JP2004259745A - プラズマ処理装置および静電チャックの製造方法 - Google Patents

プラズマ処理装置および静電チャックの製造方法 Download PDF

Info

Publication number
JP2004259745A
JP2004259745A JP2003045775A JP2003045775A JP2004259745A JP 2004259745 A JP2004259745 A JP 2004259745A JP 2003045775 A JP2003045775 A JP 2003045775A JP 2003045775 A JP2003045775 A JP 2003045775A JP 2004259745 A JP2004259745 A JP 2004259745A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
wafer
film
alumite
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045775A
Other languages
English (en)
Other versions
JP3964803B2 (ja
Inventor
Ryujiro Udo
竜二郎 有働
Masatsugu Arai
雅嗣 荒井
Masanori Sumiya
匡規 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003045775A priority Critical patent/JP3964803B2/ja
Publication of JP2004259745A publication Critical patent/JP2004259745A/ja
Priority to US11/327,447 priority patent/US20060121195A1/en
Application granted granted Critical
Publication of JP3964803B2 publication Critical patent/JP3964803B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】安価で信頼性の高い静電チャックを具備した半導体製造装置を提供する。
【解決手段】絶縁体の基板6と、この表面に形成したアルミニウムからなる複数の導電性薄膜4a,4bと、導電性薄膜の表面を陽極酸化して形成したアルマイト膜2a,2bからなり、導電性薄膜4a,4bにそれぞれ異なる方向の直流電圧を印加してウエハ7を吸着する面が静電気的に双極をなすようにした静電チャック。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ処理装置に関する。さらに、本発明は、ウエハを吸着する面に静電的に双極をなす電極が配置された静電チャックを具備したプラズマ装置の製造方法に関する。
【0002】
【従来の技術】
静電チャックの吸着膜としてアルマイト膜を利用した従来のプラズマ処理装置は、静電チャックの基材をアルミニウムで構成し、その表面を陽極酸化することによって吸着膜であるアルマイト膜を形成する構成を採用していた(例えば、特許文献1参照)。
【0003】
アルマイト膜を吸着膜とする静電チャックは、例えばセラミック焼結体を吸着膜とする静電チャックと比較して、構造が簡単でコストが安い、短期間で製作可能などの長所がある。しかしその反面、アルマイト膜を吸着膜とする従来の静電チャックには、大きく分けて2つの課題があった。そのひとつは、設計の自由度が低いため、単極型の静電チャックを形成することは容易であるが、双極型の静電チャックを形成することは困難という点であり、もうひとつの課題は、アルマイト膜の電気的または機械的な健全性が、しばしば低下する場合があるという点である。
【0004】
前者の課題に関して、単極型の静電チャックは、プラズマ中で使用する場合にはプラズマが導体として作用することで吸着力を発生しているため、プラズマ処理中に何らかの理由でプラズマが消失した場合、直ちに吸着力も消失し、ウエハを保持することができなくなる。ところが、静電チャックとウエハの間の熱伝達を促進することを目的に、ウエハと静電チャックの微小な空隙にはヘリウム等の気体が充填される場合が多く、この場合、ウエハの裏面にガス圧が負荷された状態で吸着力が消失すると、ウエハはガス圧に押されて静電チャックから脱離し、ウエハの位置ずれを生じることや、さらにはウエハが破損することなどがあり得る。この問題は、プラズマの有無にかかわらず吸着力を発生できる双極型の静電チャックでは起こり得ない。したがって、設計の自由度を上げて双極型の電極を製作可能とすることは非常に重要な課題である。
【0005】
一方、後者の課題に関して、静電チャックの吸着膜内にき裂やはく離等の欠陥が存在する場合、耐電圧の低下や吸着膜の脱離などの問題を生じるおそれがある。特にアルマイト膜には成膜時に微小なき裂が内在している場合が多く、このき裂を基点として、比較的低応力でき裂が進展する可能性があるため、アルマイト膜に引張応力が負荷される構造は極力避けるべきである。ところが、熱膨張率が比較的大きいアルミニウムを基材とし、熱膨張率が比較的小さいアルマイト膜を吸着膜とした場合、基材と吸着膜の熱膨張率が大きく異なるために、温度変化の際に基材と吸着膜の界面近傍に大きな熱応力が生じる。特に昇温時には吸着膜側に引張応力が負荷されるため、吸着膜にき裂が発生し、進展するおそれが生じる。したがって、この熱応力によるき裂の発生と進展を抑制することも、非常に重要な課題である。
【0006】
【特許文献1】
特開平5−160076号公報
【0007】
【発明が解決しようとする課題】
本発明はこのような課題を考慮してなされた。本発明は、安価で使い勝手がよく、あるいは信頼性が高いプラズマ処理装置、および、安価で使い勝手がよく、あるいは信頼性が高い静電チャックの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題は、真空処理室内にプラズマを生成するプラズマ生成手段と、その上面に被処理材であるウエハを保持する静電チャックを具備するプラズマ処理装置において、前記静電チャックの前記ウエハを吸着する面はアルミニウムを陽極酸化して成るアルマイト膜からなり、かつ前記ウエハを吸着する面が静電気的に双極をなすことを特徴とするプラズマ処理装置により達成される。
【0009】
また、上記課題は、前記静電チャックの構造は、絶縁体である基材の上に導電体の層を形成し、さらにその上にアルミニウム層を形成して、該アルミニウム層を陽極酸化した構造であることにより達成される。
【0010】
さらに、上記課題は、前記静電チャックの前記基材の材質がセラミックであることで達成される。
【0011】
さらに、上記課題は、前記アルマイト層の表面に、さらに絶縁性の薄膜が形成されたことにより達成される。
【0012】
さらにまた、上記課題は、前記絶縁性の薄膜がセラミックであることで達成される。
【0013】
上記課題は、絶縁体の基体の表面に複数の導電性薄膜を形成する工程と、前記複数の導電性薄膜の表面にアルミニウム層を形成する工程と、前記アルミニウム層の表面を陽極酸化してアルマイト膜を形成する工程とから静電チャックを製造することで達成される。
【0014】
また。上記課題は、前記アルマイト膜の表面にゼラミックからなる絶縁性の薄膜を形成する工程を行うことによって達成される。
【0015】
【発明の実施の形態】
上記の通り、プラズマが消失すると吸着力も消失してしまう点は、静電チャックを双極型にすることで解決できる。なぜなら、双極型の静電チャックはプラズマの存在の如何に拘わらず吸着力を発生するため、プラズマが消失しても吸着力は保持されるからである。しかしながら、従来の方法、すなわち単一のアルミニウム基材に陽極酸化処理を施す方法では双極型の静電チャックを形成することはできない。これは、吸着面に双極を形成しようとしても吸着面直下のアルミニウム基材が単極となっているからである。そこで、本発明の実施の形態では、絶縁性基材上に、それぞれ電気的に絶縁された複数のアルミニウム膜を形成し、それらのアルミニウム膜を陽極酸化することで双極型の静電チャックを形成する。
【0016】
一方、アルマイト膜の電気的または機械的な健全性が低下するという点は、上記の絶縁性基材の材質を、例えばセラミックとすることにより解決できる。これは、基材の熱膨張率をアルマイトの熱膨張率と同等とした場合、温度変化の際に体積膨張および収縮が静電チャック全体で均一化されるため、アルマイトとアルミニウムとの界面近傍に大きな熱応力が発生することを抑制できるからである。また、アルマイト膜の表面に、さらに絶縁性の被膜、例えばセラミック性の皮膜を形成することにより、吸着膜の信頼性はさらに向上する。
【0017】
以下、図面を用いて本発明の実施例を詳細に説明する。
【0018】
〔実施例1〕
図1は、本発明の半導体処理装置の第一の実施例に係るウエハが載置される試料台の構成の概略を示す断面図である。図1にその切断モデルを示す静電チャック1は、主としてウエハ7を吸着してこれに加工等を行うことを目的として使用される。以下に、本発明に係る静電チャックの構造および使用法について説明する。
【0019】
本発明に係る静電チャック1の基本的な構成部分は、基材6、導電性薄膜4a並びに4b、アルマイト膜2a並びに2b、および給電配線5a並びに5bである。基材6は絶縁体であり、その上面に導電性薄膜4a並びに4bをはさんでアルマイト膜2a並びに2bが形成されている。基材6の内部には、基材6を貫通して導電性の給電配線5a並びに5bが形成されており、給電配線5aおよび5bの一端はそれぞれ導電性薄膜4aおよび4bと接続されている。さらに、給電配線5aおよび5bのもう一端には静電吸着用の直流電源が接続されており、導電性薄膜4a並びに4bに独立した電位を与えることができる。
【0020】
次に、本実施例において静電チャック1にウエハ7を吸着する手順を述べる。まず、図示しないウエハ搬送手段を用いて運搬したウエハ7を、その外周が静電チャック1の外周とほぼ一致するように位置決定したあと静電チャック1上に載置する。次に、図1(b)に示すように、給電配線5aおよび5bを通じてそれぞれ導電性薄膜4aおよび4bに逆極性の電位を与える。例えば、導電性薄膜4aに正電荷、4bに負電荷をそれぞれ与えると、図1(b)に示すように、ウエハ7の表面の電荷は移動し、導電性薄膜4a並びに4bと、ウエハ7の表面の正負の電荷がそれぞれ引き合う力、すなわちクーロン力でウエハ7は静電チャック1に吸着される。
【0021】
以上の手順でウエハ7を静電チャック1に吸着した状態で、ウエハ7に所望のプラズマ処理を施す。プラズマ処理の終了後にウエハ7を静電チャック1から除去する際には、導電性薄膜4aおよび4bに印加した電位を0付近に戻し、ウエハ表面の電荷の分布を平準化すればよい。
【0022】
なお、導電性薄膜4aおよび4bに同極性で同等の大きさの電位を与えた場合、このままでは吸着力は発生しないが、ウエハの電位と導電性薄膜4aおよび4bの電位との差を大きくすることによってクーロン力を発生させ、吸着させることが可能である。
【0023】
次にプラズマ処理の一例として、半導体製造における重要な工程のひとつであるエッチング工程を例として、本発明のプラズマ処理装置の実施例の説明を行う。
【0024】
本実施例で使用したエッチング装置の概要を図2に示す。図2において、処理室Rは10000分の1Pa程度の圧力の真空を達成できる真空容器であり、その上部に電磁波を放射するアンテナ110を、下部にはウエハなどの試料700を載置する静電チャック100を備えている。アンテナ110と静電チャック100は、平行して対向する形で設置される。処理室Rの周囲には、たとえば電磁コイルとヨークよりなる磁場形成手段101が設置されている。そして、アンテナ110から放射される電磁波と磁場形成手段101で形成される磁場との相互作用により、処理室内部に導入された処理ガスをプラズマ化して、プラズマPを発生させ、試料700を処理する。
【0025】
一方、処理室Rは、真空排気系106により真空排気され、圧力制御手段107により圧力が制御される。処理圧力は、0.1Pa以上10Pa以下の範囲に調整される。アンテナ110は、真空容器の一部としてのハウジング114に保持される。試料のエッチング、成膜等の処理を行なう処理ガスは、図示しないガス供給手段から所定の流量と混合比をもって供給され、所定の分布に制御されて、処理室Rに供給される。
【0026】
アンテナ110には、アンテナ電源120として、アンテナ電源121、アンテナバイアス電源122が、それぞれマッチング回路・フィルタ系123、124を介して接続され、またフィルタ125を通してアースに接続される。アンテナ電源121は、300MHzから1GHzのUHF帯周波数の電力を供給する。本実施例では、アンテナ電源121の周波数を450MHzとしている。一方、アンテナバイアス電源122は、アンテナ110に数十kHzから数十MHzの範囲の周波数のバイアス電力を印加する。本実施例では、この周波数を13.56MHzとしている。
【0027】
処理室Rの下部には、アンテナ110に対向して静電チャック100が設けられている。静電チャック100には、たとえば200kHzから13.56MHzの範囲のバイアス電力を供給するバイアス電源141がマッチング回路・フィルタ系142を介して接続されて試料700に印加するバイアスを制御するとともに、フィルタ143を介してアースに接続される。本実施例では、バイアス電源141の周波数を400kHzとしている。
【0028】
静電チャック100には、前述の通りその上面、すなわち試料載置面にウエハなどの試料700を載置保持する。本実施例に示すプラズマエッチング装置を用いてウエハ700にエッチングを施す際には、静電吸着用の直流電源144とフィルタ145から数100V〜数kVの直流電圧を印加することで、クーロン力を発生する。また、静電チャック100は、図示しない温度制御手段によりその表面が所定の温度に制御される。そして、静電チャック100の表面とウエハ700の裏面の間隙には、不活性ガス、たとえばヘリウムガスが所定の流量と圧力に設定されて供給されており、試料700との間の熱伝達性を高めている。これにより、試料700の表面温度を、たとえばおよそ20℃〜110℃の範囲に精度よく制御することが可能となる。
【0029】
本実施例によるプラズマエッチング装置は以上のように構成されており、このプラズマエッチング装置を用いて、たとえばシリコンのエッチングを行う場合の具体的なプロセスを説明する。
【0030】
図2において、まず処理の対象物であるウエハ700は、図示しない試料搬入機構から処理室Rに搬入された後、静電チャック100の上に載置・吸着され、必要に応じて静電チャック100の高さが調整されて所定のギャップに設定される。ついで、試料700のエッチング処理に必要なガス、たとえば塩素と臭化水素と酸素が図示しないガス供給手段から供給され、所定の流量と混合比をもって処理室R内に供給される。同時に、処理室Rは、真空排気系106および圧力制御手段107により、所定の処理圧力に調整される。次に、アンテナ電源121からの450MHzの電力供給により、アンテナ110から電磁波が放射される。そして、磁場形成手段101により処理室Rの内部に形成される160ガウス(450MHzに対する電子サイクロトロン共鳴磁場強度)の概略水平な磁場との相互作用により、処理室R内にプラズマPが生成され、処理ガスが解離されてイオンやラジカルが発生する。さらにアンテナバイアス電源122からのアンテナバイアス電力や下部電極のバイアス電源141からのバイアス電力により、プラズマ中のイオンやラジカルの組成比やエネルギーを制御して、ウェハ700にエッチング処理を行う。そして、エッチング処理の終了にともない、電力・磁場および処理ガスの供給を停止してエッチングを終了する。
【0031】
エッチング終了後のウエハ700の搬出方法を以下に述べる。前述の通り、ウエハと静電チャックの間の吸着力を小さくするためには、図1における導電性薄膜4aおよび4bに印加されていた直流電圧を遮断し、導電性薄膜4aと4bの間の電位差を小さくすればよい。すなわち、導電性薄膜4aと4bの間の電位差を実質上ゼロとすることにより、ウエハ700をアルマイト層2aおよび2bからはく離する。その後、はく離したウエハ700は図示しない搬送機構を用いて次のプロセスに送る。
【0032】
しかしながら、導電性薄膜4aと4bの間の電位差を実質上ゼロとした際にウエハ吸着力が残留し、容易にははく離しない場合がある。ウエハ700が十分に導電性を持つ場合、この原因はアルマイト層2aおよび2bに蓄積された電荷が中和されていないためである。ウエハ700と静電チャックの間の吸着力を十分低減せずにウエハはく離機構でウエハの強制的にはく離した場合、ウエハがはく離した瞬間に跳ね上がるおそれがある。この場合、導電性薄膜4aおよび4bに吸着時とは逆極性の電圧を印加することにより、蓄積された電荷を中和することができるので、その後にウエハはく離機構を使用することでこのリスクは回避できる。
【0033】
〔実施例2〕
以後、本発明に係る静電チャックの製造方法の実施例を詳細に説明する。本実施例においては、まず図3(a)に示すように、基材6の所定位置に給電配線5aおよび5bが基材6を貫通するように設置・固定し、基材6の貫通孔の開口部との間に隙間ができないように加工した後で、基材6の表面と給電配線5aおよび5bの端部とを面一化した。本実施例では、この基材6の材質をアルミナとしたが、その他の絶縁性材料、例えば窒化アルミニウムや炭化ケイ素などのセラミックス、石英などでも本発明の目的は達せられる。一方、給電配線5aおよび5bの材質をタングステンとしたが、その他の導電性材料でも本発明の目的は達せられる。
【0034】
次に、図3(b)に示すように、基材6上に導電性薄膜4aおよび4bを所望の形状に形成した。本実施例では、導電性薄膜4aおよび4bの材質をモリブデン−マンガン合金の焼き付けとしたが、その他の導電性薄膜、例えば、各種金属のスパッタ膜やめっき膜としても本発明の目的は達せられる。導電性薄膜4aおよび4bには、それぞれ給電配線5aおよび5bが電気的に接触するように配置した。
【0035】
次に図3(c)に示すように、導電性薄膜4aと4bの上に、アルミニウム層9aおよび9bを形成し、面一化した。本実施例では、このアルミニウム層の形成方法にろう接を適用したが、その他の方法、例えばスパッタリング、めっき、ろう接、圧接等の方法でも本発明の目的は達せられる。
【0036】
アルミニウム層9aおよび9bは、厚さ約100マイクロメートルとした。アルミニウム層9aおよび9bの平面形状は、それぞれ図1に示すような同心の円とリングでも良いし、2個の半円であっても良い。さらに、いわゆる『櫛歯型』とすることにより、素ガラスのような絶縁体に対する吸着力も発生させることができる。さらに、アルミニウム層9aおよび9bの表面を、中心線平均粗さ0.2マイクロメートル以下に仕上げた。さらに、アルミニウム層の角部に面取りを行った。この面取りは、後のアルマイト処理の後に、アルマイト膜の角部にき裂が発生することを防止するために非常に重要である。アルミニウム層の角部の形状は、このような面取り以外でも、例えば円弧であってもよい。
【0037】
次に、図3(d)に示すように、アルミニウム層9aおよび9bの表面に、アルマイト処理を施した。アルマイト膜は、シュウ酸溶液中でアルミニウム層9a、9bに給電配線5aおよび5bを通して電圧を印加することによって成長させた。図3(d)におけるアルマイト膜10aおよび10bの厚さが50マイクロメータに達した時点で成膜を完了した。ただし、このままでは成膜したアルマイト膜10aおよび10bの内部に膜厚方向の微細なき裂が残存するため、成膜したアルマイト膜を高温の水蒸気中に暴露することにより、アルマイト膜10aおよび10bの内部に形成された微細なき裂を封止した。
【0038】
以上の方法で作製した静電チャックの断面の概略を図4に示す。この方法で作製した静電チャック1にシリコンウエハ7を載置して、給電配線5aおよび5bにそれぞれ+500Vおよび−500Vの直流電圧を印加したところ、ウエハ7は静電チャックに吸着された。ウエハ7を静電チャック1の吸着面に対して垂直に引っ張る荷重を与えた結果、4kPa以上の吸着力が発生していることを確認した。以上から、本実施例に記載した方法で、十分な吸着性能を有する双極型の静電チャックを製作できることが確認された。
【0039】
〔実施例3〕
以後、本発明に係る静電チャックの別の実施例を詳細に説明する。図5は、本実施例による静電チャックを模式的に示したものである。本実施例においては、図5に示す通りアルマイト膜2aおよび2bの表面に、さらに絶縁性薄膜10を成膜した。この理由および効果は以下の通りである。すなわち、実施例2にも述べた通り、一般にアルマイト膜には宿命的に微細なき裂が存在する。したがって、アルマイト膜の成膜時にこの膜中のき裂を皆無にすることは非常に困難であると思われる。しかし、膜中に多数のき裂が存在したままでは、アルマイト膜つまり吸着膜の耐電圧は低くなり、静電チャックとしての性能が損なわれるおそれがある。
【0040】
アルマイト膜の耐電圧を向上させるために、実施例2ではアルマイト膜2aおよび2bの成膜後に水蒸気中に暴露する封孔処理を行った。この処理は簡易で、確かに効果があるが、場合によっては効果が不十分な場合もあり得る。そこで、本実施例に示したように、アルマイト膜の表面に絶縁性皮膜10を成膜することにより、吸着膜の耐電圧をさらに向上させ、絶縁破壊による不具合の発生を格段に低下させ、あるいは給電配線5aおよび5bに、より高い電圧を印加することで、より大きい吸着力を得ることが可能となる。あるいは、長期間使用した場合や、昇降温を繰り返した場合の信頼性が向上する。
【0041】
なお、本実施例では、絶縁性薄膜としてアルミナのCVD(化学気相堆積)膜を用い、膜厚は5マイクロメートルとした。このCVD処理により、吸着膜の平均的な耐電圧は、約3kVから約5kVに向上した。一方、このCVD処理により、吸着力にはほとんど変化が見られなかった。以上の検討から、アルマイト膜の表面に絶縁性薄膜を成膜することは、本静電チャックの信頼性を向上させるために非常に効果が高いことが明らかとなった。
【0042】
〔実施例4〕
ウエハと吸着膜との間の熱伝達率を上昇させてウエハの温度を調整する目的で、ウエハと吸着膜との間に所定の圧力のヘリウムなどの気体を充満させる必要がある場合がある。これに対応するためには、図6に示すように、吸着膜表面に溝Gを加工するとともに、吸着面上に所定の粗さを設けて、ウエハと吸着膜との間の気体の圧力ばらつきを低減することが有効である。この場合、静電チャックの最外周部にはウエハ裏面から真空容器内に気体が漏洩することを防止するための封止構造を設ける必要がある。本実施例では、図6に示したように、吸着膜表面の溝を外周端に貫通させない構造をとった。
【0043】
これを実現するためには、アルミナ膜が最外周からの気体の漏洩を抑止できる所望の形状となるように、図3におけるアルミニウム9aおよび9bの形状を、あらかじめ適切な形状とすればよい。
【0044】
なお、上記に述べた実施例1ないし4は、あくまで本発明の実施の形態の例であって、述べるまでもなく本発明がかかる静電チャックおよび装置に限定されるものではない。
【0045】
【発明の効果】
本発明によれば、耐電圧等の信頼性が高く、使い勝手が良好な双極型の静電チャックを安価に製造することができ、これにより使用の際の自由度が高いプラズマ処理装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る静電チャックの斜視図および断面図。
【図2】本発明の一実施例に係るエッチング装置の断面図。
【図3】本発明の一実施例に係る静電チャックの製造法を説明する断面図。
【図4】本発明の別の一実施例に係る静電チャックの断面図。
【図5】本発明の別の一実施例に係る静電チャックの断面図。
【図6】本発明の一実施例に係る静電チャックの斜視図。
【符号の説明】
1…静電チャック、2a…アルマイト層、2b…アルマイト層、4a…導電性薄膜、4b…導電性薄膜、5a…給電配線、5b…給電配線、6…基材、7…ウエハ

Claims (7)

  1. 真空処理室内にプラズマを生成するプラズマ生成手段と、その上面に被処理材であるウエハを保持する静電チャックを具備するプラズマ処理装置において、
    前記静電チャックの前記ウエハを吸着する面はアルミニウムを陽極酸化して成るアルマイト膜からなり、かつ前記ウエハを吸着する面が静電気的に双極をなすことを特徴とするプラズマ処理装置。
  2. 前記請求項1に記載のプラズマ処理装置において、前記静電チャックの構造は、絶縁体である基材の上に導電体の層を形成し、さらにその上にアルミニウム層を形成して、該アルミニウム層を陽極酸化した構造であることを特徴とするプラズマ処理装置。
  3. 前記請求項1に記載のプラズマ処理装置において、前記静電チャックの構造は、セラミックからなる絶縁体の基材の上に導電体の層を形成し、さらにその上にアルミニウム層を形成して、該アルミニウム層を陽極酸化した構造であることを特徴とするプラズマ処理装置。
  4. 前記請求項1に記載のプラズマ処理装置において、前記アルマイト層の表面に、さらに絶縁性の薄膜を形成してなることを特徴とするプラズマ処理装置。
  5. 前記請求項1に記載のプラズマ処理装置において、前記アルマイト層の表面に、さらにセラミックからなる絶縁性の薄膜を形成してなることを特徴とするプラズマ処理装置。
  6. 上面に被処理材であるウエハを保持する静電チャックの製造方法において、
    絶縁体の基体の表面に複数の導電性薄膜を形成する工程と、
    前記複数の導電性薄膜の表面にアルミニウム層を形成する工程と、
    前記アルミニウム層の表面を陽極酸化してアルマイト膜を形成する工程と
    からなることを特徴とするウエハを吸着する面が静電気的に双極をなした静電チャックの製造方法。
  7. 請求項6に記載の静電チャックの製造方法において、前記アルマイト膜の表面にゼラミックからなる絶縁性の薄膜を形成する工程を行うことを特徴とする静電チャックの製造方法。
JP2003045775A 2003-02-24 2003-02-24 プラズマ処理装置 Expired - Fee Related JP3964803B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003045775A JP3964803B2 (ja) 2003-02-24 2003-02-24 プラズマ処理装置
US11/327,447 US20060121195A1 (en) 2003-02-24 2006-01-09 Plasma processing apparatus and method for manufacturing electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045775A JP3964803B2 (ja) 2003-02-24 2003-02-24 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2004259745A true JP2004259745A (ja) 2004-09-16
JP3964803B2 JP3964803B2 (ja) 2007-08-22

Family

ID=33112504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045775A Expired - Fee Related JP3964803B2 (ja) 2003-02-24 2003-02-24 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP3964803B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202525A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd スクロール型圧縮機及びスクロール型圧縮機の製造方法
WO2011082371A2 (en) 2009-12-30 2011-07-07 Solexel, Inc. Mobile electrostatic carriers for thin wafer processing
WO2020106380A1 (en) * 2018-11-21 2020-05-28 Applied Materials, Inc. Method and apparatus for thin wafer carrier
CN111613563A (zh) * 2019-02-26 2020-09-01 芯恩(青岛)集成电路有限公司 一种静电吸盘及晶圆测试方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202525A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd スクロール型圧縮機及びスクロール型圧縮機の製造方法
WO2011082371A2 (en) 2009-12-30 2011-07-07 Solexel, Inc. Mobile electrostatic carriers for thin wafer processing
WO2011082371A3 (en) * 2009-12-30 2011-11-17 Solexel, Inc. Mobile electrostatic carriers for thin wafer processing
EP2519967A2 (en) * 2009-12-30 2012-11-07 Solexel, Inc. Mobile electrostatic carriers for thin wafer processing
EP2519967A4 (en) * 2009-12-30 2013-05-22 Solexel Inc MOBILE ELECTROSTATIC SUPPORT FOR PROCESSING A THIN WATER
US9330952B2 (en) 2009-12-30 2016-05-03 Solexel, Inc. Bipolar mobile electrostatic carriers for wafer processing
WO2020106380A1 (en) * 2018-11-21 2020-05-28 Applied Materials, Inc. Method and apparatus for thin wafer carrier
US11094573B2 (en) 2018-11-21 2021-08-17 Applied Materials, Inc. Method and apparatus for thin wafer carrier
CN111613563A (zh) * 2019-02-26 2020-09-01 芯恩(青岛)集成电路有限公司 一种静电吸盘及晶圆测试方法
CN111613563B (zh) * 2019-02-26 2024-02-27 芯恩(青岛)集成电路有限公司 一种静电吸盘及晶圆测试方法

Also Published As

Publication number Publication date
JP3964803B2 (ja) 2007-08-22

Similar Documents

Publication Publication Date Title
CN211578693U (zh) 衬底支撑组件
JP4421874B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4935143B2 (ja) 載置台及び真空処理装置
US6104596A (en) Apparatus for retaining a subtrate in a semiconductor wafer processing system and a method of fabricating same
US20060121195A1 (en) Plasma processing apparatus and method for manufacturing electrostatic chuck
TW200405443A (en) Electrostatic absorbing apparatus
KR101850355B1 (ko) 플라즈마 처리 장치
US20190006156A1 (en) Plasma Processing Apparatus
US20160118284A1 (en) Plasma processing apparatus
TW201703074A (zh) 蝕刻磁性層之方法
TWI324361B (ja)
JP4642809B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP4219734B2 (ja) 基板保持機構およびプラズマ処理装置
JP2010010214A (ja) 半導体装置の製造方法、半導体製造装置、及び記憶媒体
WO2002052628A1 (fr) Procede et appareil de traitement au plasma
JP2017103389A (ja) 静電チャック及び半導体製造装置
JPH10154745A (ja) 静電吸着装置
JP3964803B2 (ja) プラズマ処理装置
US8268721B2 (en) Semiconductor device and semiconductor device manufacturing method
WO2013027584A1 (ja) 真空処理装置及び真空処理方法
JPH04271122A (ja) プラズマ処理装置
KR20110069490A (ko) 반도체 기판의 척킹/디척킹 방법, 이를 이용한 반도체 소자의 제조 장치 및 제조 방법
JP2010267708A (ja) 真空処理装置および真空処理方法
CN1278389C (zh) 等离子体处理装置及静电吸盘的制造方法
JP4231362B2 (ja) プラズマ処理装置およびプラズマ処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees