JP2012057956A - Deterioration degree estimation apparatus for battery - Google Patents

Deterioration degree estimation apparatus for battery Download PDF

Info

Publication number
JP2012057956A
JP2012057956A JP2010198621A JP2010198621A JP2012057956A JP 2012057956 A JP2012057956 A JP 2012057956A JP 2010198621 A JP2010198621 A JP 2010198621A JP 2010198621 A JP2010198621 A JP 2010198621A JP 2012057956 A JP2012057956 A JP 2012057956A
Authority
JP
Japan
Prior art keywords
battery
charge amount
degree
deterioration
deterioration degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010198621A
Other languages
Japanese (ja)
Other versions
JP5419831B2 (en
Inventor
Kinnosuke Itabashi
Nozomi Teranishi
望 寺西
欣之介 板橋
Original Assignee
Calsonic Kansei Corp
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp, カルソニックカンセイ株式会社 filed Critical Calsonic Kansei Corp
Priority to JP2010198621A priority Critical patent/JP5419831B2/en
Publication of JP2012057956A publication Critical patent/JP2012057956A/en
Application granted granted Critical
Publication of JP5419831B2 publication Critical patent/JP5419831B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration degree estimation apparatus for a battery which is capable of estimating a deterioration degree of the battery more accurately even in an area where an inclination of open voltage change/charge amount change is not almost varied.SOLUTION: A deterioration degree estimation apparatus for a battery 1 includes: a voltage sensor 2 for detecting an inter-terminal voltage value of the battery; a current sensor 3 for detecting a charging/discharging current value of the battery 1; state estimation means 4 to which the charging/discharging current value and the inter-terminal voltage value detected by the sensors 2 and 3 are input and which estimates an open voltage value on the basis of an equivalent circuit model 4A of the battery; a charge amount calculation section 5 which time-integrates the charging/discharging current value detected by the current sensor 3 to calculate charges of the battery 1; and a deterioration degree calculation section 7 which has relation data of a charge amount and the open voltage value for each deterioration degree and calculates the deterioration degree of the battery on the basis of the relation data from the open voltage value estimated by the state estimation means and the charge amount calculated by the charge amount calculation section.

Description

本発明は、バッテリの劣化度推定装置に関する。 The present invention relates to a deterioration degree estimation device of the battery.

たとえば、電気自動車やハイブリッド電気自動車などでは、これらの車両を駆動するのに用いられる電気モータへ電力を供給(放電)したり、制動時のエネルギを発電機として機能させる電気モータから、あるいは地上に設置した電源から充電して電気エネルギを蓄積したりするため、リチャージャブル・バッテリ(二次電池)が用いられる。 For example, such in an electric vehicle or a hybrid electric vehicle, and supplies power to an electric motor used to drive these vehicles (discharge) from the electric motor to function energy during braking as a generator, or on the ground to or store electrical energy to charge the installed power, rechargeable battery (secondary battery) is used.

この場合、バッテリの充電放電時の電気化学的、物理変化に起因してバッテリが劣化してその容量が小さくなって行く。 In this case, electrochemical during charge and discharge of the battery, the capacity becomes smaller and the battery is degraded due to a physical change. このバッテリの劣化度合いは、劣化度(SOH: State of Health、あるは健康度ともいう)で表わされ、バッテリの残量を表わす充電率(SOC: STATE of Charge)とともにバッテリ・マネージメントにとって重要な指標である。 The degree of deterioration of the battery, the degree of deterioration (SOH: State of Health, there is also referred to as health level) is represented by, charging rate, which represents the remaining amount of the battery (SOC: STATE of Charge) with important for Battery Management it is an indicator. これらの指標は直接測定することができないので、従来からいくつかの推定方法が知られている。 These indicators can not be measured directly, a number of estimation methods have been conventionally known.

従来、このような劣化度SOHを推定する方法の一つとして、以下のような方法が知られている(例えば、特許文献1参照)。 Conventionally, as a method of estimating such a degradation degree SOH, are known the following methods (e.g., see Patent Document 1).
この従来の劣化度推定装置では、バッテリに流れる電流が所定値以下のとき異なる時刻t1、t2(t1<t2)における電池の回路電圧OCV1およびOCV2をそれぞれ測定するとともに時刻t1からt2の間にバッテリに流れる電流を測定し、測定した電流を積算して電荷変化量ΔQを求める。 In this conventional deterioration degree estimation apparatus, a battery while when the current flowing through the battery is lower than a predetermined value different times t1, t2 (t1 <t2) in the circuit voltages OCV1 and OCV2 battery from time t1 with measuring the respective t2 the current flowing through the measured, by integrating the measured current determining a charge amount of change Delta] Q. 次いで、この電荷変化量ΔQに対する回路電圧(バッテリの開放電圧)の変化量の傾き、すなわち(OCV2−OCV1)/ΔQを求め、この傾きを、予め定められた複数の劣化度SOHおよび上記傾き間に成立したリニアの相関関係を有するSOH−(OCV2−OCV1)/ΔQのマップに当てはめて、劣化度SOHを推定している。 Then, the slope of the variation of the circuit voltage with respect to the charge amount of change Delta] Q (open circuit voltage of the battery), i.e. (OCV2-OCV1) / seek Delta] Q, the inclination, between a plurality of degradation degree SOH and the inclination to a predetermined enacted SOH- (OCV2-OCV1) has a correlation of the linear / are fitted to the map of ΔQ to, estimates a deterioration degree SOH.

特許第4288958号公報 Patent No. 4288958 Publication

すなわち、上記従来の劣化度推定装置では、事前に実験により劣化度が異なる状態のバッテリにつき、劣化度ごとに残容量と回路電圧との関係のデータをとっておき、上記公報の図6に示されているような特性表を作成しておく。 That is, the conventional deterioration degree estimation device in advance per battery deterioration degree of the different states by experiment, are shown the data of the relationship between the remaining capacity and the circuit voltage per degree of deterioration aside, in FIG. 6 of the publication you create a characteristic table like being. そして、算出した残容量と回路電圧との関係から逆に劣化度SOHを求めるようにしている。 Then, and to determine a degree of deterioration SOH Conversely the relationship between the calculated remaining capacity and the circuit voltage.
この場合の劣化度の推定は、上記公報の図6に示されているように、残容量と回路電圧との関係にあっては、バッテリが劣化していくと、上記傾き(OCV2−OCV1)/ΔQが変化していく(上記公報の図6では大きくなっていく)という認識のもとになりたっている。 Estimation of the degree of deterioration of this case, as shown in FIG. 6 of the above publication, in the relationship between the remaining capacity and the circuit voltage, the battery is gradually degraded, the slope (OCV2-OCV1) / Delta] Q will change that consists in the original recognition that (becomes larger in FIG. 6 of the publication). そして、この認識の基に劣化度SOHと上記傾きのリニアな関係を、予め実験で得たデータを基に上記公報の図5に示すようなグラフにして、求めた傾き(OCV2−OCV1)/ΔQから劣化度SOHを決めている。 Then, a linear relationship between deterioration degree SOH and the inclination on the basis of this recognition, in the graph shown in FIG. 5 of the publication based on data obtained in advance by experiments, calculated slope (OCV2-OCV1) / We are determined degree of deterioration SOH from ΔQ.

しかしながら、本発明者らの実験によれば、バッテリが劣化していくと、上記傾き(OCV2−OCV1)/ΔQが変化していくという認識は、場合により成立せず、劣化の状況によっては傾きがあまり変化しなかったり、あるいはまったく変化しなかったりする場合があることが分かった(図8参照)。 However, according to experiments of the present inventors, when the battery is gradually degraded, recognition that the inclination (OCV2-OCV1) / ΔQ is gradually changed, not established by case, the slope depending on the situation of deterioration there was found that in some cases may fail to vary too much or not changed, or no (see FIG. 8). このような場合にも上記傾き(OCV2−OCV1)/ΔQを用いて劣化度SOHを高い精度で推定することは、難しくなってしまい、バッテリ・マネージメント上、種々の不具合が生じてしまうといった問題がある。 Be estimated in such the inclination even when (OCV2-OCV1) / high accuracy deterioration degree SOH using Delta] Q, becomes difficult, the battery management, a problem various problems occurs is there.

本発明は、上記問題に着目してなされたもので、その目的とするところは、より高い精度でバッテリの劣化度を推定できるようにしたバッテリの劣化度推定装置を提供することにある。 The present invention has been made in view of the above problems, and has as its object to provide a battery deterioration degree estimation apparatus capable of estimating the degree of deterioration of the battery with higher accuracy.

この目的のため本発明によるバッテリの劣化度推定装置は、 Battery deterioration degree estimation apparatus according to the invention for this purpose,
バッテリの端子間電圧値を検出する電圧センサと、 A voltage sensor for detecting a voltage value across the battery terminals,
バッテリの充放電電流値を検出する電流センサと、 A current sensor for detecting the discharge current value of the battery,
電流センサで検出した充放電電流値と電圧センサで検出した端子間電圧値とが入力されてバッテリの等価回路モデルに基づき開放電圧値を推定する状態推定手段と、 A state estimation means and the inter-terminal voltage value detected by the discharge current value and the voltage sensor detected by the current sensor to estimate are input open circuit voltage value on the basis of the equivalent circuit model of the battery,
電流センサで検出した充放電電流値を時間積算してバッテリの電荷を算出する電荷量算出部と、 A charge amount calculating unit for calculating a battery charge by integrating the charge and discharge current value detected by the current sensor time,
劣化度ごとの電荷量と開放電圧値との関係データを有し、状態推定手段で推定した開放電圧値と電荷量算出部で算出した電荷量とから関係データに基づきバッテリの劣化度を算出する劣化度算出部と、 Has a relationship data between the charge amount and the open-circuit voltage value for each degree of deterioration, on the basis of the open-circuit voltage value estimated by the state estimation means from the charge amount calculated by the charge amount calculating unit to the relevant data for calculating the deterioration degree of the battery and the deterioration degree calculating unit,
を備えたことを特徴とする。 Characterized by comprising a.

本発明のバッテリの劣化度推定装置にあっては、電荷変化量に対する開放電圧の変化量で決まる傾きの代わりに、異なる劣化度ごとに電荷量と開放電圧値との関係をあらかじめ測定した得た関係データを用い、クーロン・カウント法で求めた電荷量と状態推定で推定した開放電圧値から関係データに基づき、劣化度を推定するようにしたので、測定期間中の電荷変化量に対する測定期間における開放電圧の変化量で決まる傾きがたとえほとんど、あるいはまったく変化しない場合でも、より高い精度でバッテリの劣化度を推定することができる。 In the battery deterioration degree estimation apparatus of the present invention, instead of the inclination determined by the amount of change in open-circuit voltage to the charge variation to obtain previously measured the relationship between the charge amount and the open-circuit voltage value for each different degree of degradation using the relationship data, based on the relationship data from the open-circuit voltage value estimated by the amount of charge and state estimation obtained in coulomb counting method, since to estimate the degree of degradation, in the measurement period for the charge variation during the measurement period most slope determined by the amount of change in the open circuit voltage even, or even not at all changed, it is possible to estimate the degree of deterioration of the battery with higher accuracy.

本発明の実施例1のバッテリの劣化度推定装置が適用されるバッテリと、このバッテリの状態を推定する装置の構成を示す機能ブロック図である。 A battery battery deterioration degree estimation apparatus according to a first embodiment of the present invention is applied is a functional block diagram showing a structure of an apparatus for estimating the state of the battery. 実施例1のバッテリの劣化度推定装置を利用できるようにするため、予め電荷量と開放電圧の関係を調べるときに最初に実施する、バッテリを満充電状態にした状態を示す図である。 To be able to use degradation degree estimation device for a battery in Example 1, a first embodiment to show a state where the battery fully charged FIG When examining the relationship between the pre-charge amount and the open-circuit voltage. 図2の状態から一定期間定電流放電したときの、電池の状態を示す図である。 When the predetermined period constant current discharge from the state of FIG. 2 is a diagram showing a state of the battery. その放電後に電流が流れないようにした前後の開放電圧の時間的変化を示す図である。 Its current after the discharge is a diagram showing the temporal change in open-circuit voltage before and after prevented from flowing. 劣化していないバッテリの電荷量と開放電圧との関係を示す図である。 Is a diagram showing the relationship between the charge amount and the open-circuit voltage of the battery that is not deteriorated. 充放電サイクルを繰り返すことで劣化していくバッテリにおける、充放電サイクルごとの電荷量と開放電圧との関係を示し、実施例1の劣化度推定装置で利用するデータの関係を表わすグラフを示す図である。 In grow worse by repeated charge-discharge cycles the battery, showing the relationship between the charge amount and the open-circuit voltage of each charge-discharge cycle, shows a graph representing the relationship between the data used in the deterioration degree estimation device of Example 1 it is. 実施例1で用いる図6のグラフを用いて劣化したバッテリの劣化度を求める様子を示す図である。 It is a diagram showing a state of obtaining the degree of deterioration of the battery that is deteriorated by using a graph of FIG. 6 used in Example 1. 本発明者らが劣化したバッテリを用いた実験により得た、劣化度と電荷変化量に対する開放電圧変化量の傾きの関係で従来技術の前提と異なる結果が生じた場合の例を示す図である。 Was obtained by experiments by the present inventors using the battery degradation, it is a diagram illustrating an example of a case where the prior art premise and different results in relation to the open-circuit voltage variation of inclination with respect to deterioration degree and charge variation occurs .

以下、本発明の実施の形態を、添付の図面に示す実施例に基づき詳細に説明する。 Hereinafter, the embodiments of the present invention will be described in detail based on embodiments shown in the accompanying drawings.

以下、本発明の実施例1を、添付図面に基づき詳細に説明する。 Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
図1に、実施例1のバッテリ1の劣化度推定装置およびその周辺機器の関係を示す。 Figure 1 shows the relationship between the deterioration degree estimation device and its peripheral devices of the battery 1 of Example 1.
実施例1のバッテリ1の劣化度推定装置は、電気自動車やハイブリッド電気自動車などの車両に用いられる。 Deterioration degree estimation device of the battery 1 of Embodiment 1 is used in a vehicle such as an electric vehicle or hybrid electric vehicles. このような車両には、車両を駆動する図示しない電気モータ、バッテリ1、これらのコントローラ(図示せず)が搭載され、電気モータへの電力を供給(放電)、制動時における電気モータからの制動エネルギの回生や地上充電設備からのバッテリ1へ電力回収(充電)を行う。 Such a vehicle electric motor (not shown) for driving the vehicle, the battery 1, (not shown) of these controllers is mounted, supplying power to the electric motor (discharge), the braking of the electric motor at the time of braking perform power recovery the (charged) to the battery 1 from the regenerative and ground charging equipment of energy. このような充放電電流のバッテリ1への出入りがあると、バッテリ1が劣化していくので、この劣化状態をバッテリ1の劣化度推定装置で推定・モニタしている。 If there is out of the battery 1 such charging and discharging current, the battery 1 is gradually deteriorated, it is estimated monitor at the deteriorated state deterioration degree estimation device of the battery 1.

図1に示すように、バッテリ1の劣化度推定装置は、バッテリ1に接続された電圧センサ2および電流センサ3と、状態推定部4と、電荷算出部5と、劣化度算出部7と、を備えている。 As shown in FIG. 1, the battery 1 deterioration degree estimation apparatus includes a voltage sensor 2 and the current sensor 3 connected to the battery 1, the state estimation unit 4, a charge calculator 5, a deterioration degree calculation unit 7, It is equipped with a. 劣化度推定装置の状態推定部4には、充電率算定部6が接続される。 The state estimation unit 4 of the deterioration degree estimation apparatus, the charging rate calculating unit 6 is connected. なお、状態推定部4と、電荷量算出部5と、充電率算定部6と、劣化度算出部7とは、車載のマイクロ・コンピュータで構成される。 Incidentally, the state estimation unit 4, and the charge amount calculating section 5, a charging rate calculating unit 6, and the degradation degree calculator 7, and a vehicle-mounted microcomputer.

バッテリ1は、本実施例にあっては、リチャージャブル・バッテリ(二次電池)、たとえばリチウム・イオン・バッテリを用いるが、これに限られることはなく、ニッケル・水素バッテリ等、他の種類のバッテリを用いてもよいことは言うまでもない。 Battery 1, in the present embodiment, rechargeable batteries (secondary battery), for example, a lithium ion battery, it is not limited thereto, nickel-hydrogen battery or the like, other types of batteries it may of course be used.

電圧センサ2は、バッテリ1の端子間電圧を検出するもので、検出した端子電圧値Vは状態推測部4へ入力される。 Voltage sensor 2 is for detecting the terminal voltage of the battery 1, the detected terminal voltage value V is inputted to the state estimator 4.
電流センサ3はバッテリ1から電気モータ等へ電力を供給する場合の放電電流の大きさ、および制動時に電気モータを発電機として機能させて制動エネルギの一部を回収したり地上の電源設備から充電したりする場合の充電電流の大きさを検出するもので、そこで検出した充放電電流値Iは入力信号として状態推測部4へ出力される。 The current sensor 3 is charged from the size, and by function electric motor as a generator to recover part of the braking energy or ground power supply equipment during braking of the discharge current when supplying power from the battery 1 to the electric motor or the like detects the magnitude of the charging current in the case of or where the detected charge-discharge current value I is output to the state estimator 4 as an input signal.

状態推測部4は、バッテリ1の等価回路モデル4Aと、状態量算出部4Bとを備える。 State estimating unit 4 includes an equivalent circuit model 4A of the battery 1, and a state quantity calculating section 4B. 状態推定部4は、バッテリ1と等価回路モデル4Aに同じ入力(充放電電流)を入れて、これらの出力(端子電圧)の誤差を算出し、この誤差をフィードバックして誤差が最小になるように等価回路モデル4Aを修正していくことで、真の内部状態量である開放電圧OCVを推定するものである。 State estimating unit 4, put the battery 1 and the same input to the equivalent circuit model 4A (discharge current), calculates an error of the output (terminal voltage), so that the error is minimized by feeding back the error by going to modify the equivalent circuit model 4A to is to estimate the open-circuit voltage OCV is a true internal state quantity. なお、状態推測部4は、本発明の状態推定手段に相当する。 The state estimator 4 corresponds to the state estimating means of the present invention.

バッテリ1の等価回路モデル4Aは、ここではフォスタ型RC梯子回路が用いられるが、これに限られることなく、他の種類のもの、たとえばカウエル型RC梯子回路であってもよい。 Equivalent circuit model 4A of the battery 1 is here Foster type RC ladder circuit is used, but without being limited thereto, those of other types, for example it may be a Cowell type RC ladder circuit.

状態量算出部4Bは、電圧センサ2で検出したバッテリ1の端子電圧値Vと電流センサ3で検出したバッテリ1の充放電電流値Iとが入力され、バッテリ1の等価回路モデル4Aを基にカルマン・フィルタや最小二乗法などを用いて逐次計算し、バッテリ1の開放電圧OCVを推定する。 State quantity calculating section 4B is and the discharge current value I of the battery 1 detected by the terminal voltage value V and the current sensor 3 of the battery 1 detected by the voltage sensor 2 are inputted, based on the equivalent circuit model 4A of the battery 1 sequentially calculated using a Kalman filter or least squares method to estimate the open circuit voltage OCV of the battery 1.

電荷量算出部5は、電流センサ3で検出したバッテリ1の充放電電流値Iが入力され、この値を逐次積算していくことでバッテリ1から出入りした電荷量を求め、この値を、逐次積算演算前に記憶した残存電荷量から減算することで、現在のバッテリ1が有する電荷量OPREを算出する。 Charge amount calculating section 5 is supplied with charge and discharge current I of the battery 1 detected by the current sensor 3, determine the amount of charge and out from the battery 1 by going sequentially integrating this value, this value, sequentially by subtracting from the residual amount of charge stored in the previous accumulated operation, calculates the amount of charge OPRE the current battery 1 has. この電荷量QPREは、劣化度算出部7へ出力される。 The amount of charge QPRE is output to the deterioration degree calculating section 7.

充電率算出部6は、開放電圧値(OCV)と充電率(SOC)との関係が温度やバッテリ1の劣化に影響されにくいことから、これらの関係を予め実験等で求めて得た関係データを、たとえ特性表として記憶している。 Charging rate calculating unit 6, since the open-circuit voltage value (OCV) difficult relationship between the charging rate (SOC) is affected by the deterioration of the temperature and the battery 1, the relationship data obtained determined by these relations beforehand through experiments or the like and it is even stored as a characteristic table. そして、この特性表に基づき、状態推定部4の状態量算出部4Bで推定した開放電圧推定値OCVから充電率SOCを推定する。 Then, based on this characteristic table to estimate the charge rate SOC from open circuit voltage estimated value OCV estimated by the state quantity calculation unit 4B of the state estimation unit 4. この充電率SOCは、バッテリ1のバッテリ・マネージメントに利用される。 The charging rate SOC is used to the battery management of the battery 1.

一方、劣化度算出部7は、所定幅ごとに区分けした劣化度SOHごとに電荷量Qと開放電圧OCVの関係を表わす特性表を有する。 On the other hand, the deterioration degree calculating section 7 has a characteristic table representing the relationship between the open circuit voltage OCV and the charge amount Q for each degree of deterioration SOH was divided into every predetermined width. この特性表の詳細については、後で説明する。 Details of the characteristics table will be described later. そして、劣化度算出部7には、状態推定部4の状態量算出部4Bで推定した開放電圧推定値OCVと電荷量算出部5で算出した電荷量QPREとが入力されて、これらが上記特性表のいずれの劣化度SOHの範囲に入るのかが算出されて、当てはまる劣化度SOHが出力される。 And, the degradation degree calculator 7, and a charge amount QPRE and the calculated open circuit voltage estimated value OCV estimated by the state quantity calculation unit 4B of the state estimation unit 4 in charge amount calculating section 5 is inputted, these aforementioned characteristics whether within the scope of any of the deterioration degree SOH table is calculated true degradation degree SOH is output.

ここで、実施例1のバッテリ1の劣化度推定装置の劣化度算出部7に記憶させる特性表(劣化度SOH毎の電荷量Qと開放電圧OCVの関係を表わす)につき、説明する。 Here, per property table to be stored in the degradation degree calculator 7 of the deterioration degree estimation device of the battery 1 of Example 1 (representing the relationship between the charge amount Q and the open-circuit voltage OCV of each degradation degree SOH), it will be described.

上記特性表を作成するにあたっては、事前に対象となるバッテリ1を用いて実験で以下の手順でデータ取りを行っていく。 In preparing the above characteristics table, using a battery 1 in advance of interest intended to make data taking the following steps in the experiment.
まず、図2に模式的に示すように、劣化していない、対象となるバッテリ1を充電して満充電状態にする。 First, as schematically shown in FIG. 2, not deteriorated, and the fully charged state by charging the battery 1 of interest. このときの満充電電荷量QFULLを測定する。 The fully charged charge amount QFULL at this time is measured.

続いて、一定期間、バッテリ1から定電流放電させ、そのときの放電電流値を図示しない電流センサで計測して逐次積算していく。 Then, a period of time, then constant current discharge from the battery 1, will sequentially integrating measured by a current sensor (not shown) the discharge current value at that time. このようにして、クーロン・カウント法を用いて放電電流の時間積算から放電した電荷量Qtを算出する。 In this manner, it calculates the amount of charge Qt of discharging from time integration of the discharge current by using the coulomb counting method.
そうすると、図3に模式的に示すように、バッテリ1のそのとき(現在)の電荷量QPREは、QPRE=QFULL−Qtの関係式から求めることができる。 Then, as schematically shown in FIG. 3, the charge amount Qpre at that time of the battery 1 (current) can be obtained from the relational expression QPRE = QFULL-Qt.

そのとき、バッテリ1は電流が流れない状態にして、図示しない電圧センサでバッテリ1の端子電圧を測定する。 Then, the battery 1 is in the state where no current flows, measures the terminal voltage of the battery 1 by the voltage sensor (not shown).
放電後ある時間が経過するまでのバッテリ1の開放電圧OCVの変動の様子を図4に示す。 The state of variation of the open circuit voltage OCV of the battery 1 to a certain post-discharge time has elapsed is shown in FIG. 横軸は時間、縦軸は開放電圧を示す。 The horizontal axis represents time and the vertical axis represents the open-circuit voltage. 同図に示すように、一般的にバッテリ1の開放電圧OCVは、放電により低下していくが、電流が流れなくなる時刻t1以降、次第に回復して行き最終的にバッテリ1の内部状態が安定する時刻t2以降は、端子電圧Vと開放電圧OCVが同じ値になる。 As shown in the figure, the open circuit voltage OCV of the general battery 1 is gradually lowered by discharge, after the time t1 at which current stops flowing, eventually the internal state of the battery 1 continue to recover gradually stabilized after time t2, the open circuit voltage OCV and the terminal voltage V becomes the same value.
このことから、時刻t2になったらバッテリ1の端子電圧を測定するようにし、その値をそのときの(現在の電荷量Qにおける)開放電圧OCVとする。 Therefore, so as to measure the terminal voltage of the battery 1 When turned time t2, the value of (in the charge amount Q of the current) that time and the open-circuit voltage OCV. なお、この電流ゼロになってから端子電圧Vが開放電圧OCVと同じになるまでの時間t2−t1は、バッテリ1の温度、放電量などによって変化するので、十分時間をかける必要がある。 The time t2-t1 from when this current zero to the terminal voltage V becomes equal to the open circuit voltage OCV, the temperature of the battery 1, since the changes by such discharge amount, it is enough take time required.

このようにして、放電した電荷量Qtがたとえば同じ量になる度に、そのときの開放電圧OCVを、現在の電荷量がゼロとなるまで次々と測定・記録していく。 In this way, whenever the discharged charge amount Qt is the same amount for example, the open circuit voltage OCV at the time, continue to successively measure and record until the current charge amount becomes zero. このようにして、上記測定を1サイクル行った後の結果を図5に示す。 Thus, Figure 5 shows the results after performing one cycle of the above measurement. 横軸はバッテリ1の電荷量Qを、縦軸は開放電圧OVCVを示す。 The horizontal axis the amount of charge Q of the battery 1, the vertical axis represents the open-circuit voltage OVCV. 測定はたとえば500クーロンの電荷量Qを放電するごとに行い、同図中に丸で示す点のデータ群を得る。 Measurements for example performed every time to discharge 500 coulombs of charge amount Q, obtain the data group of points shown by circles in FIG. これらの測定値をたとえば直線で結ぶことで、充放電の1サイクル後におけるバッテリ1の電荷量Q−開放電圧OCVの特性線を得ることができる。 By connecting these measurements for example by a straight line, it is possible to obtain the charge amount Q- characteristic line of the open circuit voltage OCV of the battery 1 after one cycle of charge and discharge.

次に、バッテリ1の充放電を200サイクル繰り返してさらに劣化させたバッテリ1につき、1サイクル後の場合と同様にして算出した電荷量Q(クーロンカウント法を使って求める)と開放電圧OCV(端子電圧Vを測定して得る)との関係データを得てその劣化度SOHにおける特性線を得る。 Then, further per battery 1 which has been deteriorated by repeating charging and discharging of the battery 1 200 cycles, (found using coulomb counting method) charge amount Q calculated in the same manner as after one cycle and the open-circuit voltage OCV (terminal obtaining a characteristic curve at the degradation degree SOH obtaining the relationship data between the obtained by measuring the voltage V).
続いてバッテリ1の充放電をさらに200サイクル繰り返し合計400サイクル後になったときの、電荷量Qと開放電圧OCVとの関係のデータを得る。 Then when it becomes after further 200 cycles repeated for a total of 400 cycles charge and discharge of the battery 1, to obtain the data of the relationship between the charge amount Q and the open-circuit voltage OCV.
このようにして、さらに200サイクルずつ充放電を増やしてバッテリ1を劣化させていったときの電荷量Qと開放電圧OCVとの関係データを得ていく。 In this way, we obtain the relationship data between the charge amount Q and the open-circuit voltage OCV when went to deteriorate the battery 1 is increased further 200 cycles by charging and discharging.

上記のように200サイクルごとに測定・算出して得た電荷量Q−開放電圧OCVの特性線を図6に示す。 Charge amount obtained by measuring and calculating for each 200 cycles as described above Q- characteristic line of the open circuit voltage OCV is shown in FIG. なお、同図にあっては、横軸はバッテリ1の電荷量Qを、縦軸は開放電圧OCVを表わし、1サイクル後の電荷量Q−開放電圧OCVの特性線を一点鎖線で、200サイクル後の電荷量Q−開放電圧OCVの特性線を実線で、そして400サイクル後の電荷量Q−開放電圧OCVの特性線を点線で表わす。 Incidentally, in the figure, the charge amount Q of abscissa battery 1, the vertical axis represents the open circuit voltage OCV, the charge amount after 1 cycle Q- characteristic line of the open-circuit voltage OCV by a dashed line, 200 cycles charge amount after Q- characteristic line of the open-circuit voltage OCV by the solid line, and represents the amount of charge Q- characteristic line of the open circuit voltage OCV after 400 cycles by a dotted line. なお、実際にはさらに200サイクルずつ増やし劣化がさらに進んだ場合の関係データ、特性線も得るが、図を見やすくするため、これらは省略してある。 Actually, even 200 cycles by increasing deterioration related data when that more advanced, but also obtained characteristic curve, for clarity of illustration, these are omitted.

図6から分かるように、充放電サイクルの後におけるバッテリ1では、サイクル数がいずれの場合にも、電荷量Qが少なくなるにつれて、開放電圧OCVは、最初電荷量Qが多い領域では緩やかに低下して行き、次いで電荷量Qが中くらいの領域ではより急激に低下し、そして最終的に電荷量Qが少ない領域ではまた緩やかに低下するといった傾向を有することが測定結果から得られる。 As can be seen from FIG. 6, the battery 1 in the following charge-discharge cycles, even when the number of cycles is one, as the charge amount Q is reduced, the open circuit voltage OCV is gradually reduced in the first charge amount Q is large area and gradually and then decreases more rapidly in the region of moderate charge amount Q, and is obtained from the measurement results that have a tendency may deteriorate or slowly in the final charge amount Q is small region.

また、図6の特性表からは、サイクル数が増加するにしたがって、すなわち、バッテリ1の劣化度SOHが進むにつれて、その特性線が同図中左方向へシフトしていくことが認められる。 Moreover, from the characteristic table of FIG. 6, as the number of cycles increases, i.e., as the deterioration degree SOH of the battery 1 progresses, it is recognized that the characteristic curve is gradually shifted to the left in the figure. この場合、容量ゼロおよびその近辺では別としても、それ以外の劣化度SOHの推定が必要な範囲では、劣化度SOHが異なれば必ず左へシフトしているので、従来技術のように劣化度が異なっても、劣化度SOHを推定するための傾きが変わらず区別が付かなくなって劣化度SOH推定の精度が悪化する、といった問題点はなくなる。 In this case, as are other in capacity zero and vicinity, the extent necessary to estimate the other degradation degree SOH, since the degree of deterioration SOH are always shifted to the left Different degradation degree as in the prior art It is different, distinguishing unchanged inclination for estimating the degree of degradation SOH precision degree of deterioration SOH estimation deteriorates longer adhere, not the problem that.

また、当然ではあるが、充放電のサイクル数が増していくとバッテリ1が劣化していくため、そのときの満充電容量である最大電荷量も次第に小さくなっていくことが同図の特性表に現れている。 Although Naturally a, because the number of cycles of charge and discharge is gradually increased battery 1 is gradually degraded, characteristics table that is drawing going becomes maximum charge amount gradually decreases a fully-charged capacity at that time appearing in. ここで、サイクル数後の各劣化度SOHは、SOH=QFULL/QDの関係式から求められる。 Wherein each degree of deterioration SOH after cycles is determined from the relationship of the SOH = QFULL / QD. この関係式中、SQFULLはそのサイクル数後における充満電気量(最大電荷量)であり、QDはバッテリ1の設計容量である。 In this relation, SQFULL is its full electrical quantity after the number of cycles (maximum charge amount), QD is the design capacity of the battery 1.

このように多くのサイクル数ごとに得た特性線を有する特性表の関係データ、すなわち劣化度SOHごとのバッテリ1の電荷量Q−開放電圧OCVの関係データは、実施例1の劣化度算出部7に記憶され、電荷量Qと開放電圧OCVから、劣化度SOHを推定するのに用いられる。 Thus many of the properties table relationship data with the resulting characteristic line for each cycle number, i.e. the charge of the battery 1 per degradation degree SOH Q-relationship data of the open circuit voltage OCV, the deterioration degree calculating section of Example 1 7 is stored in, the charge amount Q and the open-circuit voltage OCV, used to estimate the degree of degradation SOH.

図7はある時点での劣化度SOH推定の例を示し、電荷量算出部5で算出された電荷量Qと状態推測部4の状態量算出部4Bで推定した開放電圧OCVとが劣化度算出部7に入力されて、ここで上記特性表に基づき電荷量Qと開放電圧OCVから劣化度SOHが求められることになる。 Figure 7 shows an example of a degradation degree SOH estimation at a certain point, the open circuit voltage OCV and the deterioration degree calculating estimated state quantity calculating section 4B of the charge amount calculating unit charge amount calculated in 5 Q and state estimating unit 4 It is input to the section 7, where thus the degradation degree SOH obtained from the charge amount Q and the open-circuit voltage OCV based on the above characteristics table. たとえば、図7に示すように、バッテリ1の現在の電荷量Qが2,080クーロンであり、バッテリ1のそのときの開放電圧OCVが3.8ボルトであれば、この測定点が400サイクル後の特性線(点線で示す)に近いと判定して、そのときのバッテリ1の劣化度SOHは85%であると推定する。 For example, as shown in FIG. 7, a current charge amount Q is 2,080 coulombs of battery 1, when the open circuit voltage OCV of 3.8 volts when the battery 1, the measuring point is 400 cycles after the characteristic line ( it is determined that the closer to the shown by the dotted line), the degradation degree SOH of the battery 1 at that time is estimated to be 85%.

なお、この判定にあたっては、各特性線は隣の特性線との間でそれらの間を二分する範囲をそれぞれ有し、この範囲内に測定点があれば、その特性線の劣化度SOHに当たるというように判定する。 Incidentally, that when this determination, the characteristic curve has a range that bisects between them between the neighboring characteristic line, respectively, if the measurement point within this range, strikes the deterioration degree SOH of the characteristic line It judged as such.
このように特性線に幅を持たせることは、劣化度SOHはわずかな時間(サイクル数に相当)ではほとんど変化しないこと、特性データをあまり細かに設定しても必ずしも精度が上がるとは限らず、またそのような細かい精度は必要ないこと、からも好ましい。 Able to have a width in this manner characteristic line, the deterioration degree SOH is little time that little change in (corresponding to the number of cycles), not always accurate rises even by setting the characteristic data very fine , and such fine accuracy not required, is also preferred.

以上のように、実施例1のバッテリの劣化度推定装置にあっては、以下の効果を得ることができる。 As described above, in the deterioration degree estimation device of the battery of Example 1, it is possible to obtain the following effects.
すなわち、実施例1にあっては、時刻t1、t2間における傾き(OCV2−OCV1)/ΔQから、この傾きと劣化度SOHとの関係データに基づき、劣化度SOHを求めるようにした従来技術の代わりに、あらかじめ劣化度SOHを異ならせて劣化度ごとの開放電圧と電荷量との関係データの特性表を設け、クーロン・カウント法を用いて得たバッテリ1の電荷量と状態推定にて推定した開放電圧とから、上記関係データに基づき、劣化度SOHを算出するようにしたので、従来技術のように劣化度が異なるにもかかわらず傾きがほぼ一定になる領域にあっても、より高い精度にて劣化度SOHを決めることができる。 That is, in Example 1, from the slope (OCV2-OCV1) / ΔQ between times t1, t2, based on the relationship data between the inclination and the degree of deterioration SOH, the prior art was to determine the degree of deterioration SOH Alternatively, pre-made different deterioration degree SOH provided characteristic table of relationship data between the open-circuit voltage and the charge amount for each degree of deterioration, estimated in coulomb counting method the charge amount of the battery 1 obtained by using the state estimation and a the open-circuit voltage, based on the relationship data, since to calculate the degradation degree SOH, even in regions deterioration degree is made different even though the slope is substantially constant as in the prior art, higher it is possible to determine the degree of deterioration SOH in accuracy.

以上、本発明を上記各実施例に基づき説明してきたが、本発明はこれらの実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。 Although the present invention has been described based on the above embodiments, the present invention is not limited to these embodiments, even if a design change or the like without departing from the scope of the present invention are included in the present invention .

たとえば、本発明のバッテリの劣化度推定装置にあっては、電気自動車や日歩リッド電気自動車などの車両に限らず、電源としてバッテリを用いるものであればいずれにも適用できる。 For example, in the battery deterioration degree estimation apparatus of the present invention is not limited to vehicles such as electric vehicles and daily rate lid electric vehicle, it can be applied to any one which is used a battery as power source.

1 バッテリ 2 電圧センサ 3 電流センサ 4 状態推定部 4A バッテリ等価回路モデル 4B 状態量算出部 5 電化量算出部 6 充電率算出部 7 劣化度算出部 1 battery 2 voltage sensor 3 current sensor 4 state estimating unit 4A battery equivalent circuit model 4B state quantity calculating unit 5 electrification amount calculating unit 6 charging rate calculating unit 7 degradation degree calculator

Claims (1)

  1. バッテリの端子間電圧値を検出する電圧センサと、 A voltage sensor for detecting a voltage value across the battery terminals,
    前記バッテリの充放電電流値を検出する電流センサと、 A current sensor for detecting the discharge current value of the battery,
    該電流センサで検出した充放電電流値と前記電圧センサで検出した端子間電圧値が入力されて前記バッテリの等価回路モデルに基づき開放電圧値を推定する状態推定手段と、 A state estimation means detected by said current sensor charge-discharge current value and the are voltage value between the detected terminal of the voltage sensor inputs to estimate the open-circuit voltage value on the basis of the equivalent circuit model of the battery;
    前記電流センサで検出した充放電電流値を時間積算して前記バッテリの電荷を算出する電荷量算出部と、 A charge amount calculating unit for calculating the charge of the battery by integrating the charge and discharge current value detected by the current sensor time,
    劣化度ごとの電荷量と開放電圧値との関係データを有し、前記状態推定手段で推定した開放電圧値と前記電荷量算出部で算出した電荷量とから前記関係データに基づき前記バッテリの劣化度を算出する劣化度算出部と、 Has a relationship data of the charge amount for each degree of deterioration and the open-circuit voltage value, the deterioration of the battery based on the relationship data from the open-circuit voltage value and the charge amount calculated in the charge amount calculating unit estimated by the state estimation unit a deterioration degree calculation unit that calculates a degree,
    を備えたことを特徴とするバッテリの劣化度推定装置。 Battery deterioration degree estimation apparatus comprising the.
JP2010198621A 2010-09-06 2010-09-06 Battery degradation degree estimation device Active JP5419831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198621A JP5419831B2 (en) 2010-09-06 2010-09-06 Battery degradation degree estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198621A JP5419831B2 (en) 2010-09-06 2010-09-06 Battery degradation degree estimation device

Publications (2)

Publication Number Publication Date
JP2012057956A true JP2012057956A (en) 2012-03-22
JP5419831B2 JP5419831B2 (en) 2014-02-19

Family

ID=46055255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198621A Active JP5419831B2 (en) 2010-09-06 2010-09-06 Battery degradation degree estimation device

Country Status (1)

Country Link
JP (1) JP5419831B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059227A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
KR101399362B1 (en) 2012-11-28 2014-05-30 에스케이씨앤씨 주식회사 Method and apparatus for estimating state of health using current integrated offset
WO2014147725A1 (en) 2013-03-18 2014-09-25 三菱電機株式会社 Apparatus and method for estimating electric storage device degradation
WO2014156265A1 (en) * 2013-03-29 2014-10-02 日立オートモティブシステムズ株式会社 Battery control device
JP2015094678A (en) * 2013-11-12 2015-05-18 パナソニックIpマネジメント株式会社 Battery pack and electronic device with battery pack
JP2015108579A (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Battery residual capacity estimation device, method of determining battery residual capacity and program of determining battery residual capacity
JP2016156771A (en) * 2015-02-26 2016-09-01 学校法人立命館 Storage battery deterioration diagnostic method and storage battery deterioration diagnostic device
JP2017514127A (en) * 2014-04-16 2017-06-01 ルノー エス.ア.エス. Method for estimating the health of the battery
US10153529B2 (en) 2015-03-11 2018-12-11 Samsung Electronics Co., Ltd. Apparatus and method for estimating state of charge of metal-air battery
KR101937591B1 (en) * 2017-09-27 2019-01-10 경북대학교 산학협력단 Apparatus and method for real-time battery life estimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242193A (en) * 1993-02-23 1994-09-02 Toyota Motor Corp Remaining capacity meter
JPH11317243A (en) * 1998-04-30 1999-11-16 Nissan Motor Co Ltd Capacity computing method at battery replacement for automobile
JP2003282156A (en) * 2002-03-25 2003-10-03 Toyota Motor Corp Abnormality detection device of battery pack and abnormality detection method therefor
JP2004257781A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration
JP2006015896A (en) * 2004-07-02 2006-01-19 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration and device for estimating degree of deterioration
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2008014702A (en) * 2006-07-04 2008-01-24 Fuji Heavy Ind Ltd Device for operating deterioration of battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242193A (en) * 1993-02-23 1994-09-02 Toyota Motor Corp Remaining capacity meter
JPH11317243A (en) * 1998-04-30 1999-11-16 Nissan Motor Co Ltd Capacity computing method at battery replacement for automobile
JP2003282156A (en) * 2002-03-25 2003-10-03 Toyota Motor Corp Abnormality detection device of battery pack and abnormality detection method therefor
JP2004257781A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration
JP2006015896A (en) * 2004-07-02 2006-01-19 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration and device for estimating degree of deterioration
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2008014702A (en) * 2006-07-04 2008-01-24 Fuji Heavy Ind Ltd Device for operating deterioration of battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059227A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
KR101399362B1 (en) 2012-11-28 2014-05-30 에스케이씨앤씨 주식회사 Method and apparatus for estimating state of health using current integrated offset
WO2014147725A1 (en) 2013-03-18 2014-09-25 三菱電機株式会社 Apparatus and method for estimating electric storage device degradation
US9599676B2 (en) 2013-03-18 2017-03-21 Mitsubishi Electric Corporation Apparatus and method for estimating power storage device degradation
US9685807B2 (en) 2013-03-29 2017-06-20 Hitachi Automotive Systems, Ltd. Battery control device
WO2014156265A1 (en) * 2013-03-29 2014-10-02 日立オートモティブシステムズ株式会社 Battery control device
JP2014196985A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery control device
JP2015094678A (en) * 2013-11-12 2015-05-18 パナソニックIpマネジメント株式会社 Battery pack and electronic device with battery pack
JP2015108579A (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Battery residual capacity estimation device, method of determining battery residual capacity and program of determining battery residual capacity
JP2017514127A (en) * 2014-04-16 2017-06-01 ルノー エス.ア.エス. Method for estimating the health of the battery
JP2016156771A (en) * 2015-02-26 2016-09-01 学校法人立命館 Storage battery deterioration diagnostic method and storage battery deterioration diagnostic device
US10153529B2 (en) 2015-03-11 2018-12-11 Samsung Electronics Co., Ltd. Apparatus and method for estimating state of charge of metal-air battery
KR101937591B1 (en) * 2017-09-27 2019-01-10 경북대학교 산학협력단 Apparatus and method for real-time battery life estimation
WO2019066457A1 (en) * 2017-09-27 2019-04-04 경북대학교 산학협력단 Battery lifespan prediction apparatus and method

Also Published As

Publication number Publication date
JP5419831B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
EP1555537B1 (en) Battery remaining capacity measuring apparatus
EP1688754B1 (en) Battery management apparatus
JP4275078B2 (en) Limiting current control method of a battery
KR100996693B1 (en) Charged state estimating device and charged state estimating method of secondary battery
JP5442583B2 (en) Status detector for the power supply and power supply
US4876513A (en) Dynamic state-of-charge indicator for a battery and method thereof
EP2557428B1 (en) Secondary battery degradation determination device and degradation determination method
CN102119338B (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
CN102064571B (en) Available charging/discharging current calculation method of battery, power supply device and vehicle with the power supply device
KR101750739B1 (en) Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
EP1707974A1 (en) Remaining capacity calculating device and method for electric power storage
US8639460B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
EP2559095B1 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
KR100606878B1 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
JP4668306B2 (en) Lifetime estimating method of life estimation device and a secondary battery of the secondary battery
US9121909B2 (en) Method for estimating state-of-charge of lithium ion battery
EP2435841B1 (en) Battery system and method for system state of charge determination
JP4649101B2 (en) State detection device and the state detecting method for a secondary battery
KR100759706B1 (en) Method of estimating soc of battery for hybrid electric vehicle
US6850038B2 (en) Method of estimating state of charge and open circuit voltage of battery, and method and device for computing degradation degree of battery
WO2010026930A9 (en) Secondary battery status estimating device
CN102468521B (en) Method and apparatus for assessing battery state of health
JP5036662B2 (en) Monitoring device and a secondary battery system for a secondary battery
CN102778651B (en) Determination system and method for cell capacity value of multi-cell battery cell
JP5282789B2 (en) Battery capacity detection device of the lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250