JP2004260114A - Compound semiconductor element - Google Patents

Compound semiconductor element Download PDF

Info

Publication number
JP2004260114A
JP2004260114A JP2003051927A JP2003051927A JP2004260114A JP 2004260114 A JP2004260114 A JP 2004260114A JP 2003051927 A JP2003051927 A JP 2003051927A JP 2003051927 A JP2003051927 A JP 2003051927A JP 2004260114 A JP2004260114 A JP 2004260114A
Authority
JP
Japan
Prior art keywords
layer
electron supply
gate electrode
compound semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003051927A
Other languages
Japanese (ja)
Inventor
Yukari Suzuki
由佳里 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003051927A priority Critical patent/JP2004260114A/en
Publication of JP2004260114A publication Critical patent/JP2004260114A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound semiconductor which makes a leakage current in a gate electrode hard to be generated without spoiling element characteristics particular to a GaN compound. <P>SOLUTION: An electron supply layer 110 of a HEMT1 is composed of Al<SB>x</SB>Ga<SB>1-x</SB>N, and a channel layer 119 is composed of GaN. The surface of the electron supply layer 110 on the gate electrode side is covered with a cap layer 112 composed of Al<SB>y</SB>Ga<SB>1-y</SB>N (y>x), and the gate electrode 108 is formed on the cap layer 112. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は化合物半導体素子に関し、特に半導体ヘテロ接合を用いた高速電界効果型トランジスタ等に適用される化合物半導体素子に関する。
【0002】
【従来の技術】
【特許文献1】
特開2002−57158号公報
【0003】
近年、高周波用等に普及している高速半導体デバイスに、HEMT(High Electron Mobility Transistor)がある。HEMTは、MES−FET(Metal−Semiconductor Field Effect Transistor)の一種であり、GaAs/AlGaAsヘテロ接合を用いたものが実用化されている。そして、その優れたマイクロ波・ミリ波特性により、衛星放送用受信器等の低雑音かつ高速のFETとして広く使用されている。その要部は、具体的には、n型にドープされたAlGaAs電子供給層にノンドープのGaAsチャネル層(i−GaAs層)をヘテロ接合した半導体多層構造である。GaAsはAlGaAsよりも電気陰性度が高いため、n型AlGaAs電子供給層からi−GaAsチャネル層へ電子の一部が流入し、そのヘテロ接合界面よりもi−GaAsチャネル層側に逆三角形のポテンシャル井戸が形成される。このポテンシャル井戸内において電子はドナー不純物と空間的に分離された形で閉じ込められ、不純物散乱の影響を受け難い二次元電子ガス(以下、本明細書では「2DEG」と記載する)層を形成する。その結果、i−GaAsチャネル層内の電子は、ヘテロ接合界面に沿って非常に高い電子移動度を示し、高速電界効果型トランジスタが実現できる。
【0004】
他方、近年では、GaAs系化合物に代えてGaN系化合物を用いたHEMT(以下、GaN系HEMTという)が、次世代型の高速FETとして注目されている。GaN系化合物はバンドギャップが広く、電子有効質量から見積もられる飽和電子移動度も高いことから、より大出力で高耐圧かつ高温動作可能な高周波デバイスを実現できる可能性があり、研究が重ねられている(例えば特許文献1)。GaN系HEMTのゲート電極は、GaAs系HEMTと同様、ショットキー(Schottky)バリア電極として形成される。例えば、ゲート電極への印加電圧の極性あるいは電圧レベルに応じて、図2に示すショットキー接合のバリア高さVhiが変化し、このバリア高さVhiに応じてゲート電極周辺の空乏層領域の広がりが変化して、ソース−ドレイン間の電流を制御することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、GaN系HEMTにおいては、ゲート電極に電流リークが生じやすい問題があった。本発明の課題は、GaN系化合物特有の素子特性を損ねることなく、ゲート電極における電流リークを生じにくくした化合物半導体素子を提供することにある。
【0006】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の化合物半導体素子は、Gaを必須とするIII族元素の窒化物からなる電子供給層と、該電子供給層から電子の供給を受けるチャネル層と、電子供給層上にショットキー電極からなるゲート電極とを有し、
電子供給層はAlGa1−xNからなり、また、チャネル層は該電子供給層よりもGaN混晶比の高いIII族元素の窒化物からなり、さらに、
電子供給層の、ゲート電極の位置する側の表面が、AlGa1−yN(ただし、y>x)からなるキャップ層にて覆われてなり、該キャップ層上にゲート電極が形成されてなることを特徴とする。
【0007】
上記のような構造を採用すると、GaN系化合物特有の素子特性を十分に引き出しつつも、ゲート電極に電流リークを生じにくくした化合物半導体素子を実現することができる。
【0008】
AlGa1−xNは、AlN混晶比xが高くなるほど、図2に示すバンドギャップエネルギーEgが大きくなり、これに接合されたショットキー電極との界面に形成されるバリア高さVhiも高くなる。従って、ショットキー電極が接合されるAlGa1−xNのAlN混晶比xを十分に高くしておけば、ゲート電極の耐圧を向上でき、また、電流リークの抑制にも有効に寄与する。AlGa1−xNにて電子供給層を形成する場合、そのAlN混晶比xを一定以上に大きくすることは、チャネル層側の三角ポテンシャルを深くして電子閉じ込め効果を高め、ひいては形成される2DEG層の電子濃度を増加させて、素子の高出力化を図る上でも重要である。
【0009】
また、ゲートにおける電流リーク抑制には、ゲート接触層であるキャップ層に、電流リークの直接的な原因となる結晶欠陥がなるべく形成されていないことが望ましいが、該キャップ層をAlGa1−yNにて構成することは、この観点においても有利に作用する可能性がある。すなわち、最近の研究によると、GaN系化合物を合成する際に、化合物表層部にはN空孔が形成されやすく、このN空孔に起因したダングリングボンド準位等の形成が、電流リークの主たる原因ではないかと推測されている。本発明においてはキャップ層を構成するのは、AlN混晶比yの比較的高いAlGa1−yNであるが、該AlGa1−yNは平衡蒸気圧が高いため、気相成長中においても分解を起しにくい。従って、ゲート電極の接合領域に、電流リークの原因と推定されるN空孔が生じにくくなり、電流リーク抑制に有利に働くことが考えられる。
【0010】
ここで、電子供給層のAlN混晶比xを大きくしたとき、三角ポテンシャル深さ増大に寄与する重要な効果として、電子供給層とチャネル層との間の格子整合歪によるピエゾ分極効果がある。AlN混晶比xを大きくするとAlGa1−xNの格子定数が小さくなるから、チャネル層との間のGaN混晶比の高いチャネル層との間の格子定数差が拡大し、格子整合歪による弾性応力場ひいてはそれによるピエゾ分極効果も大きく現れる。しかし、AlN混晶比xが過度に高くなるとチャネル層との格子定数差が大きくなりすぎ、ミスフィット転位が導入されて格子緩和を生ずる。このような状態になると、ピエゾ分極効果が急減して三角ポテンシャルが形成が顕著でなくなり、高出力の素子を得ることができなくなる。
【0011】
従って、電子供給層にゲート電極を形成する場合、バリア高さの増加を優先して電子供給層全体のAlN混晶比xを過度に高くすると、上記の格子緩和が生じて三角ポテンシャルの形成が不十分となることにつながる。そこで、本発明では、電子供給層のAlN混晶比xはチャネル層との間の格子緩和が生じないように適度に低く留めつつ、ゲート電極が形成される表面側をそれよりもAlN混晶比yの高いAlGa1−yNからなるキャップ層で覆い、そのキャップ層の上にゲート電極を形成することが望ましい。その結果、電子供給層とチャネル層との間のピエゾ効果を十分に高めて、高出力素子に必須の深い三角ポテンシャルを形成できる。
【0012】
キャップ層は、AlN混晶比yを層厚方向に一定に形成することができる。このようなキャップ層は、形成が容易な利点がある。他方、キャップ層は、AlN混晶比yが層厚方向において電子供給層に近づくとともに減少するように形成することもできる。この態様によると、キャップ層と電子供給層との間にて格子定数が急激に変化しないので、電子供給層との間での格子緩和が生じにくくなり、ミスフィット転位等の導入も抑制される。また、ゲート電極の形成側においてAlN混晶比yをより高く設定できる。その結果、格子緩和に伴うミスフィット転位等の導入を抑制しつつバリア高さを大きくできるので、ゲートの耐圧向上と電流リーク抑制とをより効果的に図ることができる。
【0013】
また、キャップ層は、AlN混晶比yが第一の値y1に設定された第一層と、AlN混晶比yが第一の値と異なる第二の値y2に設定された第二層とが交互に積層された構造を有するものとして構成することもできる。このように構成すると、第一層と第二層との間に形成されるポテンシャル障壁効果により、ゲートの耐圧特性が向上し、また電流リークを一層生じにくくすることができる。特に、AlN混晶比yが高い第一層をゲート電極と接して配置し、第二層のAlN混晶比yをこれより低く設定すれば、格子緩和(ひいてはそれに伴うミスフィット転位等の導入)を抑制しつつバリア高さを大きくできるので、ゲートの耐圧向上と電流リーク抑制とをより効果的に図ることができる。
【0014】
なお、化合物半導体素子をHEMT等のFETとして構成する場合は、ゲート電極とは別に、ドレイン電極とソース電極とを形成しておくようにする。そして、本発明の化合物半導体素子は、それらドレイン電極とソース電極とがキャップ層を貫いて電子供給層に直接接するように配置されたものとして構成することができる。これにより、ドレイン電極とソース電極とのオーミック接合性を向上させることができ、また、電極接合界面における直列抵抗の増加も抑制できる。
【0015】
また、ゲート電極は、キャップ層に直接接して形成することができる。この構造によると、ゲート電極とキャップ層との間に良好なショットキーバリアを形成しやすく、バリア高さ確保による後述の電流リーク抑制効果をより顕著なものとすることができる。
【0016】
他方、本発明の化合物半導体素子は以下のように構成することもできる。すなわち、キャップ層の表面を覆うとともに、該キャップ層よりも層厚の小さく、かつAlNよりも飽和蒸気圧の低い絶縁性窒化物からなるパッシベーション層を有するものとし、該パッシベーション層の表面にゲート電極を形成する。パッシベーション層を、例えばSiなど、AlNよりも飽和蒸気圧の小さい絶縁性窒化物にて形成すれば、そのパッシベーション効果によりゲート電極の接触面へのN空孔等の形成がさらに抑制され、ゲート電極における電流リーク抑制効果を一層高めることができる。
【0017】
また、チャネル層がGaNからなる場合、電子供給層はAlN混晶比xが0.15以上0.25以下とされ、キャップ層のAlN混晶比yが0.25より高く1以下とされた構成とすることができる。このようにすることで、電子供給層とチャネル層との間のピエゾ効果を十分に高めてチャネル層側の2DEG層をなす三角ポテンシャルを深く形成でき、かつ、ゲート電極の電流リークも生じにくくすることができる。いずれも範囲外となった場合、上記の効果が十分に発揮されなくなる場合がある。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を添付の図面により説明する。
図1は、本発明の電界効果トランジスタの一例であるHEMT1の積層構造を模式的に示すものである。該HEMT1は、SiCあるいはサファイアからなる単結晶基板101上に、GaNからなるバッファ層102を介して、素子層103をヘテロエピタキシャル成長法により形成したものである。具体的には、周知の気相成長法、例えばMOVPE(Metalorganic Vapor Phase Epitaxy: 有機金属気相エピタキシャル成長)法が用いられる。
【0019】
素子層103は、バッファ層102に近い側から、ノンドープのGaNからなるチャネル層119、ノンドープのAlGa1−xNからなるスペーサ層105、Si等によりn型にドープされたAlGa1−xNからなる電子供給層110、及びAlGa1−yN(ただし、y>x)からなるキャップ層112がこの順序にて積層されたものである。そして、このキャップ層112上にゲート電極108が形成されている。本実施形態では、ゲート電極108がキャップ層112に直接接して形成されている。
【0020】
また、ドレイン電極106及びソース電極107は、キャップ層112を貫いて電子供給層110に直接接するように配置されている。ドレイン電極106とソース電極107とは、電子供給層110との間でオーミック接合を形成する金属(例えばTi/Al)により、また、ゲート電極108はキャップ層112との間でショットキー接合を形成する金属(例えばPd/Au)により、それぞれ構成されている。なお、スペーサ層105は、n型AlGaN電子供給層110を成長する際に、すでに形成されているGaNチャネル層119にn型ドーパントであるSi等の不純物が拡散することを防止するためのものである。
【0021】
スペーサ層105とチャネル層119との間には、それらのヘテロ接合界面よりもチャネル層119側に三角ポテンシャルが形成される。この三角ポテンシャル内において電子は、ドナー不純物(電子供給層110内のSi)と空間的に分離された形で閉じ込められて二次元電子ガス(2DEG)層を形成する。そして、ドレイン電極106とソース電極107との間に電圧を印加し、ゲート電極108でその電流値を制御しながら、ドレイン電極106とソース電極107との間でGaNチャネル層119を経由した通電を行う。
【0022】
電子供給層110のAlN混晶比xは、チャネル層119との間の格子緩和が生じないよう、適度に低い値、具体的には0.15以上0.25以下に設定される。他方、ゲート電極108が形成される電子供給層110の表面側を覆うキャップ層112のAlN混晶比yは、それよりも高い値、例えば0.25より高く1以下に調整される。このようにすることで、電子供給層110とチャネル層119との間のピエゾ効果を十分に高めてチャネル層119側の2DEG層をなす三角ポテンシャルを深く形成でき、かつ、ゲート電極108の電流リークも生じにくい。また、本実施形態では、ドレイン電極106及びソース電極107を、電子供給層110に直接接触させている。キャップ層112は、特に、ゲート電極108の電流リーク抑制効果をより高めるために、AlNにて構成すること(つまり、AlN混晶比yを1とすること)も可能である。
【0023】
上記キャップ層112は、AlN混晶比yを高めに設定することにより、図2において、ゲート電極108が接合される半導体層のバンドギャップEgが拡大し、ショットキーバリアのバリア高さVhiが増加するので、ゲート電極108における電流リークを抑制することができる。
【0024】
キャップ層112の厚さは、電流リーク抑制効果をより確実なものとする観点から、5nm以上とするのがよく、特にノンドープのAlGa1−yNにて構成することが望ましい。他方、キャップ層112による直列抵抗の過度の増加を招かないために、上記厚さは、25nm以下とするのがよい。
【0025】
なお、図1のHEMT1においてキャップ層112は、図3に示すように、AlN混晶比yが層厚方向に一定に形成されている。このようなキャップ層112は、形成が容易な利点がある。他方、図4に示すように、キャップ層112を、AlN混晶比yが層厚方向において電子供給層110に近づくとともに減少するように形成することもできる。この態様によると、キャップ層112と電子供給層110との間にて格子定数が急激に変化しないので、電子供給層110との間での格子緩和が生じにくくなり、ゲート電極108の形成側においてAlN混晶比yをより高く設定でき、また、キャップ層112の全体の厚さを大きくすることも可能となる。いずれも、電流リーク抑制効果のさらなる向上に寄与する。なお、図4においては、電子供給層110に向けて、キャップ層112のAlN混晶比yを段階的に減少させているが、連続的に減少させてもよい。
【0026】
さらに、図5に示すように、キャップ層112は、AlN混晶比yが第一の値y1に設定された第一層110aと、AlN混晶比yが第一の値と異なる第二の値y2に設定された第二層110bとが交互に積層された構造を有するものとして構成することもできる。図5の実施形態では、AlN混晶比yが高い第一層110aをゲート電極108と接して配置し、第二層110bのAlN混晶比yをこれより低く設定してある(つまり、y1>y2)。
【0027】
次に、図6のHEMT100のように、キャップ層112の表面を覆うとともに、該キャップ層112のよりも層厚の小さい絶縁性窒化物からなるパッシベーション層113を設け、該パッシベーション層113の表面にゲート電極108を形成してもよい。パッシベーション層113を、例えばSiなどのAlNよりも飽和蒸気圧の小さい絶縁性窒化物にて形成すれば、そのパッシベーション効果によりゲート電極108の接触面へのN空孔等の形成がさらに抑制され、ゲート電極108における電流リーク抑制効果を一層高めることができる。なお、パッシベーション層113の膜厚を過度に大きくすると、ゲート電極108とパッシベーション層113とキャップ層112とのMIS接合的な傾向が強くなり、ゲート電極の制御特性がショットキー接合的な特性からかけ離れたものとなる。従って、パッシベーション層113を形成する場合でも、上記不具合が生じないように、その層厚を調整する。
【図面の簡単な説明】
【図1】本発明の化合物半導体素子の一実施形態を示す模式図。
【図2】ショットキー電極の接合バンド構造を模式的に示す図。
【図3】キャップ層のAlN混晶比yを層厚方向に一定とする態様を示す模式図。
【図4】キャップ層のAlN混晶比yを、電子供給層に近づくほど減少させる態様を示す模式図。
【図5】AlN混晶比yの異なる層を交互に積層してキャップ層を形成する態様を示す模式図。
【図6】本発明の化合物半導体素子の第一の変形例を示す模式図。
【符号の説明】
1,100 HEMT(化合物半導体素子)
106 ドレイン電極
107 ソース電極
108 ゲート電極
110 電子供給層
112 キャップ層
113 パッシベーション層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound semiconductor device, and more particularly to a compound semiconductor device applied to a high-speed field effect transistor using a semiconductor heterojunction.
[0002]
[Prior art]
[Patent Document 1]
JP, 2002-57158, A
2. Description of the Related Art In recent years, HEMT (High Electron Mobility Transistor) is a high-speed semiconductor device that has been widely used for high frequency use. HEMT is a kind of MES-FET (Metal-Semiconductor Field Effect Transistor), and a device using a GaAs / AlGaAs heterojunction has been put to practical use. Due to its excellent microwave and millimeter wave characteristics, it is widely used as a low-noise and high-speed FET for satellite broadcast receivers and the like. The main part thereof is, specifically, a semiconductor multi-layer structure in which a non-doped GaAs channel layer (i-GaAs layer) is heterojuncted with an n-type doped AlGaAs electron supply layer. Since GaAs has a higher electronegativity than AlGaAs, some of the electrons flow from the n-type AlGaAs electron supply layer into the i-GaAs channel layer, and an inverted triangular potential is closer to the i-GaAs channel layer than the heterojunction interface. A well is formed. In this potential well, electrons are confined in a form spatially separated from donor impurities to form a two-dimensional electron gas (hereinafter, referred to as “2DEG”) layer that is hardly affected by impurity scattering. . As a result, electrons in the i-GaAs channel layer exhibit extremely high electron mobility along the heterojunction interface, and a high-speed field-effect transistor can be realized.
[0004]
On the other hand, in recent years, a HEMT using a GaN-based compound instead of a GaAs-based compound (hereinafter referred to as a GaN-based HEMT) has attracted attention as a next-generation high-speed FET. Since GaN-based compounds have a wide band gap and high saturation electron mobility estimated from the effective electron mass, there is a possibility of realizing a high-frequency device that can operate at higher temperature with higher output voltage and higher voltage. (For example, Patent Document 1). The gate electrode of the GaN-based HEMT is formed as a Schottky barrier electrode, similarly to the GaAs-based HEMT. For example, the barrier height Vhi of the Schottky junction shown in FIG. 2 changes according to the polarity or voltage level of the voltage applied to the gate electrode, and the depletion layer region around the gate electrode expands according to the barrier height Vhi. Can be changed to control the current between the source and the drain.
[0005]
[Problems to be solved by the invention]
However, the GaN-based HEMT has a problem in that current leakage is likely to occur in the gate electrode. It is an object of the present invention to provide a compound semiconductor device in which current leakage at a gate electrode is less likely to occur without impairing device characteristics unique to a GaN-based compound.
[0006]
[Means for Solving the Problems and Functions / Effects]
In order to solve the above-mentioned problems, a compound semiconductor device of the present invention includes an electron supply layer made of a nitride of a group III element containing Ga as an essential component, a channel layer receiving supply of electrons from the electron supply layer, A gate electrode comprising a Schottky electrode on the supply layer,
The electron supply layer is made of Al x Ga 1-x N, In addition, the channel layer is made of nitride of high Group III element of GaN mixed crystal ratio than the electron supply layer, and further,
The electron supply layer, positions of the side surface of the gate electrode, Al y Ga 1-y N ( However, y> x) becomes covered with a cap layer made of a gate electrode is formed on the cap layer It is characterized by becoming.
[0007]
By employing the above-described structure, it is possible to realize a compound semiconductor device in which current leakage hardly occurs in the gate electrode while sufficiently taking out device characteristics unique to the GaN-based compound.
[0008]
Al x Ga 1-x N, the higher AlN mixed crystal ratio x increases, the greater the band gap energy Eg as shown in FIG. 2, this barrier height Vhi formed at the interface between the bonded Schottky electrode also Get higher. Therefore, if the AlN mixed crystal ratio x of Al x Ga 1 -xN to which the Schottky electrode is joined is made sufficiently high, the withstand voltage of the gate electrode can be improved and the current leakage can be effectively suppressed. I do. When the electron supply layer is formed of Al x Ga 1-x N, increasing the AlN mixed crystal ratio x to a certain value or more increases the triangular potential on the channel layer side to enhance the electron confinement effect, and thus the formation. It is also important to increase the electron density of the 2DEG layer to increase the output of the device.
[0009]
Moreover, the current leakage suppression in gate, the cap layer is a gate contact layer, it is desirable that the crystal defects become a direct cause of current leakage is not possible form, the cap layer Al y Ga 1- The configuration with yN may be advantageous in this respect as well. That is, according to recent research, when synthesizing a GaN-based compound, N vacancies are likely to be formed in the surface layer of the compound, and the formation of dangling bond levels and the like caused by the N vacancies causes current leakage. It is speculated that this is the main cause. To configure the cap layer in the present invention is relatively high Al y Ga 1-y N in AlN mole fraction y, since the Al y Ga 1-y N is high equilibrium vapor pressure, vapor Decomposition hardly occurs even during growth. Therefore, it is conceivable that N vacancies, which are presumed to be the cause of current leakage, are less likely to occur in the junction region of the gate electrode, which advantageously works to suppress current leakage.
[0010]
Here, when the AlN mixed crystal ratio x of the electron supply layer is increased, an important effect contributing to an increase in the triangular potential depth is a piezo polarization effect due to a lattice matching strain between the electron supply layer and the channel layer. Since the lattice constant of Al x Ga 1-x N by increasing the AlN mixed crystal ratio x is reduced, enlarged lattice constant difference between the high channel layer of GaN mixed crystal ratio between the channel layer is lattice matched The elastic stress field due to the strain and the resulting piezo polarization effect also appear greatly. However, when the AlN mixed crystal ratio x is excessively high, the lattice constant difference from the channel layer becomes too large, and misfit dislocations are introduced to cause lattice relaxation. In such a state, the piezo polarization effect is sharply reduced, and triangular potential is not significantly formed, so that a high-output device cannot be obtained.
[0011]
Therefore, when the gate electrode is formed in the electron supply layer, if the AlN mixed crystal ratio x of the entire electron supply layer is excessively increased while giving priority to an increase in the barrier height, the above-described lattice relaxation occurs and triangular potential is formed. It leads to insufficiency. Therefore, in the present invention, the AlN mixed crystal ratio x of the electron supply layer is kept appropriately low so as not to cause lattice relaxation between the electron supply layer and the channel layer, and the surface side on which the gate electrode is formed is made of AlN mixed crystal. covered with a cap layer made of a high specific y Al y Ga 1-y N , it is desirable to form a gate electrode on the capping layer. As a result, the piezo effect between the electron supply layer and the channel layer is sufficiently increased, and a deep triangular potential essential for a high-power element can be formed.
[0012]
The cap layer can form the AlN mixed crystal ratio y constant in the layer thickness direction. Such a cap layer has an advantage that it can be easily formed. On the other hand, the cap layer may be formed such that the AlN mixed crystal ratio y decreases in the layer thickness direction as it approaches the electron supply layer. According to this aspect, since the lattice constant does not change rapidly between the cap layer and the electron supply layer, lattice relaxation between the electron supply layer and the electron supply layer is less likely to occur, and the introduction of misfit dislocations and the like is suppressed. . Further, the AlN mixed crystal ratio y can be set higher on the gate electrode formation side. As a result, it is possible to increase the barrier height while suppressing the introduction of misfit dislocations and the like due to lattice relaxation, so that it is possible to more effectively improve the gate breakdown voltage and suppress current leakage.
[0013]
The cap layer includes a first layer having an AlN mixed crystal ratio y set to a first value y1 and a second layer having an AlN mixed crystal ratio y set to a second value y2 different from the first value. May be configured to have a structure in which are alternately stacked. According to this structure, the gate withstand voltage characteristic is improved by the potential barrier effect formed between the first layer and the second layer, and current leakage can be further reduced. In particular, if the first layer having a high AlN mixed crystal ratio y is arranged in contact with the gate electrode and the AlN mixed crystal ratio y of the second layer is set lower than this, lattice relaxation (and consequently introduction of misfit dislocations and the like) can be achieved. ) Can be increased while the barrier height can be increased, so that the gate breakdown voltage can be improved and the current leakage can be more effectively suppressed.
[0014]
When the compound semiconductor element is configured as an FET such as a HEMT, a drain electrode and a source electrode are formed separately from the gate electrode. Further, the compound semiconductor device of the present invention can be configured such that the drain electrode and the source electrode are arranged so as to penetrate the cap layer and directly contact the electron supply layer. Thus, the ohmic junction between the drain electrode and the source electrode can be improved, and the increase in series resistance at the electrode junction interface can be suppressed.
[0015]
Further, the gate electrode can be formed directly in contact with the cap layer. According to this structure, a good Schottky barrier can be easily formed between the gate electrode and the cap layer, and the effect of suppressing a current leak described later by securing the barrier height can be made more remarkable.
[0016]
On the other hand, the compound semiconductor device of the present invention can be configured as follows. That is, the semiconductor device has a passivation layer made of an insulating nitride which covers the surface of the cap layer, has a smaller thickness than the cap layer, and has a lower saturated vapor pressure than AlN, and has a gate electrode on the surface of the passivation layer. To form If the passivation layer is formed of an insulating nitride such as Si 3 N 4 having a smaller saturated vapor pressure than AlN, the formation of N vacancies and the like on the contact surface of the gate electrode is further suppressed by the passivation effect. In addition, the effect of suppressing current leakage in the gate electrode can be further enhanced.
[0017]
When the channel layer is made of GaN, the electron supply layer has an AlN mixed crystal ratio x of 0.15 or more and 0.25 or less, and the cap layer has an AlN mixed crystal ratio y of more than 0.25 and 1 or less. It can be configured. By doing so, the piezo effect between the electron supply layer and the channel layer can be sufficiently increased, and the triangular potential forming the 2DEG layer on the channel layer side can be formed deeply, and current leakage of the gate electrode hardly occurs. be able to. If any of them is out of the range, the above effects may not be sufficiently exhibited.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 schematically shows a stacked structure of an HEMT 1 which is an example of a field-effect transistor of the present invention. The HEMT 1 is obtained by forming an element layer 103 on a single crystal substrate 101 made of SiC or sapphire via a buffer layer 102 made of GaN by a heteroepitaxial growth method. Specifically, a well-known vapor phase growth method, for example, a MOVPE (Metalorganic Vapor Phase Epitaxy) method is used.
[0019]
Element layer 103 from the side close to the buffer layer 102, Al x Ga 1 channel layer 119 made of undoped GaN, the spacer layer 105, Si or the like made of undoped Al x Ga 1-x N doped with n-type electron supply layer 110 made of -x N, and Al y Ga 1-y N (However, y> x) in which a cap layer 112 made of are laminated in this order. Then, a gate electrode 108 is formed on the cap layer 112. In this embodiment, the gate electrode 108 is formed in direct contact with the cap layer 112.
[0020]
Further, the drain electrode 106 and the source electrode 107 are arranged so as to penetrate the cap layer 112 and directly contact the electron supply layer 110. The drain electrode 106 and the source electrode 107 are formed of a metal (for example, Ti / Al) that forms an ohmic junction with the electron supply layer 110, and the gate electrode 108 forms a Schottky junction with the cap layer 112. Respectively (for example, Pd / Au). Note that the spacer layer 105 is for preventing impurities such as Si, which is an n-type dopant, from diffusing into the GaN channel layer 119 already formed when the n-type AlGaN electron supply layer 110 is grown. is there.
[0021]
A triangular potential is formed between the spacer layer 105 and the channel layer 119 on the channel layer 119 side of the heterojunction interface. Within this triangular potential, electrons are confined in a form spatially separated from donor impurities (Si in the electron supply layer 110) to form a two-dimensional electron gas (2DEG) layer. Then, a voltage is applied between the drain electrode 106 and the source electrode 107, and while the current value is controlled by the gate electrode 108, a current is applied between the drain electrode 106 and the source electrode 107 via the GaN channel layer 119. Do.
[0022]
The AlN mixed crystal ratio x of the electron supply layer 110 is set to an appropriately low value, specifically, 0.15 or more and 0.25 or less so that lattice relaxation between the electron supply layer 110 and the channel layer 119 does not occur. On the other hand, the AlN mixed crystal ratio y of the cap layer 112 covering the surface side of the electron supply layer 110 on which the gate electrode 108 is formed is adjusted to a higher value, for example, higher than 0.25 and 1 or less. By doing so, the piezo effect between the electron supply layer 110 and the channel layer 119 can be sufficiently increased, and the triangular potential forming the 2DEG layer on the channel layer 119 side can be formed deeply. Is also unlikely to occur. In this embodiment, the drain electrode 106 and the source electrode 107 are in direct contact with the electron supply layer 110. In particular, the cap layer 112 can be made of AlN (that is, the AlN mixed crystal ratio y is set to 1) in order to further enhance the current leak suppressing effect of the gate electrode 108.
[0023]
By setting the AlN mixed crystal ratio y to be higher in the cap layer 112, in FIG. 2, the band gap Eg of the semiconductor layer to which the gate electrode 108 is joined increases, and the barrier height Vhi of the Schottky barrier increases. Therefore, current leakage in the gate electrode 108 can be suppressed.
[0024]
The thickness of the cap layer 112, from the viewpoint of made more reliable current leakage suppressing effect, good for a 5nm or more, it is desirable in particular composed of non-doped Al y Ga 1-y N. On the other hand, in order not to cause an excessive increase in series resistance due to the cap layer 112, the thickness is preferably set to 25 nm or less.
[0025]
In the HEMT 1 shown in FIG. 1, the cap layer 112 is formed such that the AlN mixed crystal ratio y is constant in the layer thickness direction as shown in FIG. Such a cap layer 112 has an advantage that it can be easily formed. On the other hand, as shown in FIG. 4, the cap layer 112 may be formed such that the AlN mixed crystal ratio y decreases as approaching the electron supply layer 110 in the layer thickness direction. According to this aspect, since the lattice constant does not change abruptly between the cap layer 112 and the electron supply layer 110, lattice relaxation between the cap layer 112 and the electron supply layer 110 is unlikely to occur, and the formation of the gate electrode 108 on the side where the gate electrode 108 is formed is difficult. The AlN mixed crystal ratio y can be set higher, and the entire thickness of the cap layer 112 can be increased. Either of these contributes to a further improvement in the effect of suppressing current leakage. In FIG. 4, the AlN mixed crystal ratio y of the cap layer 112 is gradually decreased toward the electron supply layer 110, but may be continuously decreased.
[0026]
Further, as shown in FIG. 5, the cap layer 112 includes a first layer 110a in which the AlN mixed crystal ratio y is set to the first value y1 and a second layer 110a in which the AlN mixed crystal ratio y is different from the first value. The second layer 110b set to the value y2 may be configured to have a structure in which the second layer 110b is alternately stacked. In the embodiment of FIG. 5, the first layer 110a having a high AlN mixed crystal ratio y is disposed in contact with the gate electrode 108, and the AlN mixed crystal ratio y of the second layer 110b is set lower than this (that is, y1). > Y2).
[0027]
Next, as in the HEMT 100 of FIG. 6, a passivation layer 113 made of an insulating nitride having a smaller thickness than the cap layer 112 is provided while covering the surface of the cap layer 112. The gate electrode 108 may be formed. If the passivation layer 113 is formed of an insulating nitride, such as Si 3 N 4, having a smaller saturation vapor pressure than AlN, the formation of N vacancies and the like on the contact surface of the gate electrode 108 is further enhanced by the passivation effect. Thus, the effect of suppressing current leakage in the gate electrode 108 can be further enhanced. If the thickness of the passivation layer 113 is excessively large, the tendency of the gate electrode 108 to pass through the MIS junction between the passivation layer 113 and the cap layer 112 is increased, and the control characteristics of the gate electrode are far from Schottky junction characteristics. It will be. Therefore, even when the passivation layer 113 is formed, its thickness is adjusted so that the above-described problem does not occur.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a compound semiconductor device of the present invention.
FIG. 2 is a diagram schematically showing a junction band structure of a Schottky electrode.
FIG. 3 is a schematic view showing an embodiment in which the AlN mixed crystal ratio y of the cap layer is constant in the layer thickness direction.
FIG. 4 is a schematic diagram showing an aspect in which the AlN mixed crystal ratio y of the cap layer is reduced as approaching the electron supply layer.
FIG. 5 is a schematic view showing an embodiment in which layers having different AlN mixed crystal ratios y are alternately stacked to form a cap layer.
FIG. 6 is a schematic view showing a first modification of the compound semiconductor device of the present invention.
[Explanation of symbols]
1,100 HEMT (compound semiconductor device)
106 Drain electrode 107 Source electrode 108 Gate electrode 110 Electron supply layer 112 Cap layer 113 Passivation layer

Claims (8)

Gaを必須とするIII族元素の窒化物からなる電子供給層と、該電子供給層から電子の供給を受けるチャネル層と、前記電子供給層上にショットキー電極からなるゲート電極とを有し、
前記電子供給層はAlGa1−xNからなり、また、前記チャネル層は該電子供給層よりもGaN混晶比の高いIII族元素の窒化物からなり、さらに、
前記電子供給層の、前記ゲート電極の位置する側の表面が、AlGa1−yN(ただし、y>x)からなるキャップ層にて覆われてなり、該キャップ層上に前記ゲート電極が形成されてなることを特徴とする化合物半導体素子。
An electron supply layer made of a nitride of a Group III element that essentially contains Ga, a channel layer receiving supply of electrons from the electron supply layer, and a gate electrode made of a Schottky electrode on the electron supply layer,
Said electron supply layer is made of Al x Ga 1-x N, In addition, the channel layer is made of nitride of high Group III element of GaN mixed crystal ratio than the electron supply layer, and further,
Said electron supply layer, the surface on the side position of the gate electrode, Al y Ga 1-y N ( However, y> x) becomes covered with a cap layer made of, the gate electrode to the cap layer A compound semiconductor device characterized by being formed.
前記キャップ層は、AlN混晶比yが層厚方向に一定に形成されることを特徴とする請求項1記載の化合物半導体素子。2. The compound semiconductor device according to claim 1, wherein the cap layer is formed such that an AlN mixed crystal ratio y is constant in a layer thickness direction. 前記キャップ層は、AlN混晶比yが層厚方向において前記電子供給層に近づくとともに減少するように形成されることを特徴とする請求項1記載の化合物半導体素子。2. The compound semiconductor device according to claim 1, wherein the cap layer is formed such that the AlN mixed crystal ratio y decreases in the layer thickness direction as the electron supply layer approaches the electron supply layer. 3. 前記キャップ層は、AlN混晶比yが第一の値y1に設定された第一層と、前記AlN混晶比yが前記第一の値と異なる第二の値y2に設定された第二層とが交互に積層された構造を有することを特徴とする請求項1記載の化合物半導体素子。The cap layer includes a first layer having an AlN mixed crystal ratio y set to a first value y1 and a second layer having an AlN mixed crystal ratio y set to a second value y2 different from the first value. 2. The compound semiconductor device according to claim 1, wherein the compound semiconductor device has a structure in which layers are alternately stacked. 前記ゲート電極とは別にドレイン電極とソース電極とが形成されてなり、それらドレイン電極とソース電極とが前記キャップ層を貫いて前記電子供給層に直接接するように配置されてなることを特徴とする請求項1ないし請求項4のいずれか1項に記載の化合物半導体素子。A drain electrode and a source electrode are formed separately from the gate electrode, and the drain electrode and the source electrode are arranged so as to penetrate the cap layer and directly contact the electron supply layer. The compound semiconductor device according to claim 1. 前記ゲート電極が前記キャップ層に直接接して形成されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の化合物半導体素子。The compound semiconductor device according to claim 1, wherein the gate electrode is formed directly in contact with the cap layer. 前記キャップ層の表面を覆うとともに、該キャップ層よりも層厚の小さく、かつAlNよりも飽和蒸気圧の低い絶縁性窒化物からなるパッシベーション層を有し、該パッシベーション層の表面に前記ゲート電極が形成されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の化合物半導体素子。A passivation layer that covers the surface of the cap layer, is smaller in thickness than the cap layer, and is made of an insulating nitride having a lower saturated vapor pressure than AlN; and the gate electrode is formed on the surface of the passivation layer. The compound semiconductor device according to any one of claims 1 to 5, wherein the compound semiconductor device is formed. 前記チャネル層はGaNからなり、前記電子供給層はAlN混晶比xが0.15以上0.25以下とされ、前記キャップ層のAlN混晶比yが0.25より高く1以下とされてなることを特徴とする請求項1ないし請求項7のいずれか1項に記載の化合物半導体素子。The channel layer is made of GaN, the electron supply layer has an AlN mixed crystal ratio x of 0.15 or more and 0.25 or less, and the AlN mixed crystal ratio y of the cap layer is higher than 0.25 and 1 or less. The compound semiconductor device according to claim 1, wherein:
JP2003051927A 2003-02-27 2003-02-27 Compound semiconductor element Pending JP2004260114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051927A JP2004260114A (en) 2003-02-27 2003-02-27 Compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051927A JP2004260114A (en) 2003-02-27 2003-02-27 Compound semiconductor element

Publications (1)

Publication Number Publication Date
JP2004260114A true JP2004260114A (en) 2004-09-16

Family

ID=33116948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051927A Pending JP2004260114A (en) 2003-02-27 2003-02-27 Compound semiconductor element

Country Status (1)

Country Link
JP (1) JP2004260114A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245317A (en) * 2005-03-03 2006-09-14 Fujitsu Ltd Semiconductor device and its manufacturing method
WO2007062590A1 (en) * 2005-11-29 2007-06-07 The Hong Kong University Of Science & Technology Low density drain hemts
JP2007519231A (en) * 2003-12-05 2007-07-12 インターナショナル・レクティファイヤ・コーポレーション Passivation of group III nitride devices and method thereof
JP2007250950A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field effect transistor using nitride semiconductor
JP2008521248A (en) * 2004-11-23 2008-06-19 クリー インコーポレイテッド Nitride-based transistors and cap and / or inert layers of transistor structures and methods for their manufacture
WO2009039041A2 (en) * 2007-09-17 2009-03-26 Transphorm Inc. Enhancement mode gallium nitride power devices
WO2011046213A1 (en) * 2009-10-16 2011-04-21 日本電気株式会社 Nitride semiconductor device and electronic device
JP2011199051A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Semiconductor device
JP2011249827A (en) * 2011-07-19 2011-12-08 Fujitsu Ltd Compound semiconductor device
US8237198B2 (en) 2008-12-10 2012-08-07 Transphorm Inc. Semiconductor heterostructure diodes
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
CN103077890A (en) * 2011-09-28 2013-05-01 富士通株式会社 Semiconductor device and fabrication method
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519231A (en) * 2003-12-05 2007-07-12 インターナショナル・レクティファイヤ・コーポレーション Passivation of group III nitride devices and method thereof
JP2008521248A (en) * 2004-11-23 2008-06-19 クリー インコーポレイテッド Nitride-based transistors and cap and / or inert layers of transistor structures and methods for their manufacture
US9166033B2 (en) 2004-11-23 2015-10-20 Cree, Inc. Methods of passivating surfaces of wide bandgap semiconductor devices
JP2006245317A (en) * 2005-03-03 2006-09-14 Fujitsu Ltd Semiconductor device and its manufacturing method
WO2007062590A1 (en) * 2005-11-29 2007-06-07 The Hong Kong University Of Science & Technology Low density drain hemts
JP2007250950A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field effect transistor using nitride semiconductor
US8344424B2 (en) 2007-09-17 2013-01-01 Transphorm Inc. Enhancement mode gallium nitride power devices
WO2009039041A2 (en) * 2007-09-17 2009-03-26 Transphorm Inc. Enhancement mode gallium nitride power devices
US9343560B2 (en) 2007-09-17 2016-05-17 Transphorm Inc. Gallium nitride power devices
US8633518B2 (en) 2007-09-17 2014-01-21 Transphorm Inc. Gallium nitride power devices
WO2009039041A3 (en) * 2007-09-17 2009-05-14 Transphorm Inc Enhancement mode gallium nitride power devices
US8193562B2 (en) 2007-09-17 2012-06-05 Tansphorm Inc. Enhancement mode gallium nitride power devices
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US8841702B2 (en) 2008-04-23 2014-09-23 Transphorm Inc. Enhancement mode III-N HEMTs
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US9437708B2 (en) 2008-04-23 2016-09-06 Transphorm Inc. Enhancement mode III-N HEMTs
US9196716B2 (en) 2008-04-23 2015-11-24 Transphorm Inc. Enhancement mode III-N HEMTs
US9941399B2 (en) 2008-04-23 2018-04-10 Transphorm Inc. Enhancement mode III-N HEMTs
US8531232B2 (en) 2008-09-23 2013-09-10 Transphorm Inc. Inductive load power switching circuits
US8493129B2 (en) 2008-09-23 2013-07-23 Transphorm Inc. Inductive load power switching circuits
US8816751B2 (en) 2008-09-23 2014-08-26 Transphorm Inc. Inductive load power switching circuits
US9690314B2 (en) 2008-09-23 2017-06-27 Transphorm Inc. Inductive load power switching circuits
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US8541818B2 (en) 2008-12-10 2013-09-24 Transphorm Inc. Semiconductor heterostructure diodes
US8237198B2 (en) 2008-12-10 2012-08-07 Transphorm Inc. Semiconductor heterostructure diodes
US9041065B2 (en) 2008-12-10 2015-05-26 Transphorm Inc. Semiconductor heterostructure diodes
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US9293561B2 (en) 2009-05-14 2016-03-22 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US9111961B2 (en) 2009-08-28 2015-08-18 Transphorm Inc. Semiconductor devices with field plates
US9373699B2 (en) 2009-08-28 2016-06-21 Transphorm Inc. Semiconductor devices with field plates
US8692294B2 (en) 2009-08-28 2014-04-08 Transphorm Inc. Semiconductor devices with field plates
US9831315B2 (en) 2009-08-28 2017-11-28 Transphorm Inc. Semiconductor devices with field plates
JP5387686B2 (en) * 2009-10-16 2014-01-15 日本電気株式会社 Nitride semiconductor device and electronic device
WO2011046213A1 (en) * 2009-10-16 2011-04-21 日本電気株式会社 Nitride semiconductor device and electronic device
US9496137B2 (en) 2009-12-10 2016-11-15 Transphorm Inc. Methods of forming reverse side engineered III-nitride devices
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US10199217B2 (en) 2009-12-10 2019-02-05 Transphorm Inc. Methods of forming reverse side engineered III-nitride devices
JP2011199051A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Semiconductor device
US9147760B2 (en) 2010-12-15 2015-09-29 Transphorm Inc. Transistors with isolation regions
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US9437707B2 (en) 2010-12-15 2016-09-06 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8895421B2 (en) 2011-02-02 2014-11-25 Transphorm Inc. III-N device structures and methods
US9224671B2 (en) 2011-02-02 2015-12-29 Transphorm Inc. III-N device structures and methods
US8895423B2 (en) 2011-03-04 2014-11-25 Transphorm Inc. Method for making semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US9142659B2 (en) 2011-03-04 2015-09-22 Transphorm Inc. Electrode configurations for semiconductor devices
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
JP2011249827A (en) * 2011-07-19 2011-12-08 Fujitsu Ltd Compound semiconductor device
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9224805B2 (en) 2011-09-06 2015-12-29 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
CN103077890A (en) * 2011-09-28 2013-05-01 富士通株式会社 Semiconductor device and fabrication method
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US9171836B2 (en) 2011-10-07 2015-10-27 Transphorm Inc. Method of forming electronic components with increased reliability
US8860495B2 (en) 2011-10-07 2014-10-14 Transphorm Inc. Method of forming electronic components with increased reliability
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9685323B2 (en) 2012-02-03 2017-06-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9490324B2 (en) 2012-04-09 2016-11-08 Transphorm Inc. N-polar III-nitride transistors
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9634100B2 (en) 2012-06-27 2017-04-25 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9443849B2 (en) 2012-07-16 2016-09-13 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9171910B2 (en) 2012-07-16 2015-10-27 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9520491B2 (en) 2013-02-15 2016-12-13 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9590060B2 (en) 2013-03-13 2017-03-07 Transphorm Inc. Enhancement-mode III-nitride devices
US10535763B2 (en) 2013-03-13 2020-01-14 Transphorm Inc. Enhancement-mode III-nitride devices
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US10043898B2 (en) 2013-03-13 2018-08-07 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9865719B2 (en) 2013-03-15 2018-01-09 Transphorm Inc. Carbon doping semiconductor devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US10043896B2 (en) 2013-07-19 2018-08-07 Transphorm Inc. III-Nitride transistor including a III-N depleting layer
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US9842922B2 (en) 2013-07-19 2017-12-12 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9935190B2 (en) 2014-07-21 2018-04-03 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US10629681B2 (en) 2016-05-31 2020-04-21 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer
US11121216B2 (en) 2016-05-31 2021-09-14 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer

Similar Documents

Publication Publication Date Title
JP2004260114A (en) Compound semiconductor element
JP4117535B2 (en) Compound semiconductor device
US7863649B2 (en) Nitride semiconductor device and method for fabricating the same
JP6371986B2 (en) Nitride semiconductor structure
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
JP4744109B2 (en) Semiconductor device and manufacturing method thereof
US8692292B2 (en) Semiconductor device including separated gate electrode and conductive layer
US7728355B2 (en) Nitrogen polar III-nitride heterojunction JFET
WO2010064362A1 (en) Field effect transistor
JP5190923B2 (en) Nitride semiconductor transistor having GaN as channel layer and manufacturing method thereof
US20070176215A1 (en) Transistor
US8669592B2 (en) Compound semiconductor device and method for fabricating the same
JP2007220895A (en) Nitride semiconductor device and its manufacturing method
JP2007109830A (en) Field effect transistor
JP2009200395A (en) Hfet, and manufacturing method thereof
US7821030B2 (en) Semiconductor device and method for manufacturing the same
US20120153356A1 (en) High electron mobility transistor with indium gallium nitride layer
JP5691138B2 (en) Field effect transistor and manufacturing method thereof
WO2014050740A1 (en) Switching element
WO2014031229A1 (en) Ingan channel n-polar gan hemt profile
JP6343807B2 (en) Field effect transistor and manufacturing method thereof
JP2008198787A (en) GaN-BASED SEMICONDUCTOR DEVICE
JP2011108712A (en) Nitride semiconductor device
JP2003133332A (en) Compound semiconductor element
JP6096523B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Effective date: 20080620

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Effective date: 20081218

Free format text: JAPANESE INTERMEDIATE CODE: A02