line filter

Publications (1)

Publication Number Publication Date
JP2004180035A true JP2004180035A (en) 2004-06-24

Family

ID=32706065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344688A Pending JP2004180035A (en) 2002-11-27 2002-11-27 Laminated strip line filter

Country Status (1)

Country Link
JP (1) JP2004180035A (en)

Similar Documents

Publication Publication Date Title
JP2004254257A (en) Wiring board with built-in low-pass filter
JP2004180032A (en) Dielectric filter
JP4895982B2 (en) Filter device
JP3858852B2 (en) 2-port isolator and communication device
JP4986882B2 (en) Filter device
JP2004180035A (en) Laminated strip line filter
JP4009178B2 (en) Low pass filter
JP5606199B2 (en) Filter device
JP4157439B2 (en) Multilayer stripline filter
JP3898590B2 (en) Multilayer stripline filter
JP4336319B2 (en) Multilayer stripline filter
JP2004350143A (en) Balun transformer
JP2004266697A (en) Laminated band-pass filter
JP2004153416A (en) Balanced lamination strip line filter
JP2004120291A (en) Balun transformer
JP5489745B2 (en) Filter device
JP2003023332A (en) Wiring board for electronic circuit
JP4284151B2 (en) Filter device
JP2004260376A (en) Laminated strip line filter
JP2004282676A (en) Laminated strip line filter
JP2004296927A (en) Wiring board for housing electronic component
JP3808386B2 (en) Multilayer stripline filter
JP4303664B2 (en) Filter device
JP4511397B2 (en) Multilayer stripline filter
JP4336321B2 (en) Multilayer stripline filter