半導体基板(ウエハ)上に形成された回路パターンを検査する場合を例に採って従来技術について説明する。
半導体装置は、主としてホトマスク上に形成された回路パターンをリソグラフィー処理およびエッチング処理により半導体ウエハ上に転写する工程を繰り返すことによって製造される。この半導体装置の製造過程において、リソグラフィー処理やエッチング処理その他各種の加工処理の良否、および、異物発生の有無等は、半導体装置の製造歩留まりに大きく影響を及ぼすため、これらの異常や不良の発生を早期に(あるいは、事前に)検知するために、製造過程中にある半導体ウエハ上の回路パターンを検査することが従来から行なわれている。
半導体ウエハ上の回路パターンの欠陥を検査する技術として、半導体ウエハ上に白色光を照射して得られる回路パターンの光学画像を用いて複数のLSI中の同種の回路パターンを比較することによってパターン欠陥を検知する方法が既に実用化されており、この方法の概要は、「月間セミコンダクタワールド」1995年8月号、pp.96-99に述べられている。これと同様に、光学画像を用いる検査方法として、ウエハ上の光学照明された領域を時間遅延積分センサで画像化し、その画像化パターンデータを予め入力されている設計パターンデータと比較することによってパターン欠陥を検知する方式が特開平3−167456号公報に開示されている。
また、回路パターンの微細化やパターン形状の複雑化、材料の多様化等に伴なって上述したような光学画像による欠陥検出が困難となってきたため、光学画像よりも分解能の高い電子線画像を用いて回路パターンを比較検査する方法も提案されてきている。この電子線画像を用いるパターン検査方法として、例えば、J. Vac. Sci. Tech. B, Vol.8, No.6, pp.3005-3009 (1991)、J. Vac. Sci. Tech. B, Vol.10, No.6, pp.2804-2808 (1992)、特開平5−258703号公報および米国特許第5,502,306号明細書に、通常のSEMの100倍以上(10nA以上)のビーム電流を持った電子ビームを導電性基板(X線マスク等)に照射し、発生する二次電子・反射電子・透過電子のいずれかを検出し、この検出信号により形成された画像を比較検査することによってパターン欠陥を自動検出する方法が開示されている。
上記したような光学式外観検査法およびこの光学式外観検査法に比べ欠陥検出性能のより高いSEM式ウエハ自動外観検査法とによって微細な回路パターンの欠陥検査を実施することで、回路パターン形成過程において発生した各種のパターン欠陥を精度良く検出できるようになった。しかし、上記の従来方法においては、検査時に画像比較のために形成・取得した画像は、画像比較までの間一時的に保存(記憶)された後に全て消去されてしまうため、半導体ウエハ等の回路パターンが形成された基板のパターン検査結果としては、欠陥の発生箇所および欠陥のサイズに関する情報しか残らなかった。そのため、欠陥の発生原因を対策するためには、当該検査装置によってあるいは別途に目視確認用装置によって欠陥が発生した箇所のパターン画像を再度取得して、この再取得した画像の1点1点を人間が目視確認し、欠陥内容を分類した上、その分類結果を入力しなければならなかった。従って、従来の検査方法においては、検査装置により検査する工程の他に、再度欠陥発生箇所についての画像を取得する工程と、取得した画像を人間が目視確認し欠陥内容を分類する工程とが更に必要となり、欠陥が発生してからその対策に必要な情報を得るためには、その分多くの労力と時間がかかると云う問題点があった。
上記の問題点に対して、検査装置で検出した欠陥の種類を分類する技術として特開昭59−192944号公報に、予め設計データ上での回路パターン座標を参照し、そのデータと欠陥座標とを照合して、欠陥の致命・非致命を判定する方法が開示されている。しかし、本方法では、設計データを検査装置の欠陥判定部にダウンロードする必要があり、画像処理システムが複雑且つ大規模になるという問題点があった。
「月間セミコンダクタワールド」1995年8月号、pp.96-99
特開平3−167456号公報
J. Vac. Sci. Tech. B, Vol.8, No.6, pp.3005-3009 (1991)
J. Vac. Sci. Tech. B, Vol.10, No.6, pp.2804-2808 (1992)
特開平5−258703号公報
米国特許第5,502,306号明細書
特開昭59−192944号公報
上記したように、半導体装置を始めとする各種装置における微細回路パターンに対して光学式外観検査法を適用すると共に、該光学式検査法では検出できない各種欠陥、すなわち光学的には透光性材質でかつ検査に用いる光波長と屈折率に依存した光学距離が十分小さいシリコン酸化膜や感光性レジスト材料等の残渣、線状で短辺の幅が光学系の分解能以下であるようなエッチング残りや微小導通孔の非開口不良等についても、SEM式の外観検査法を適用することにより、十分検出が可能になった。
しかし、SEM式の外観検査法を適用した結果得られる情報は、被検査基板における欠陥の数、欠陥発生箇所・座標、欠陥のサイズ等であり、欠陥発生の有無は識別できるものの、欠陥の詳細内容は把握できなかった。そのため、検査装置に付加された目視確認機能あるいは別途に目視確認専用装置を用いて、欠陥発生箇所を1点1点探し出し、各欠陥発生箇所の画像を再度取得してから、この取得画像を人間が目視観察して欠陥内容を判定し、その判定結果すなわち欠陥の分類コードを入力しなければ、欠陥内容を把握することができなかった。このような従来法には以下のような問題点がある。先ず、非常に人手が掛かる。次に、折角高速に欠陥検査ができても、検査結果を半導体装置の製造過程にフィードバックして欠陥対策を施すまでの時間が膨大なものとなる。また、欠陥検査が高速化されても、その後の目視確認を同一検査装置で行なうとなると、その分本来の欠陥検査に掛けられる時間が圧縮され、結果として検査のスループットが低下する。
さらに、別の目視確認専用装置で目視確認するためには、一旦検査装置から試料(被検査基板)を取り出して、改めて目視確認専用装置にロードしてやらなければならず、非常に検査効率が悪くなる。
既に従来技術欄で述べたように、光学式検査方式では検出できない欠陥を検出するために、電子線を導電性基板に照射して電子線画像を取得して比較検査する方法が特開昭58−180933号公報に開示されている。しかし、本従来技術では欠陥を検出して欠陥数と欠陥座標に関する情報を得ているのみであって、欠陥内容を識別するための方法については、上記公報では全く言及していない。また、別の従来技術である特開昭59−155941号公報には、設計パターンデータと実パターンデータとを比較して欠陥を検出し、さらに設計データよりパターンの有無を認識した後に、欠陥がパターン上に存在するかどうかを判断し、当該欠陥の致命度を判定するという方法が記載されているが、本従来技術では、マスク作成のような単純なプロセスでは設計パターンデータと実パターンデータとの比較は十分可能あるが、半導体装置製造工程のような複雑なプロセスでは設計パターンデータと実パターンデータとの比較は事実上困難であるし、パターン欠陥位置を識別するにはシステムが非常に複雑となるため、半導体装置におけるような微細で複雑なパターンの欠陥を検査し、欠陥内容を分類するためには不十分である。
従って、本発明の第一の目的は、電子線画像を用いて微細回路パターンを検査する方法において、検査時にパターンの欠陥を検出すると同時に、当該パターン欠陥の画像データを取得し、取得画像データを記憶保存することのできる技術を提供することにある。
本発明の第二の目的は、上記の検査時に取得した画像を用いて、再度画像取得する工程を行わずに検出したパターン欠陥について各種の解析を実施することを可能にする技術を提供することにある。
本発明の第三の目的は、上記の検査時に取得したパターン欠陥を含む画像を用いて、該画像上での欠陥部分の特徴から当該欠陥の種類を判別できる技術を提供することにある。
本発明の第四の目的は、上記の課題を解決することによって、人手による目視確認作業の不要な検査工程を実現することである。
本発明の第五の目的は、上記の課題を解決することによって、回路パターンを高速・高精度で検査する技術、および高速かつ自動で検出欠陥の種類を分類する技術を提供し、該検査技術を半導体装置その他の微細回路パターンの検査に適用することにより、その検査結果を従来の方法より早く半導体装置等の製造条件に反映し、半導体装置等の信頼性を高めると共に不良率を低減させることにある。
既に述べたように、半導体装置基板(ウエハ)を始めとする微細な回路パターンを有する被検査基板表面を外観検査するだけの従来の検査技術によって得られる情報は、被検査基板表面における欠陥の数、欠陥発生箇所・座標、および欠陥のサイズだけであり、これでは欠陥の有無は検知できるが、欠陥の内容までを把握することはできない。本発明では、被検査基板表面を外観検査して欠陥の有無を検知すると共に、検知した欠陥の内容を把握できるようにするために、欠陥内容の把握に必要な情報を取得し、その情報を記憶保存するようにしている。
以下に本発明による回路パターンの検査方法および検査装置について述べる。
従来の外観検査法においては、被検査基板表面に白色光あるいは電子線等を照射して被検査基板表面の同一設計パターンを有する複数の領域(例えば、同一設計パターンのメモリセルやチップ等が形成されている領域)の画像を取得して一時記憶し、これら同一設計パターンを有する領域の画像(実パターン画像)同士を比較して、両画像間に有意差が有るか無いかにより欠陥の有無を判定していた。
本発明者らの検討によれば、白色光照射による取得画像と比較して電子線照射による取得画像は次に述べるような特性をもっていることが判った。まず、電子線画像の場合には、例えば酸化シリコンのような透光性の物質であっても電子線はこれを透過しないため、検査対象表面よりも下層の情報(下地情報)が殆ど画像には現れない。また、検査対象表面近傍においては、下地膜と最表面パターンの明るさ(輝度情報)が画像の主成分なので、階調の分布が複雑でない。電子線画像自体が色情報を持たずに輝度情報(白黒の明るさ情報)のみから成っているため、階調分布が簡素であり、その特徴を抽出し易い。以上のような画像特性に鑑み、本発明者らは、電子線画像が画像ファイルとして圧縮し易いこと、画像の明るさから特徴を抽出し易く、画像の階調特性から欠陥の内容を判断し易いこと、元の画像が白黒画像であるので、取得・圧縮しその後再生した画像が元の画像と同等の画質を保てると云うことを見い出した。従って、電子線外観検査法によれば、従来の光学画像による外観検査法では検出できない透光性膜の欠陥や残渣、線状で短辺の幅が光学系の分解能以下であるようなエッチング残りや、微小導通孔の非開口不良等が検出できるようになるだけでなく、外観検査中に取得した画像を圧縮して記憶保存し、この記憶保存した画像の階調の特徴から欠陥の内容を把握することが可能となる。このような検査方法を実現するために、検討した内容を以下に述べる。
電子線を被検査基板表面に照射して基板表面の電子線画像を取得し、この取得画像を用いて上記基板表面の外観を検査する方法及び装置においては、電子線を走査したり、試料台および試料を移動させながら、上記基板表面の複数の被検査領域の画像を逐次取得し、この取得画像を記憶装置に一時記憶する。先ず第一の領域についての取得画像を第一の記憶装置に記憶し、続いて第二の領域についての取得画像を第二の記憶装置に記憶すると共に、第一の記憶装置の記憶画像及び第二の記憶装置の記憶画像に各種の信号処理を施した上で、両画像を比較する。
ここで、第一の領域と第二の領域は所定距離離れた位置に存在しており、両領域には互いに同等の(同一設計の)回路パターンが形成されているものとする。上記方法で両画像を比較した結果、両画像間での画像差信号が所定の値よりも大きい場合には、上記第一及び第二の領域に欠陥候補としてのフラグを立てる。従来の検査方法および検査装置では、上記した欠陥候補のフラグが発生したら、フラグが発生した領域に相当する記憶装置上のアドレスおよび所定の閾値よりも画像差信号が大きかった画素数を算出し、別の記憶装置に算出データを保存していた。本発明では、欠陥候補と認定された領域の画像信号を記憶保存するために、上記第一及び第二の記憶装置とは別個の記憶装置(画像メモリ)を設ける。このような別個の記憶装置を用いて、そこに欠陥候補領域の画像信号を記憶保存する方法について以下に述べる。
第一の方法では、上記した電子線画像を用いた比較検査に際して、第一の領域の電子線画像信号を取得して第一の記憶装置に一時記憶し、次いで同様に第二の領域の電子線画像信号を取得して第二の記憶装置に一次記憶し、第一及び第二の記憶装置に記憶された互いに同等パターン部分の画像信号同士を比較してその差信号が所定閾値よりも大きい場合に両パターン部分に欠陥候補としてのフラグを立てる。この欠陥候補フラグが発生したら、第一の領域内における欠陥候補部分の画像データと第二の領域内における欠陥候補部分の画像データとを第三の記憶装置内に仮保存する。ここで、第一の領域内の欠陥候補部分の画像データと第二の領域内の欠陥候補部分の画像データとを両方共仮保存するのは、両画像データを比較して欠陥候補フラグを立てただけの時点では、まだどちらの領域内の欠陥候補部分が真の欠陥部分であるかを確定できていないためである。上記した第三の記憶装置内への上記両欠陥候補部分についての画像データの仮保存を済ませた段階で、第一の記憶装置内に一時記憶されていた上記第一の領域についての画像信号は消去される。次に、第三の領域についての画像信号を取得してそれを第一の記憶装置内に一時記憶しながら、該第三の領域の画像信号と第二の記憶装置内に一時記憶されている上記第二の領域の画像データとを比較することによって、上記第一の領域と上記第二の領域とのいずれに欠陥が存在するかを確定できる。
その後は、欠陥が存在する方の領域の画像データだけを上記第三の記憶装置内に記憶させていくことにより、欠陥発生部分の画像データを記憶保存して行くことができる。
第二の方法では、上記した第一の方法と同様に、先ず第一の領域の電子線画像信号を取得して第一の記憶装置内に一次記憶させ、次に第二の領域の電子線画像信号を取得して第二の記憶装置内に一次記憶させながら、第一および第二の記憶装置に記憶された互いに同等パターン部分の画像信号同士を比較してその差信号が所定閾値よりも大きい場合にこれら両パターン部分に欠陥候補としてのフラグを立てる。この欠陥候補のフラグが発生したら、第一の領域内における欠陥候補部分の画像データと第二の領域内における欠陥候補部分の画像データとを第三の記憶装置内に仮保存する。その後、第三の領域の電子線画像信号を取得して第一の記憶装置内に一次記憶させながら、この第三の領域の画像データと第二の記憶装置内に一次記憶されている上記第二の領域についての画像データとを比較することにより、上記第一の領域および上記第二の領域のいずれに欠陥が存在するかが確定したら、欠陥が存在する方の領域の画像データを欠陥部画像データとし、欠陥が存在しない方の領域の画像データを正常部画像データとして、各々の画像データに欠陥部か正常部かを判別できるマークを付加する。これによって、回路パターン上の欠陥発生部分と比較対象となる正常パターン部分との両方についての画像データを自動保存することが可能になる。
第三の方法では、上記した第一および第二の方法における第一から第三の記憶装置に加えて、さらに第四の記憶装置を用いる。先ず、第一の領域の電子線画像信号を取得して第一の記憶装置内に一次記憶させ、次に第二の領域の電子線画像信号を取得して第二の記憶装置内に一次記憶させながら、第一および第二の記憶装置に記憶された互いに同等パターン部分の画像信号同士を比較してその差信号が所定閾値よりも大きい場合にこれら両パターン部分に欠陥候補としてのフラグを立てる。次に、第三の領域の電子線画像信号を取得してそれを第三の記憶装置に一次記憶させながら、第二の記憶装置に既に記憶されている第二の領域の画像データと第三の記憶装置に記憶された第三の領域の画像データとの比較を行う。これにより、第一および第二の領域内の欠陥候補部分のうちのいずれが真の欠陥部分であるかを判別できる。次いで、第四の領域の電子線画像信号を取得し第一の記憶装置に記憶させながら、該第四の領域の画像データと既に第三の記憶装置に記憶されている第三の領域の画像データとを比較するという手順で順次記憶・比較して行くことにより、常に真の欠陥が発生した領域が判明してからこの真の欠陥が発生した領域の画像データおよび必要に応じて該欠陥部分に対応する正常な回路パターンの画像データを第四の記憶装置内に保存する。これにより、欠陥部分の画像データを一次記憶している記憶装置内の記憶画像データが、次の領域の画像データにより上書される前に、真の欠陥発生領域の確定や真の欠陥部分の判定(確定)等の処理を実施することが可能になる。
上述した方法によって、取得画像データ同士を比較することにより欠陥が検出された際には、取得画像データを一次記憶する記憶装置とは別個の記憶装置内に欠陥部の画像データおよび該欠陥部の比較対象となる正常部の画像データをそれぞれ記憶・保存することが可能になる。また、従来の検査方法によって得られる欠陥部の座標や該欠陥部の画素数から算出した欠陥サイズ等も欠陥データとして同時に保存できる。その際、既に述べたように、電子線画像信号は基板表面のみからの信号であって、例えば最表面のパターン部分と下地部分とのように明るさ階調分布が簡素なので圧縮率を高くでき、下地部分の複雑なパターン形状や色調を反映した光学画像を用いる場合に比べ低容量の記憶装置で済む。従って、検出した複数の欠陥部の画像データをそれぞれ記憶・保存するようにしても検査装置全体としてはさほど大規模なものとなることはない。
次に、上記した方法によって記憶・保存された欠陥部の画像データから、欠陥内容を解析する方法について以下に説明する。
欠陥内容を解析する第一の方法は、上記した方法による被検査基板表面の回路パターンの検査が終了してから、上記第一、第二の方法における第三の記憶装置あるいは上記第三の方法における第四の記憶装置内に記憶・保存されている画像データ中から任意の欠陥部の画像データを引き出して、例えば検査装置に付属の欠陥部確認用CRTモニタ等に画像表示させることにより、再度被検査基板表面のパターン欠陥発生箇所の画像信号を取得しないでも、欠陥内容の目視確認作業を行えるようにするものである。また、検査装置とは別に製造プロセスライン等に設けたデータベースに、被検査基板のIDデータ,欠陥検査結果の各データと共に、上記の欠陥部画像データをも自動的に付加して転送・格納しておくことにより、検査装置に付属のモニタ以外の、例えば検査装置が設置されている部屋とは別の部屋に設けられたパソコン等の表示画面に欠陥部画像を表示させることも可能になり、上記した検査作業とは別に、任意の基板の任意の欠陥部分についての目視確認ができるようになる。
欠陥内容を解析する第二の方法は、被検査基板表面の回路パターン検査が終了してから、検査前あるいは検査後に与えられた命令に従って欠陥内容を自動分類する方法である。この方法には、検査装置で実行する検査シーケンスに、被検査基板表面の検査終了後引き続き検出した欠陥部の記憶画像データを用いて同検査装置内で欠陥内容を自動分類させるための命令を組み込んでおく方法と、被検査基板表面の検査作業を一旦終了させてから、ユーザが任意の基板についての検査結果を選択し、この選択した基板上で検出された各欠陥部についての欠陥内容を自動分類させるための命令を改めて入力してやる方法とがある。なお、欠陥内容を自動分類する方法並びに手段については、後述する。また、本方法では、検査終了後に、検査作業とは別のルーチンで分類作業を実行できるので、欠陥箇所の画像信号を再度取得する必要が無いだけでなく、検査作業の実所要時間には全く影響を与えることなく分類作業を行なえる。上記した欠陥内容を解析するための第一の方法と同様に、検査装置外にデータを転送して同様の自動分類を命令して実行させることも可能である。
欠陥内容を解析するための第三の方法は、被検査基板表面の検査と同時に検査中に検出した欠陥部分の画像データおよび必要に応じてそれに対応する正常部分の画像データを上記第三の記憶装置あるいは第四の記憶装置に記憶・保存すると共に、さらにそれと同時に欠陥部の画像データを欠陥内容自動判定用の演算装置に送信し、該演算装置内で各欠陥部画像の特徴を抽出して欠陥内容の自動分類を上記した欠陥判定と並行して別系統で実施すると云うものである。欠陥判定処理によっていずれが欠陥部かが確定したら、該欠陥部の位置座標と一致する欠陥部画像データと欠陥内容の分類結果をその他必要な情報と一緒に欠陥データとしてファイルし保存する。これにより、検査実時間中に欠陥検出および欠陥判定処理と欠陥内容の分類処理が同時に実行できるようになる。
上記した欠陥内容を自動分類する方法としては、以下のような方法が挙げられる。
欠陥部の画像データより欠陥内容を自動分類する第一の方法は、上記した第三あるいは第四の記憶装置に記憶・保存された正常部の画像データの各々について画像信号の階調ヒストグラムを生成し、パターン部の明るさと下地部の明るさを弁別すると云うものである。これにより、当該欠陥発生箇所と同一設計パターンの正常箇所の原画像データより、各欠陥部に相当する正常部の画素信号についての明るさ階調と上記で生成した階調ヒストグラムとを参照して、正常部の画素の明るさがパターン部の明るさであった場合にはその欠陥がパターン部に発生した欠陥と見做し、下地部の明るさだった場合にはその欠陥が下地部に発生した欠陥と見做すことができる。
欠陥内容を自動分類するための第二の方法では、上記第一の方法と同様、先ず上記した第三あるいは第四の記憶装置に記憶・保存された正常部の画像データの各々について画像信号の階調ヒストグラムを生成し、パターン部の明るさと下地部の明るさを弁別する。その後、欠陥発生箇所の原画像データより欠陥発生箇所の各画素の明るさを調べることによって、この欠陥発生箇所の各画素の明るさが例えばパターン部,下地部,その他部分の明るさと云うように簡易な分類をすることができる。その結果、上記した欠陥内容を分類するための第一の方法とこの第二の方法とを併用することにより、例えば、パターン部に欠陥が発生してその欠陥箇所の明るさが下地部の明るさである場合には、パターン部の欠損や断線であると云うように欠陥内容を分類をすることができる。
欠陥内容を分類するための第三の方法は、上記で記憶・保存された欠陥箇所の画像データより、欠陥部の明るさの変化の特徴を画像信号の微分処理等の手法で抽出することによって欠陥部の形状を把握すると云うものである。これにより、欠陥部が例えば周囲から孤立している,あるいはパターン部分と連続している等の特徴を検出することが可能になり、欠陥部形状を特定することができるようになる。
以上に述べた各種の方法により、電子線を被検査基板に照射し電子線画像信号を取得して、互いに隣接する同一設計パターン部分の画像信号同士を比較して被検査基板上に発生したパターン欠陥を検出する方法及び装置において、取得した電子線画像信号を比較して欠陥の有無を判定する工程の途中において欠陥候補が検出されたら、当該欠陥発生箇所の画像データを自動的に記憶・保存することができるようになる。また、この記憶・保存された欠陥発生箇所の画像データを用いて、再度改めて欠陥発生箇所の画像信号を取得することなくして、欠陥内容の目視確認や自動分類等の処理が可能になる。さらに、当該検査装置とは別の装置に各種の欠陥部情報および欠陥部の画像データを送信したり、欠陥検出のための回路系とは別の回路系で欠陥分類のための処理を実施することによって、欠陥を検出するための検査実時間に影響を与えずに、欠陥内容の確認作業や自動分類が可能になる。従って、これまでに述べてきた本発明の検査方法および装置構成によって、回路パターン上に発生した欠陥を電子線画像信号を用いて自動的に検出し、かつ、その欠陥内容を自動分類することのできる検査方法および検査装置を実現することができる。
上記した本発明による検査方法および検査装置を用いて回路パターンを有する各種基板例えば製造過程における半導体装置を検査することによって、各工程における半導体装置について、従来技術による欠陥数と欠陥位置の検出はもちろんのこと、従来技術では検知できなかった欠陥対策の実施に必要な欠陥発生原因を特定するための欠陥内容をも検査と同時に把握でき、かつ検査処理時間すなわち検査のスループットには影響を与えずにそれらの情報を得ることができるようになる。その結果、プロセス加工によって生じたパターンの形状不良や微細な異物等の欠陥内容を早期に把握でき、製造プロセスや製造装置条件等に潜在している問題を顕在化することができるようになる。これによって、従来よりも高速かつ高精度に半導体装置をはじめとする各種基板の製造プロセスにおける不良原因を対策することができ、高製造歩留まりすなわち高良品率を確保できると同時に、不良発生検知から不良対策実施までのTATを短縮することが可能となる。
本発明によって得られる代表的な効果を挙げると次のとおりである。
従来の検査方法および装置では、微細な回路パターンが形成された基板表面を電子線を用いて検査し、回路パターン上に発生した欠陥の有無を検出するのみであったのに対し、本発明の回路パターン検査装置を用いて回路パターンを有する半導体装置等の基板表面を検査することにより、検出された欠陥部の画像データを自動的に保存することができるようになった。また、この自動保存された欠陥部画像データを用いて、基板製造プロセスにおける不良発生原因を特定するために必要な欠陥内容の分類解析を自動的に実施することが可能になった。しかも、本発明の検査方法および装置を用いれば、検査時間を遅延させることなく、上記した欠陥部画像データの保存や欠陥内容の分類解析を実施することができる。
従って、本発明の方法及び装置を用いた検査を各種の基板製造プロセスへ適用することにより、上記した従来技術では基板上に発生した欠陥を検出するのみでその内容を把握できなかったのに比べて、製造装置や製造条件等の異常を早期にかつ高精度に検知することができるため、基板製造プロセスにいち早く異常対策処理を施すことができ、その結果半導体装置その他の基板の製造歩留まりを向上させ生産性を高めることができる。また、上記検査を適用することにより、異常発生をいち早く検知することができ、従来よりも早期に異常対策を講ずることができるので、多量の不良発生を未然に防止することができる。このように、不良発生率そのものを低減させることができるので、製造された半導体装置等の信頼性を高めることができ、新製品等の開発効率を向上させ、かつ製造コストを低減させることができる。
以下、本発明の実施の形態につき、図面を参照して、詳細に説明する。
(実施例1)
図1に本発明の第1の実施例になる回路パターン検査装置の概略構成を示す。本実施例になる回路パターン検査装置1は、室内が真空排気される検査室2と、検査室2内に試料基板9を搬入するための予備室(図示省略)とを備えており、該予備室内は検査室2内とは独立に真空排気できるよう構成されている。また、本検査装置1は、上記した検査室2と予備室の他に、制御部6、画像処理部5を備えている。検査室2内には、大別して電子光学系3、二次電子検出部7、試料室8、および光学顕微鏡部4が設けられている。電子光学系3は、電子銃10、電子線引き出し電極11、コンデンサレンズ12、ブランキング用偏向器13、走査偏向器15、絞り14、対物レンズ16、反射板17、およびE×B偏向器18から構成されている。
二次電子検出部7のうち、二次電子検出器20が検査室2内の対物レンズ16の上方に配置されている。二次電子検出器20の出力信号は、検査室2外に設置されたプリアンプ21で増幅され、AD変換器22によりデジタルデータに変換される。試料室8は、試料台30、Xステージ31、Yステージ32、回転ステージ33、位置モニタ用測長器34、および被検査基板9表面の高さ測定器35から構成されている。光学顕微鏡部4は、検査室2内の電子光学系3の近傍に、該電子光学系3とは互いに影響を及ぼし合わない程度に離れた位置に設置されており、この電子光学系3と光学顕微鏡部4との間の距離は既知である。そして、Xステージ31(または、Yステージ32)が、電子光学系3と光学顕微鏡部4との間の上記既知距離間を往復移動するよう構成されている。
光学顕微鏡部4は、光源40、光学レンズ41、およびCCDカメラ42から構成されている。なお、光源40、CCDカメラ42等は真空排気された検査室2の外部に設置する構成でも良い。画像処理部5は、第一画像記憶部46、第二画像記憶部47、第三画像記憶部48、第四画像記憶部49、比較演算部50、欠陥判定処理部51より構成されている。モニタ52により、画像記憶部46、47、48、49に取り込まれた電子線画像、CCDカメラ42にて撮像された光学画像および比較演算部50で比較処理された後の差画像等を任意に選択して表示することができる。装置各部の動作命令および動作条件は、制御部6から入出力される。制御部6には、予め電子線発生時の加速電圧、電子線偏向幅、偏向速度、二次電子検出器20からの信号取り込みタイミング、試料台移動速度等の条件が、目的に応じて任意にあるいは選択して設定できるようにして入力されている。制御部6は、補正制御回路43を用いて位置モニタ用測長器34、被検査基板高さ測定器35からの信号から基板位置や基板高さのずれをモニタし、その結果から補正信号を生成して、電子線が常に正しい位置に照射されるように対物レンズ用電源45や走査偏向器用の信号発生器44に上記補正信号を送る。
被検査基板9の画像を取得するためには、細く絞った電子線19を被検査基板9上に照射して二次電子60を発生させ、該二次電子を電子線19の走査およびステージ31、32の移動と同期して検出することによって被検査基板9表面の画像を得る。本実施例の検査装置においては、通常SEMに比べ約100倍以上の、例えば100nAの大電流電子線を一回のみ走査することにより画像を形成する構成とし、電子線走査幅は100μm、1画素は0.1μm□、1回の走査を1μsで行なうようにした。
電子銃10には拡散補給型の熱電界放出電子源が使用されている。この電子銃10を用いることにより、従来の例えばタングステン(W)フィラメント電子源や冷電界放出型電子源に比べてより安定した電子線電流を確保することができるため、明るさ変動の少ない電子線画像が得られる上、電子線電流を大きく設定できるため、一回走査で高S/N電子線画像を取得する高速検査を実現することができる。電子線19は、電子銃10と引き出し電極11との間に電圧を印加することで電子銃10から引き出される。電子線19の加速は電子銃10に高電圧の負の電位を印加することでなされる。これにより、電子線19は該負電位に相当するエネルギーで試料台30の方向に進み、コンデンサレンズ12で収束され、さらに対物レンズ16により細く絞られて試料台30上のX−Yステージ31、32上に搭載された被検査基板9(半導体ウエハ、チップ、あるいは液晶基板、マスク等の微細回路パターンを有する基板)に照射される。なお、ブランキング用偏向器13には、走査信号およびブランキング信号を発生する信号発生器44が接続され、コンデンサレンズ12および対物レンズ16には、各々レンズ電源45が接続されている。被検査基板9には、高圧電源(リターディング電源)36により負の電圧を印加できるようになっている。この高圧電源36による負印加電圧を調節することによって一次電子線を減速し、電子銃10の電位を変えずに被検査基板9への電子線照射エネルギーを最適な値に調節することができる。
被検査基板9上に電子線19を照射することにより発生した二次電子60は、基板9に印加された負の電圧により加速される。基板9の上方にはE×B偏向器18が配置されており、これにより加速された二次電子60は所定の方向へ偏向される。E×B偏向器18にかける電界と磁界とを調節することによって偏向量を調整することができる。また、この電磁界は、基板9に印加した負電圧に連動して可変とすることができる。E×B偏向器18により偏向された二次電子60は、所定の条件で反射板17に衝突する。反射板17は、試料に照射する電子線(以下、一次電子線と呼ぶ)偏向用の偏向器15のシールドパイプと一体で円錐形状をしている。反射板17に加速された二次電子60が衝突すると、該反射板17からは数V〜50eVのエネルギーを持つ第二の二次電子61が発生する。
二次電子検出部7は、真空排気された検査室2内に設置された二次電子検出器20と検査室2外に設けられたプリアンプ21、AD変換器22、電光変換手段23、光伝送手段24、光電変換手段25、高圧電源26、プリアンプ駆動電源27、AD変換器駆動電源28、逆バイアス電源29から構成されている。既に述べたように、二次電子検出部7のうち二次電子検出器20が検査室2内の対物レンズ16の上方部に配置されている。二次電子検出器20、プリアンプ21、AD変換器22、電光変換手段23、プリアンプ駆動電源27、AD変換器駆動電源28は、高圧電源26によって正の電位にフローティングされている。上記の反射板17に衝突して発生した第二の二次電子61は、この正電位による吸引電界によって検出器20へと導かれる。二次電子検出器20は、電子線19が被検査基板9に照射されている間に発生した二次電子60がその後加速されて反射板17に衝突することによって発生した第二の二次電子61を電子線19の走査のタイミングと連動して検出するように構成されている。二次電子検出器20の出力信号は、検査室2の外に設置されたプリアンプ21で増幅され、AD変換器22によってデジタルデータに変換される。AD変換器22は、二次電子検出器20の出力アナログ信号を、プリアンプ21によって増幅された後に直ちにデジタル信号に変換してから画像処理部5へと伝送するように構成されている。このように、検出アナログ信号をその検出直後にデジタル化してから画像処理部5へと伝送しているので、従来よりも高速でかつSN比の高い画像信号を得ることができる。
X−Yステージ31、32上には被検査基板9が搭載されており、検査実行時にはX−Yステージ31、32を静止させて、電子線19を二次元的に走査する方法と、検査実行時にX−Yステージ31、32をY方向に一定速度で連続して移動させながら電子線19をX方向に直線的に走査する方法のいずれかを選択できる。ある特定の比較的小さい領域を検査する場合には、前者のステージを静止させて検査する方法が有効であり、比較的広い領域を検査する時には、ステージを連続的に一定速度で移動して検査する方法が有効である。なお、電子線19をブランキングする必要がある時には、ブランキング用偏向器13によって電子線19を偏向して、電子線19が絞り14の開口を通過しないように制御することできる。
位置モニタ用測長器34として、本実施例ではレーザ干渉方式による測長計を用いた。これによって、Xステージ31およびYステージ32の位置を実時間でモニタし、位置信号を制御部6に転送するようになっている。また、Xステージ31、Yステージ32および回転ステージ33の駆動モータの回転数等のデータも同様に各々のドライバから制御部6に転送されるように構成されており、制御部6ではこれらのデータに基いて電子線19が照射されている領域や位置が正確に把握できるようになっており、必要に応じて実時間で電子線19の照射位置の位置ずれを補正制御回路43によって補正するようになっている。また、被検査基板毎に電子線19を照射した領域を記憶できるようになっている。
光学式の高さ測定器35は、電子ビーム以外の測定方式である光学式測定器、例えばレーザ干渉測定器や反射光の位置で高さ変化を測定する反射光式測定器が使用されており、X−Yステージ31、32上に搭載された被検査基板9の表面高さを実時間で測定するように構成されている。本実施例では、スリットを通過した細長い白色光を透明な窓越しに被検査基板9に照射し、反射光の位置を位置検出モニタにて検出し、この反射光位置の変動から基板表面高さの変化量を算出する方式を用いた。この光学式高さ測定器35の測定データに基き、電子線19を細く絞るための対物レンズ16の焦点距離がダイナミックに補正されて、常に非検査領域に焦点が合った電子線19の照射ができるようになっている。また、被検査基板9の反りや高さ歪みを電子線照射前に予め測定しており、そのデータをもとに対物レンズ16の検査領域毎の補正条件を設定するように構成することも可能である。
画像処理部5は、第一画像記憶部46、第二画像記憶部47、第三画像記憶部48、第四画像記憶部49、比較演算部50、欠陥判定処理部51、モニタ52により構成されている。上記の二次電子検出器20で検出された被検査基板9の画像信号は、プリアンプ21で増幅され、AD変換器22でデジタル化された後に、電光変換器23で光信号に変換され、光ファイバ24によって画像処理部5へと伝送され、そこで光電変換器25で再び電気信号に変換された後に、制御部6からの命令によって第一画像記憶部46、第二記憶部47あるいは第三記憶部48に記憶される。比較演算部50には、制御部6からの命令によりこれら三つの記憶装置に記憶された画像信号のうち二つの画像信号が送られ、そこで各々の画像信号に、位置合せ、信号レベルの規格化、ノイズ信号を除去するための各種の画像信号処理を施してから、双方の画像信号間での比較演算が行われる。
欠陥判定処理部51では、比較演算部50による上記比較演算の結果得られた差画像信号の絶対値を所定のしきい値と比較し、この所定しきい値よりも差画像信号のレベルが大きい場合に、その箇所(画素部分)を欠陥候補と判定する。第四の記憶装置49へは、第一、第二、第三画像記憶部46、47、48に記憶された画像データのうち欠陥判定処理部51で欠陥候補と判定された箇所に相当する画像データが送られて記憶される。モニタ52は、制御部6からの指示により、検査途中に実時間で欠陥判定処理部51が欠陥候補と判定した箇所の位置や欠陥数等を表示したり、第四画像記憶部49に記憶された欠陥候補箇所の画像データを表示したり、第一、第二、第三画像記憶部46、47、48に記憶された画像データそのものを表示したりする。
これまでは、本実施例になる回路パターン検査装置1の全体構成について説明してきたが、検出された二次電子61の信号を記憶する手段について、その構成および作用を図2、図3、図4を用いてさらに詳細に説明する。
微細な回路パターンが形成された被検査基板9の表面を電子線19で順次走査して、発生した二次電子信号を検出部7で検出し、電子線画像信号を取得する。本実施例では、図2に示すように、領域1においてパターン欠陥が発生している被検査基板9を検査した例について説明する。検査を実施する前に、予め制御部6に画像比較すべき領域間のピッチを指定しておく。領域1の電子線画像信号は第一画像記憶部46に格納される。画像信号の取得および伝送は、領域によらず連続で実施されている。領域1の画像信号取得および記憶が終了したら、続けて領域2の画像信号が取得され、制御部6からの指令により第二画像記憶部47に格納され、同様に、領域3の取得画像信号は第三画像記憶部48に格納される。次に、領域4の取得画像信号が第一画像記憶部46に上書き記憶され、その前にそこに記憶されていた領域1のデータは消去される。従って、各々の画像記憶部では、一旦記憶された画像データが、次々と伝送されてくる画像データによって上書き記憶されるまでの一時期間しか保存されない。上記方法により、領域1の画像データが第一画像記憶部46に記憶され、同様に領域2の画像データが第二画像記憶部47に記憶された後、これらの画像データは即座に信号レベルの規格化、ノイズ信号の除去のための各種画像処理を施されてから、図3の(a)に示すように比較演算部50で差画像信号の演算がなされる。差画像信号となった画像データは、次に欠陥判定処理部51で所定しきい値と比較され、該しきい値より差画像信号の値が大きい箇所が欠陥候補箇所と判定され、該欠陥候補箇所の位置情報X、Yや該欠陥候補箇所のサイズdx、dyの情報が算出される。しかし、この段階においては、まだ、真に欠陥が発生している領域が第一画像記憶部46に画像記憶された領域1なのか、あるいは第二画像記憶部47に画像記憶された領域2なのかが確定できない。次に、第二画像記憶部47に記憶された領域2の画像データと第三画像記憶部48に記憶された領域3の画像データ間で、同様にして図3の(b)に示すように比較演算部50で差画像信号の演算がなされ、この差画像信号が欠陥判定処理部51で所定のしきい値と比較され、欠陥候補箇所の有無が判定される。ここで、欠陥判定部51で同一の座標上に前回に続いて欠陥候補箇所があると判定された場合には、領域2における上記座標上に真の欠陥が存在すると確定判定される。
図4に、欠陥判定処理部51で欠陥部が検出されてから、該欠陥部を含む領域の画像を保存するまでのフローを示す。前述したように、第一画像記憶部46に格納された領域1の画像データと第二画像記憶部47に格納された領域2の画像データとを比較演算部50で比較し、欠陥判定処理部51で欠陥候補箇所が抽出される。欠陥候補箇所が抽出された時点で、欠陥が存在する可能性のある領域1の画像データすなわち第一画像記憶部46に格納された画像データと、領域2の画像データすなわち第二画像記憶部47に格納された画像データとを、第四画像記憶部49に送信する。第四画像記憶部49では、送信されて来た画像データを圧縮処理して、領域1に相当する画像データ1と領域2に相当する画像データ2として仮保存する。次に、先に図3にて説明したように、領域3の画像データが第三画像記憶部48に格納され、同様に比較演算部50で第二画像記憶部47に格納されている領域2の画像データと比較され、欠陥判定処理部51で欠陥候補箇所が再度抽出される。この新たな欠陥候補箇所の位置座標が先の欠陥判定処理時に抽出された欠陥候補箇所の位置座標と同一であった場合には、両者が同一の欠陥部に関する情報であると見做し、この再度(2回とも)同じ位置に欠陥候補箇所があると判定された領域2における欠陥候補箇所を真の欠陥部であると確定判定して、既に第四画像記憶部49に仮保存されている領域1の画像データ1は欠陥部を含まない正常なパターンの画像データであり、領域2の画像データ2は欠陥部を含む異常なパターンの画像データであると判別できるような識別データを両画像データにそれぞれ追加付加する。
図4のフローチャートで解るように、領域1と領域2の画像データを第一画像記憶部46と第二画像記憶部47に格納してから比較演算部50と欠陥判定処理部51での各処理を実施する間に、領域3の画像データを第三画像記憶部48に格納することにより、新たな欠陥候補箇所の抽出と先に欠陥部を含むと確定判定された領域の画像データの第四画像記憶部49への出力とを同時に実施することができる。これを順次繰り返すことにより、検査実時間を遅らせることなく欠陥部を含む領域の画像データ(欠陥パターンデータ)を保存することができるようになる。また、本検査装置1にて取得される電子線画像は、光学画像と比較して色情報が無いため明るさ分布が簡素であり、同じ明るさの信号が多いため、画像データを圧縮処理した際の圧縮率が高い。従って、光学画像を用いる場合と比べて画像データの容量が小さくなるので、検出された各欠陥部の画像データを保存するために必要な記憶装置の容量が小さくて済む。
第四画像記憶部49に仮保存された被検査基板9上の各欠陥部についての画像データは、検査終了時には、図5に示す構成の欠陥データファイルとして保存される。欠陥データは、被検査基板9のIDや検査条件を示すファイル名や検査が実施された日付等の他に、各欠陥部についての欠陥番号(ID)、欠陥部の位置情報、欠陥部のサイズ、欠陥分類コードおよび欠陥画像番号で構成されている。なお、検査条件や欠陥画像データについては、検査条件のファイル名や欠陥画像番号を欠陥データファイルに格納しておき、検査条件ファイルの詳細や欠陥画像データは別ファイルとして保存しておくことも可能である。
前述した本実施例による検査装置および検査方法によって、電子線画像を比較検査して微細な回路パターン上に発生した微小な欠陥を検出する際に、発生した欠陥部の画像情報を検査時間を遅延させることなく保存することが可能となる。その結果、欠陥内容を同定するための各種解析を実施するために欠陥発生箇所の画像を再度改めて取得する必要がなくなり、欠陥解析の効率が向上する。欠陥の解析については、以下の実施例で述べる。
(実施例2)
本発明の第2の実施例では、本発明による回路パターンの検査装置1及び検査方法において、欠陥を検出するための検査処理を実施した後に、欠陥内容を解析する方法について述べる。なお、検査装置1及び検査方法の構成や作用については、実施例1と同様であるので、ここでは重ねての説明は省略する。
図6に示すように、本発明の検査装置1で被検査基板9表面の回路パターンを検査した結果は、検査装置1内部の検査結果データ記憶部のみでなく、検査装置1の外部に通信手段およびディスク等を介して転送される。本実施例では、検査装置1内部の検査結果データ記憶部と共に、検査装置1以外の回路基板製造プロセス管理用外部データベース100および画像ファイリングデータベース101に上記検査結果を転送した。外部データベース100、画像ファイリングデータベース101には各所からアクセスが可能であるので、例えば検査装置1の近傍で同じクリーンルーム内に設置された欠陥確認用のCRTモニタ102に被検査基板9表面の回路パターン検査結果として、図5に示した内容の各データを表示させることも可能であり、外部データベース100から読み込んだ欠陥の分布やサイズと共に、画像ファイリングデータベース101から読み込んだ欠陥部画像をも任意に選択して表示させることが可能である。また、上記クリーンルームの外部に設置されたCRTモニタ103においても同様に被検査基板9表面の回路パターン検査結果を表示させることが可能である。従って、欠陥検査を実施する作業とは別個に欠陥内容の確認作業を実施することができるので、検査作業者と欠陥内容確認作業者とが同一人である必要がない。また、検査装置1での一つの被検査基板9についての検査が終了した後に別の基板についての検査を実施するのと並行して、先に検出された被検査基板9についての欠陥内容解析を別の装置
で実施することができるので、この欠陥内容解析によって検査時間が遅延させられることが無い。さらに、欠陥部の画像データを画像ファイリングデータベース101から呼び出すことにより欠陥内容の確認が可能であるので、欠陥部の画像データを再度位置出しして取得することなくして欠陥内容の解析を実施することが可能となる。被検査基板9の検査結果データより上記のモニタ102あるいはモニタ103で欠陥内容を目視解析して欠陥内容を種類別に分類したら、該欠陥内容の分類コードを被検査基板9に対応する欠陥部データに追加して外部データベース100に再保存することにより、詳細な分類結果を管理することが可能となる。
(実施例3)
第3の実施例では、先の第1の実施例による検査装置にさらに自動欠陥分類部を付加し、その他は第1の実施例と同様の装置構成とした。図7に、本実施例による検査装置の概略構成を示す。第1の実施例においては、取得した画像信号は第一、第二、第三の画像記憶部46、47、48に一時格納され、欠陥判定処理部51において欠陥候補箇所が抽出された場合に、第四の画像記憶部49に画像データを送って記憶・保存する構成とした。本実施例では、第四画像記憶部49に仮保存された画像データをさらに欠陥自動分類部53へ送って欠陥の自動分類を実施する。自動欠陥分類部53で分類した結果は、図5の欠陥データファイルの欠陥分類コード部分に追加される。目視確認等の別方式の解析による欠陥分類コードと併記して保存することにより各種解析による分類の来歴を保存することが可能である。
次に、図8、図9、図10を用いて欠陥を自動分類するためのアルゴリズムを以下に述べる。欠陥判定処理部51で欠陥候補箇所が抽出されたら、該欠陥候補箇所を含む領域の画像データ200と画像比較時に用いられた正常領域部の画像データ201とが第四画像記憶部49に仮保存され、その後、二つの画像データが欠陥部データと正常部データとに確定判定される。この画像データの確定判定が済んだら、次に先ず、正常部の画像データ201の所定の画像部分より画像の明るさ(階調)のヒストグラムを生成する(図8)。電子線画像は、光学画像とは異なり、被検査基板9の最表面部の情報すなわち最上層のパターンとその下地膜とから発生した二次電子量によって画像を形成している。被検査基板9の表面の材質により二次電子の発生量が異なることを利用して画像を形成しているため、画像の階調の分布は、最上層パターンの明るさを示す範囲Aと下地膜の明るさを示す範囲Bとに大別される。従って、図8のヒストグラムより、明るさ範囲Aをパターン部の明るさ、明るさ範囲Bを下地膜の明るさと設定する。次に、図9に示すように、欠陥部画像データ200上で欠陥部と判定された画素Cと同一座標位置の正常部画像データ201上の画素Dとの明るさを求める。さらに、図10に示すように、欠陥部画素Cとそれと同一座標位置の正常部画素Dの明るさが、上記ヒストグラムの明るさ範囲A、Bのいずれに相当するかを調べる。それぞれの画素の明るさが、パターン部の明るさ範囲A内であった場合には、発生欠陥はパターン部に発生した欠陥であり、下地膜の明るさ範囲B内であった場合には、発生欠陥は下地膜部に発生した欠陥であると判定分類される。次に、欠陥部画像データ200上での欠陥部画素Cの明るさについて、上記同様にヒストグラムの明るさと比較し、明るさ範囲A内であった場合にはパターン残りであり、明るさ範囲B内であった場合にはパターン欠落であり、いずれにも該当しなかった場合にはその他の欠陥であると分類判定できる。上記二種の判定手法を組み合わせることによって、パターン部に発生したパターン欠落、下地部に発生したパターン残り等を分類判定することが可能となる。
上記の分類結果をユーザが指定した任意の分類コードに変換し、図5に示した欠陥データファイルの欠陥分類コードに追加あるいは上書きすることにより欠陥分類結果を他の欠陥データと共に記憶・保存することができる。また、上記した欠陥分類は、欠陥判定処理と同時に逐次実施されるので、被検査基板9の検査時間を遅延させることなくして、欠陥分類を実施することができる。
(実施例4)
本実施例では、先の実施例3で述べた欠陥自動分類アルゴリズムとは別の方法について述べる。その他の部分については実施例3と同様であるので、改めての説明は省略する。
先の実施例3と同様に、欠陥部画像データ200と正常部画像データ201とを欠陥自動分類部53に送る。自動欠陥分類部53では、実施例3の方法により欠陥発生箇所の明るさを両画像データ200、201から求め、欠陥発生箇所がパターン部なのか下地膜部なのかを特定する。そして、欠陥部画像データ200に対し、図11の(e)に示すように、欠陥発生箇所の画素の明るさに対する微分処理を施して明るさ変化を求める。次いで、図12に示すように、欠陥発生箇所の画素集合のX、Y方向端部での明るさ変化を調べて、全ての端部に微分信号のピークすなわち有意な明るさ変化がある場合には、当該欠陥が孤立欠陥であると判定できる。また、X方向の左右一方の端部に明るさ変化のピークがあり他方の端部にはピークが無い場合には、欠陥発生箇所がパターン部であるか下地膜部であるかを図8、図9に示した実施例3の方法で調べ、例えばその欠陥が下地膜部におけるパターン残りであると判定された場合には上記した明るさ変化のピークがある側の端部はパターン部と下地膜部との境界であり、ピークが無い側の端部はパターン部に続いているものと判定される。別の例では、左右両端部に明るさ変化を示すピークが無く、Y方向の上下両端部にはピークがあって、その欠陥がパターン部の欠陥でありかつ該欠陥部の明るさが下地膜部の明るさであった場合には、該欠陥は断線(パターン欠落)であると判定される。このように、実施例3の方法と組み合わせることにより、欠陥内容のより詳細な解析を自動にて実施することが可能となる。本実施例においても、欠陥の自動分類は、被検査基板9表面を自動検査する処理、比較演算部50、欠陥判定処理部51により欠陥候補箇所を抽出する処理および欠陥候補箇所が抽出された時点で第四画像記憶部49に逐次画像データ200、201を保存する処理等と並行して実行されるため、検査実時間には全く影響を与えない。また、欠陥内容の分類結果は、実施例3と同様に、欠陥コードとして欠陥データファイル内に保存することが可能である。このように、欠陥自動分類部53により、検査と同時に欠陥部の画像を保存するのに加え、欠陥内容の分類処理を並行して実施することが可能になる。従って、微細な回路パターンを有する基板表面を検査した結果、膨大な数の欠陥部が検出された場合でも、被検査基板を再度欠陥内容確認用の別装置内にロードし直して欠陥部の画像データを一個所ずつ再取得すると云う必要が無くなる上に、欠陥部の画像を目視確認して逐一欠陥分類コードを入力すると云う面倒な作業が不要になる。すなわち、欠陥を検出してから欠陥内容すなわち欠陥発生原因を同定して欠陥対策に必要な情報を得るまでの作業および作業時間が大幅に簡略化、短縮化され、欠陥検査と同時に欠陥対策に必要な情報を得ることが可能となった。
(実施例5)
本実施例5では、本発明の回路パターン検査装置1および方法を用いて半導体ウエハ表面の回路パターンの欠陥検査を実施した例について述べる。図13に、半導体装置製造プロセスの一例を示す。図13に示すように、半導体装置は多数のパターン形成工程を繰り返して製造される。パターン形成工程は、大まかに、成膜、感光レジスト塗布、感光、現像、エッチング、レジスト除去、および洗浄の各加工処理ステップにより構成されている。これらの各ステップにおいて加工処理のための条件が最適化されていないと、基板上に形成されるべき半導体装置の回路パターンが正常に形成され得ない。図14の(a)および(b)に製造過程における半導体ウエハ上に形成された回路パターンの概略を示す。図14の(a)は正常に加工形成された回路パターンを、図14の(b)は加工不良が発生した欠陥回路パターンを示す。例えば、図13の成膜過程で異常が発生すると、所謂パーティクル(異物粒子)が発生し、これが半導体ウエハ表面に付着して、図14の(b)中に示す孤立欠陥が発生する。また、感光時に感光のための露光装置の焦点や露光時間等の条件が最適でないと、レジスト膜上に照射される光の量や強さが多すぎる箇所や足りない箇所が発生し、図14の(b)中のショート、断線、パターン細り等となる。また、感光時に使用するマスクやレチクルに欠陥があると、感光単位である各露光ショット毎に、同一箇所に同様のパターン形状異常が発生する。また、エッチング量が最適化されていない場合や、エッチング途中に生成された薄膜やパーティクルによって、ショートや突起、孤立欠陥、開口不良等が発生する。洗浄時には、洗浄層の汚れや剥離した膜や異物の再付着により微小なパーティクルが発生して、乾燥時の水切れ条件により表面に酸化膜の厚さむらを発生し易い。
従来の欠陥検査装置においては、検査を半導体装置の製造プロセスに適用し、欠陥発生の有無を検知することが可能であった。しかし、発生欠陥の内容を知るためには再度欠陥部の画像を取得し、該画像を目視確認して欠陥内容を分類し、分類結果を示すコードを手入力する必要があった。従って、回路パターンの微細化および問題となる欠陥の微細化に伴い、検出される欠陥数が増大し、目視確認工程に要する時間も増大していた。上述した実施例1〜4の検査方法および検査装置を上記半導体装置の製造プロセスに適用することにより、回路パターン欠陥の発生を早期に検知するだけでなく、欠陥の内容例えば図14の(b)中に記載のパターン残りや断線、ショート等を検査と同時に検知することができ、かつその結果を記憶保存したり、外部データベースに送信することができる。その結果、当該不良発生工程に対し早期に不良対策処置を講ずることができ、これらの不良が発生しないよう加工処理条件を最適化することができるようになる。例えば、現像工程後に回路パターン検査工程が実施され、ホトレジストパターンの欠陥や断線が検出された場合には、感光工程の露光装置の露光条件や焦点条件が最適でないという事態が推定され、焦点条件あるいは露光量の調整等によってこれらの条件が即座に改善され得る。また、これらの欠陥が各ショット間で共通して発生しているか否かを欠陥分布から調べることによって、パターン形成に用いられているホトマスクやレチクルに欠陥があるかどうかを推定でき、これらホトマスクやレチクルの検査や交換をいち早く実施できる。その他の工程についても同様であり、本発明の回路パターンの検査方法および検査装置を用いて検査工程を実施することにより、各種の微細欠陥を検出し、検出欠陥の内容を確認して、各製造工程における異常発生の原因を推定することができる。
このように、半導体装置の製造過程において、本発明による回路パターン検査方法及び装置をインラインで用いることにより、各種製造条件の変動や異常発生を検査実時間内に検知することができるため、多量の不良発生を未然に防ぐことができる。また、本発明の回路パターン検査方法及び装置によれば、検出された欠陥について、欠陥内容別にその欠陥の程度や発生頻度等を管理することが可能となり、これらのデータから当該半導体装置全体の良品取得率を予測することができ、半導体装置の生産性を大きく向上させることができるようになる。
以上、本発明による検査装置の代表的な装置構成および該装置を用いての回路パターンの検査方法について、電子線を照射して高速に電子線画像を取得し比較検査する方法、比較検査して検出された欠陥の画像データを記憶保存する方法、記憶保存した画像データを検査後にあるいは検査と同時に解析する方法、検査と同時に検査装置内部にて欠陥の自動分類を実施する方法、本発明の回路パターン検査を実施することにより半導体装置その他の回路パターンを有する基板の製造プロセスの生産性を向上する方法等の実施例を挙げて説明してきたが、本発明の範囲を逸脱しない範囲で、特許請求の範囲の各請求項に掲げた複数の特徴を組み合わせた検査方法および検査装置とすることも可能である。
1…回路パターン検査装置、2…検査室、3…電子光学系、4…光学顕微鏡部、5…画像処理部、 6…制御部、7…二次電子検出部、8…試料室、9…試料基板(被検査基板)、10…電子銃、11…電子線引き出し電極、12…コンデンサレンズ、13…ブランキング用偏向器、14…絞り、15…走査偏向器、16…対物レンズ、17…反射板、18…E×B偏向器、19…電子線、20…二次電子検出器、21…プリアンプ、22…AD変換器、23…電光変換手段、24…光伝送手段、25…光電変換手段、26…高圧電源、27…プリアンプ駆動電源、28…AD変換器駆動電源、29…逆バイアス電源、30…試料台、31…Xステージ、32…Yステージ、33…回転ステージ、34…位置モニタ用測長器、35…基板表面高さ測定器、36…高圧電源(リターディング電源)、40…光源、41…光学レンズ、42…CCDカメラ、43…補正制御回路、44…信号発生器、45…対物レンズ用電源、46…第一画像記憶部、47…第二画像記憶部、48…第三画像記憶部、49…第四画像記憶部、50…比較演算部、51…欠陥判定処理部、52…モニタ、53…欠陥自動分類部、60…二次電子、61…第二の二次電子、100…プロセス管理用外部データベース、101…画像ファイリングデータベース、102…CRTモニタ、103…CRTモニタ、200…欠陥部画像データ、201…正常部画像データ。