JP2004257781A - Method for estimating degree of deterioration - Google Patents

Method for estimating degree of deterioration Download PDF

Info

Publication number
JP2004257781A
JP2004257781A JP2003046846A JP2003046846A JP2004257781A JP 2004257781 A JP2004257781 A JP 2004257781A JP 2003046846 A JP2003046846 A JP 2003046846A JP 2003046846 A JP2003046846 A JP 2003046846A JP 2004257781 A JP2004257781 A JP 2004257781A
Authority
JP
Japan
Prior art keywords
ocv
battery
soh
deterioration
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003046846A
Other languages
Japanese (ja)
Other versions
JP4288958B2 (en
Inventor
Tetsuo Ogoshi
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003046846A priority Critical patent/JP4288958B2/en
Publication of JP2004257781A publication Critical patent/JP2004257781A/en
Application granted granted Critical
Publication of JP4288958B2 publication Critical patent/JP4288958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a degree-of-deterioration estimation method for easily and precisely estimating the degree of deterioration in batteries. <P>SOLUTION: A battery state detection system obtains an inclination (OCV<SB>i</SB>-OCV<SB>i-1</SB>)/ΔQ by an open-circuit voltage OCV<SB>i</SB>, an open-circuit voltage OCV<SB>i-1</SB>, and integrated quantity of electricity ΔQ (step 124), computes SON correlated with the inclination (OCV<SB>i</SB>-OCV<SB>i-1</SB>)/ΔQ by fitting to an SOH-(OCV<SB>i</SB>-OCV<SB>i-1</SB>)/ΔQ map (step 126), and reports the SOH to a vehicle control system 11 (step 128). The SOH of a lead battery 1 correlated with the inclination (OCV<SB>i</SB>-OCV<SB>i-1</SB>) is estimated from the SOH-(OCV<SB>i</SB>-OCV<SB>i-1</SB>)/ΔQ map without preparing any concentration maps, or the like, of an active material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、劣化度推定方法に係り、特に、異なる時刻t1、t2(t1<t2)において車両に搭載されたエンジン始動用電池に流れる電流が所定値以下のときの電池の開路電圧を測定し電池の劣化度(SOH)を推定する劣化度推定方法に関する。
【0002】
【従来の技術】
従来、車両に搭載された鉛電池は、走行中、常にオルタネータによりフロート充電され、また負荷もランプ類などに限られていたため、深い放電はなされず、ほぼ常時満充電状態付近に保持されていた。しかし、近年環境意識の高まりから、車両からの二酸化炭素ガスの排出を低減する必要が生じ、特に大型バス、トラックなどの車両等では信号待ちなどの停止時にエンジンを停止するアイドルストップ機能を有したシステム車が増加している。
【0003】
アイドルストップ機能を有したシステム車では、エンジン停止中のエアコン、カーステレオなどの負荷は、すべてバッテリ(電池)からの電力で賄われる。このため、従来に比べバッテリの放電深度(DOD)が深くなる状態が増加し、バッテリの残容量が小さくなる状態が増加すると予想される。バッテリの出力はバッテリの残容量に依存するため、エンジン停止中にバッテリの残容量が小さくなると、エンジンを始動する充分な出力が得られなくなるため、エンジン停止後再始動(アイドルストップスタート、ISS)することができなくなるおそれがある。従って、ISS可能な状態を保つためには、例えば、バッテリの残容量を推定してエンジン始動に必要な出力の有無を監視して、エンジン始動に必要な出力がある場合にはアイドルストップを行い、エンジン始動に必要な出力がない場合にはアイドルストップを止めバッテリを充電するなどの信号を車両側のコンピュータに送信する必要がある。
【0004】
また、電池状態を推定する方法として、容量を支配する活物質の濃度をマップとして準備し、電池毎の個体差を考慮して精度よく電池状態を推定する方法が知られている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2001−266958号公報(図1、段落番号「0004」〜「0006」)
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1の技術では、電池毎の個体差を考慮して精度よく電池状態を推定することができるものの、直接的な測定が難しい活物質の濃度をマップとして準備する必要があるので、マップ作成に伴う作業が煩雑となる。なお、電池状態(劣化)を示す劣化度(State Of Health、以下、SOHと略記する。)は、下式(1)に示すように、電池の初期満充電容量に対する満充電容量の割合を百分率で表される。
【0007】
【数1】

Figure 2004257781
【0008】
本発明は上記事案に鑑み、簡便かつ精度よく電池の劣化度を推定可能な劣化度推定方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、異なる時刻t1、t2(t1<t2)において車両に搭載されたエンジン始動用電池に流れる電流が所定値以下のときの前記電池の開路電圧を測定し前記電池の劣化度(SOH)を推定する劣化度推定方法であって、時刻t1及び時刻t2で前記電池の開路電圧OCV及びOCVを測定すると共に、時刻t1から時刻t2の間に前記電池に流れる電流を測定し、前記測定した電流を積算して得られる電気量ΔQに対する前記開路電圧OCVから前記開路電圧OCVを減じた変化量の傾き(OCV−OCV)/ΔQを求め、前記求めた傾き(OCV−OCV)/ΔQを予め定められたSOH−(OCV−OCV)/ΔQマップに当てはめて前記電池の劣化度を推定する、ステップを含む。
【0010】
電池の劣化度と傾き(OCV−OCV)/ΔQとには相関関係が成立する。すなわち、傾き(OCV−OCV)/ΔQが大きく(小さく)なると電池の劣化度は小さく(大きく)なる。本発明では、この原理に着目し、異なる時刻t1、t2で測定した開路電圧OCV、OCV及び電気量ΔQから求めた傾き(OCV−OCV)/ΔQを、SOH−(OCV−OCV)/ΔQマップに当てはめて、傾き(OCV−OCV)/ΔQと相関のある劣化度を得るので、精度よく電池の劣化度を推定することができると共に、直接的には測定することができない活物質の濃度マップ等を準備する必要がないので、マップの作成が容易となる。
【0011】
本発明において、電気量ΔQを、時刻t2における電池の残容量Qから時刻t1での電池の残容量Qを減ずることで求めれば、劣化度の推定に残容量をパラメータとして含むので、エンジン始動用電池の残容量が低下したときでも劣化度を精度よく推定することができる。また、SOH−(OCV−OCV)/ΔQマップの複数のSOH及び傾き(OCV−OCV)/ΔQの間にリニアな相関関係を成立させるようにすれば、劣化度を求めるための演算負荷を低減させることができる。更に電池の温度Tを測定し、測定した温度Tを予め定められたT−OCVマップに当てはめて開路電圧OCV及び開路電圧OCVを補正した後、傾き(OCV−OCV)/ΔQを求めれば、電池の温度依存性が排除されるので、電池の劣化度を高精度に推定することができる。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明を鉛電池の劣化度を推定する電池状態検知システムに適用した実施の形態について説明する。
【0013】
(構成)
図1に示すように、本実施形態の電池状態検知システム10は、車両に搭載されたエンジン8等の車両側の制御を行う車両制御システム11の下位システムとして機能し、異なる複数の時刻t(i≧1)においてエンジン8始動用の鉛電池1の開路電圧OCVを測定して鉛電池1の劣化度(SOH)を推定する。電池状態検知システム10は、中央演算処理装置として機能するCPU、電池状態検知システム10の基本制御プログラム及び後述するように種々の設定値やマップ等が格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM、A/Dコンバータ、車両制御システム11との通信を行うためのインタフェース、これらを接続するバス等を含んで構成されている。
【0014】
鉛電池1は容器となる角形の電槽を有しており、電槽の材質には成形性、電気的絶縁性、耐腐食性及び耐久性等の点で優れる、例えば、アクリルブタジエンスチレン(ABS)、ポリプロピレン(PP)、ポリエチレン(PE)等の高分子樹脂が用いられている。電槽の中央部の隔壁にはセンサ挿入孔が形成されている。センサ挿入孔にはサーミスタ等の温度センサ2が挿入されており、温度センサ2は接着剤でセンサ挿入孔内に固定されている。
【0015】
また、鉛電池1の電槽は、例えば、外周壁の内部を縦横に仕切る隔壁によって2行9列の合計18個のセル室に画定され、一体成形されたモノブロック電槽として構成されている。電槽内の各セル室には極板群(セル)がそれぞれ1組ずつ収容されており、電槽全体には合計18組の極板群が収容されている。各極板群は、未化成負極板6枚及び未化成正極板5枚がガラス繊維からなるリテーナ(セパレータ)を介して積層されており、化成(初充電)後の公称電圧(セル電圧)は2.0Vとされている。従って、鉛電池1の群電圧は36Vである。
【0016】
電槽の上部は、電槽の上部開口部を密閉するABS等の高分子樹脂製の上蓋に接着(又は溶着)されている。上蓋には、各セル室の中央に対応する位置に各セル室の内圧を所定値以下に制御するための制御弁が配設されていると共に、対角隅部に鉛電池1を電源として外部へ電力を供給するためのロッド状正極外部出力端子及び負極外部出力端子が立設されている。
【0017】
鉛電池1の正極外部出力端子は、イグニッションスイッチ(以下、IGNスイッチという。)5の中央端子に接続されている。IGNスイッチ5は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。一方、鉛電池1の負極外部出力端子は、ホール素子等の電流センサ4を介してグランドに接続されている。電流センサ4は、ホール素子に流れる電流に応じて変化するホール電圧により電流を検出することが可能である。
【0018】
鉛電池1の正極、負極外部出力端子、温度センサ2の両端端子及び電流センサ4の出力端子は、それぞれ電池状態検知システム10内のA/Dコンバータに接続されている。このため、電池状態検知システム10のCPUは、鉛電池1の電圧、電流及び温度をデジタル値として取り込むことが可能である。
【0019】
IGNスイッチ5のON/ACC端子は、ランプ、ワイパー、ラジオ等の補機6の一端に接続されていると共に、レギュレータRG及び一方向への電流の流れを許容する整流素子Dを介してエンジン8の回転駆動力で発電する発電機(オルタネータ)7の一端に接続されている。なお、整流素子Dは、アノード側が発電機7の一端に、カソード側がレギュレータRGに接続されている。また、IGNスイッチ5のSTART端子は、エンジン始動用スタータ9の一端に接続されている。
【0020】
スタータ9の回転軸とエンジン8の回転軸との間にはスタータ9の回転力をエンジン8に伝達する図示を省略したギヤプーリや無端ベルトが介在しており、エンジン8の回転軸と発電機7の回転軸との間にはエンジン8の回転駆動力を発電機7に伝達する電動クラッチが介在している。このため、エンジン8が駆動しているときは、エンジン8及び発電機7間の電動クラッチを接続状態としてエンジン8の回転駆動力を発電機7に伝達する。なお、IGNスイッチ5がON/ACC位置にあり、発電機7が作動しているときは、鉛電池1は電池状態検知システム10で算出された鉛電池1の残容量Qに応じて充電される。
【0021】
車両制御システム11は、CPU、ROM、RAM、エンジン8を制御するエンジン制御部や電動クラッチを制御するクラッチ制御部、インターフェース等を有して構成されており、エンジン制御部はエンジン8に、クラッチ制御部は電動クラッチに接続されている。車両制御システム11は電池状態検知システム10と通信線で接続されており、両者は相互間で通信が可能である。また、補機6、発電機7、スタータ9の他端、電池状態検知システム10、車両制御システム11は、それぞれグランドに接続されている。なお、IGNスイッチ5のOFF端子はいずれにも接続されていない。
【0022】
電池状態検知システム10のROMには、SOH−(OCV−OCVi−1)/ΔQマップが格納されている。図6に示すように、鉛電池1の開路電圧OCVと残容量Qとの間には一定の関係が成立する。すなわち、劣化度(SOH)が小さい(鉛電池1の劣化が進行する)ほど、残容量Qに対する開路電圧OCVの傾きが大きくなる。この関係は、エンジン始動を含む微少時間経過前後における電池状態においても成り立つ。図5に示す回帰直線は、図6に示す残容量Qに対する開路電圧OCVの傾きを劣化度に対してプロットし、最小二乗法により得たものである。従って、電池状態検知システム10のROMには、図5に示した回帰直線の数式がSOH−(OCV−OCVi−1)/ΔQマップとして格納されている。なお、OCV、OCVi−1及びΔQは、後述するように、それぞれ時刻t、ti−1での鉛電池1の開路電圧、鉛電池1の時刻tでの残容量と時刻ti−1での残容量の差を示している。
【0023】
(動作)
次に、フローチャートを参照して、本実施形態の電池状態検知システム10の動作について説明する。なお、電池状態検知システム10に電源が投入されると、初期設定処理において、ROMに格納された設定値等はRAMに展開されると共に、後述するカウンタiが1に設定され、図2に示す電池状態検知ルーチンが実行される。
【0024】
電池状態検知ルーチンでは、まず、ステップ102において電流センサ4に流れる電流の値を積算(電流積算)して得られる積算電気量ΔQ(Ah)のメモリを0として電流積算を開始する。
【0025】
次のステップ106では、電流センサ4に流れる電流値Iを取り込んで、鉛電池1の自然放電を排除するために所定値Ia(例えば、0.05A)以上か否かを判断することによりIGNスイッチ5がON位置に位置するか否かを判定する。否定判定のときはステップ106に戻り、肯定判定のときは、次のステップ108において、電流積算により積算電気量ΔQを求めRAMに記憶する。
【0026】
次にステップ110では、ステップ106で取り込んだ電流値Iが所定値Ic(例えば、0.1A)以下か否かを判断することにより鉛電池1が開路状態にあるか否かを判定する。否定判定のときはステップ106に戻り、肯定判定のときはステップ112においてADコンバータでデジタル値に変換した開路電圧OCV及び温度センサ2の測定値をADコンバータでデジタル値に変換した温度Tを取り込む(このときの時刻を時刻tとする。)。
【0027】
次にステップ114では、ステップ112で取り込んだ開路電圧OCVを、所定温度(例えば25°C)における開路電圧に温度補正する。すなわち、図3に示すように、RAMには初期設定処理においてOCV−T補正値マップが展開されており、鉛電池1の温度が例えば、10°Cのときの開路電圧補正値は、0°Cの開路電圧補正値0.05(V)と25°Cの開路電圧補正値0(V)とから比例計算により、(25−10)×0.05/25=0.03(V)として算出される。温度補正後の開路電圧OCVは、ステップ112で取り込んだ開路電圧OCVに補正値(0.03(V))を加えたものである。次のステップ116では、温度補正後の開路電圧OCVをRAMに記憶する。
【0028】
次いでステップ118ではカウンタiが1か否かを判断し、肯定判断のときは、ステップ120において既にRAMに展開されているQ−OCVマップ(図4参照)からステップ116で補正した開路電圧OCVから残容量Qを演算してRAMに記憶し、ステップ130へ進む。このような残容量Qを推定するのは、電池状態検知システム10が何らかの事情によりリセットされた場合に、鉛電池1の正確な残容量を最初に把握しておくためである。
【0029】
一方、ステップ118で否定判断のときは、次のステップ122において、前回(時刻ti−1)記憶した残容量Qi−1にステップ108で記憶した積算電気量ΔQを加算することで今回(時刻t)の残容量Qを演算しRAMに記憶する。
【0030】
ステップ124では、ステップ116でRAMに記憶した今回(時刻t)、前回(時刻ti−1)の開路電圧OCV、OCVi−1及びステップ122でRAMに記憶した今回(時刻t)、前回(時刻ti−1)の残容量Q、Qi−1を読み出し、傾き(OCV−OCVi−1)/(Qi−1−Q)を演算する(ΔQ=Qi−1−Q)。
【0031】
次にステップ126では、演算した傾き(OCV−OCVi−1)/ΔQの値を、SOH−(OCV−OCVi−1)/ΔQマップ(数式)に代入し、SOHを演算する。次のステップ128では車両制御システム11に演算したSOH及びステップ122でRAMに記憶した残容量Qを報知する。次にステップ130でカウンタiを1インクリメントしてステップ102に戻る。
【0032】
車両制御システム11のCPUは、報知を受けたSOH及び残容量Qを図示しない表示制御部を介してインストールメンタル・パネル(インパネ)上に数値やインジケータで表示させると共に、エンジン始動を許容する最小残容量Qmin(例えば、5%)以上か否かを判断し、肯定判断の場合は、車速が0になったときにエンジン制御部を介してエンジン8の駆動を停止させ、否定判断の場合は、エンジン8をアイドルストップ後に再始動することができないので、車速が0になってもエンジン8の駆動を続行させる。
【0033】
(作用等)
次に、本実施形態の電池状態検知システム10の作用等について説明する。
【0034】
本実施形態の電池状態検知システム10は、RAMに傾き(OCV−OCVi−1)/ΔQとSOHとの関係を示す数式(マップ)が格納されており、直接測定した開路電圧OCV及び開路電圧OCVi−1と、積算電気量ΔQとで傾き(OCV−OCVi−1)/ΔQを演算し(ステップ124)、数式を用いて傾き(OCV−OCVi−1)/ΔQと相関のあるSOHを推定する(ステップ126)。このため、活物質の濃度マップ等を準備する必要がなくマップの作成が容易となると共に、実測値をマップに代入することで、傾き(OCV−OCVi−1)/ΔQとSOHとの相関関係を利用し精度よくSOHを推定することができる。
【0035】
また、本実施形態の電池状態検知システム10では、傾き(OCV−OCVi−1)/ΔQを開路電圧及び残容量から演算する(ステップ124)。このため、SOHの推定に残容量をパラメータとして含むので、鉛電池1の残容量が低下したときでもSOHを精度よく推定できる。
【0036】
更に、本実施形態の電池状態検知システム10では、一次式をマップとして準備し、一次式から傾き(OCV−OCVi−1)/ΔQと相関のあるSOHを推定する。このため、電池状態検知システム10のCPUにかかる演算負荷を低減させることができる。
【0037】
また、本実施形態の電池状態検知システム10では、鉛電池1の温度Tを測定し、鉛電池1のOCV−T補正マップで鉛電池1の開路電圧の温度補正をするので、鉛電池1の温度依存性を排除することができる。このため、より精度よくSOHを推定することができる。
【0038】
更に、本実施形態の電池状態検知システム10では、SOHを車両制御システム11に報知する(ステップ128)ので、ドライバは鉛電池1の交換時期を知ることができ、鉛電池1を交換し車両の適正なアイドルストップスタートを確保することができる。
【0039】
更に、本実施形態の電池状態検知システム10は、車両制御システム11に残容量Qを報知するので(ステップ128)、車両制御システム11がエンジンの停止又は不停止を判断でき、アイドルストップ・スタート時にエンジン8の再始動が確保することができる。
【0040】
なお、本実施形態では、電池状態検知システム10で残容量Q及びSOHを推定する例を示したが、車両制御システム11で残容量Q及びSOHを推定するようにしてもよい。このようにすれば、電池状態検知システム10の演算負荷を低減することができる。
【0041】
また、本実施形態では、数式を用いる例を示したがSOHと傾き(OCV−OCVi−1)/ΔQとのテーブルを電池状態検知システム10のROMに格納しておき補間してSOHを求めるようにしてもよい。すなわち、本発明では、マップにはテーブルと数式との双方の概念が含まれる。
【0042】
更に、本実施形態では、数式を準備する例を示したが、予め回帰分析により高次の曲線を準備し高次の曲線から傾き(OCV−OCVi−1)/ΔQと相関のあるSOHを推定するようにしてもよい。このようにすれば、更に精度よく鉛電池1のSOHを推定することができる。
【0043】
また更に、本実施形態では、残容量Qが最小残容量Qmin以上か否かを判断して、エンジン8の再始動が可能か否かを判定をする例を示したが、予め鉛電池1の残容量Qと充電状態SOCとの関係を示すQ−SOCマップを電池状態検知システム10又は車両状態検知システム11のROMに格納しておき、充電状態SOCがエンジン8の再始動可能な最小充電状態SOCmin以上か否かを判断することで、エンジン8の再始動が可能か否かを判定をするようにしてもよい。
【0044】
更にまた、本実施形態では、開路電圧OCVを取り込む毎に、鉛電池1の温度Tを測定する例を示したが、温度Tは短い時間では大きく変化しないので、所定時間(例えば、10分)毎に温度Tを測定するようにしてもよい。このようにすれば、電池状態検知システム10の演算負荷を低減させることができる。
【0045】
また、本実施形態では、ステップ104でIGNスイッチ5がON位置に位置したか否かを電流センサ4に流れる電流が所定値Ia以上か否かにより判断する例を示したが、車両制御システム11からIGNスイッチ5がON位置に位置した旨の通知があるまで待機するようにしてもよい。
【0046】
更に、本実施形態では、ステップ120で鉛電池1の残容量QをQ−OCVマップから演算する例を示したが、ステップ112で取り込んだ開路電圧OCVとこのときの電流値とから内部抵抗を求めて内部抵抗と残容量との関係を示すマップを用いて内部抵抗に応じた残容量を推定するようにしてもよい。
【0047】
また、本実施形態では、車両に搭載されたエンジン始動用電池として鉛電池1を例示したが、例えば、鉛電池とリチウムイオン二次電池とを並列接続したり、鉛電池とニッケル水素電池を並列接続したハイブリッド電池に適用してもよい。
【0048】
そして、本実施形態では、36Vの群電圧を有する鉛電池1を例示したが、本発明はこれに限定されることなく、例えば、現在車両に一般的に用いられている12Vの鉛電池の電池状態を推定する電池状態検知システムに適用するようにしてもよい。
【0049】
【発明の効果】
以上説明したように、本発明によれば、異なる時刻t1、t2で測定した開路電圧OCV、OCV及び積算電気量ΔQから求めた傾き(OCV−OCV)/ΔQを、SOH−(OCV−OCV)/ΔQマップに当てはめて、傾き(OCV−OCV)/ΔQと相関のある劣化度を得るので、精度よく電池の劣化度を推定することができると共に、直接的には測定することができない活物質の濃度マップ等を準備する必要がないので、マップの作成が容易となる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の電池状態検知システムを含む車両制御システムのブロック回路図である。
【図2】実施形態の電池状態検知システムの電池状態検知ルーチンを示すフローチャートである。
【図3】鉛電池の温度と開路電圧補正値との関係を示すグラフである。
【図4】鉛電池の残容量と開路電圧との関係を示すグラフである。
【図5】鉛電池の傾き(OCV−OCVi−1)/ΔQと劣化度との関係を示すグラフである。
【図6】鉛電池の開路電圧と残容量との関係を示すグラフである。
【符号の説明】
1 鉛電池(電池)
8 エンジン
10 電池状態検知システム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for estimating the degree of deterioration, and particularly to measuring an open circuit voltage of a battery at a different time t1, t2 (t1 <t2) when a current flowing through an engine starting battery mounted on the vehicle is equal to or less than a predetermined value. The present invention relates to a deterioration degree estimating method for estimating a deterioration degree (SOH) of a battery.
[0002]
[Prior art]
Conventionally, lead batteries mounted on vehicles are always float charged by an alternator during traveling, and the load is also limited to lamps, etc., so deep discharge is not performed, and it is almost always kept near the fully charged state . However, in recent years, due to increasing environmental awareness, it has become necessary to reduce the emission of carbon dioxide gas from vehicles. In particular, vehicles such as large buses and trucks have an idle stop function that stops the engine when stopping such as waiting for a traffic light. System vehicles are increasing.
[0003]
In a system vehicle having an idle stop function, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by power from a battery. For this reason, it is expected that the state where the depth of discharge (DOD) of the battery becomes deeper as compared with the related art increases, and the state where the remaining capacity of the battery becomes smaller increases. Since the output of the battery depends on the remaining capacity of the battery, if the remaining capacity of the battery becomes small while the engine is stopped, a sufficient output for starting the engine cannot be obtained, and the engine is restarted after the engine is stopped (idle stop start, ISS). May not be possible. Therefore, in order to maintain the ISS-enabled state, for example, the remaining capacity of the battery is estimated to monitor the presence or absence of the output necessary for starting the engine. If there is no output necessary for starting the engine, it is necessary to send a signal such as stopping the idle stop and charging the battery to the computer on the vehicle side.
[0004]
As a method for estimating a battery state, there is known a method in which the concentration of an active material that controls the capacity is prepared as a map, and the battery state is accurately estimated in consideration of individual differences between batteries (for example, see Patent Reference 1).
[0005]
[Patent Document 1]
JP 2001-266958 A (FIG. 1, paragraphs "0004" to "0006")
[0006]
[Problems to be solved by the invention]
However, in the technique of Patent Document 1, although the battery state can be accurately estimated in consideration of the individual difference for each battery, it is necessary to prepare the concentration of the active material, which is difficult to directly measure, as a map. However, the work involved in creating the map becomes complicated. The degree of deterioration (State Of Health, hereinafter abbreviated as SOH) indicating the state (deterioration) of the battery is expressed as a percentage of the full charge capacity to the initial full charge capacity of the battery, as shown in the following equation (1). Is represented by
[0007]
(Equation 1)
Figure 2004257781
[0008]
The present invention has been made in view of the above circumstances, and has as its object to provide a deterioration degree estimating method capable of easily and accurately estimating a deterioration degree of a battery.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention measures an open circuit voltage of a battery at a different time t1, t2 (t1 <t2) when a current flowing through an engine starting battery mounted on the vehicle is equal to or less than a predetermined value. a deterioration degree estimation method for estimating the degree of deterioration of the battery (SOH), with measuring open circuit voltage OCV 1 and OCV 2 of the battery at time t1 and time t2, the battery during the time t2 from time t1 Is measured, and a gradient (OCV 2 −OCV 1 ) / ΔQ of a change amount obtained by subtracting the open circuit voltage OCV 1 from the open circuit voltage OCV 2 with respect to the electric quantity ΔQ obtained by integrating the measured currents is obtained. the calculated slope (OCV 2 -OCV 1) / ΔQ predetermined the SOH- (OCV 2 -OCV 1) / ΔQ by applying the map to estimate the degree of deterioration of the battery, scan Tsu, including the flop.
[0010]
A correlation is established between the degree of battery deterioration and the slope (OCV 2 −OCV 1 ) / ΔQ. That is, as the inclination (OCV 2 −OCV 1 ) / ΔQ increases (decreases), the degree of deterioration of the battery decreases (increases). In the present invention, paying attention to this principle, the slope (OCV 2 −OCV 1 ) / ΔQ obtained from the open circuit voltages OCV 1 , OCV 2 and the electric quantity ΔQ measured at different times t1 and t2 is represented by SOH− (OCV 2 −). By applying to the OCV 1 ) / ΔQ map and obtaining a degree of deterioration that is correlated with the slope (OCV 2 −OCV 1 ) / ΔQ, the degree of deterioration of the battery can be accurately estimated and measured directly. Since it is not necessary to prepare a concentration map of the active material that cannot be used, the creation of the map becomes easy.
[0011]
In the present invention, the amount of electricity Delta] Q, be determined by subtracting the remaining capacity to Q 1 cell at time t1 from the remaining capacity Q 2 of the battery at time t2, since including the remaining capacity as a parameter for estimating the degree of deterioration, the engine Even when the remaining capacity of the starting battery decreases, the degree of deterioration can be accurately estimated. In addition, if a linear correlation is established between a plurality of SOHs and a gradient (OCV 2 -OCV 1 ) / ΔQ of the SOH- (OCV 2 -OCV 1 ) / ΔQ map, the degree of deterioration can be obtained. The calculation load can be reduced. Further measures the temperature T of the battery, after correcting the open circuit voltage OCV 1 and open circuit voltage OCV 2 by fitting the measured temperature T to a predetermined T-OCV map, the inclination (OCV 2 -OCV 1) / ΔQ If it is determined, the temperature dependency of the battery is eliminated, so that the degree of deterioration of the battery can be estimated with high accuracy.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a battery state detection system that estimates the degree of deterioration of a lead battery will be described with reference to the drawings.
[0013]
(Constitution)
As shown in FIG. 1, the battery state detection system 10 according to the present embodiment functions as a lower system of a vehicle control system 11 that controls a vehicle such as an engine 8 mounted on the vehicle, and a plurality of different times t i. At (i ≧ 1), the open circuit voltage OCV i of the lead battery 1 for starting the engine 8 is measured to estimate the degree of deterioration (SOH) of the lead battery 1. The battery state detection system 10 functions as a CPU that functions as a central processing unit, a ROM in which a basic control program of the battery state detection system 10 and various setting values and maps are stored as described later, and a work area for the CPU. It is configured to include a RAM for temporarily storing data, an A / D converter, an interface for communicating with the vehicle control system 11, a bus connecting these, and the like.
[0014]
The lead battery 1 has a rectangular battery case serving as a container, and the material of the battery case is excellent in moldability, electrical insulation, corrosion resistance, durability, and the like. For example, acrylic butadiene styrene (ABS) ), Polypropylene (PP), and polyethylene (PE). A sensor insertion hole is formed in a central partition wall of the battery case. A temperature sensor 2 such as a thermistor is inserted into the sensor insertion hole, and the temperature sensor 2 is fixed in the sensor insertion hole with an adhesive.
[0015]
In addition, the battery case of the lead battery 1 is defined as a monoblock battery case integrally formed by, for example, a total of 18 cell chambers arranged in two rows and nine columns by partitions partitioning the inside of the outer peripheral wall vertically and horizontally. . One set of electrode plates (cells) is accommodated in each cell chamber in the battery case, and a total of 18 electrode plate groups are housed in the entire battery case. In each electrode plate group, six unformed negative electrode plates and five unformed positive electrode plates are laminated via a retainer (separator) made of glass fiber, and the nominal voltage (cell voltage) after formation (first charge) is 2.0V. Therefore, the group voltage of the lead battery 1 is 36V.
[0016]
The upper part of the battery case is adhered (or welded) to an upper lid made of a polymer resin such as ABS which seals the upper opening of the battery case. A control valve for controlling the internal pressure of each cell chamber to a predetermined value or less is provided at a position corresponding to the center of each cell chamber at the upper lid, and a lead battery 1 is used at a diagonal corner as an external power source using a lead battery 1 as a power supply. A rod-shaped positive external output terminal and a negative external output terminal for supplying power to the battery are provided upright.
[0017]
The positive electrode external output terminal of the lead battery 1 is connected to a center terminal of an ignition switch (hereinafter, referred to as an IGN switch) 5. The IGN switch 5 has an OFF terminal, an ON / ACC terminal, and a START terminal separately from the center terminal, and the center terminal and any of these OFF, ON / ACC, and START terminals are switched by rotary switching. It is possible. On the other hand, a negative electrode external output terminal of the lead battery 1 is connected to the ground via a current sensor 4 such as a Hall element. The current sensor 4 can detect a current by a Hall voltage that changes according to a current flowing through the Hall element.
[0018]
The positive and negative external output terminals of the lead battery 1, both end terminals of the temperature sensor 2, and the output terminal of the current sensor 4 are connected to an A / D converter in the battery state detection system 10. For this reason, the CPU of the battery state detection system 10 can take in the voltage, current, and temperature of the lead battery 1 as digital values.
[0019]
The ON / ACC terminal of the IGN switch 5 is connected to one end of an auxiliary device 6 such as a lamp, a wiper, a radio, etc., and is connected to a regulator RG and a rectifying element D that allows a current to flow in one direction. Is connected to one end of a generator (alternator) 7 that generates electric power by the rotational driving force. The rectifying element D has an anode connected to one end of the generator 7 and a cathode connected to the regulator RG. The START terminal of the IGN switch 5 is connected to one end of the starter 9 for starting the engine.
[0020]
A gear pulley or an endless belt (not shown) for transmitting the torque of the starter 9 to the engine 8 is interposed between the rotation axis of the starter 9 and the rotation axis of the engine 8. An electric clutch for transmitting the rotational driving force of the engine 8 to the generator 7 is interposed between the rotating shaft and the rotating shaft. Therefore, when the engine 8 is operating, the electric clutch between the engine 8 and the generator 7 is connected to transmit the rotational driving force of the engine 8 to the generator 7. When the IGN switch 5 is in the ON / ACC position and the generator 7 is operating, the lead battery 1 is charged according to the remaining capacity Q of the lead battery 1 calculated by the battery state detection system 10. .
[0021]
The vehicle control system 11 includes a CPU, a ROM, a RAM, an engine control unit that controls the engine 8, a clutch control unit that controls an electric clutch, an interface, and the like. The control unit is connected to the electric clutch. The vehicle control system 11 is connected to the battery state detection system 10 via a communication line, and the two can communicate with each other. The accessory 6, the generator 7, the other end of the starter 9, the battery state detection system 10, and the vehicle control system 11 are connected to the ground. Note that the OFF terminal of the IGN switch 5 is not connected to any of them.
[0022]
The SOH- (OCV i -OCV i-1 ) / ΔQ map is stored in the ROM of the battery state detection system 10. As shown in FIG. 6, a certain relationship is established between the open circuit voltage OCV of the lead battery 1 and the remaining capacity Q. That is, as the degree of deterioration (SOH) is smaller (deterioration of the lead battery 1 proceeds), the slope of the open circuit voltage OCV with respect to the remaining capacity Q becomes larger. This relationship also holds in the battery state before and after the elapse of a minute time including the start of the engine. The regression line shown in FIG. 5 is obtained by plotting the slope of the open circuit voltage OCV with respect to the remaining capacity Q shown in FIG. Therefore, the regression line equation shown in FIG. 5 is stored in the ROM of the battery state detection system 10 as the SOH- (OCV i -OCV i-1 ) / ΔQ map. Incidentally, OCV i, OCV i-1 and ΔQ, as described later, respectively time t i, t open circuit voltage of the lead battery 1 in i-1, the remaining capacity at time t i of the lead battery 1 and the time t The difference in remaining capacity at i-1 is shown.
[0023]
(motion)
Next, an operation of the battery state detection system 10 of the present embodiment will be described with reference to a flowchart. When the battery state detection system 10 is turned on, in an initial setting process, the set values and the like stored in the ROM are developed in the RAM, and a counter i, which will be described later, is set to 1 and shown in FIG. A battery state detection routine is executed.
[0024]
In the battery state detection routine, first, in step 102, the memory of the integrated electric quantity ΔQ (Ah) obtained by integrating (current integration) the value of the current flowing through the current sensor 4 is set to 0, and the current integration is started.
[0025]
In the next step 106, the current value I flowing through the current sensor 4 is taken in, and it is determined whether or not the current value I is equal to or more than a predetermined value Ia (for example, 0.05 A) in order to eliminate the spontaneous discharge of the lead battery 1, thereby making the IGN switch It is determined whether 5 is located at the ON position. If the determination is negative, the process returns to step 106, and if the determination is affirmative, in the next step 108, the integrated electric quantity ΔQ is obtained by current integration and stored in the RAM.
[0026]
Next, in step 110, it is determined whether or not the current value I taken in in step 106 is equal to or less than a predetermined value Ic (for example, 0.1 A) to determine whether or not the lead battery 1 is in an open circuit state. Negative when the judgment returns to the step 106, the temperature T i obtained by converting the measured value of the open circuit voltage OCV i and the temperature sensor 2 is converted into a digital value by the AD converter in step 112 into a digital value by the AD converter when the affirmative determination take in (the time at this time is the time t i.).
[0027]
Next, at step 114, the open-circuit voltage OCV i taken at step 112 is temperature-corrected to an open-circuit voltage at a predetermined temperature (for example, 25 ° C.). That is, as shown in FIG. 3, an OCV-T correction value map is developed in the RAM in the initial setting process, and the open-circuit voltage correction value when the temperature of the lead battery 1 is, for example, 10 ° C. is 0 °. From the open circuit voltage correction value of C (0.05 (V)) and the open circuit voltage correction value of 25 ° C (0 (V)), a proportional calculation is performed to obtain (25−10) × 0.05 / 25 = 0.03 (V). Is calculated. Open circuit voltage OCV after the temperature compensation i is obtained by adding a correction value (0.03 (V)) to the open circuit voltage OCV i taken in step 112. In the next step 116, the open circuit voltage OCV i after the temperature correction is stored in the RAM.
[0028]
Next, at step 118, it is determined whether or not the counter i is 1. When the determination is affirmative, the open circuit voltage OCV 1 corrected at step 116 from the Q-OCV map (see FIG. 4) already developed in RAM at step 120. stored in the RAM and calculates the remaining capacity Q 1 from the process proceeds to step 130. To estimate such a residual capacity Q 1 is is because when the battery state detection system 10 is reset for any reason, to know the exact residual capacity of the lead battery 1 first.
[0029]
On the other hand, if a negative determination is made in step 118, in the next step 122, the accumulated electric quantity ΔQ stored in step 108 is added to the remaining capacity Q i-1 stored last time (time t i-1 ), and this time ( calculates the remaining capacity Q i at time t i) stored in the RAM.
[0030]
In step 124, this time is stored in the RAM in step 116 (time t i), the last (time t i-1) the open circuit voltage OCV i, this is stored in the RAM in the OCV i-1 and step 122 of (time t i) , The remaining capacity Q i , Q i-1 of the previous time (time t i-1 ) is read, and the slope (OCV i -OCV i-1 ) / (Q i-1 -Q i ) is calculated (ΔQ = Q i). −1 -Q i ).
[0031]
Next, in step 126, the calculated slope (OCV i −OCV i−1 ) / ΔQ value is substituted into an SOH− (OCV i −OCV i−1 ) / ΔQ map (formula) to calculate the SOH. Notifying the remaining capacity Q i stored in the RAM in SOH and step 122 calculates the vehicle control system 11 in the next step 128. Next, at step 130, the counter i is incremented by 1 and the process returns to step 102.
[0032]
Minimum CPU of the vehicle control system 11, which causes displayed numerically and indicators on installation Mental panel (instrument panel) via the display control unit (not shown) SOH and the remaining capacity Q i having received the notification, to permit engine start It is determined whether or not the remaining capacity is equal to or more than Qmin (for example, 5%). If the determination is affirmative, the driving of the engine 8 is stopped via the engine control unit when the vehicle speed becomes 0; Since the engine 8 cannot be restarted after the idle stop, the driving of the engine 8 is continued even if the vehicle speed becomes zero.
[0033]
(Action, etc.)
Next, the operation of the battery state detection system 10 of the present embodiment will be described.
[0034]
In the battery state detection system 10 of the present embodiment, the RAM stores a formula (map) indicating the relationship between the slope (OCV i −OCV i−1 ) / ΔQ and the SOH, and the open circuit voltage OCV i and the open circuit voltage OCV i directly measured. and the open circuit voltage OCV i-1, the slope in the integrated electricity quantity ΔQ (OCV i -OCV i-1 ) / ΔQ is calculated (steps 124), the slope using equation (OCV i -OCV i-1) / ΔQ Then, an SOH having a correlation with is estimated (step 126). Therefore, it is not necessary to prepare a concentration map of the active material and the like, making the map easy, and by substituting the measured values into the map, the slope (OCV i −OCV i−1 ) / ΔQ and the SOH The SOH can be accurately estimated using the correlation.
[0035]
Further, in the battery state detection system 10 of the present embodiment, the slope (OCV i −OCV i−1 ) / ΔQ is calculated from the open circuit voltage and the remaining capacity (step 124). Therefore, since the remaining capacity is included in the estimation of the SOH as a parameter, the SOH can be accurately estimated even when the remaining capacity of the lead battery 1 decreases.
[0036]
Further, in the battery state detection system 10 of the present embodiment, a linear expression is prepared as a map, and an SOH having a correlation with the gradient (OCV i −OCV i−1 ) / ΔQ is estimated from the linear expression. Therefore, the calculation load on the CPU of the battery state detection system 10 can be reduced.
[0037]
Further, in the battery state detection system 10 of the present embodiment measures the temperature T i of the lead battery 1, since the temperature compensation of the open circuit voltage of the lead battery 1 in OCV-T correction map of the lead battery 1, a lead battery 1 Can be eliminated. Therefore, the SOH can be more accurately estimated.
[0038]
Further, in the battery state detection system 10 of the present embodiment, the SOH is notified to the vehicle control system 11 (step 128), so that the driver can know the replacement time of the lead battery 1 and replace the lead battery 1 to replace the vehicle. An appropriate idle stop start can be secured.
[0039]
Further, the battery state detection system 10 of the present embodiment, since the notification of the remaining capacity Q i to the vehicle control system 11 (step 128), the vehicle control system 11 can determine the stop or non-stop of the engine, the idle stop start At times, restart of the engine 8 can be ensured.
[0040]
In the present embodiment, an example of estimating the remaining capacity Q i and SOH the battery state detection system 10 may be configured to estimate the remaining capacity Q i and SOH in the vehicle control system 11. By doing so, the calculation load of the battery state detection system 10 can be reduced.
[0041]
Further, in the present embodiment, an example using a mathematical expression has been described, but a table of SOH and a gradient (OCV i −OCV i−1 ) / ΔQ is stored in the ROM of the battery state detection system 10, and the SOH is interpolated. You may ask for it. That is, in the present invention, the map includes the concept of both a table and a mathematical expression.
[0042]
Furthermore, in the present embodiment, an example in which a mathematical expression is prepared has been described. However, a higher-order curve is prepared in advance by regression analysis, and an SOH having a correlation with the slope (OCV i −OCV i−1 ) / ΔQ from the higher-order curve. May be estimated. By doing so, the SOH of the lead battery 1 can be more accurately estimated.
[0043]
Furthermore, in this embodiment, the remaining capacity Q i is determined whether the minimum remaining capacity Qmin above, although an example of determining whether it is possible to restart the engine 8, advance the lead battery 1 It may be stored in the Q i -SOC map showing the relationship between the remaining capacity Q i and state of charge SOC in the ROM of the battery state detection system 10 or the vehicle state detection system 11, state of charge SOC is possible restarting the engine 8 By determining whether or not the state of charge is equal to or more than the minimum state of charge SOCmin, it may be determined whether or not the engine 8 can be restarted.
[0044]
Furthermore, in the present embodiment, each capture open circuit voltage OCV i, an example is shown for measuring the temperature T i of the lead battery 1, the temperature T i does not vary significantly in the short time, a predetermined time (for example, it may be measured a temperature T i to 10 minutes) for each. By doing so, the calculation load of the battery state detection system 10 can be reduced.
[0045]
Further, in the present embodiment, an example has been described in which whether or not the IGN switch 5 is located at the ON position in step 104 is determined based on whether or not the current flowing through the current sensor 4 is equal to or greater than a predetermined value Ia. May wait until there is a notification that the IGN switch 5 is at the ON position.
[0046]
Furthermore, the internal from the present embodiment, the remaining capacity to Q 1 lead battery 1 in step 120 shows an example of calculating the Q-OCV map, taken the open circuit voltage OCV i in step 112 and the current value at this time The resistance may be determined, and the remaining capacity according to the internal resistance may be estimated using a map indicating the relationship between the internal resistance and the remaining capacity.
[0047]
Further, in the present embodiment, the lead battery 1 is exemplified as the engine start battery mounted on the vehicle. However, for example, a lead battery and a lithium ion secondary battery are connected in parallel, or a lead battery and a nickel hydrogen battery are connected in parallel. The present invention may be applied to a connected hybrid battery.
[0048]
In the present embodiment, the lead battery 1 having a group voltage of 36 V has been exemplified. However, the present invention is not limited to this. For example, a battery of a 12 V lead battery generally used in a vehicle at present. You may make it apply to the battery state detection system which estimates a state.
[0049]
【The invention's effect】
As described above, according to the present invention, the slope (OCV 2 −OCV 1 ) / ΔQ obtained from the open-circuit voltages OCV 1 and OCV 2 measured at different times t1 and t2 and the integrated electric quantity ΔQ is represented by SOH− ( The degree of deterioration correlated with the slope (OCV 2 -OCV 1 ) / ΔQ is obtained by applying to the OCV 2 -OCV 1 ) / ΔQ map, so that the degree of deterioration of the battery can be accurately estimated and directly. Since it is not necessary to prepare a concentration map or the like of an active material that cannot be measured, it is possible to obtain an effect that a map can be easily created.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of a vehicle control system including a battery state detection system according to an embodiment to which the present invention can be applied.
FIG. 2 is a flowchart illustrating a battery state detection routine of the battery state detection system according to the embodiment.
FIG. 3 is a graph showing a relationship between a lead battery temperature and an open circuit voltage correction value.
FIG. 4 is a graph showing a relationship between a remaining capacity of a lead battery and an open circuit voltage.
FIG. 5 is a graph showing the relationship between the inclination (OCV i −OCV i−1 ) / ΔQ of a lead battery and the degree of deterioration.
FIG. 6 is a graph showing the relationship between open circuit voltage and remaining capacity of a lead battery.
[Explanation of symbols]
1 Lead battery (battery)
8 Engine 10 Battery state detection system

Claims (4)

異なる時刻t1、t2(t1<t2)において車両に搭載されたエンジン始動用電池に流れる電流が所定値以下のときの前記電池の開路電圧を測定し前記電池の劣化度(SOH)を推定する劣化度推定方法であって、
時刻t1及び時刻t2で前記電池の開路電圧OCV及びOCVを測定すると共に、時刻t1から時刻t2の間に前記電池に流れる電流を測定し、
前記測定した電流を積算して得られる電気量ΔQに対する前記開路電圧OCVから前記開路電圧OCVを減じた変化量の傾き(OCV−OCV)/ΔQを求め、
前記求めた傾き(OCV−OCV)/ΔQを予め定められたSOH−(OCV−OCV)/ΔQマップに当てはめて前記電池の劣化度を推定する、
ステップを含むことを特徴とする劣化度推定方法。
At different times t1 and t2 (t1 <t2), when the current flowing through the battery for starting the engine mounted on the vehicle is equal to or less than a predetermined value, the open circuit voltage of the battery is measured to estimate the degree of deterioration (SOH) of the battery. Degree estimation method,
With measuring open circuit voltage OCV 1 and OCV 2 of the battery at time t1 and time t2, the measurement of the current flowing from the time t1 to the battery during the time t2,
A gradient (OCV 2 −OCV 1 ) / ΔQ of a change amount obtained by subtracting the open circuit voltage OCV 1 from the open circuit voltage OCV 2 with respect to the electric quantity ΔQ obtained by integrating the measured currents is obtained.
Estimating the degree of deterioration of the battery by applying the obtained slope (OCV 2 −OCV 1 ) / ΔQ to a predetermined SOH− (OCV 2 −OCV 1 ) / ΔQ map,
A method for estimating a degree of deterioration, characterized by including a step.
前記電気量ΔQを、時刻t2における前記電池の残容量Qから時刻t1における前記電池の残容量Qを減ずることで求めることを特徴とする請求項1に記載の劣化度推定方法。Deterioration degree estimation method according to claim 1, characterized in that obtained by subtracting the remaining capacity to Q 1 the battery the electric quantity Delta] Q, at time t1 from the remaining capacity Q 2 of the battery at time t2. 前記SOH−(OCV−OCV)/ΔQマップは、複数のSOH及び傾き(OCV−OCV)/ΔQの間にリニアな相関関係が成立していることを特徴とする請求項1又は請求項2に記載の劣化度推定方法。The SOH- (OCV 2 -OCV 1) / ΔQ map, a plurality of SOH and inclination (OCV 2 -OCV 1) / linear correlation between the Delta] Q is characterized in that it holds claim 1 or The method for estimating the degree of deterioration according to claim 2. 更に前記電池の温度Tを測定し、該測定した温度Tを予め定められたT−OCVマップに当てはめて前記開路電圧OCV及び開路電圧OCVを補正した後、前記傾き(OCV−OCV)/ΔQを求めることを特徴とする請求項1乃至請求項3のいずれか1項に記載の劣化度推定方法。Further measures the temperature T of the battery, after correcting the open circuit voltage OCV 1 and open circuit voltage OCV 2 by applying a predetermined T-OCV map temperature T the measurement, the slope (OCV 2 -OCV 1 4. The method for estimating the degree of deterioration according to any one of claims 1 to 3, further comprising:
JP2003046846A 2003-02-25 2003-02-25 Degradation estimation method Expired - Lifetime JP4288958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046846A JP4288958B2 (en) 2003-02-25 2003-02-25 Degradation estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046846A JP4288958B2 (en) 2003-02-25 2003-02-25 Degradation estimation method

Publications (2)

Publication Number Publication Date
JP2004257781A true JP2004257781A (en) 2004-09-16
JP4288958B2 JP4288958B2 (en) 2009-07-01

Family

ID=33113248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046846A Expired - Lifetime JP4288958B2 (en) 2003-02-25 2003-02-25 Degradation estimation method

Country Status (1)

Country Link
JP (1) JP4288958B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005304A (en) * 2005-06-21 2007-01-11 Gm Global Technology Operations Inc Method for controlling and monitoring using state estimator having variable forgetting factor
US7791317B2 (en) 2006-08-01 2010-09-07 Sony Corporation Battery pack and method of calculating deterioration level thereof
WO2011135631A1 (en) * 2010-04-30 2011-11-03 パナソニック株式会社 Full-charge capacity correction circuit, charging system, battery pack, and full-charge capacity correction method
JP2012057956A (en) * 2010-09-06 2012-03-22 Calsonic Kansei Corp Deterioration degree estimation apparatus for battery
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element
CN103487762A (en) * 2013-09-30 2014-01-01 国家电网公司 Screening method for lithium ion batteries
JP2014013210A (en) * 2012-07-05 2014-01-23 Toyota Industries Corp Charge controller, battery pack, and charge control method
US8736232B2 (en) 2010-05-14 2014-05-27 Panasonic Corporation Full charge capacity correction circuit, charging system, battery pack and full charge capacity correction method
JP2014519016A (en) * 2011-04-25 2014-08-07 エルジー・ケム・リミテッド Battery capacity deterioration estimation apparatus and method
JP2014522491A (en) * 2011-06-02 2014-09-04 エスケー イノベーション カンパニー リミテッド ESS degradation state prediction method
KR101486629B1 (en) 2012-05-11 2015-01-29 주식회사 엘지화학 Apparatus and method of estimating state of health for battery
JP2015031591A (en) * 2013-08-02 2015-02-16 パナソニック株式会社 Device for determining state of lead-acid battery and method for determining state of vehicle and lead-acid battery
JP2015161519A (en) * 2014-02-26 2015-09-07 Necプラットフォームズ株式会社 System and method for rechargeable battery degradation determination
JP2016144345A (en) * 2015-02-03 2016-08-08 キヤノン株式会社 Charger and battery device
KR20160144437A (en) * 2014-04-16 2016-12-16 르노 에스.아.에스. Method for estimating the state of health of a battery
JP2017028883A (en) * 2015-07-23 2017-02-02 京セラ株式会社 Power storage system and control method for power storage battery
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
KR20180120589A (en) * 2017-04-27 2018-11-06 도요타지도샤가부시키가이샤 Battery system in vehicle and aging deterioration estimation method for battery
KR101937591B1 (en) 2017-09-27 2019-01-10 경북대학교 산학협력단 Apparatus and method for real-time battery life estimation
JP2020034524A (en) * 2018-08-31 2020-03-05 株式会社デンソー Power supply system
WO2020163548A1 (en) * 2019-02-06 2020-08-13 SF Motors Inc. Battery state of health estimation using open circuit voltage slope
JP2020169943A (en) * 2019-04-05 2020-10-15 株式会社日立産機システム Storage battery state evaluation system
US11002793B2 (en) 2017-12-21 2021-05-11 Samsung Electronics Co., Ltd. Battery monitoring method and apparatus detecting charge balance of battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459552B (en) * 2014-11-28 2017-10-17 上海交通大学 The method for assessing influence of the charging behavior to batteries of electric automobile health status

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005304A (en) * 2005-06-21 2007-01-11 Gm Global Technology Operations Inc Method for controlling and monitoring using state estimator having variable forgetting factor
US7791317B2 (en) 2006-08-01 2010-09-07 Sony Corporation Battery pack and method of calculating deterioration level thereof
WO2011135631A1 (en) * 2010-04-30 2011-11-03 パナソニック株式会社 Full-charge capacity correction circuit, charging system, battery pack, and full-charge capacity correction method
US8736232B2 (en) 2010-05-14 2014-05-27 Panasonic Corporation Full charge capacity correction circuit, charging system, battery pack and full charge capacity correction method
JP2012057956A (en) * 2010-09-06 2012-03-22 Calsonic Kansei Corp Deterioration degree estimation apparatus for battery
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element
JP2014519016A (en) * 2011-04-25 2014-08-07 エルジー・ケム・リミテッド Battery capacity deterioration estimation apparatus and method
JP2014522491A (en) * 2011-06-02 2014-09-04 エスケー イノベーション カンパニー リミテッド ESS degradation state prediction method
KR101486629B1 (en) 2012-05-11 2015-01-29 주식회사 엘지화학 Apparatus and method of estimating state of health for battery
JP2014013210A (en) * 2012-07-05 2014-01-23 Toyota Industries Corp Charge controller, battery pack, and charge control method
JP2015031591A (en) * 2013-08-02 2015-02-16 パナソニック株式会社 Device for determining state of lead-acid battery and method for determining state of vehicle and lead-acid battery
CN103487762A (en) * 2013-09-30 2014-01-01 国家电网公司 Screening method for lithium ion batteries
JP2015161519A (en) * 2014-02-26 2015-09-07 Necプラットフォームズ株式会社 System and method for rechargeable battery degradation determination
KR20160144437A (en) * 2014-04-16 2016-12-16 르노 에스.아.에스. Method for estimating the state of health of a battery
KR102435037B1 (en) 2014-04-16 2022-08-22 르노 에스.아.에스. A method for calibrating a battery, a method for estimating the state of health of a battery, and a system for performing theses methods
US10326285B2 (en) 2015-02-03 2019-06-18 Canon Kabushiki Kaisha Charging device, battery device, and method
JP2016144345A (en) * 2015-02-03 2016-08-08 キヤノン株式会社 Charger and battery device
JP2017028883A (en) * 2015-07-23 2017-02-02 京セラ株式会社 Power storage system and control method for power storage battery
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
KR20180120589A (en) * 2017-04-27 2018-11-06 도요타지도샤가부시키가이샤 Battery system in vehicle and aging deterioration estimation method for battery
KR102019356B1 (en) * 2017-04-27 2019-09-06 도요타지도샤가부시키가이샤 Battery system in vehicle and aging deterioration estimation method for battery
US10802080B2 (en) 2017-04-27 2020-10-13 Toyota Jidosha Kabushiki Kaisha Battery system in vehicle and aging deterioration estimation method for battery
WO2019066457A1 (en) * 2017-09-27 2019-04-04 경북대학교 산학협력단 Battery lifespan prediction apparatus and method
KR101937591B1 (en) 2017-09-27 2019-01-10 경북대학교 산학협력단 Apparatus and method for real-time battery life estimation
US11002793B2 (en) 2017-12-21 2021-05-11 Samsung Electronics Co., Ltd. Battery monitoring method and apparatus detecting charge balance of battery
JP2020034524A (en) * 2018-08-31 2020-03-05 株式会社デンソー Power supply system
WO2020163548A1 (en) * 2019-02-06 2020-08-13 SF Motors Inc. Battery state of health estimation using open circuit voltage slope
JP2020169943A (en) * 2019-04-05 2020-10-15 株式会社日立産機システム Storage battery state evaluation system
JP7202958B2 (en) 2019-04-05 2023-01-12 株式会社日立産機システム Storage battery condition evaluation system

Also Published As

Publication number Publication date
JP4288958B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4288958B2 (en) Degradation estimation method
US7443139B2 (en) Battery state-of-charge estimator
JP4066732B2 (en) Battery remaining capacity estimation method
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
US8645088B2 (en) Systems and methods for determining the state of charge of a battery utilizing confidence values
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP5644190B2 (en) Battery state estimation device and battery information notification device
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
US20120112754A1 (en) Apparatus quantifying state-of-charge of vehicle-mounted rechargeable battery
US20110299564A1 (en) Dynamic estimation of cell core temperature by simple external measurements
JP5338807B2 (en) Battery state determination method and automobile
JP6674139B2 (en) Vehicle and its battery state detection system
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP2019105520A (en) Secondary battery system and soc estimation method of secondary battery
JP2007055450A (en) Estimating system for deteriorated state of capacitor device
KR20190070262A (en) Secondary battery system and method of estimating stress of active material of secondary battery
KR20150126208A (en) Battery and battery management apparatus
JP2009236800A (en) Remaining battery capacity display method and remaining battery capacity display device
KR20070006953A (en) Method for resetting soc of secondary battery module
JP2007053005A (en) Battery status detection system and automobile equipped with this
JP2009241646A (en) Battery state determination system, and automobile having the system
JP2004025982A (en) Method of estimating remaining capacity of battery
JP6607353B2 (en) Vehicle and its battery state detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4288958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term