JP2004259463A - Manufacturing method of gas diffusion layer of solid polymer type fuel cell - Google Patents

Manufacturing method of gas diffusion layer of solid polymer type fuel cell Download PDF

Info

Publication number
JP2004259463A
JP2004259463A JP2003045684A JP2003045684A JP2004259463A JP 2004259463 A JP2004259463 A JP 2004259463A JP 2003045684 A JP2003045684 A JP 2003045684A JP 2003045684 A JP2003045684 A JP 2003045684A JP 2004259463 A JP2004259463 A JP 2004259463A
Authority
JP
Japan
Prior art keywords
gas diffusion
base material
diffusion layer
fuel cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045684A
Other languages
Japanese (ja)
Other versions
JP4240285B2 (en
Inventor
Takanori Wada
崇徳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003045684A priority Critical patent/JP4240285B2/en
Publication of JP2004259463A publication Critical patent/JP2004259463A/en
Application granted granted Critical
Publication of JP4240285B2 publication Critical patent/JP4240285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a gas diffusion layer of a solid polymer type fuel cell capable of stably carrying out sufficient smoothing of a gas diffusion layer surface on the side adjacent to a catalyst layer, and thereby allowing a stable long-time continuous operation of the fuel cell. <P>SOLUTION: In this manufacturing method of the gas diffusion layer of the solid polymer type fuel cell provided with the catalyst layers disposed on both principal surfaces by interposing a solid polymer electrolyte film, and the porous gas diffusion layers disposed on both outer sides of the catalyst layer, each gas diffusion layer is formed of a conductive porous base material such as carbon paper or carbon cloth; the base material is formed into a predetermined size; thereafter the base material surface on the side adjacent to the catalyst layer is smoothed by arc heat of discharge. For instance, the base material 11 is used as a positive electrode; a graphite electrode 15 is used as a negative electrode; a pulse voltage is applied between both the electrodes in a working solution 16 from an arc generator 17; and thereby the arc heat of discharge is generated to smooth the base material surface by melting carbon fibers projecting rom the base material surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子型燃料電池におけるガス拡散層の製造方法に関する。
【0002】
【従来の技術】
燃料電池は水素と酸素を利用し、電解質を介在して発電する装置である。固体高分子型燃料電池は、電解質として、高分子膜が含水することでイオン導電性を示す樹脂膜を用いたもので、その燃料電池セルの構成の斜視図を図4に示し、その一部拡大断面図を図3に示す。
【0003】
図3および図4において、固体高分子電解質膜1の両面には、触媒層2と、多孔質のガス拡散層3とを備え、さらに、一方のガス拡散層に反応ガスとしての水素を含む燃料ガスを供給・排出するための燃料ガス流路を有し,他方の拡散層に反応ガスとしての酸化剤ガスを供給・排出するための酸化剤ガス流路を有してなるセパレータ5を備える。なお、図4においてセパレータは、一つのセパレータの両側に反応ガス流路を有するものを示したが、製造上の理由から、図3に示すように片側に流路を有するものを背中合わせに積層する場合もある。上記セルを多数積層したものをスタックという。
【0004】
固体高分子電解質膜1としては、例えばパーフルオロスルホン酸ポリマー膜(米国,デュポン社,商品名Nafion膜)が用いられる。この膜は、飽和に含水させることで、常温で20Ω・cm以下の比抵抗を示し、プロトン伝導性電解質として機能する。膜の飽和含水量は温度によって可逆的に変化する。
【0005】
固体高分子電解質膜1の両側に接合しているガス拡散層3の片方より水素、もう一方より酸素あるいは空気を供給することにより、固体高分子電解質膜1と触媒層2の界面における水素の酸化反応、酸素の還元反応によってプロトン,電子の移動が起こり、電気を得ることができる。
【0006】
触媒層2は、粒子状の白金黒あるいは白金担持カーボンと撥水性を有するフッ素樹脂とから形成される。触媒層2としては、触媒の反応面積を拡大するため、触媒層の中に固体高分子電解質樹脂を混合した構成の電解質樹脂付触媒がよく用いられる。
【0007】
ガス拡散層3としては、導電性のカーボンペーパーあるいはカーボンクロスを用いる。通常、固体高分子電解質膜1と触媒層2の接合体を作製したのち、ガス拡散層3をホットプレスにて接合するが、ガス拡散層3上に触媒層2を塗布して接合した後、固体高分子電解質膜1との接合体を作成する場合もある。
【0008】
前記ガス拡散層3に関して、さらに詳述する。高い発電効率を得るためには、前記反応ガス流路から触媒層2へ反応ガス(H、O)が拡散により移動して、触媒層中の白金表面で反応させる際に、触媒層面内へ均等に反応ガスを供給する必要がある。そのために、前述のように、反応ガス流路と触媒層2との間にガス拡散層3を設けている。このガス拡散層3は、導電性多孔質材料からなり、一般に、数μmのカーボン繊維からなる厚さ数百μmのクロスやペーパーから形成される。
【0009】
図2にガス拡散層の模式的構成図を示す。ガス拡散層としては、カーボンペーパーやカーボンクロス等の導電性多孔質基材のみで形成する場合(図2(a))と、基材の上に、カーボン撥水剤層を形成する場合(図2(b))とがある。
【0010】
図2(a)の場合、多数のカーボン繊維13が絡み合って導電性多孔質の基材11を構成し、この基材を所定寸法に形成してガス拡散層とする。図2(b)のガス拡散層は、触媒層とガス拡散層との接触抵抗を下げるために、カーボン粒子と撥水剤とからなる、例えば厚さ数十μmのカーボン撥水剤層12を、触媒層側の基材11表面に形成してなる。
【0011】
ところで、前述のように、ガス拡散層に、数μmのカーボン繊維からなる厚さ数百μmのクロスやペーパーを用いたような場合、その基材表面から、カーボン繊維が突出する場合がある。燃料電池スタックにおいては、ガス拡散層を含む電極部材間の接触抵抗増加による出力の損失を防ぐために、スタックの各積層部材は、その積層方向に加圧して締付けられる。
【0012】
電池スタックを締付けた際に、基材11の表面から突出したカーボン繊維13により、触媒層2や固体高分子電解質膜1が損傷し、ピンホールができる場合がある。この場合には、燃料極と空気極の反応ガスのクロスリークが生じ、安定した運転ができなくなる可能性がある。また、触媒層側にカーボン撥水剤層12が形成された場合においても、カーボン繊維13がカーボン撥水剤層12の表面から突出した場合には、同様の問題が生ずる。
【0013】
上記の問題を解消するために、特許文献1は、下記の製造方法を開示している。即ち、「カーボンクロスの表面に撥水性カーボン層を形成した後、ホットプレスを施し表面を平坦化したものをガス拡散層とし、次いで撥水性カーボン層に隣接して触媒層を配置することにより電極を構成する製造方法」である(詳細は、特許文献1参照)。
【0014】
【特許文献1】
特開2001−85019号公報(第2−3頁)
【0015】
【発明が解決しようとする課題】
ところで、前述の特許文献1に記載された電極、主として、ガス拡散層の製造方法によれば、ホットプレスにより、ある程度の基材表面の平坦化を図ることができるものの、基材表面から突出したカーボン繊維は、反り返りがあるので、所期の平坦化もしくは平滑化がなされず、前記触媒層や固体高分子電解質膜の損傷が発生する可能性が残る。
【0016】
また、特許文献1の方法のように、ホットプレスにより平坦化を図る場合、ホットプレスによりガス拡散層の少なくとも一部は塑性変形が生ずるので、寸法精度を安定して得るために相応の管理が必要となる。
【0017】
この発明は、上記の点に鑑みてなされたもので、この発明の課題は、触媒層と隣接する側のガス拡散層表面の充分なる平滑化を安定的に図ることを可能とし、もって、燃料電池の安定した長時間連続運転を可能とする固体高分子型燃料電池のガス拡散層の製造方法を提供することにある。
【0018】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、固体高分子電解質膜を挟んで両主面に配設した触媒層と、この触媒層の両外側に配設した多孔質のガス拡散層とを備えた固体高分子型燃料電池の前記ガス拡散層の製造方法において、前記ガス拡散層は、カーボンペーパーやカーボンクロス等の導電性多孔質基材からなるものとし、この導電性多孔質基材を所定寸法に形成した後、前記触媒層と隣接する側の前記基材表面を、放電のアーク熱により平滑化処理することとする(請求項1の発明)。
【0019】
上記によれば、触媒層側のガス拡散層表面から突出したカーボン繊維を、放電のアーク熱加工により焼失させることができ、これにより前記ガス拡散層表面が平滑化する。その結果、スタックを締付けた際に、ガス拡散層が原因となって触媒層や固体高分子膜が損傷することが防止され、空気極と燃料極の反応ガスクロスリークが起こりにくくなり、長時間安定した連続運転が可能となる。
【0020】
上記請求項1の発明の実施態様としては、下記請求項2ないし5の発明が好ましい。即ち、前記請求項1に記載の製造方法において、前記平滑化処理は、前記導電性多孔質基材を一方の電極とし、かつグラファイト電極を他方の電極として、電気絶縁性の加工液中で前記両電極間にパルス電圧を印加し、これにより放電のアーク熱を発生させ、このアーク熱により、導電性多孔質基材の前記基材表面から突出したカーボン繊維を溶融させて平滑化する処理とする(請求項2の発明)。
【0021】
上記のように、グラファイト電極を用いることなしに、金属電極を用いた場合には、電極材料の溶融物が導電性多孔質基材に付着して、ガス拡散層の性能に悪影響を及ぼす問題が発生する恐れがあるが、導電性多孔質基材と同系統の電極材料を用いることにより前記悪影響は抑制される。なお、前記電気絶縁性の加工液としては、例えば、一般的な放電加工において使用される灯油が使用できる。
【0022】
また、前記請求項2に記載の製造方法において、前記パルス電圧を印加する両電極面の間隙は、10〜500μmとする(請求項3の発明)のが好ましい。
【0023】
さらに、カーボン撥水剤層を備える場合には、下記請求項4または5とする。即ち、前記請求項1ないし3のいずれか1項に記載の製造方法において、前記平滑化処理後に、カーボン撥水剤層を前記基材表面に形成する(請求項4の発明)。または、前記請求項1ないし3のいずれか1項に記載の製造方法において、予めカーボン撥水剤層を前記基材表面に形成した後に、前記平滑化処理を行なう(請求項5の発明)。
【0024】
【発明の実施の形態】
図面に基づき、この発明の実施例について以下にのべる。
【0025】
図1は、この発明の実施例に関わるガス拡散層の表面処理方法の模式的説明図を示し、ガス拡散層としては図2(a)に示したものに適用した例を示す。図1において、11は基材、14は放電加工反応槽、15はグラファイト電極、16は加工液、17はアーク発生装置を示す。
【0026】
放電加工反応槽14の中には、電気絶縁性の加工液6(例えば、灯油)が満たされ、基材11とグラファイト電極15とが対面して配置される。基材11を例えば陽極、グラファイト電極15を陰極として、パルス電源を備えるアーク発生装置17により、基材11とグラファイト電極15との間に、放電によりアークを発生させる。発生したアークにより、基材11の表面から突出したカーボン繊維が焼失する。
【0027】
基材11とグラファイト電極15との間の表面間距離は、基材表面から突出したカーボン繊維の状態により調整するが、電極表面にグラファイト電極5が接触すると、基材11の表面が焼失する可能性があり、距離が長すぎると基材表面から突出したカーボン繊維が焼失する効果が得られない可能性がある。上記観点から、好ましい両電極の間隙の範囲は、10〜500μmとする。
【0028】
なお、本実施例では、基材11のみでガス拡散層が形成される場合の表面処理について説明したが、図2(b)に示したカーボン撥水剤層を有するガス拡散層に関しても、その表面処理方法は同様である。また、前述のように、カーボン撥水剤層を上記図1の表面処理後に形成することもできる。
【0029】
【発明の効果】
上記のとおり、この発明によれば、固体高分子電解質膜を挟んで両主面に配設した触媒層と、この触媒層の両外側に配設した多孔質のガス拡散層とを備えた固体高分子型燃料電池の前記ガス拡散層の製造方法において、前記ガス拡散層が、カーボンペーパーやカーボンクロス等の導電性多孔質基材のみからなるものとする場合には、この導電性多孔質基材を所定寸法に形成した後、前記触媒層と隣接する側の前記基材表面を、放電のアーク熱により平滑化処理することとし、
前記ガス拡散層が、カーボン撥水剤層を備えるものとする場合には、前記平滑化処理後にカーボン撥水剤層を形成する、もしくは予めカーボン撥水剤層を形成した後に前記平滑化処理を行なうこととしたので、
触媒層と隣接する側のガス拡散層表面の充分なる平滑化を安定的に図ることを可能とし、もって、燃料電池の安定した長時間連続運転を可能とすることができる。
【図面の簡単な説明】
【図1】この発明の実施例に関わるガス拡散層の表面処理方法の模式的説明図
【図2】この発明に関わるガス拡散層の模式的構成図
【図3】固体高分子型燃料電池セルの一部拡大断面図
【図4】固体高分子型燃料電池セルの構成の斜視図
【符号の説明】
1:固体高分子電解質膜、2:触媒層、3:ガス拡散層、5:セパレータ、11:基材、12:カーボン撥水剤層、13:カーボン繊維、14:放電加工反応槽、15:グラファイト電極、16:加工液、17:アーク発生装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a gas diffusion layer in a polymer electrolyte fuel cell.
[0002]
[Prior art]
A fuel cell is a device that uses hydrogen and oxygen to generate power through an electrolyte. The polymer electrolyte fuel cell uses a resin membrane that exhibits ionic conductivity when the polymer membrane contains water as an electrolyte. FIG. 4 shows a perspective view of the configuration of the fuel cell, and FIG. FIG. 3 is an enlarged sectional view.
[0003]
3 and 4, a catalyst layer 2 and a porous gas diffusion layer 3 are provided on both sides of the solid polymer electrolyte membrane 1, and one of the gas diffusion layers contains a fuel containing hydrogen as a reaction gas. A separator 5 having a fuel gas flow path for supplying and discharging a gas and having an oxidizing gas flow path for supplying and discharging an oxidizing gas as a reaction gas to the other diffusion layer is provided. In FIG. 4, the separator has a reaction gas flow path on both sides of one separator. However, for manufacturing reasons, a separator having a flow path on one side is stacked back to back as shown in FIG. In some cases. A stack of many of the above cells is called a stack.
[0004]
As the solid polymer electrolyte membrane 1, for example, a perfluorosulfonic acid polymer membrane (Dupont, USA, trade name: Nafion membrane) is used. This membrane exhibits specific resistance of 20 Ω · cm or less at room temperature by being saturated with water, and functions as a proton conductive electrolyte. The saturated water content of the membrane changes reversibly with temperature.
[0005]
By supplying hydrogen from one side of the gas diffusion layer 3 bonded to both sides of the polymer electrolyte membrane 1 and oxygen or air from the other side, oxidation of hydrogen at the interface between the polymer electrolyte membrane 1 and the catalyst layer 2 is performed. Proton and electron transfer occur by the reaction and the reduction reaction of oxygen, and electricity can be obtained.
[0006]
The catalyst layer 2 is formed from particulate platinum black or platinum-carrying carbon and a water-repellent fluororesin. As the catalyst layer 2, a catalyst with an electrolyte resin having a configuration in which a solid polymer electrolyte resin is mixed in the catalyst layer is often used in order to increase the reaction area of the catalyst.
[0007]
As the gas diffusion layer 3, conductive carbon paper or carbon cloth is used. Usually, after forming a joined body of the solid polymer electrolyte membrane 1 and the catalyst layer 2, the gas diffusion layer 3 is joined by hot pressing. After the catalyst layer 2 is applied on the gas diffusion layer 3 and joined, In some cases, a joined body with the solid polymer electrolyte membrane 1 is formed.
[0008]
The gas diffusion layer 3 will be described in more detail. In order to obtain high power generation efficiency, when the reaction gas (H 2 , O 2 ) moves from the reaction gas flow path to the catalyst layer 2 by diffusion and reacts on the platinum surface in the catalyst layer, the reaction gas (H 2 , O 2 ) It is necessary to supply the reaction gas evenly to For this purpose, the gas diffusion layer 3 is provided between the reaction gas flow path and the catalyst layer 2 as described above. The gas diffusion layer 3 is made of a conductive porous material, and is generally formed of cloth or paper having a thickness of several hundred μm made of carbon fibers of several μm.
[0009]
FIG. 2 shows a schematic configuration diagram of the gas diffusion layer. The gas diffusion layer is formed by using only a conductive porous substrate such as carbon paper or carbon cloth (FIG. 2A), or when a carbon water repellent layer is formed on the substrate (FIG. 2A). 2 (b)).
[0010]
In the case of FIG. 2A, a large number of carbon fibers 13 are entangled to form a conductive porous base material 11, and this base material is formed into a predetermined size to form a gas diffusion layer. In order to reduce the contact resistance between the catalyst layer and the gas diffusion layer, the gas diffusion layer shown in FIG. 2B has a carbon water repellent layer 12 made of carbon particles and a water repellent, for example, having a thickness of several tens μm. , Formed on the surface of the base material 11 on the catalyst layer side.
[0011]
By the way, as described above, when a cloth or paper made of carbon fibers of several μm and having a thickness of several hundred μm is used for the gas diffusion layer, the carbon fibers may protrude from the surface of the base material. In a fuel cell stack, in order to prevent loss of output due to an increase in contact resistance between electrode members including a gas diffusion layer, each stacked member of the stack is pressurized and tightened in the stacking direction.
[0012]
When the battery stack is tightened, the carbon fiber 13 protruding from the surface of the base material 11 may damage the catalyst layer 2 and the solid polymer electrolyte membrane 1 and cause pinholes. In this case, a cross leak of the reaction gas between the fuel electrode and the air electrode may occur, and stable operation may not be performed. Even when the carbon water repellent layer 12 is formed on the catalyst layer side, the same problem occurs when the carbon fibers 13 protrude from the surface of the carbon water repellent layer 12.
[0013]
In order to solve the above problem, Patent Document 1 discloses the following manufacturing method. That is, the electrode is formed by forming a water-repellent carbon layer on the surface of the carbon cloth and then flattening the surface by hot pressing to form a gas diffusion layer, and then disposing a catalyst layer adjacent to the water-repellent carbon layer. (For details, see Patent Document 1).
[0014]
[Patent Document 1]
JP 2001-85019 A (pages 2-3)
[0015]
[Problems to be solved by the invention]
By the way, according to the method of manufacturing the electrode described in Patent Document 1 described above, mainly, the gas diffusion layer, although the surface of the base material can be flattened to some extent by hot pressing, it protrudes from the base material surface. Since the carbon fiber is warped, the desired flattening or smoothing is not performed, and there is a possibility that the catalyst layer and the solid polymer electrolyte membrane may be damaged.
[0016]
Further, when flattening is performed by hot pressing as in the method of Patent Document 1, at least a part of the gas diffusion layer is plastically deformed by hot pressing. Therefore, appropriate management is required to stably obtain dimensional accuracy. Required.
[0017]
The present invention has been made in view of the above points, and an object of the present invention is to make it possible to stably achieve a sufficient smoothing of the surface of a gas diffusion layer on the side adjacent to a catalyst layer, and to provide a fuel It is an object of the present invention to provide a method for producing a gas diffusion layer of a polymer electrolyte fuel cell which enables stable long-term continuous operation of a battery.
[0018]
[Means for Solving the Problems]
In order to solve the aforementioned problems, the present invention provides a catalyst layer disposed on both main surfaces with a solid polymer electrolyte membrane interposed therebetween, and a porous gas diffusion layer disposed on both outer sides of the catalyst layer. In the method for manufacturing a gas diffusion layer of a polymer electrolyte fuel cell provided, the gas diffusion layer is made of a conductive porous base material such as carbon paper or carbon cloth, and the conductive porous base material is After being formed to a predetermined size, the surface of the base material on the side adjacent to the catalyst layer is subjected to a smoothing treatment by arc heat of discharge (claim 1).
[0019]
According to the above, the carbon fibers protruding from the surface of the gas diffusion layer on the catalyst layer side can be burned off by electric discharge arc thermal processing, whereby the surface of the gas diffusion layer is smoothed. As a result, when the stack is tightened, the catalyst layer and solid polymer membrane are prevented from being damaged due to the gas diffusion layer, the reaction gas cross leak between the air electrode and the fuel electrode is less likely to occur, and the stack is stable for a long time. Continuous operation is possible.
[0020]
As an embodiment of the first aspect of the present invention, the following second to fifth aspects of the present invention are preferable. That is, in the manufacturing method according to claim 1, the smoothing treatment is performed by using the conductive porous base material as one electrode, and the graphite electrode as the other electrode, in an electrically insulating working fluid. Applying a pulse voltage between the two electrodes, thereby generating arc heat of discharge, and by this arc heat, melting and smoothing the carbon fibers protruding from the base material surface of the conductive porous base material; and (The invention of claim 2).
[0021]
As described above, when a metal electrode is used without using a graphite electrode, there is a problem that a melt of the electrode material adheres to the conductive porous substrate and adversely affects the performance of the gas diffusion layer. Although this may occur, the adverse effect is suppressed by using an electrode material of the same system as the conductive porous substrate. In addition, as the electric insulating working fluid, for example, kerosene used in general electric discharge machining can be used.
[0022]
Further, in the manufacturing method according to the second aspect, it is preferable that a gap between both electrode surfaces to which the pulse voltage is applied is 10 to 500 μm (the invention of the third aspect).
[0023]
Further, when a carbon water repellent layer is provided, the following claim 4 or 5 is provided. That is, in the manufacturing method according to any one of claims 1 to 3, after the smoothing treatment, a carbon water repellent layer is formed on the surface of the base material (the invention of claim 4). Alternatively, in the manufacturing method according to any one of claims 1 to 3, after the carbon water repellent layer is formed on the surface of the base material in advance, the smoothing treatment is performed (the invention of claim 5).
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
FIG. 1 is a schematic explanatory view of a method for treating a surface of a gas diffusion layer according to an embodiment of the present invention, and shows an example in which the gas diffusion layer shown in FIG. 2A is applied. In FIG. 1, reference numeral 11 denotes a base material, 14 denotes an electric discharge machining reaction tank, 15 denotes a graphite electrode, 16 denotes a working liquid, and 17 denotes an arc generator.
[0026]
The electric discharge machining reaction tank 14 is filled with an electrically insulating machining fluid 6 (for example, kerosene), and the base material 11 and the graphite electrode 15 are arranged facing each other. Using the base material 11 as an anode and the graphite electrode 15 as a cathode, an arc is generated between the base material 11 and the graphite electrode 15 by electric discharge by an arc generator 17 provided with a pulse power supply. Due to the generated arc, the carbon fibers protruding from the surface of the base material 11 are burned out.
[0027]
The surface-to-surface distance between the substrate 11 and the graphite electrode 15 is adjusted according to the state of the carbon fibers protruding from the substrate surface. However, when the graphite electrode 5 comes into contact with the electrode surface, the surface of the substrate 11 may be burned out. If the distance is too long, there is a possibility that the effect of burning out the carbon fibers protruding from the substrate surface may not be obtained. From the above viewpoint, the preferable range of the gap between the two electrodes is 10 to 500 μm.
[0028]
In this embodiment, the surface treatment in the case where the gas diffusion layer is formed only with the base material 11 has been described, but the gas diffusion layer having the carbon water repellent layer shown in FIG. The surface treatment method is the same. Further, as described above, the carbon water repellent layer can be formed after the surface treatment shown in FIG.
[0029]
【The invention's effect】
As described above, according to the present invention, a solid comprising: a catalyst layer disposed on both main surfaces with a solid polymer electrolyte membrane interposed therebetween; and a porous gas diffusion layer disposed on both outer sides of the catalyst layer. In the method for producing a gas diffusion layer of a polymer fuel cell, when the gas diffusion layer is made of only a conductive porous substrate such as carbon paper or carbon cloth, the conductive porous substrate After forming the material to a predetermined size, the base material surface on the side adjacent to the catalyst layer is to be smoothed by arc heat of discharge,
When the gas diffusion layer is provided with a carbon water repellent layer, a carbon water repellent layer is formed after the smoothing treatment, or the smoothing treatment is performed after forming the carbon water repellent layer in advance. I decided to do it,
The surface of the gas diffusion layer adjacent to the catalyst layer can be sufficiently smoothed stably, and the fuel cell can be stably operated for a long time.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a surface treatment method for a gas diffusion layer according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram of a gas diffusion layer according to the present invention. FIG. 3 is a polymer electrolyte fuel cell. [FIG. 4] A perspective view of the configuration of a polymer electrolyte fuel cell [Description of symbols]
1: solid polymer electrolyte membrane, 2: catalyst layer, 3: gas diffusion layer, 5: separator, 11: base material, 12: carbon water repellent layer, 13: carbon fiber, 14: electric discharge machining reaction tank, 15: Graphite electrode, 16: working fluid, 17: arc generator.

Claims (5)

固体高分子電解質膜を挟んで両主面に配設した触媒層と、この触媒層の両外側に配設した多孔質のガス拡散層とを備えた固体高分子型燃料電池の前記ガス拡散層の製造方法において、
前記ガス拡散層は、カーボンペーパーやカーボンクロス等の導電性多孔質基材からなるものとし、この導電性多孔質基材を所定寸法に形成した後、前記触媒層と隣接する側の前記基材表面を、放電のアーク熱により平滑化処理することを特徴とする固体高分子型燃料電池のガス拡散層の製造方法。
The gas diffusion layer of a polymer electrolyte fuel cell, comprising: a catalyst layer disposed on both main surfaces with a solid polymer electrolyte membrane interposed therebetween; and a porous gas diffusion layer disposed on both outer sides of the catalyst layer. In the manufacturing method of
The gas diffusion layer is formed of a conductive porous base material such as carbon paper or carbon cloth, and after forming the conductive porous base material to a predetermined size, the base material on the side adjacent to the catalyst layer is formed. A method for producing a gas diffusion layer of a polymer electrolyte fuel cell, wherein a surface is smoothed by arc heat of discharge.
請求項1に記載の製造方法において、前記平滑化処理は、前記導電性多孔質基材を一方の電極とし、かつグラファイト電極を他方の電極として、電気絶縁性の加工液中で前記両電極間にパルス電圧を印加し、これにより放電のアーク熱を発生させ、このアーク熱により、導電性多孔質基材の前記基材表面から突出したカーボン繊維を溶融させて平滑化する処理とすることを特徴とする固体高分子型燃料電池のガス拡散層の製造方法。The manufacturing method according to claim 1, wherein the smoothing treatment is performed by using the conductive porous base material as one electrode and a graphite electrode as the other electrode in an electrically insulating working fluid between the two electrodes. A pulse voltage is applied to the conductive porous substrate, thereby generating arc heat of discharge, and the arc heat is used to melt and smooth carbon fibers protruding from the surface of the conductive porous substrate. A method for producing a gas diffusion layer of a polymer electrolyte fuel cell. 請求項2に記載の製造方法において、前記パルス電圧を印加する両電極面の間隙は、10〜500μmとすることを特徴とする固体高分子型燃料電池のガス拡散層の製造方法。3. The method according to claim 2, wherein a gap between both electrode surfaces to which the pulse voltage is applied is set to 10 to 500 μm. 4. 請求項1ないし3のいずれか1項に記載の製造方法において、前記平滑化処理後に、カーボン撥水剤層を前記基材表面に形成することを特徴とする固体高分子型燃料電池のガス拡散層の製造方法。4. The gas diffusion method for a polymer electrolyte fuel cell according to claim 1, wherein a carbon water repellent layer is formed on the surface of the base material after the smoothing treatment. 5. The method of manufacturing the layer. 請求項1ないし3のいずれか1項に記載の製造方法において、予めカーボン撥水剤層を前記基材表面に形成した後に、前記平滑化処理を行なうことを特徴とする固体高分子型燃料電池のガス拡散層の製造方法。4. The polymer electrolyte fuel cell according to claim 1, wherein the smoothing treatment is performed after forming a carbon water repellent layer on the surface of the base material in advance. 5. A method for producing a gas diffusion layer.
JP2003045684A 2003-02-24 2003-02-24 Method for producing gas diffusion layer of polymer electrolyte fuel cell Expired - Fee Related JP4240285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045684A JP4240285B2 (en) 2003-02-24 2003-02-24 Method for producing gas diffusion layer of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045684A JP4240285B2 (en) 2003-02-24 2003-02-24 Method for producing gas diffusion layer of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004259463A true JP2004259463A (en) 2004-09-16
JP4240285B2 JP4240285B2 (en) 2009-03-18

Family

ID=33112430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045684A Expired - Fee Related JP4240285B2 (en) 2003-02-24 2003-02-24 Method for producing gas diffusion layer of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4240285B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
WO2008123528A1 (en) * 2007-03-29 2008-10-16 Toyota Jidosha Kabushiki Kaisha Fuel cell and method for manufacturing the same
JP2010102909A (en) * 2008-10-23 2010-05-06 Nissan Motor Co Ltd Fuel cell
WO2012005146A1 (en) * 2010-07-05 2012-01-12 Nippon Soken, Inc. Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085019A (en) * 1999-09-17 2001-03-30 Asahi Glass Co Ltd High polymer solid fuel cell and manufacture of electrode therefor
JP2002025562A (en) * 2000-07-10 2002-01-25 Sekisui Chem Co Ltd Electrode for fuel cell and fuel cell
JP2003045443A (en) * 2001-07-27 2003-02-14 Toho Tenax Co Ltd Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085019A (en) * 1999-09-17 2001-03-30 Asahi Glass Co Ltd High polymer solid fuel cell and manufacture of electrode therefor
JP2002025562A (en) * 2000-07-10 2002-01-25 Sekisui Chem Co Ltd Electrode for fuel cell and fuel cell
JP2003045443A (en) * 2001-07-27 2003-02-14 Toho Tenax Co Ltd Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
WO2008123528A1 (en) * 2007-03-29 2008-10-16 Toyota Jidosha Kabushiki Kaisha Fuel cell and method for manufacturing the same
JP2008251290A (en) * 2007-03-29 2008-10-16 Toyota Motor Corp Fuel cell and its manufacturing method
JP2010102909A (en) * 2008-10-23 2010-05-06 Nissan Motor Co Ltd Fuel cell
WO2012005146A1 (en) * 2010-07-05 2012-01-12 Nippon Soken, Inc. Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell
JP2012033458A (en) * 2010-07-05 2012-02-16 Nippon Soken Inc Manufacturing method of gas diffusion layer of fuel cell, manufacturing device and fuel cell
CN103003994A (en) * 2010-07-05 2013-03-27 丰田自动车株式会社 Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell
US9570758B2 (en) 2010-07-05 2017-02-14 Nippon Soken, Inc. Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell

Also Published As

Publication number Publication date
JP4240285B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP2002025560A (en) Fuel cell
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP4553861B2 (en) Fuel cell
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JPH06338335A (en) Solid high molecular electrolytic fuel cell
US7862954B2 (en) Fuel cell
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
KR102119912B1 (en) Fuel cell having condensate water eliminating part and method for manufacturing the same
JP2006244715A (en) Bipolar membrane and fuel cell using it
JP2005222720A (en) Fuel cell
JP2005293902A (en) Separator for fuel cell and fuel cell
JP2001243963A (en) Cell for fuel cell and fuel cell having the same
JP5614468B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JP2004296216A (en) Manufacturing method of membrane electrode jointed body of solid polymer fuel cell
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2009238495A (en) Fuel cell and membrane-electrode-gas diffusion layer assembly used this
JP2004234981A (en) Container for fuel cell and fuel cell
JP2004185904A (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP2004349013A (en) Fuel cell stack
KR102655524B1 (en) The method for manufacturing the fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees