JP2004256911A - Water electrolyzing apparatus, and method for operating the same - Google Patents

Water electrolyzing apparatus, and method for operating the same Download PDF

Info

Publication number
JP2004256911A
JP2004256911A JP2004026342A JP2004026342A JP2004256911A JP 2004256911 A JP2004256911 A JP 2004256911A JP 2004026342 A JP2004026342 A JP 2004026342A JP 2004026342 A JP2004026342 A JP 2004026342A JP 2004256911 A JP2004256911 A JP 2004256911A
Authority
JP
Japan
Prior art keywords
water
cathode
acid
liquid separator
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004026342A
Other languages
Japanese (ja)
Inventor
Michiko Horiguchi
道子 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Advanced Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Advanced Technology Co Ltd filed Critical Fuji Electric Advanced Technology Co Ltd
Priority to JP2004026342A priority Critical patent/JP2004256911A/en
Publication of JP2004256911A publication Critical patent/JP2004256911A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, though, in the water electrolyzing cell of a water electrolyzing apparatus in which hydrogen and oxygen are generated, ions moving through an electrolytic membrane from an anode side by long-term continuous operation and metallic ions eluted by the deterioration of the metal of a feed conductor contaminate a membrane electrode joined body consisting of an electrolytic membrane and a porous feed conductor on the cathode, the contamination of the membrane electrode joined body caused by these ions is prevented, and the increase of electrolytic voltage and the reduction of electrolytic efficiency are prevented. <P>SOLUTION: At the time when electrolytic voltage is increased to a prescribed value or higher by the long-term continuous operation of a water hydrolyzing apparatus, acid cleaning for a water circulation flow passage on the cathode side is performed, and the circulation water is replaced with ion exchange water from a pure water feed device, and the pH of the circulation water is returned to the neutral one. By this method, impurities in the membrane electrode joined body can be removed, and stable electrolytic properties can be maintained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、固体高分子などの電解質膜を用いた水電解装置、食塩電解装置、塩酸電解装置などの水素・酸素を発生する水電解装置に関する。また、固体高分子などの電解質膜を用いた燃料電池、オゾン水製造装置、酸素または水素の分離装置、各種ガスセンサなどの電気化学装置にも関する。   The present invention relates to a water electrolysis device that generates hydrogen and oxygen, such as a water electrolysis device using a solid polymer electrolyte membrane, a salt electrolysis device, and a hydrochloric acid electrolysis device. The present invention also relates to an electrochemical device such as a fuel cell, an ozone water producing device, an oxygen or hydrogen separating device, and various gas sensors using an electrolyte membrane such as a solid polymer.

水を電気分解し水素と酸素とを発生する従来の水電解装置の一例を示す系統図を図2に示す。この図において、水電解装置は、固体高分子電解質膜と多孔質給電体より成る膜電極接合体1mによって内部が陽極室1aと陰極室1cとに区画された水電解セル1、発生ガス冷却管2a,2c、気液分離器3a,3c、水位調整器4、ポンプ5w,5a,5c、イオン交換樹脂6と純水タンク7とより成る純水供給装置、流量調節弁兼分析用水採取口8a,8c、流量調節弁9a,9c、水の比抵抗兼pH測定用ポート10a,10c、ガス分析用ポート11a,11c、発生ガス排出口12a,12cなどから構成されている。この水電解装置の概要と運転動作を以下に説明する。
まず、この図において、装置の最も重要な水の電気分解を行う水電解セル1は、陽極室1aと、陰極室1cと、両電極室の間にあって両面に触媒層を有する高分子電解質膜から成る膜電極接合体1mとそれを挟む多孔質給電体(陽極1daと陰極1dc)とで構成されている。この高分子電解質膜は、工業用として広く用いられており、代表的な高分子材料の例としては、ペルフルオロカーボンスルホン酸膜があり、その製品としては、Nafion(米国DuPont社製)、Aciplex(旭化成工業製)、Flemion(旭硝子製)などの登録商標名で市場に供給されている。また、多孔質給電体としては、チタン繊維やステンレス繊維焼結板等のポーラスで導電性の高い材料が用いられている。これらの材料で構成された水電解セルでは、陽極側に供給された水が2HO→O+4H+4eの反応で分解され、酸素が発生する。ここで発生したHは電解質膜のスルホン基を経由して、陰極側で4H+4e→2Hの反応が起こり水素ガスが発生する。
FIG. 2 is a system diagram showing an example of a conventional water electrolysis apparatus that electrolyzes water to generate hydrogen and oxygen. In this figure, the water electrolysis apparatus is composed of a water electrolysis cell 1 in which the interior is partitioned into an anode chamber 1a and a cathode chamber 1c by a membrane electrode assembly 1m comprising a solid polymer electrolyte membrane and a porous feeder, and a generated gas cooling pipe. 2a, 2c, gas-liquid separators 3a, 3c, water level adjuster 4, pumps 5w, 5a, 5c, a pure water supply device comprising an ion exchange resin 6 and a pure water tank 7, a flow control valve and a water sampling port for analysis 8a , 8c, flow control valves 9a, 9c, water specific resistance and pH measurement ports 10a, 10c, gas analysis ports 11a, 11c, generated gas outlets 12a, 12c, and the like. The outline and operation of this water electrolysis device will be described below.
First, in this figure, a water electrolysis cell 1 which performs the most important water electrolysis of the apparatus is composed of an anode chamber 1a, a cathode chamber 1c, and a polymer electrolyte membrane between both electrode chambers and having a catalyst layer on both surfaces. And a porous feeder (anode 1da and cathode 1dc) sandwiching the membrane electrode assembly 1m. This polymer electrolyte membrane is widely used for industrial purposes, and examples of typical polymer materials include a perfluorocarbon sulfonic acid membrane. Examples of the product include Nafion (manufactured by DuPont, USA) and Aciplex ( It is supplied to the market under registered trade names such as Asahi Kasei Kogyo) and Flemion (made by Asahi Glass). As the porous power supply, a porous and highly conductive material such as a titanium fiber or a stainless steel sintered plate is used. In a water electrolysis cell composed of these materials, water supplied to the anode side is decomposed by a reaction of 2H 2 O → O 2 + 4H + + 4e to generate oxygen. The H + generated here passes through a sulfone group of the electrolyte membrane, and a reaction of 4H + + 4e → 2H 2 occurs on the cathode side to generate hydrogen gas.

次に、この図において、水電解の原料である水の流れについて説明する。純水装置7で不純物を極力減らした水は、ポンプ5w、イオン交換樹脂筒6、流量調節弁兼分析用水採取口8、水位調節器4を経由して、陽極側気液分離器3aと陰極側気液分離器3cとに供給される。陽極側と陰極側の気液分離器3aと3cの水は、それぞれポンプ5a、5cにより水の比抵抗兼pH測定用ポート10a,10cを経由して水電解セル1の陽極室1aと陰極室1cに供給され、水電解セル1で発生した酸素ガス、水素ガスと水との混合流が再び陽極側と陰極側の気液分離器3aと3cに戻る。それぞれの気液分離器3aと3cでは発生ガスの酸素と水素が、発生ガス冷却管2a、2cとガス分析用ポート11a、11cを経由して発生ガス排出口12a、12cから電解生成ガスとして回収される。一方、気液分離器3aと3cに戻った水は、再度、水電解セル1の陽極室1aと陰極室1cに供給され、気液分離器3a,3cと水電解セル1a,1cとの間に陽極側と陰極側の2つの循環系流路ができる。水はこの循環系流路を繰返し流れて電解が行われる。   Next, the flow of water as a raw material for water electrolysis will be described with reference to FIG. The water whose impurities have been reduced as much as possible by the pure water device 7 passes through the pump 5w, the ion-exchange resin tube 6, the flow control valve / analysis water sampling port 8, and the water level controller 4, and the anode-side gas-liquid separator 3a and the cathode It is supplied to the side gas-liquid separator 3c. The water in the gas-liquid separators 3a and 3c on the anode side and the cathode side is supplied to the anode chamber 1a and the cathode chamber of the water electrolysis cell 1 by the pumps 5a and 5c, respectively, through the ports 10a and 10c for measuring the specific resistance and pH of the water. The mixed flow of oxygen gas, hydrogen gas, and water generated in the water electrolysis cell 1 is supplied to the anode-side and cathode-side gas-liquid separators 3a and 3c again. In each of the gas-liquid separators 3a and 3c, oxygen and hydrogen of the generated gas are recovered as electrolysis gas from the generated gas outlets 12a and 12c via the generated gas cooling pipes 2a and 2c and the gas analysis ports 11a and 11c. Is done. On the other hand, the water returned to the gas-liquid separators 3a and 3c is again supplied to the anode chamber 1a and the cathode chamber 1c of the water electrolysis cell 1, and the water between the gas-liquid separators 3a and 3c and the water electrolysis cells 1a and 1c. There are two circulating channels on the anode and cathode sides. Water flows repeatedly in the circulation channel to perform electrolysis.

しかし、この循環系流路による水電解で、水電解セル1が80℃に保たれるような運転をすると、運転時間の経過につれて次第にアルカリ金属イオンなどの微量の不純物が水の中に濃縮されて水質が次第に低下し、電解電圧が上昇するという問題がある。この電解電圧上昇の解決法としては、運転中に水電解セルの内部 を洗浄する方法(特許文献1、特許文献2参照)や水質管理方法(特許文献3参照)などが提案されている。
特許文献1における運転中に水電解セル内部を洗浄する方法では、陽極室1a内の水の比抵抗を測定し、この比抵抗測定値が所定の値に達した場合には、陽極室1a内の水を排出し、純水を補給することで水電解セル内部の洗浄を行っている。図2の水の比抵抗(兼pH)測定用ポート10aはこの目的のために使用される。
特許文献2における運転中に水電解セル内部を洗浄する方法では、陽極室1a内から排出される水の陽イオン濃度を、予め陽イオン濃度との相関を求めておいたpH値で管理し、このpH値が所定の陽イオン濃度上限設定値に達した際に、陽極室1a内の水を排出し、電解用水を補給することで水電解セル内部の洗浄を行っている。図2の水の(比抵抗兼)pH測定用ポート10aはこの目的のために使用される。
However, when the water electrolysis is performed in such a manner that the water electrolysis cell 1 is maintained at 80 ° C. by the water electrolysis through the circulation channel, trace impurities such as alkali metal ions gradually concentrate in the water as the operation time elapses. Therefore, there is a problem that the water quality gradually decreases and the electrolysis voltage increases. As a solution to the increase in the electrolysis voltage, a method of cleaning the inside of the water electrolysis cell during operation (see Patent Literature 1 and Patent Literature 2) and a water quality management method (see Patent Literature 3) have been proposed.
In the method for cleaning the inside of the water electrolysis cell during operation in Patent Document 1, the specific resistance of water in the anode chamber 1a is measured, and when the measured specific resistance reaches a predetermined value, the inside of the anode chamber 1a is measured. The water inside the water electrolysis cell is cleaned by discharging water and supplying pure water. The water resistivity (and pH) measurement port 10a of FIG. 2 is used for this purpose.
In the method for cleaning the inside of a water electrolysis cell during operation in Patent Document 2, the cation concentration of water discharged from the anode chamber 1a is managed by a pH value which has been previously correlated with the cation concentration, When the pH value reaches a predetermined upper limit of the cation concentration, the water in the anode chamber 1a is discharged, and the inside of the water electrolysis cell is washed by supplying water for electrolysis. The pH (water / resistivity) pH measurement port 10a of FIG. 2 is used for this purpose.

また、特許文献3における水質管理方法では、陽極側の気液分離器3aからのブローダウン水の水質測定値に基づき、水電解セルが所定の電気的特性を維持できるよう陽極側の水質を調節することで水質を管理している。図2の水の比抵抗(兼pH)測定用ポート10aはこの水質測定の目的のために使用される。
図2は、この特許文献3に示す装置の系統図であり、ここでは装置内の水は運転を継続するに従いアルカリ金属イオンなどの微量の不純物が濃縮されて、電解セル1の特性低下を招くのを防止するために、気液分離器3aと3cから流量調節弁9a,9cを経由して純水タンク7に通じるブローダウン配管により、循環サイクル中の微量の不純物を濃縮した水を純水タンク7に戻し、イオン交換筒6でこの不純物を除去した水を、水位調整器4aを経由して再度気液分離器3aと3cに戻している。
特許出願公開番号 特開2002−302784 特許出願番号 特願2001−324685 特許出願番号 特願2002−075371
Further, in the water quality management method in Patent Document 3, the water quality on the anode side is adjusted so that the water electrolysis cell can maintain predetermined electrical characteristics based on the water quality measurement value of the blowdown water from the gas-liquid separator 3a on the anode side. To control water quality. The specific resistance (and pH) measurement port 10a of FIG. 2 is used for the purpose of this water quality measurement.
FIG. 2 is a system diagram of the apparatus disclosed in Patent Document 3. Here, traces of impurities such as alkali metal ions are concentrated in the water in the apparatus as the operation is continued, and the characteristics of the electrolytic cell 1 are degraded. In order to prevent the water from being condensed, the water in which a trace amount of impurities has been concentrated during the circulation cycle is purified water by a blowdown pipe connected to the pure water tank 7 from the gas-liquid separators 3a and 3c via the flow control valves 9a and 9c. The water is returned to the tank 7, and the water from which the impurities have been removed by the ion exchange cylinder 6 is returned to the gas-liquid separators 3a and 3c again via the water level adjuster 4a.
Patent Application Publication No. JP-A-2002-302784 Patent application number Japanese Patent Application No. 2001-324885 Patent application number Japanese Patent Application No. 2002-075371

上記に説明した従来の運転方法では、陽極室1aから膜電極接合体1mを通過した清浄な水が陰極室1cに移動してくると考えられていたために、陽極側の洗浄しか行われていなかった。しかし、陰極側においても、長期連続運転によって多孔質給電体の金属が劣化し、金属イオンが溶け出して膜電極接合体1mを汚染するという問題があった。
本発明は、上記の問題点を解決するためになされたものであり、この発明の目的は、水素・酸素を発生する水電解装置において、陽極室1aから電解質膜を通して移動するイオンや陰極室1cの多孔質給電体の劣化により溶出したイオンが膜電極接合体1mの汚染を防止し、電解電圧の上昇や電解効率の低下を防止する方法を提供することにある。
In the above-described conventional operating method, it is considered that clean water that has passed through the membrane electrode assembly 1m from the anode chamber 1a moves to the cathode chamber 1c, so that only the anode side is cleaned. Was. However, also on the cathode side, there has been a problem that the metal of the porous feeder deteriorates due to long-term continuous operation, and metal ions are eluted and contaminate the membrane electrode assembly 1m.
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a water electrolysis apparatus for generating hydrogen and oxygen, in which ions moving from an anode chamber 1a through an electrolyte membrane and a cathode chamber 1c. Another object of the present invention is to provide a method for preventing contamination of the membrane electrode assembly 1m by ions eluted due to deterioration of the porous feeder, and preventing an increase in electrolysis voltage and a decrease in electrolysis efficiency.

上記の課題を解決するために、本発明では、固体高分子電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、陽極側気液分離器および陰極側気液分離器と、純水供給装置とを少なくとも備えた水電解装置の運転方法において、水電解セルの陰極室や陰極側気液分離器などから成る陰極側の水循環系流路を、電解電圧が所定値以上に上昇した場合は、酸洗浄することとする(請求項1)。
また、この水電解装置の運転方法において、酸洗浄後には、酸を陰極側の水循環系流路内から速やかに排出し、純水供給装置から供給されるイオン交換水に置換することにより、循環する水のpHを中性に戻すこととする(請求項2)。
この方法を実現するために、固体高分子電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、陽極側気液分離器および陰極側気液分離器と、純水供給装置とを少なくとも備えた水電解装置において、純水供給装置から陰極側気液分離器に向かう流路間に設けた純水を補給する洗浄用酸注入弁付き陰極側水位調節器と、陰極側水位調節器から純水供給装置に向かう流路と、陰極側の水電解セルの陰極室と陰極側気液分離器とを循環して結ぶ水循環系流路にはpH測定用ポートと洗浄用酸排出弁とを備え、電解電圧が所定値以上に上昇した場合には、洗浄用酸注入弁から酸洗浄液を注入して上記陰極側の水循環系流路を洗浄し、酸洗浄後は酸を洗浄用酸排出弁から速やかに排出して、純水供給装置から供給されるイオン交換水に置換することにより循環水のpHを中性に戻す制御装置とを備えることこととする(請求項3)。
In order to solve the above-described problems, in the present invention, a water electrolysis cell whose interior is partitioned into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, an anode-side gas-liquid separator and a cathode-side gas-liquid separator, In a method of operating a water electrolysis apparatus including at least a pure water supply apparatus, the water circulation system flow path on the cathode side including a cathode chamber or a cathode-side gas-liquid separator of a water electrolysis cell is supplied with an electrolysis voltage of not less than a predetermined value. If the temperature rises, acid cleaning is performed (claim 1).
Further, in the method of operating the water electrolysis apparatus, after the acid cleaning, the acid is quickly discharged from the water circulation system flow path on the cathode side, and is replaced with ion-exchanged water supplied from the pure water supply apparatus, thereby circulating the acid. The pH of the water is returned to neutral (claim 2).
To realize this method, a water electrolysis cell whose interior is partitioned into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, an anode-side gas-liquid separator and a cathode-side gas-liquid separator, and a pure water supply device And a cathode-side water level controller with a washing acid injection valve for replenishing pure water provided between flow paths from the pure water supply device to the cathode-side gas-liquid separator, and a cathode-side water level. A pH measurement port and washing acid discharge are provided in a water circulation system flow path that circulates and connects the flow path from the controller to the pure water supply device and the cathode chamber of the water electrolysis cell on the cathode side and the cathode gas-liquid separator. When the electrolytic voltage rises above a predetermined value, an acid cleaning liquid is injected from the cleaning acid injection valve to wash the water circulation system flow path on the cathode side, and after the acid cleaning, the acid is washed. Quickly discharge from the acid discharge valve and convert it to ion-exchanged water supplied from the pure water supply device. The pH of the circulating water and that it comprises a control device to return to neutral by conversion (claim 3).

本発明の水電解装置の運転方法により、電解電圧が所定値以上に上昇した場合には、水電解セルの陰極室や陰極側気液分離器など陰極側の水循環系流路を酸洗浄し、酸洗浄後に酸を陰極側の水循環系流路内から速やかに排出し、純水供給装置から供給されるイオン交換水に置換することにより、循環する水のpHを中性に戻すことができる。
また、本発明の水電解装置を従来の装置に、洗浄用酸注入弁付き陰極側水位調節器と、洗浄用酸排出弁とを追加して、電解電圧が所定値以上に上昇した場合には、酸洗浄液を行う制御装置とを備えることで、電解電圧を正常に低下することができる。
その結果、水電解装置の長期の連続運転において、膜電極接合体に不純物が付着して水電解セルの電解電圧が上昇した場合でも、酸洗浄により不純物を除去でき、安定した電解特性を維持することができる。
According to the operation method of the water electrolysis apparatus of the present invention, when the electrolysis voltage rises to a predetermined value or more, the water circulation system flow path on the cathode side such as a cathode chamber or a cathode-side gas-liquid separator of the water electrolysis cell is acid-washed, After the acid washing, the acid is quickly discharged from the water circulation channel on the cathode side and replaced with ion-exchanged water supplied from the pure water supply device, whereby the pH of the circulating water can be returned to neutral.
Further, the water electrolysis apparatus of the present invention to a conventional apparatus, a cathode-side water level regulator with a cleaning acid injection valve, and a cleaning acid discharge valve is added, if the electrolysis voltage rises to a predetermined value or more And a control device for performing an acid cleaning solution, the electrolysis voltage can be reduced normally.
As a result, in a long-term continuous operation of the water electrolysis apparatus, even when impurities adhere to the membrane electrode assembly and the electrolysis voltage of the water electrolysis cell rises, the impurities can be removed by acid cleaning, and stable electrolysis characteristics are maintained. be able to.

水を電気分解し水素と酸素とを発生する本発明の水電解装置の一例を示す系統図を図1に示す。図2の従来の装置の系統図とこの図の異なる点は、純水供給装置の純水タンク7とイオン交換樹脂筒6から陰極側気液分離器3cに向かう流路間に設けた純水を補給する洗浄用酸注入弁13の付いた陰極側水位調節器4cと、陰極側の水電解セルの陰極室1cと陰極側気液分離器3cとを循環して結ぶ水循環系流路に洗浄用酸排出弁14とを追加した点である。この系統の追加によって、陽極側と陰極側の水循環系流路の分離ができ、水電解セル内部の膜電極接合体でのみ陽極と陰極間の水の移動が行われることになる。
この水電解装置の運転では電解電圧が所定値以上に上昇した場合に、洗浄用酸注入弁13から酸洗浄液を注入して上記陰極側の水循環系流路を洗浄するが、洗浄液には塩酸、硫酸、硝酸等の強酸を希釈した溶液を用いる。この際に酸濃度は膜電極接合体に付着した汚れの度合いによるが、pH値を1〜3に保つ濃度とし、給電体材料の腐蝕を防ぐ濃度と洗浄時間(浸漬時間)とする。酸洗浄後は洗浄用酸排出弁14を開いて(その際流量調節弁9cは閉とする)酸を速やかに系外へ排出して、純水供給装置7から供給されるイオン交換水に置換することにより循環水のpHを中性に戻し電解電圧を下げる。
FIG. 1 is a system diagram showing an example of the water electrolysis apparatus of the present invention for generating water and hydrogen by electrolyzing water. 2 differs from the system diagram of the conventional apparatus of FIG. 2 in that the pure water tank 7 of the pure water supply device and the pure water provided between the ion exchange resin cylinder 6 and the flow path from the ion exchange resin cylinder 6 to the cathode-side gas-liquid separator 3c are provided. To the water circulation system flow path which circulates and connects the cathode side water level controller 4c with the washing acid injection valve 13 for replenishing the water and the cathode chamber 1c of the cathode side water electrolysis cell and the cathode side gas-liquid separator 3c. This is the point that an acid discharge valve 14 for use is added. With the addition of this system, the water circulation system flow path on the anode side and the cathode side can be separated, and the movement of water between the anode and the cathode is performed only in the membrane electrode assembly inside the water electrolysis cell.
In the operation of the water electrolysis apparatus, when the electrolysis voltage rises to a predetermined value or more, an acid cleaning solution is injected from the cleaning acid injection valve 13 to clean the water circulation system flow path on the cathode side. Use a solution obtained by diluting a strong acid such as sulfuric acid or nitric acid. At this time, the acid concentration depends on the degree of dirt attached to the membrane / electrode assembly, but is a concentration that keeps the pH value at 1 to 3, a concentration that prevents corrosion of the power supply material, and a cleaning time (immersion time). After the acid cleaning, the cleaning acid discharge valve 14 is opened (at this time, the flow rate control valve 9c is closed) to quickly discharge the acid to the outside of the system and replace it with ion exchange water supplied from the pure water supply device 7. By doing so, the pH of the circulating water is returned to neutral and the electrolysis voltage is lowered.

〔実施例〕
次に、図1に示す本発明の水電解装置の系統構成で行った実施例を示す。電解電圧が0.040mV/h以上の速度で上昇する水電解セルの陰極側の水循環系流路に、循環水の酸濃度が0.1mol/Lになるよう希塩酸を添加して5分間循環させた。この時、ブローダウンは陽極側も陰極側も共に行わなかった。5分経過後、陽極側も陰極側も共にブローダウンを再開し、酸溶液をイオン交換水に置換した。この酸洗浄により、水電解セルの電極面積50cm運転温度80℃、常圧運転において酸洗浄前は1.760Vまで上昇していた電解電圧が、1.650Vまで低下し、その効果を確認した。
〔Example〕
Next, an example performed with the system configuration of the water electrolysis apparatus of the present invention shown in FIG. 1 will be described. Dilute hydrochloric acid is added to the water circulation path on the cathode side of the water electrolysis cell where the electrolysis voltage rises at a rate of 0.040 mV / h or more so that the acid concentration of the circulating water becomes 0.1 mol / L, and the mixture is circulated for 5 minutes. Was. At this time, blowdown was not performed on either the anode side or the cathode side. After a lapse of 5 minutes, the blowdown was restarted on both the anode side and the cathode side, and the acid solution was replaced with ion exchanged water. By this acid washing, the electrode voltage of the water electrolysis cell was 50 cm 2, the operating temperature was 80 ° C., and the electrolysis voltage, which had increased to 1.760 V before the acid washing in the normal pressure operation, was reduced to 1.650 V, and the effect was confirmed. .

本発明の水電解装置の一例を示す系統図System diagram showing an example of the water electrolysis device of the present invention 従来の水電解装置の一例を示す系統図System diagram showing an example of a conventional water electrolysis device

符号の説明Explanation of reference numerals

1: 水電解セル
1a,1c: 水電解セル中の陽極室、陰極室
1m: 膜電極接合体(固体高分子電解質膜と触媒層)
1da: 陽極多孔質給電体
1dc: 陰極多孔質給電体
2a,2c: 発生ガス冷却管(陽極側、陰極側)
3a,3c: 気液分離器(陽極側、陰極側)
4a,4c: 水位調節器(陽極側、陰極側)
5w,5a,5c: ポンプ(純水タンク用、陽極側、陰極側)
6: イオン交換樹脂筒
7: 純水タンク
8: 流量調節弁兼分析用水採取口
9a,9c: 流量調節弁
10a,10c: 水の比抵抗兼pH測定用ポート(陽極側、陰極側)
11a,11c: ガス分析用ポート(陽極側、陰極側)
12a,12c: 発生ガス排気口(陽極側、陰極側)
13: 洗浄用酸注入弁
14: 洗浄用酸排出弁
15a,15c: 流量調節弁

1: water electrolysis cell 1a, 1c: anode chamber and cathode chamber in water electrolysis cell
1m: Membrane electrode assembly (solid polymer electrolyte membrane and catalyst layer)
1da: Anode porous feeder
1dc: cathode porous feeder 2a, 2c: generated gas cooling tube (anode side, cathode side)
3a, 3c: gas-liquid separator (anode side, cathode side)
4a, 4c: Water level controller (anode side, cathode side)
5w, 5a, 5c: Pump (for pure water tank, anode side, cathode side)
6: Ion exchange resin cylinder
7: Pure water tank
8: Flow control valve / analysis water sampling port 9a, 9c: Flow control valve 10a, 10c: Water resistivity / pH measurement port (anode side, cathode side)
11a, 11c: Gas analysis ports (anode side, cathode side)
12a, 12c: Generated gas exhaust port (anode side, cathode side)
13: Acid injection valve for cleaning
14: Cleaning acid discharge valve 15a, 15c: Flow control valve

Claims (3)

固体高分子電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、陽極側気液分離器および陰極側気液分離器と、純水供給装置とを少なくとも備えた水電解装置の運転方法において、
水電解セルの陰極室や陰極側気液分離器などから成る陰極側の水循環系流路を、電解電圧が所定値以上に上昇した場合は、酸洗浄することを特徴とする水電解装置の運転方法。
A water electrolysis cell including at least a water electrolysis cell whose interior is partitioned into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, an anode-side gas-liquid separator and a cathode-side gas-liquid separator, and a pure water supply device In the driving method of
An operation of a water electrolysis apparatus characterized in that, when an electrolysis voltage rises to a predetermined value or more, a water circulation system flow path on the cathode side including a cathode chamber of a water electrolysis cell and a cathode-side gas-liquid separator is washed with an acid. Method.
請求項1に記載の水電解装置の運転方法において、
上記の酸洗浄後には、酸を陰極側の水循環系流路内から速やかに排出し、純水供給装置から供給されるイオン交換水に置換することにより、循環する水のpHを中性に戻すことを特徴とする水電解装置の運転方法。
In the method for operating a water electrolysis apparatus according to claim 1,
After the acid washing, the acid is quickly discharged from the water circulation channel on the cathode side, and the pH of the circulating water is returned to neutral by replacing the ion-exchanged water supplied from the pure water supply device. A method for operating a water electrolysis apparatus, comprising:
固体高分子電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、陽極側気液分離器および陰極側気液分離器と、純水供給装置とを少なくとも備えた水電解装置において、
純水供給装置から陰極側気液分離器に向かう流路間に設けた純水を補給する洗浄用酸注入弁付き陰極側水位調節器と、陰極側水位調節器から純水供給装置に向かう流路と、陰極側の水電解セルの陰極室と陰極側気液分離器とを循環して結ぶ水循環系流路にはpH測定用ポートと洗浄用酸排出弁とを備え、電解電圧が所定値以上に上昇した場合には、洗浄用酸注入弁から酸洗浄液を注入して上記陰極側の水循環系流路を洗浄し、酸洗浄後は酸を洗浄用酸排出弁から速やかに排出して、純水供給装置から供給されるイオン交換水に置換することにより循環水のpHを中性に戻す制御装置とを備えることを特徴とする水電解装置。
A water electrolysis cell including at least a water electrolysis cell whose interior is partitioned into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, an anode-side gas-liquid separator and a cathode-side gas-liquid separator, and a pure water supply device At
A cathode-side water level controller with a cleaning acid injection valve for replenishing pure water provided between the pure water supply device and the flow path from the pure water supply device to the cathode-side gas-liquid separator, and a flow from the cathode-side water level regulator to the pure water supply device And a water circulation system flow path that circulates and connects the cathode chamber of the water electrolysis cell on the cathode side and the cathode-side gas-liquid separator, and has a pH measurement port and a cleaning acid discharge valve, and the electrolysis voltage is a predetermined value. In the case of rising above, an acid cleaning solution is injected from a cleaning acid injection valve to wash the water circulation channel on the cathode side, and after the acid cleaning, the acid is quickly discharged from the cleaning acid discharge valve. A water electrolysis device comprising: a control device for returning the pH of circulating water to neutral by replacing the ion-exchanged water with ion-exchanged water supplied from a pure water supply device.
JP2004026342A 2003-02-05 2004-02-03 Water electrolyzing apparatus, and method for operating the same Pending JP2004256911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026342A JP2004256911A (en) 2003-02-05 2004-02-03 Water electrolyzing apparatus, and method for operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003027922 2003-02-05
JP2004026342A JP2004256911A (en) 2003-02-05 2004-02-03 Water electrolyzing apparatus, and method for operating the same

Publications (1)

Publication Number Publication Date
JP2004256911A true JP2004256911A (en) 2004-09-16

Family

ID=33133669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026342A Pending JP2004256911A (en) 2003-02-05 2004-02-03 Water electrolyzing apparatus, and method for operating the same

Country Status (1)

Country Link
JP (1) JP2004256911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614740A (en) * 2013-12-13 2014-03-05 攀枝花钢企欣宇化工有限公司 Electrolytic cell pressure stabilizing device
EP3628757A1 (en) * 2018-09-25 2020-04-01 Paul Scherrer Institut Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
CN111268767A (en) * 2020-01-21 2020-06-12 广东原之生农业科技有限公司 Automatic pickling control method and device for electrolytic cell and storage medium
CN111699279A (en) * 2018-03-22 2020-09-22 株式会社德山 Alkaline water electrolysis device and gas production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614740A (en) * 2013-12-13 2014-03-05 攀枝花钢企欣宇化工有限公司 Electrolytic cell pressure stabilizing device
CN111699279A (en) * 2018-03-22 2020-09-22 株式会社德山 Alkaline water electrolysis device and gas production method
CN111699279B (en) * 2018-03-22 2022-06-24 株式会社德山 Alkaline water electrolysis device and gas production method
EP3628757A1 (en) * 2018-09-25 2020-04-01 Paul Scherrer Institut Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
WO2020064241A1 (en) * 2018-09-25 2020-04-02 Paul Scherrer Institut Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
US20220033986A1 (en) * 2018-09-25 2022-02-03 Paul Scherrer Institut Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
US11739433B2 (en) * 2018-09-25 2023-08-29 Paul Scherrer Institut Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
CN111268767A (en) * 2020-01-21 2020-06-12 广东原之生农业科技有限公司 Automatic pickling control method and device for electrolytic cell and storage medium

Similar Documents

Publication Publication Date Title
US5460705A (en) Method and apparatus for electrochemical production of ozone
KR102274666B1 (en) Electrolytic enrichment method for heavy water
US5635039A (en) Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
US6149810A (en) Membrane with supported internal passages
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JP2648313B2 (en) Electrolysis method
JP5876811B2 (en) Method for preventing reverse current of ion exchange membrane electrolytic cell
JP2018150596A (en) Organic substance production system and manufacturing method thereof
KR20010086305A (en) Synthesis of tetramethylammonium hydroxide
KR101312879B1 (en) Three-Compartment-Cell and One-Port typed Electrolysis Apparatus
WO2006112065A1 (en) Electrolytic bath for producing alkaline reduced water
JP2004256911A (en) Water electrolyzing apparatus, and method for operating the same
JP5376152B2 (en) Sulfuric acid electrolysis method
JP5352246B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
KR101910636B1 (en) Device for producing hydrogen peroxide using electrolysis
JP6587061B2 (en) Hydrogen water production equipment
CA3227233A1 (en) Use of a porous recycling layer for co2 electroreduction to multicarbon products with high conversion efficiency
JP2002173789A (en) Electrolyzer
JP3750802B2 (en) Water electrolyzer and its operation method
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
WO2011093124A1 (en) Water treatment device
EP4170068A1 (en) Water electrolyzer and control method of water electrolysis cell
JP2011177659A (en) Method of electrolysis, method for producing alkaline water or acidic water, and alkaline water and acidic water