JP2004259724A - Light emitting element / light receiving element array and optical write head - Google Patents

Light emitting element / light receiving element array and optical write head Download PDF

Info

Publication number
JP2004259724A
JP2004259724A JP2003045446A JP2003045446A JP2004259724A JP 2004259724 A JP2004259724 A JP 2004259724A JP 2003045446 A JP2003045446 A JP 2003045446A JP 2003045446 A JP2003045446 A JP 2003045446A JP 2004259724 A JP2004259724 A JP 2004259724A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045446A
Other languages
Japanese (ja)
Other versions
JP4631248B2 (en
Inventor
Masahide Wakizaka
政英 脇坂
Seiji Ono
誠治 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003045446A priority Critical patent/JP4631248B2/en
Publication of JP2004259724A publication Critical patent/JP2004259724A/en
Application granted granted Critical
Publication of JP4631248B2 publication Critical patent/JP4631248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable an optical system which performs light quantity correction by monitoring luminous intensities of light emitting elements by means of light receiving elements to perform the light quantity correction with high accuracy. <P>SOLUTION: In a light emitting element/light receiving element array chip 30, light emitting elements (LED) 32 and light receiving elements (PD) 36 are integrated. Bonding pads 34 for light emitting elements are connected to the light emitting elements 32, and bonding pads 38 for light receiving elements are connected to the light receiving elements 36. Top surfaces of the light receiving element 36 are covered with wiring materials of the bonding pads 38. Therefore, no reflected light from a rod lens or a photosensitive drum is inputted to the light receiving elements 36. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子/受光素子アレイおよび光書込みヘッドに関し、特に発光素子の発光強度をモニタすることにより光量補正を図った発光素子/受光素子アレイ、およびこのような発光素子/受光素子アレイを用いた光書込みヘッドに関する。本発明は、さらには、光書込みヘッドの光量補正方法に関する。
【0002】
【従来の技術】
LEDアレイを光源とする光書込みヘッドおよびそれを用いた電子写真プリンタ等の画像形成装置においては、光源の初期の発光強度バラツキ、経時変化光量バラツキ、温度変化が及ぼす光量バラツキにより生じた画素間の発光強度バラツキが、印字画像の濃淡を生じ、印字画像にスジを発生させてしまって、画像品質を著しく低下させてしまう問題があった。
【0003】
これらの解決方法として、特許文献1に記載の技術では、同一基板上に発光素子と受光素子とを2次元的に配置して発光素子/受光素子アレイを形成し、発光素子から出射された反射光を受光素子で検出して、受光素子で発光素子の発光強度変化をモニタし、発光強度の変化分を所定の露光量となるように補正し発光強度の安定化を図って、品位の高い画像を形成するようにした電子写真用光ヘッドを開示している。
【0004】
なお、発光強度および露光量は、本明細書の中では、以下の意味で使いわける。発光強度は、各発光点が発光している瞬間の仕事率を表す。露光量は、発光強度を点灯時間で積分したもので、エネルギーの次元を持つ。すなわち、照射する光子の数に比例する量である。
【0005】
【特許文献1】
特開2002−144634号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の電子写真用光ヘッドには次のような問題点がある。
【0007】
図1に、発光素子/受光素子アレイを備える光書込みヘッドを示す。この光書込みヘッドによれば、ロッドレンズアレイ10が設けられたハウジング12と、発光素子/受光素子アレイ14が設けられたヒートシンク16とは、ロッドレンズアレイ10の光軸18が、発光素子/受光素子アレイ14に一致するようにして配置され、部材20により固定されている。
【0008】
発光素子/受光素子アレイ14の発光素子から出射された光は、ロッドレンズアレイ10の入射面で一部反射され、発光素子/受光素子アレイ14内に設けた受光素子に入射する、あるいは、ロッドレンズアレイ10を透過して感光ドラム22で正反射した光が、ロッドレンズに再入射し、受光素子に至る。
【0009】
しかし、このような経路を経て受光素子に至る光の強度は、反射面の表面状態によって影響を受け、受光素子に入射する強度は変動してしまう。
【0010】
例えば、感光ドラムの表面傷の有無や、ロッドレンズ出射面のトナー付着により、光の反射率や透過率が変化してしまう。これらの問題により、発光素子の温度依存変化および経時劣化の発光強度変化よりも過大な変化を生じてしまって、適切な光量補正を実施できないという問題点がある。
【0011】
例えば、発光素子から出射された光は、ロッドレンズアレイの入射面および出射面の正反射光の約5〜10%が受光素子に戻る。また、感光ドラム表面に照射された光は、感光ドラム表面の正反射率が20%前後であるとすれば、感光ドラムで反射した光は、出射光比の約10%が受光素子に戻る。
【0012】
感光ドラムは、稼動過程にてクリーニングブレードとトナーとの接触により、表面に微細な傷が発生してしまい反射光は散乱してしまう。このため、受光素子に戻ってくる光の強度が変動してしまい、発光素子の正確な発光強度を検出することは困難となる。
【0013】
また、図2に示すように光書込みヘッド内部に鏡等の反射物24を設けることも考えられるが、部品増による、光書込みヘッドのサイズ増大およびコスト高を招いてしまう。
【0014】
発光素子/受光素子アレイにおいて、発光素子と受光素子とを同じバンドギャップの材料で作ると、発光波長に対する受光素子の感度が低くなってしまい、大きな面積の受光素子が必要となるという問題点がある。
【0015】
これは、発光素子ではバンドギャップよりも低いエネルギーの発光が生じ、また、バンドギャップ以上のエネルギーの光は発光層で自己再吸収を受け減衰し、バンドギャップ以下の光は吸収されないため、受光素子の感度が下がるためである。
【0016】
本発明は、このような従来の問題点に着目してなされたもので、その目的は、発光素子の発光強度を受光素子でモニタし、光量補正を図る光学系において、光量補正を高い精度で実施可能とし、且つ低コストで実施できるようにすることにある。
【0017】
【課題を解決するための手段】
本発明の発光素子/受光素子アレイは、同一基板内に、発光素子アレイと、この発光素子アレイの各発光素子にそれぞれ対応した受光素子よりなる受光素子アレイとを形成し、各受光素子の上面は配線材料で覆って反射光の入射を阻止し、発光素子の出射光が対応する受光素子に直接に入射し、各発光素子の発光強度をモニタできるようにしたことを特徴とする。
【0018】
発光素子は、拡散法により形成された発光ダイオードで構成し、受光素子は、拡散法により形成されたフォトダイオードで構成することができる。
【0019】
あるいは、発光素子アレイは、エピ成長により形成されたpnpn構造よりなる自己走査型発光素子アレイで構成し、受光素子は、pnpn構造中のpn接合よりなるフォトダイオードで構成することができる。
【0020】
本発明の光書込みヘッドは、上記のような発光素子/受光素子アレイと、ロッドレンズアレイまたは平板マイクロレンズアレイとで構成することができる。
【0021】
【発明の実施の形態】
図3に、LED(発光ダイオード)とPD(フォトダイオード)とを同一チップに集積した発光素子/受光素子アレイチップ30を示す。発光素子(LED)32に発光素子用ボンディングパッド34が、受光素子(PD)36には受光素子用ボンディングパッド38が接続されている。受光素子36の上面はボンディングパッド38の配線材料によって覆われている。したがって、受光素子36には、ロッドレンズや感光ドラムからの反射光が入力することはない。
【0022】
図4に、図3のX−X′線断面図を示す。n型基板40の表面に、拡散マスクと保護膜を兼ねた絶縁膜42が設けられており、この絶縁膜の開口部からp型不純物を拡散することにより、p型領域44,46を形成している。このp型領域に配線34,38が接触している。図中、48は裏面電極である。
【0023】
p型領域44に電流を流すと発光するが、その発光の一部は基板40内を伝搬し、p型領域46とn型基板40との境界にあるpn接合に到達する。この場合、受光素子36は、バイアスしてフォトダイオード(PD)モードで使ってもよく、また、太陽電池モードで使ってもよい。このようにして、発光素子の発光強度を、対応する受光素子で検出することができる。
【0024】
PDは温度係数が比較的小さいため、温度による影響はあまり受けないが、PDに微小電流を流すことにより、ダイオードの立ち上がり電圧を測定することにより、PDの温度を知ることができる。この温度をもとにPDの感度を補正してもよい。また、図3では、受光素子用のボンディングパッド38をすべて独立としたが、すべてのPDを1つのボンディングパッド接続して使ってもよい。また、受光素子をいくつかのブロックに分割し、各ブロック毎に1つのボンディングパッドに接続してもよい。
【0025】
図5に、発光素子/受光素子の構成の第2の例を示す。図4では、pn接合を拡散で形成したが、ここでは、n型半導体基板上にエピ成長により多層膜を形成し、メサエッチングにより分離して作製した。図中、50はn型基板40上に形成されたn型エピ層、52はp型半導体層であり、発光素子を形成する。54はn型基板40上に形成されたn型半導体層、56はp型半導体層であり、受光素子を形成する。58は、保護絶縁膜である。なお、図4と同一の構成要素には図4と同一の参照番号を付して示す。
【0026】
以上は、発光素子にLEDを、受光素子PDを用いた例であった。発光素子および受光素子は、これらに限られるものではなく、発光素子にpnpn構造の3端子発光サイリスタを用いることもできる。
【0027】
図6は、発光素子に3端子発光サイリスタを用い、自己走査型発光素子アレイに、受光素子を形成した発光素子/受光素子アレイを示す平面図である。図7は、図6のY−Y′線断面を示す図である。さらに、図8は、図6に示す自己走査型発光素子アレイ部分の電気的な等価回路を示している。
【0028】
図6において、60は発光用サイリスタ(図8のL ,L ,L ,…)、62はシフト用サイリスタ(図8のT ,T ,T ,…)、64はゲート電極(図8のG ,G ,G ,…)、66は結合ダイオード(図8のD ,D ,D ,…)、68は抵抗(図8のR )である。φ1,φ2はクロックパルスライン,VGKは電源ライン,φ は書込み信号ラインである。70は、発光用サイリスタに対応する受光素子、72は受光素子ラインである。
【0029】
図7において、発光用サイリスタおよびシフト用サイリスタは、pnpn構造で構成される。図中、80はn型半導体基板、82はn型半導体層、84はp型半導体層、86はn型半導体層、88はp型半導体層、90は保護絶縁膜である。なお、図6と同一の構成要素には、同一の参照番号を付して示してある。
【0030】
図7からわかるように受光素子70は、p型半導体層84とn型半導体層82との間のpn接合をPDとして使っている。このようなPDは、発光素子60とは、メサエッチングにより分離されている。
【0031】
PDの構成は、これに限るものではなく、pnpn構造中の任意のpn接合を用いることができる。例えば、図9では、n型半導体層86とp型半導体層84との間のpn接合をPDに利用している。発光効率を稼ぐためにダブルヘテロ構造としてある自己走査型発光素子アレイでは、この2つの層86,84が活性層に相当するため、発光素子の光を受光するには、このpn接合を使うのが適している。なお図9において、74,75は受光素子ラインである。
【0032】
また図10では、p型半導体層88とn型半導体層86との間のpn接合をPDに利用している。ちょうど自己走査型発光素子アレイのアノード層,ゲート層に相当するために、自己走査型発光素子アレイとまったく同じ工程で作製できるという特徴がある。なお図10において、76,77は受光素子ラインである。
【0033】
図11では、発光素子をn型半導体層86,p型半導体層84,n型半導体層82の3層を使った光トランジスタとした。n型半導体層86をエミッタとし、光電流によるベース・エミッタ電流をコレクタ電流に変換する。この構成は、n型半導体層86から受光素子ライン78の取り出しのみで作製可能なため、自己走査型発光素子アレイとまったく同じ工程を使える。
【0034】
また、図12では、図11の構成を、受光素子と発光素子との間の分離メサエッチングの代わりに、水素イオンによるイオン注入により、半導体層86,84,82を絶縁化させることにより、電気的な分離を行った。分離領域を、89で示す。この構成は、受光素子と発光素子の間に、メサエッチングによる屈折率の不連続変化がないため、受光素子に入る光が多くなるという特徴がある。ここでは、図11の構成に対して、イオン注入による分離を行ったが、図5,図7,図9,図10のいずれに適用してもよい。
【0035】
上述のような構造の発光素子/受光素子アレイチップ複数個を、直線状あるいは千鳥状に配列して光書込みヘッド用の発光素子/受光素子アレイを作製する。このような発光素子/受光素子アレイを搭載した図1の構成の光書込みヘッドにおける光量補正方法について説明する。
【0036】
光量補正にあたっては、まず、光書込みヘッドの発光強度分布を測定する。図13は、光書込みヘッドの発光強度分布を測定する装置を示す図である。(A)は装置の側面図、(B)は正面図である。光書込みヘッド100のロッドレンズアレイ102の配列方向に延びるレール104に、レールに沿って移動可能に、且つ光書込みヘッドの出射部に対向する位置に、光量センサ106を配置する。発光素子アレイを発光させて光量センサ106をレール104に沿って移動させることにより、ドット単位で発光強度分布を測定し、各ドットの露光量が均一となるように発光素子のドット単位の発光強度および/または点灯時間を調整する。その状態で、発光素子のドット単位またはチップ単位の発光強度または露光量を発光素子/受光素子アレイチップ内に設けられた受光素子により計測し、その値はドライバ回路内の不揮発性の記憶手段に記録しておく。
【0037】
以上のようにして発光強度分布の測定された光書込みヘッド100を光プリンタに設置する。図14は光プリンタの構成を示す。円筒形の感光ドラム112の表面に、アモルファスSi等の光導電性を持つ材料(感光体)が作られている。このドラムはプリントの速度で回転している。回転しているドラムの感光体表面を、帯電器114で一様に帯電させる。そして、光書込みヘッド100で、印字するドットイメージの光を感光体上に照射し、光の当たったところの帯電を中和し、潜像を形成する。続いて、現像器118で感光体上の帯電状態にしたがって、トナーを感光体上につける。そして、転写器120でカセット122中から送られてきた用紙124上に、トナーを転写する。用紙は、定着器126にて熱等を加えられ定着され、スタッカ128に送られる。一方、転写の終了したドラムは、消去ランプ130で帯電が全面にわたって中和され、清掃器132で残ったトナーが除去される。
【0038】
光書込みヘッド100の発光素子の温度による光量変化および経時による光量変化を調整する場合には、光プリンタ印字時の用紙送り間などの時間的な空隙時に、発光素子をドット単位あるいは複数のドット単位で発光させ、その際の発光強度または露光量を受光素子で直接に計測し、その値と不揮発性の記憶手段に書き込まれた値と照合して、その差分を補正し、各ドットまたは複数ドット単位の光量が均一になるように発光素子の光量を調整する。
【0039】
この際、感光ドラム112に光が照射され潜像が形成され、現像工程により、トナーが感光体に付着するが、前述の通り紙送りの空隙部分に相当するタイミングで発光タイミングをコントロールするため、感光体に付着したトナーは紙に付着することなく、清掃器132のクリーニングブレードにより清掃される。
【0040】
この場合、紙送りの用紙間のピッチを意図的に設ける必要があるため、印字速度の低下を招く恐れもある。したがって、光量補正のタイミングは、印字枚数の複数枚毎に実施するのが好適である。
【0041】
本実施例によれば、受光素子は、発光素子と同時に製造されるため、個別製作と比べてコストの低減が図れる。
【0042】
また、本実施例によれば、受光素子は、発光素子からの光を直接に受光するため、従来技術のように反射物の表面状態の影響を受けない。したがって、精度の高い発光強度または露光量が検出できるので、経時や稼働状況変動においても、精度の高い光量補正が実施でき、スジが発生しない高品位な画像が得られる。
【0043】
以下に、本発明の他の実施例を説明する。本実施例では、ロッドレンズアレイに代えて、光量ムラの非常に少ない光学樹脂レンズを用いる。
【0044】
ロッドレンズアレイを用いた光書込みヘッドでは、レンズの光軸中心から発光素子の位置がずれると、レンズ周期での光量段差が発生してしまう。したがって、このような光書込みヘッドの場合は、光量補正を図るためには、図13で説明したように、発光素子の光量はレンズを介した状態で光量を検出して、その光量を均一化する必要があったので、調整に大がかりに設備を必要とする。
【0045】
これを回避するために平板マイクロレンズアレイを搭載した光書込みヘッドの概略を、図15に示す。(A)は平板マイクロレンズアレイ140を側面から見た図であり、(B)は平板マイクロレンズアレイの平面図である。平板マイクロレンズアレイ140は、多数のマイクロレンズ142が両面に形成された樹脂レンズアレイ144を複数枚(本実施例では2枚)、重ね合わせて構成される、発光素子/受光素子アレイ14から出射した光は、感光ドラム22に集光される。
【0046】
このような構成の樹脂レンズ140は、光を2次元的に伝達できるため、レンズピッチに起因する光量伝達ムラが発生しないので、レンズを介しての光量データを取得する必要がない。したがって、ヘッド単独で発光素子の発光強度または露光量を検出できるため、大がかりな光量検出装置を必要としない。すなわち、発光素子をドット単位または複数のドット単位で発光させ、その際の発光強度または露光量を受光素子で計測し、その値を不揮発性の記憶手段に書き込む。印字中の紙送り間隙などのタイミングで発光させた発光素子の光エネルギーを受光素子にて計測して、不揮発性の記憶手段に書き込まれた値と照合し、差分を補正し、各ドットまたは複数ドット単位の露光量が均一になるように発光素子の発光強度および/または点灯時間を調整することができる。
【0047】
本発明のさらに他の実施例を説明する。図6に示した実施例では、各発光素子60毎に対応するPD70を設けた。しかし、図6の構成では、PD分だけチップ幅が増加し、その分コストが高くなる。また、図6の構成では、発光素子の辺とチップの長辺の間にPDを設けるため、チップを千鳥配列するとき、発光素子の間隔が広がってしまう。
【0048】
そこで、本実施例の場合には、図16に示すように、左端の第1発光素子70の横(発光素子配列方向に、ずれた位置)に1個のPD70を設けた。なお、その他の構造は、図6と同一であり、したがって、図6と同一の構成要素には、同一の参照番号を付して示す。なお図6には、チップの左側端部に設けられたボンディングパッドを示している。38は、PD70のためのボンディングパッドである。
【0049】
このような構成では、チップ幅をほとんど変えることがないため、コスト的に有利である。ただし、全発光素子に関する発光強度または露光量のモニタはできず、第1発光素子に関するデータで補正をかけることになる。
【0050】
【発明の効果】
本発明によれば、チップ内に設けられた受光素子は、発光素子からの光を直接に受光するため、反射光を用いる必要がない。したがって、ロッドレンズアレイ等の光反射物の表面状態変化に影響されないために、精度の高い発光素子の発光強度または露光量が検出できる。この発光強度または露光量のモニタ結果を用いて光量補正を行うことにより、光量変化および発光素子の経時劣化による光量変化を補正し、品位の高い画像を保証できる。
【図面の簡単な説明】
【図1】発光素子/受光素子アレイを備える光書込みヘッドを示す図である。
【図2】鏡等の反射物を内部に有する光書込みヘッドを示す図である。
【図3】本発明による発光素子/受光素子アレイチップを示す図である。
【図4】図3のX−X′線断面図である。
【図5】発光素子/受光素子の構成の他の例を示す図である。
【図6】自己走査型発光素子アレイに、受光素子を形成した発光素子/受光素子アレイを示す平面図である。
【図7】図6のY−Y′線断面を示す図である。
【図8】図6に示す自己走査型発光素子アレイ部分の電気的な等価回路を示す図である。
【図9】発光素子/受光素子の構成の他の例を示す図である。
【図10】発光素子/受光素子の構成の他の例を示す図である。
【図11】発光素子/受光素子の構成の他の例を示す図である。
【図12】発光素子/受光素子の構成の他の例を示す図である。
【図13】光書込みヘッドの光量分布を測定する装置を示す図である。
【図14】光プリンタの構成を示す図である。
【図15】平板マイクロレンズアレイを搭載した光書込みヘッドを示す図である。
【図16】自己走査型発光素子アレイに、1個の受光素子を形成した発光素子/受光素子アレイを示す平面図である。
【符号の説明】
10,102 ロッドレンズアレイ
12 ハウジング
14 発光素子/受光素子アレイ
16 ヒートシンク
22,112 感光ドラム
24 反射物
30 発光素子/受光素子アレイチップ
32 発光素子
34 発光素子用ボンディングパッド
36,70 受光素子
38 受光素子用ボンディングパッド
40 n型基板
44,46 p型領域
48 裏面電極
50,54,82,86 n型半導体層
52,56,84,88 p型半導体層
58,90 保護絶縁膜
60 発光用サイリスタ
62 シフト用サイリスタ
64 ゲート電極
66 結合ダイオード
68 抵抗
72 受光素子ライン
80 n型半導体基板
89 分離領域
100 光書込みヘッド
106 光量センサ
114 帯電器
118 現像器
120 転写器
122 カセット
124 用紙
128 スタッカ
130 消去ランプ
132 清掃器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting element / light receiving element array and an optical writing head, and more particularly to a light emitting element / light receiving element array in which the light intensity is corrected by monitoring the light emission intensity of the light emitting element, and such a light emitting element / light receiving element array. The present invention relates to an optical writing head used. The present invention further relates to a light amount correction method for an optical writing head.
[0002]
[Prior art]
In an optical writing head using an LED array as a light source and an image forming apparatus such as an electrophotographic printer using the same, an initial light-emitting intensity variation of a light source, a variation in light quantity with time, and a variation in light quantity caused by a variation in light quantity caused by a temperature change. There is a problem that variations in light emission intensity cause shading of a printed image, causing streaks in the printed image, and significantly lowering the image quality.
[0003]
As a solution to these problems, in the technique described in Patent Document 1, a light emitting element / light receiving element array is formed by two-dimensionally arranging a light emitting element and a light receiving element on the same substrate, and the reflection emitted from the light emitting element is reflected. Light is detected by the light receiving element, and the light receiving element monitors the change in the light emission intensity of the light emitting element, and corrects the change in the light emission intensity so as to have a predetermined exposure amount, stabilizes the light emission intensity, and achieves high quality. An optical head for electrophotography which forms an image is disclosed.
[0004]
In this specification, the light emission intensity and the exposure amount are used in the following sense. The luminous intensity represents the power at the moment when each luminous point emits light. The exposure amount is obtained by integrating the light emission intensity with the lighting time, and has an energy dimension. That is, the amount is proportional to the number of photons to be irradiated.
[0005]
[Patent Document 1]
JP 2002-144634 A
[Problems to be solved by the invention]
However, the optical head for electrophotography described in Patent Document 1 has the following problems.
[0007]
FIG. 1 shows an optical writing head including a light emitting element / light receiving element array. According to this optical writing head, the housing 12 provided with the rod lens array 10 and the heat sink 16 provided with the light emitting element / light receiving element array 14 are arranged such that the optical axis 18 of the rod lens array 10 It is arranged so as to coincide with the element array 14 and is fixed by the member 20.
[0008]
The light emitted from the light emitting element of the light emitting element / light receiving element array 14 is partially reflected on the incident surface of the rod lens array 10 and is incident on the light receiving element provided in the light emitting element / light receiving element array 14, or Light transmitted through the lens array 10 and specularly reflected by the photosensitive drum 22 re-enters the rod lens and reaches the light receiving element.
[0009]
However, the intensity of light reaching the light receiving element via such a path is affected by the surface condition of the reflection surface, and the intensity of light incident on the light receiving element varies.
[0010]
For example, the presence or absence of surface scratches on the photosensitive drum and the adhesion of toner on the exit surface of the rod lens change the light reflectance and transmittance. Due to these problems, there is a problem that an excessive change occurs more than a change in the light emission intensity due to the temperature-dependent change and the deterioration with time of the light emitting element, so that it is not possible to perform appropriate light amount correction.
[0011]
For example, as for the light emitted from the light emitting element, about 5 to 10% of the specularly reflected light on the entrance surface and the exit surface of the rod lens array returns to the light receiving element. If the light irradiated on the surface of the photosensitive drum has a regular reflectance of about 20% on the surface of the photosensitive drum, about 10% of the light reflected by the photosensitive drum returns to the light receiving element.
[0012]
The photosensitive drum contacts the cleaning blade and the toner in the operation process, so that fine scratches are generated on the surface and the reflected light is scattered. For this reason, the intensity of the light returning to the light receiving element fluctuates, and it is difficult to accurately detect the light emission intensity of the light emitting element.
[0013]
Although it is conceivable to provide a reflector 24 such as a mirror inside the optical writing head as shown in FIG. 2, the number of parts increases the size and cost of the optical writing head.
[0014]
In the light-emitting element / light-receiving element array, if the light-emitting element and the light-receiving element are made of the same band gap material, the sensitivity of the light-receiving element to the emission wavelength is reduced, and a large area light-receiving element is required. is there.
[0015]
This is because the light-emitting element emits light having an energy lower than the band gap, and light having an energy higher than the band gap is attenuated by self-reabsorption in the light-emitting layer, and light below the band gap is not absorbed. This is because the sensitivity is lowered.
[0016]
The present invention has been made in view of such conventional problems, and has as its object to monitor the light emission intensity of a light emitting element with a light receiving element and perform light quantity correction with high accuracy in an optical system for correcting light quantity. An object of the present invention is to make it feasible and to be able to carry out at low cost.
[0017]
[Means for Solving the Problems]
The light emitting element / light receiving element array of the present invention forms a light emitting element array and a light receiving element array composed of light receiving elements corresponding to the respective light emitting elements of the light emitting element array on the same substrate. Is characterized in that it is covered with a wiring material to prevent the reflected light from entering, and the emitted light of the light emitting element is directly incident on the corresponding light receiving element, so that the emission intensity of each light emitting element can be monitored.
[0018]
The light emitting element can be constituted by a light emitting diode formed by a diffusion method, and the light receiving element can be constituted by a photodiode formed by a diffusion method.
[0019]
Alternatively, the light emitting element array can be constituted by a self-scanning light emitting element array having a pnpn structure formed by epi growth, and the light receiving element can be constituted by a photodiode having a pn junction in the pnpn structure.
[0020]
The optical writing head of the present invention can be composed of the light emitting element / light receiving element array as described above and a rod lens array or a flat microlens array.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 shows a light emitting element / light receiving element array chip 30 in which an LED (light emitting diode) and a PD (photodiode) are integrated on the same chip. A light emitting element bonding pad 34 is connected to the light emitting element (LED) 32, and a light receiving element bonding pad 38 is connected to the light receiving element (PD) 36. The upper surface of the light receiving element 36 is covered with a wiring material of the bonding pad 38. Therefore, the light reflected from the rod lens or the photosensitive drum does not enter the light receiving element 36.
[0022]
FIG. 4 is a cross-sectional view taken along line XX ′ of FIG. An insulating film 42 serving also as a diffusion mask and a protective film is provided on the surface of the n-type substrate 40, and p-type impurities are diffused from openings of the insulating film to form p-type regions 44 and 46. ing. The wirings 34 and 38 are in contact with this p-type region. In the figure, reference numeral 48 denotes a back electrode.
[0023]
When a current flows through the p-type region 44, light is emitted. A part of the emitted light propagates in the substrate 40 and reaches a pn junction at the boundary between the p-type region 46 and the n-type substrate 40. In this case, the light receiving element 36 may be used in a photodiode (PD) mode with a bias or in a solar cell mode. Thus, the emission intensity of the light emitting element can be detected by the corresponding light receiving element.
[0024]
Since the PD has a relatively small temperature coefficient, it is not significantly affected by temperature, but the temperature of the PD can be known by measuring the rising voltage of the diode by passing a small current through the PD. The sensitivity of the PD may be corrected based on this temperature. Further, in FIG. 3, the bonding pads 38 for the light receiving element are all independent, but all PDs may be connected to one bonding pad for use. Further, the light receiving element may be divided into several blocks, and each block may be connected to one bonding pad.
[0025]
FIG. 5 shows a second example of the configuration of the light emitting element / light receiving element. In FIG. 4, the pn junction is formed by diffusion, but here, a multi-layer film is formed on an n-type semiconductor substrate by epitaxial growth and separated by mesa etching. In the figure, 50 is an n-type epi layer formed on the n-type substrate 40, and 52 is a p-type semiconductor layer, which forms a light emitting element. 54 is an n-type semiconductor layer formed on the n-type substrate 40, and 56 is a p-type semiconductor layer, which forms a light receiving element. 58 is a protective insulating film. The same components as those in FIG. 4 are denoted by the same reference numerals as those in FIG.
[0026]
The above is an example using the LED as the light emitting element and the light receiving element PD. The light emitting element and the light receiving element are not limited to these, and a three-terminal light emitting thyristor having a pnpn structure can be used for the light emitting element.
[0027]
FIG. 6 is a plan view showing a light-emitting element / light-receiving element array in which a light-receiving element is formed in a self-scanning light-emitting element array using a three-terminal light-emitting thyristor as a light-emitting element. FIG. 7 is a diagram showing a cross section taken along line YY ′ of FIG. FIG. 8 shows an electrical equivalent circuit of the self-scanning light emitting element array shown in FIG.
[0028]
6, 60 is the light emitting thyristor (L 1 in FIG. 8, L 2, L 3, ...), 62 a shift thyristor (T 1 in FIG. 8, T 2, T 3, ...), the gate electrode 64 (G 1 , G 2 , G 3 ,... In FIG. 8), 66 are coupling diodes (D 1 , D 2 , D 3 ,... In FIG. 8), and 68 is a resistor (R L in FIG. 8). .phi.1, .phi.2 clock pulse line, V GK is a power supply line, the phi I is a write signal line. 70 is a light receiving element corresponding to the light emitting thyristor, and 72 is a light receiving element line.
[0029]
In FIG. 7, the light-emitting thyristor and the shift thyristor have a pnpn structure. In the figure, reference numeral 80 denotes an n-type semiconductor substrate, 82 denotes an n-type semiconductor layer, 84 denotes a p-type semiconductor layer, 86 denotes an n-type semiconductor layer, 88 denotes a p-type semiconductor layer, and 90 denotes a protective insulating film. Note that the same components as those in FIG. 6 are denoted by the same reference numerals.
[0030]
As can be seen from FIG. 7, the light receiving element 70 uses a pn junction between the p-type semiconductor layer 84 and the n-type semiconductor layer 82 as a PD. Such a PD is separated from the light emitting element 60 by mesa etching.
[0031]
The configuration of the PD is not limited to this, and any pn junction in a pnpn structure can be used. For example, in FIG. 9, a pn junction between the n-type semiconductor layer 86 and the p-type semiconductor layer 84 is used for the PD. In a self-scanning light-emitting element array having a double hetero structure in order to increase luminous efficiency, the two layers 86 and 84 correspond to an active layer. Therefore, in order to receive light from the light-emitting element, this pn junction is used. Is suitable. In FIG. 9, reference numerals 74 and 75 denote light receiving element lines.
[0032]
In FIG. 10, a pn junction between the p-type semiconductor layer 88 and the n-type semiconductor layer 86 is used for the PD. Since they correspond to the anode layer and the gate layer of the self-scanning light-emitting element array, they can be manufactured in exactly the same steps as the self-scanning light-emitting element array. In FIG. 10, reference numerals 76 and 77 denote light receiving element lines.
[0033]
In FIG. 11, the light emitting element is an optical transistor using three layers of an n-type semiconductor layer 86, a p-type semiconductor layer 84, and an n-type semiconductor layer 82. Using the n-type semiconductor layer 86 as an emitter, a base-emitter current due to a photocurrent is converted into a collector current. Since this structure can be manufactured only by taking out the light receiving element line 78 from the n-type semiconductor layer 86, exactly the same process as the self-scanning light emitting element array can be used.
[0034]
In FIG. 12, the semiconductor layer 86, 84, 82 is insulated by ion implantation with hydrogen ions instead of the mesa etching between the light receiving element and the light emitting element, instead of the mesa etching between the light receiving element and the light emitting element. Separation was performed. The separation area is indicated by 89. This configuration is characterized in that there is no discontinuous change in the refractive index due to mesa etching between the light receiving element and the light emitting element, so that more light enters the light receiving element. Here, separation by ion implantation is performed for the configuration of FIG. 11, but it may be applied to any of FIGS. 5, 7, 9, and 10.
[0035]
A plurality of light emitting element / light receiving element array chips having the above-described structure are arranged in a linear or staggered manner to produce a light emitting element / light receiving element array for an optical writing head. A light amount correction method in the optical writing head having the configuration of FIG. 1 equipped with such a light emitting element / light receiving element array will be described.
[0036]
In light quantity correction, first, the light emission intensity distribution of the optical writing head is measured. FIG. 13 is a diagram showing an apparatus for measuring the light emission intensity distribution of the optical writing head. (A) is a side view of the apparatus, and (B) is a front view. A light amount sensor 106 is disposed on a rail 104 extending in the direction of arrangement of the rod lens array 102 of the optical writing head 100 at a position movably along the rail and opposed to an emission portion of the optical writing head. By causing the light emitting element array to emit light and moving the light quantity sensor 106 along the rail 104, the light emission intensity distribution is measured in dot units, and the light emission intensity in dot units of the light emitting element is adjusted so that the exposure amount of each dot becomes uniform. And / or adjust the lighting time. In this state, the light emission intensity or exposure amount of the light emitting element in units of dots or chips is measured by the light receiving element provided in the light emitting element / light receiving element array chip, and the value is stored in the non-volatile storage means in the driver circuit. Record it.
[0037]
The optical writing head 100 whose emission intensity distribution has been measured as described above is installed in an optical printer. FIG. 14 shows the configuration of the optical printer. A photoconductive material (photoconductor) such as amorphous Si is formed on the surface of the cylindrical photosensitive drum 112. This drum rotates at the speed of the print. The surface of the photoreceptor of the rotating drum is uniformly charged by the charger 114. Then, the light of the dot image to be printed is irradiated on the photoreceptor by the optical writing head 100 to neutralize the charge at the position where the light is applied, thereby forming a latent image. Subsequently, the developing unit 118 applies toner on the photoconductor in accordance with the charged state on the photoconductor. Then, the transfer device 120 transfers the toner onto the sheet 124 sent from the cassette 122. The sheet is fixed by applying heat or the like in a fixing device 126 and sent to a stacker 128. On the other hand, the drum on which the transfer has been completed is neutralized over the entire surface by the erase lamp 130, and the remaining toner is removed by the cleaner 132.
[0038]
When adjusting the light quantity change due to the temperature of the light emitting element of the optical writing head 100 and the light quantity change due to aging, the light emitting element is set in dot units or a plurality of dot units in a time gap such as between paper feeds during optical printer printing. The light is emitted, and the light emission intensity or exposure amount at that time is directly measured by the light receiving element, the value is compared with the value written in the non-volatile storage means, and the difference is corrected. The light amount of the light emitting element is adjusted so that the light amount of the light emitting element becomes uniform.
[0039]
At this time, the photosensitive drum 112 is irradiated with light to form a latent image, and the toner adheres to the photosensitive member in the developing process. However, as described above, the light emission timing is controlled at a timing corresponding to the gap portion of the paper feed. The toner adhered to the photoconductor is cleaned by the cleaning blade of the cleaning device 132 without adhering to the paper.
[0040]
In this case, it is necessary to intentionally set the pitch between the papers for paper feeding, and there is a possibility that the printing speed may be reduced. Therefore, it is preferable that the timing of the light amount correction is performed for each of a plurality of printed sheets.
[0041]
According to this embodiment, the light receiving element is manufactured at the same time as the light emitting element, so that the cost can be reduced as compared with the individual manufacturing.
[0042]
Further, according to the present embodiment, the light receiving element directly receives the light from the light emitting element, so that the light receiving element is not affected by the surface condition of the reflector unlike the related art. Therefore, since the light emission intensity or the exposure amount with high accuracy can be detected, the light amount correction with high accuracy can be performed even with lapse of time or a change in the operating condition, and a high-quality image free from streaks can be obtained.
[0043]
Hereinafter, another embodiment of the present invention will be described. In this embodiment, instead of the rod lens array, an optical resin lens with very little light quantity unevenness is used.
[0044]
In an optical writing head using a rod lens array, if the position of the light emitting element deviates from the center of the optical axis of the lens, a light intensity step occurs in the lens cycle. Therefore, in the case of such an optical writing head, in order to correct the light amount, as described with reference to FIG. 13, the light amount of the light emitting element is detected through the lens, and the light amount is made uniform. Therefore, large-scale equipment is required for adjustment.
[0045]
FIG. 15 schematically shows an optical writing head equipped with a flat microlens array to avoid this. (A) is a diagram of the flat microlens array 140 viewed from the side, and (B) is a plan view of the flat microlens array. The flat plate microlens array 140 emits light from the light emitting element / light receiving element array 14 configured by superposing a plurality of (two in this embodiment) resin lens arrays 144 having a large number of microlenses 142 formed on both surfaces. The light thus collected is focused on the photosensitive drum 22.
[0046]
Since the resin lens 140 having such a configuration can transmit light two-dimensionally, light amount transmission unevenness due to the lens pitch does not occur, so that it is not necessary to acquire light amount data via the lens. Therefore, since the light emitting intensity or the exposure amount of the light emitting element can be detected by the head alone, a large light amount detecting device is not required. That is, the light emitting element is caused to emit light in dot units or a plurality of dot units, the light emission intensity or the exposure amount at that time is measured by the light receiving element, and the value is written in the nonvolatile storage means. The light energy of the light emitting element that emits light at the timing of the paper feed gap during printing is measured by the light receiving element, collated with the value written in the nonvolatile storage means, the difference is corrected, and each dot or plural The light emission intensity and / or the lighting time of the light emitting element can be adjusted so that the exposure amount per dot becomes uniform.
[0047]
Another embodiment of the present invention will be described. In the embodiment shown in FIG. 6, a PD 70 corresponding to each light emitting element 60 is provided. However, in the configuration of FIG. 6, the chip width is increased by the amount of the PD, and the cost is accordingly increased. Further, in the configuration of FIG. 6, since the PD is provided between the side of the light emitting element and the long side of the chip, when the chips are arranged in a staggered manner, the interval between the light emitting elements increases.
[0048]
Therefore, in the case of the present embodiment, as shown in FIG. 16, one PD 70 is provided beside the first light emitting element 70 at the left end (position shifted in the light emitting element arrangement direction). The other structure is the same as that of FIG. 6, and therefore, the same components as those of FIG. 6 are denoted by the same reference numerals. FIG. 6 shows a bonding pad provided at the left end of the chip. Reference numeral 38 denotes a bonding pad for the PD 70.
[0049]
In such a configuration, the chip width is hardly changed, which is advantageous in cost. However, it is not possible to monitor the light emission intensity or the exposure amount for all the light emitting elements, and correction is performed using data on the first light emitting elements.
[0050]
【The invention's effect】
According to the present invention, since the light receiving element provided in the chip directly receives light from the light emitting element, it is not necessary to use reflected light. Therefore, since it is not affected by the change in the surface state of the light reflecting object such as the rod lens array, the light emitting intensity or the exposure amount of the light emitting element with high accuracy can be detected. By performing the light amount correction using the monitoring result of the light emission intensity or the exposure amount, the change in the light amount and the change in the light amount due to the deterioration with time of the light emitting element can be corrected, and a high-quality image can be guaranteed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an optical writing head including a light emitting element / light receiving element array.
FIG. 2 is a diagram showing an optical writing head having a reflecting object such as a mirror inside.
FIG. 3 is a view showing a light emitting element / light receiving element array chip according to the present invention.
FIG. 4 is a sectional view taken along line XX ′ of FIG. 3;
FIG. 5 is a diagram showing another example of the configuration of the light emitting element / light receiving element.
FIG. 6 is a plan view showing a light emitting element / light receiving element array in which a light receiving element is formed on a self-scanning light emitting element array.
FIG. 7 is a view showing a cross section taken along line YY ′ of FIG. 6;
8 is a diagram showing an electrical equivalent circuit of the self-scanning light emitting element array shown in FIG.
FIG. 9 is a diagram showing another example of the configuration of the light emitting element / light receiving element.
FIG. 10 is a diagram showing another example of the configuration of the light emitting element / light receiving element.
FIG. 11 is a diagram showing another example of the configuration of the light emitting element / light receiving element.
FIG. 12 is a diagram showing another example of the configuration of the light emitting element / light receiving element.
FIG. 13 is a diagram showing an apparatus for measuring a light amount distribution of an optical writing head.
FIG. 14 is a diagram illustrating a configuration of an optical printer.
FIG. 15 is a diagram showing an optical writing head equipped with a flat microlens array.
FIG. 16 is a plan view showing a light emitting element / light receiving element array in which one light receiving element is formed on a self-scanning light emitting element array.
[Explanation of symbols]
10, 102 rod lens array 12 housing 14 light emitting element / light receiving element array 16 heat sink 22, 112 photosensitive drum 24 reflector 30 light emitting element / light receiving element array chip 32 light emitting element 34 light emitting element bonding pad 36, 70 light receiving element 38 light receiving element Bonding pad 40 n-type substrate 44, 46 p-type region 48 back electrode 50, 54, 82, 86 n-type semiconductor layer 52, 56, 84, 88 p-type semiconductor layer 58, 90 protective insulating film 60 light-emitting thyristor 62 shift Thyristor 64 Gate electrode 66 Coupling diode 68 Resistor 72 Light receiving element line 80 N-type semiconductor substrate 89 Separation region 100 Optical writing head 106 Light intensity sensor 114 Charger 118 Developing unit 120 Transfer unit 122 Cassette 124 Paper 128 Stacker 130 Erase lamp 132 Clean Vessel

Claims (14)

同一基板内に、複数個の発光素子よりなる発光素子アレイと、この発光素子アレイの各発光素子にそれぞれ対応した受光素子よりなる受光素子アレイとを形成し、各受光素子の上面は配線材料で覆って反射光の入射を阻止し、発光素子の出射光が対応する受光素子に直接に入射し、各発光素子の発光強度をモニタできるようにした発光素子/受光素子アレイ。A light emitting element array composed of a plurality of light emitting elements and a light receiving element array composed of light receiving elements corresponding to each light emitting element of the light emitting element array are formed on the same substrate, and the upper surface of each light receiving element is made of a wiring material. A light-emitting element / light-receiving element array that covers and blocks the incidence of reflected light, and allows light emitted from the light-emitting element to directly enter the corresponding light-receiving element, thereby monitoring the light emission intensity of each light-emitting element. 同一基板内に、複数個の発光素子よりなる発光素子アレイと、この発光素子アレイの端部の1個の発光素子に対応した1個の受光素子とを形成し、前記受光素子の上面は配線材料で覆って反射光の入射を阻止し、前記1個の発光素子の出射光が前記1個の受光素子に直接に入射し、前記1個の発光素子の発光強度をモニタできるようにした発光素子/受光素子アレイ。A light emitting element array composed of a plurality of light emitting elements and one light receiving element corresponding to one light emitting element at the end of the light emitting element array are formed on the same substrate, and the upper surface of the light receiving element is a wiring. A light emission that is covered with a material to prevent reflected light from entering, so that emitted light of the one light emitting element can be directly incident on the one light receiving element to monitor the light emission intensity of the one light emitting element. Element / light receiving element array. 前記発光素子は、拡散法により形成された発光ダイオードで構成され、
前記受光素子は、拡散法により形成されたフォトダイオードで構成されている、請求項1または2に記載の発光素子/受光素子アレイ。
The light emitting element is configured by a light emitting diode formed by a diffusion method,
The light-emitting element / light-receiving element array according to claim 1, wherein the light-receiving element is configured by a photodiode formed by a diffusion method.
前記発光素子アレイは、エピ成長により形成されたpnpn構造よりなる自己走査型発光素子アレイで構成され、
前記受光素子は、前記pnpn構造中のpn接合よりなるフォトダイオードで構成されている、請求項1または2に記載の発光素子/受光素子アレイ。
The light emitting element array is composed of a self-scanning light emitting element array having a pnpn structure formed by epi growth,
The light-emitting element / light-receiving element array according to claim 1, wherein the light-receiving element is configured by a photodiode having a pn junction in the pnpn structure.
前記発光素子アレイは、エピ成長により形成されたpnpn構造よりなる自己走査型発光素子アレイで構成され、
前記受光素子は、前記pnpn構造中のpnpまたはnpnよりなる光トランジスタで構成されている、請求項1または2に記載の発光素子/受光素子アレイ。
The light emitting element array is composed of a self-scanning light emitting element array having a pnpn structure formed by epi growth,
The light-emitting element / light-receiving element array according to claim 1, wherein the light-receiving element is configured by an optical transistor including pnp or npn in the pnpn structure.
前記発光素子と受光素子とは、メサエッチングで分離されている、請求項4または5に記載の発光素子/受光素子アレイ。The light emitting element / light receiving element array according to claim 4, wherein the light emitting element and the light receiving element are separated by mesa etching. 前記発光素子と受光素子とは、イオン注入により絶縁化された領域で分離されている、請求項4または5に記載の発光素子/受光素子アレイ。The light emitting element / light receiving element array according to claim 4, wherein the light emitting element and the light receiving element are separated by a region insulated by ion implantation. 請求項1〜7のいずれかに記載の発光素子/受光素子アレイと、
前記発光素子からの光を集光させるレンズアレイと、
を備える光書込みヘッド。
A light emitting element / light receiving element array according to claim 1,
A lens array for condensing light from the light emitting element,
An optical writing head comprising:
前記レンズアレイは、ロッドレンズである、請求項8に記載の光書込みヘッド。9. The optical writing head according to claim 8, wherein the lens array is a rod lens. 前記レンズアレイは、平板マイクロレンズである、請求項8に記載の光書込みヘッド。The optical writing head according to claim 8, wherein the lens array is a flat microlens. 請求項9に記載の光書込みヘッドを備える光プリンタ。An optical printer comprising the optical writing head according to claim 9. 請求項10に記載の光書込みヘッドを備える光プリンタ。An optical printer comprising the optical writing head according to claim 10. 請求項11に記載の光プリンタにおける光書込みヘッドの光量補正方法であって、
発光素子を発光させて、光量センサにより、発光素子単位で発光強度分布を測定し、各発光素子の露光量が均一となるように発光素子の発光強度および/または点灯時間を調整し、その状態で、発光素子単位または複数の発光素子単位の発光強度または露光量を受光素子により計測し、その値をドライバ回路内の記憶手段に記録しておき、
光プリンタ印字時の時間的な空隙時に、発光素子を発光させ、発光強度または露光量を受光素子で直接に計測し、その値と前記記憶手段に記録された値と照合して、その差分を補正し、各発光素子単位または複数の発光素子単位の露光量が均一になるように発光素子の発光強度および/または点灯時間を調整する、光量補正方法。
A light amount correction method for an optical writing head in the optical printer according to claim 11, wherein
The light emitting elements are caused to emit light, the light intensity sensor is used to measure the light emission intensity distribution for each light emitting element, and the light emitting intensity and / or lighting time of the light emitting elements are adjusted so that the light exposure of each light emitting element is uniform. Then, the light emission intensity or the exposure amount of each light emitting element unit or a plurality of light emitting element units is measured by a light receiving element, and the value is recorded in storage means in the driver circuit,
At the time of the time gap when printing with an optical printer, the light emitting element is caused to emit light, the light emission intensity or the amount of exposure is directly measured by the light receiving element, the value is compared with the value recorded in the storage means, and the difference is compared. A light amount correction method that corrects and adjusts the light emission intensity and / or lighting time of a light emitting element so that the exposure amount of each light emitting element unit or a plurality of light emitting element units becomes uniform.
請求項12に記載の光プリンタにおける光書込みヘッドの光量補正方法であって、
発光素子アレイを発光させて、発光素子単位または複数の発光素子単位の発光強度または露光量を受光素子により計測し、その値をドライバ回路内の記憶手段に記録しておき、
光プリンタ印字時の時間的な空隙時に、発光素子を発光させ、発光強度または露光量を受光素子で直接に計測し、その値と前記記憶手段に記録された値と照合して、その差分を補正し、各発光素子単位または複数の発光素子単位の露光量が均一になるように発光素子の発光強度および/または点灯時間を調整する、光量補正方法。
A light amount correction method for an optical writing head in the optical printer according to claim 12,
The light emitting element array emits light, the light emitting intensity or the exposure amount of each light emitting element unit or a plurality of light emitting element units is measured by the light receiving element, and the value is recorded in the storage means in the driver circuit,
At the time of the time gap when printing with an optical printer, the light emitting element is caused to emit light, the light emission intensity or the amount of exposure is directly measured by the light receiving element, the value is compared with the value recorded in the storage means, and the difference is compared. A light amount correction method that corrects and adjusts the light emission intensity and / or lighting time of a light emitting element so that the exposure amount of each light emitting element unit or a plurality of light emitting element units becomes uniform.
JP2003045446A 2003-02-24 2003-02-24 Optical writing head, optical printer, and light quantity correction method Expired - Fee Related JP4631248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045446A JP4631248B2 (en) 2003-02-24 2003-02-24 Optical writing head, optical printer, and light quantity correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045446A JP4631248B2 (en) 2003-02-24 2003-02-24 Optical writing head, optical printer, and light quantity correction method

Publications (2)

Publication Number Publication Date
JP2004259724A true JP2004259724A (en) 2004-09-16
JP4631248B2 JP4631248B2 (en) 2011-02-16

Family

ID=33112242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045446A Expired - Fee Related JP4631248B2 (en) 2003-02-24 2003-02-24 Optical writing head, optical printer, and light quantity correction method

Country Status (1)

Country Link
JP (1) JP4631248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074212A (en) * 2013-10-11 2015-04-20 コニカミノルタ株式会社 Optical writing device, image formation device, and temperature calculation method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253689A (en) * 1989-03-27 1990-10-12 Mitsubishi Electric Corp Semiconductor array laser
JPH0355885A (en) * 1989-07-25 1991-03-11 Nippon Sheet Glass Co Ltd Light emitting and receiving module
JPH03200364A (en) * 1989-09-22 1991-09-02 Nippon Sheet Glass Co Ltd Method of reading optical signal and switching element array used therefor
JPH03230571A (en) * 1990-02-06 1991-10-14 Ricoh Co Ltd Light source for high-density optical printer
JPH03241879A (en) * 1990-02-20 1991-10-29 Sony Corp Chaos light emitting self-exciting laser device
JPH0697487A (en) * 1992-09-14 1994-04-08 Toshiba Corp Photocoupler
JPH06196681A (en) * 1992-11-04 1994-07-15 Nec Corp Light-receiving-and-emitting integrated element
JPH10147001A (en) * 1996-11-19 1998-06-02 Hitachi Ltd Exposure control device and recording device equipped with exposure control device
JP2001088342A (en) * 1999-09-20 2001-04-03 Canon Inc Recording apparatus and recording method
JP2002144634A (en) * 2000-11-16 2002-05-22 Fuji Xerox Co Ltd Optical head for electrophotography, and imaging apparatus and method of imaging using the same
JP2002261399A (en) * 2001-02-27 2002-09-13 Ricoh Co Ltd Optical communication system
JP2002292933A (en) * 2001-03-30 2002-10-09 Canon Inc Color imaging apparatus and method for adjusting laser pulse width of the same
JP2002314134A (en) * 2001-04-18 2002-10-25 Oki Data Corp Light emitting element array
JP2002374039A (en) * 2001-02-27 2002-12-26 Ricoh Co Ltd Optical transmitting/receiving system and optical communication system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253689A (en) * 1989-03-27 1990-10-12 Mitsubishi Electric Corp Semiconductor array laser
JPH0355885A (en) * 1989-07-25 1991-03-11 Nippon Sheet Glass Co Ltd Light emitting and receiving module
JPH03200364A (en) * 1989-09-22 1991-09-02 Nippon Sheet Glass Co Ltd Method of reading optical signal and switching element array used therefor
JPH03230571A (en) * 1990-02-06 1991-10-14 Ricoh Co Ltd Light source for high-density optical printer
JPH03241879A (en) * 1990-02-20 1991-10-29 Sony Corp Chaos light emitting self-exciting laser device
JPH0697487A (en) * 1992-09-14 1994-04-08 Toshiba Corp Photocoupler
JPH06196681A (en) * 1992-11-04 1994-07-15 Nec Corp Light-receiving-and-emitting integrated element
JPH10147001A (en) * 1996-11-19 1998-06-02 Hitachi Ltd Exposure control device and recording device equipped with exposure control device
JP2001088342A (en) * 1999-09-20 2001-04-03 Canon Inc Recording apparatus and recording method
JP2002144634A (en) * 2000-11-16 2002-05-22 Fuji Xerox Co Ltd Optical head for electrophotography, and imaging apparatus and method of imaging using the same
JP2002261399A (en) * 2001-02-27 2002-09-13 Ricoh Co Ltd Optical communication system
JP2002374039A (en) * 2001-02-27 2002-12-26 Ricoh Co Ltd Optical transmitting/receiving system and optical communication system
JP2002292933A (en) * 2001-03-30 2002-10-09 Canon Inc Color imaging apparatus and method for adjusting laser pulse width of the same
JP2002314134A (en) * 2001-04-18 2002-10-25 Oki Data Corp Light emitting element array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074212A (en) * 2013-10-11 2015-04-20 コニカミノルタ株式会社 Optical writing device, image formation device, and temperature calculation method
CN104553309A (en) * 2013-10-11 2015-04-29 柯尼卡美能达株式会社 Optical writing device, image forming apparatus, and temperature calculation method
US9921515B2 (en) 2013-10-11 2018-03-20 Konica Minolta, Inc. Optical writing device, image forming apparatus, and temperature calculation method

Also Published As

Publication number Publication date
JP4631248B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US8035115B2 (en) Semiconductor apparatus, print head, and image forming apparatus
US7880190B2 (en) Combined semiconductor device, LED print head, and image forming apparatus
US20080042155A1 (en) Semiconductor device, LED head and image forming apparatus
US8433231B2 (en) Laser fixing device and image forming apparatus including the laser fixing device
US8305417B2 (en) Light-emitting device, print head and image forming apparatus
JP2007294876A (en) Light emitting element array
KR20020012219A (en) Optical printer head and method of lighting it
US9110399B2 (en) Optical writing device and image forming apparatus
JP4631248B2 (en) Optical writing head, optical printer, and light quantity correction method
JP2008166611A (en) Light emitting element array, optical print head using the same and image forming apparatus
JP4972976B2 (en) Self-scanning light-emitting element array chip, method for manufacturing self-scanning light-emitting element array chip, and optical writing head
JP2007250853A (en) Self-scanning type light-emitting element array
US20200319573A1 (en) Semiconductor light-emitting device, exposure head, and image forming apparatus
US20200292958A1 (en) Semiconductor light-emitting device, exposure head, and image forming apparatus
JP2004148688A (en) Method for correcting optical printhead, optical printhead and image forming apparatus
US20160254315A1 (en) Semiconductor device, led head, and image forming apparatus
JP5472388B2 (en) Self-scanning light emitting element array, optical writing head, optical printer, facsimile and copying machine
JP5568931B2 (en) Light emitting element array and image forming apparatus using the same
JP5078420B2 (en) Manufacturing method of rod lens array
JP2007324235A (en) Light-emitting element, method of manufacturing the same, optical print head, and image forming apparatus
JP4432609B2 (en) Light emitting element array head and optical printer using the same
JP2613057B2 (en) Light-emitting element luminous intensity measuring device
JP5230190B2 (en) Method for manufacturing light emitting device
JP2004148630A (en) Method for correcting optical print head, optical print head, and image forming apparatus
JP2011017785A (en) Optical recording device and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370