JP2004256833A - Refining method of molten steel - Google Patents
Refining method of molten steel Download PDFInfo
- Publication number
- JP2004256833A JP2004256833A JP2003045792A JP2003045792A JP2004256833A JP 2004256833 A JP2004256833 A JP 2004256833A JP 2003045792 A JP2003045792 A JP 2003045792A JP 2003045792 A JP2003045792 A JP 2003045792A JP 2004256833 A JP2004256833 A JP 2004256833A
- Authority
- JP
- Japan
- Prior art keywords
- blowing
- slag
- converter
- hot metal
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 17
- 239000010959 steel Substances 0.000 title claims abstract description 17
- 238000007670 refining Methods 0.000 title claims description 20
- 238000007664 blowing Methods 0.000 claims abstract description 54
- 239000002893 slag Substances 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002253 acid Substances 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 27
- 239000001301 oxygen Substances 0.000 claims description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 6
- 238000007872 degassing Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 239000002699 waste material Substances 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000013019 agitation Methods 0.000 abstract description 2
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005262 decarbonization Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- -1 de-Si Chemical compound 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
【課題】本発明は、転炉溶銑脱P・S処理に際し、生産性を阻害することなく、処理後スラグの排滓量を確保する方法を提供する。
【解決手段】上底吹き転炉において、溶銑の脱Si・P・S処理を行った後、生成スラグを排滓し、その後脱C吹錬を連続して行う溶鋼の製造方法において、溶銑の脱Si・P・S処理工程末期に、2.0kW/t・s以上とした上吹撹拌エネルギーを上吹送酸速度及び/または上吹きランス高さを調整することで、1.5kW/t・s以下に低下させる溶鋼の精錬方法。
【選択図】 図2An object of the present invention is to provide a method for securing the amount of slag waste after treatment without deteriorating the productivity in the converter hot metal de-PS treatment.
In a method for producing molten steel, in a top-bottom blowing converter, after performing de-Si, P, and S treatment of hot metal, generated slag is discharged, and then de-C blowing is continuously performed. In the final stage of the de-Si · PS · S treatment step, the upper blowing agitation energy of 2.0 kW / t · s or more is adjusted to 1.5 kW / t · s by adjusting the upper blowing acid feeding speed and / or the upper blowing lance height. s or less.
[Selection] Fig. 2
Description
【0001】
【発明の属する技術分野】
本発明は転炉における溶鋼の精錬方法に関する。
【0002】
【従来の技術】
従来の転炉における溶銑の精錬は、転炉へ高炉溶銑を装入し、生石灰を主体とするフラックス投入と、酸素吹錬により溶銑を脱P・脱Cし、鋼を溶製する方法が一般的であった。
【0003】
その後、多工程にわたる精錬機能(脱Si・脱P・脱S等の溶銑予備処理)を転炉に集約して行い、溶銑の持つエネルギーロスを大幅に低減すると共に、転炉前後工程の固定費(設備費・労務費)の大幅な低減を可能にする方法が、提案されている。(例えば特許文献1参照)。
【0004】
この特許文献1による発明は、第一工程として溶銑を装入し、第二工程としてフラックス添加と酸素吹き込みを行って脱Si・脱P精錬を施し、所定のP含有量まで低減させ、第三工程として前記転炉を傾動して第二工程で生成したスラグを排出し、その後第四工程として同一転炉にてフラックス添加と酸素吹錬により、所定のC含有量まで脱Cを行い、第五工程として第四工程で生成したスラグを該転炉内に残したまま出鋼して再び第一工程に戻り、前記第五工程までを繰り返し実施するもので、場合によっては、第四工程で生成したスラグを第一工程に戻さず、第五工程において出鋼した後、スラグを全量排出する方法である。
【0005】
また、転炉において、溶銑を装入する工程(第一工程)、脱P精錬工程(第二工程)、排滓工程(第三工程)、その後同一転炉にて脱C工程を行い、スラグを転炉に残したまま出鋼し、該スラグを第一工程にリサイクルする溶鋼製造法の第二工程において、上吹き送酸速度を2.5Nm3/min/t・s以上とする方法が提案されている。(例えば特許文献2参照)。
【特許文献1】
特開平4−72007号公報
【特許文献2】
特開平5−247511号公報
【0006】
【発明が解決しようとする課題】
上記特許文献1による方法では、同一転炉を用いて脱P、脱C工程を続けて行うプロセスで実施するので、脱P工程から脱C工程へ移る際のエネルギーロスを少なくすることができ、また固定費(設備費・労務費)の大幅な軽減を可能にすることができる。
【0007】
ところが、第三工程でのスラグ排出量が少ないと、第二工程でスラグ中に除去したPが第四工程で再び溶鋼中に戻ってくる(これを復Pという)ため、第四工程にて再び脱Pする必要が生じ、生石灰等のフラックス量を増加させなければならずコスト増につながる。しかも、この第四工程でのP濃度が高くなったスラグが第二工程で再び使用されるため、第二工程での脱P負荷が増加しコスト増になる。このように第三工程でのスラグ排出量が少ないと、脱Pを行うための負荷の増大を避けることができず、コストアップに繋がるという問題が生ずる。
【0008】
また、特許文献2による方法では、脱P精錬である第二工程の上吹き送酸速度を2.5Nm3 /min/t・s以上一定とすることで、脱P処理時間短縮を図っているが、送酸速度大のため、脱P処理後スラグを効率良く排滓するために必要である、スラグのフォーミング性が悪くなり、第三工程でのスラグ排出量の確保が困難になるという欠点があった。
【0009】
さらに、第二工程の上吹き送酸速度を低位一定とすると、脱P処理時間の延長を招き、生産性を阻害することに加えて、所定の溶銑P濃度とするのに必要な酸素量に到達する前に、転炉の炉容積(以下フリーボードという)の許容を越えるスラグフォーミングを発生(以下スロッピングという)させる。これにより、溶鉄歩留の低下・転炉付帯設備の焼損等を招き、生産性の低下およびコスト悪化要因となっていた。
【0010】
以上のように転炉における溶銑脱Si・脱P処理技術における上吹送酸速度の増大は、脱P処理時間短縮により生産性が向上する一方、スラグのフォーミング性悪化による脱P処理後スラグの排出量低下を招いていた。
【0011】
また脱P反応においては、スラグの酸素ポテンシャルが低い場合、所定のP濃度にするための必要酸素量に到達しても、スラグ側からのPの戻りが発生し、所定のP濃度に低下させられないという問題があった。
【0012】
本発明は前述の問題を解決すべく、生産性を阻害することなく十分に脱Pを進行させるとともに、脱P及び脱S処理後のスラグのフォーミング性を確保し、排滓性を向上させた溶鋼の精錬方法を提供するものである。
【0013】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、その要旨は次のとおりである。
(1)上底吹き転炉を用いて、高炉溶銑、スクラップを主原料として装入する第一工程、酸素を吹き込んで脱Si・脱P・脱Sを行う第二工程、生成したスラグを排滓する第三工程、酸素を吹き込んで脱Cを行う第四工程を順次行う溶鋼精錬法において、前記第二工程における末期前まで下記(1)式を満足し、且つ転炉上吹撹拌エネルギーを2.0kW/t・s以上となるようにし、第二工程末期には1.5kW/t・s以下に低下させることを特徴とする溶鋼の精錬方法。
(Q)×(τ)/[%C]≧20 …(1)
但し、(Q):第二工程末期前までの上底吹き酸素供給速度(Nm3/min/t・s)
τ:均一混合時間(sec)
[%C]:脱P処理後溶銑C濃度推定値[wt%]
(2)前記第一工程において、事前に脱Sした溶銑を用いることを特徴とする(1)に記載の溶鋼の精錬方法。
(3)前記第二工程において、上吹送酸速度及び/または上吹ランス高さにより上吹撹拌エネルギーを調整することを特徴とする(1)または(2)に記載の溶鋼の精錬方法。
【0014】
【発明の実施の形態】
以下本発明を詳述する。本発明は溶銑予備処理と脱Cとを集約して同一転炉によって操業する。本プロセスにおいて、フォーミングとは、溶銑予備処理後スラグの排滓性を上げることのみに必要なものであり、脱Si、脱P、脱S処理にはスロッピング等操業不安定の要因となり得る。従って、本発明者らは、排滓工程である第三工程にスラグがフォーミングしていれば良く、脱Si、脱P、脱S精錬工程である第二工程前半はスラグのフォーミングを抑制し、第二工程末期にフォーミングさせることで、生産性を阻害することなく排滓性を確保できると考えた。
【0015】
スラグのスロッピング現象とは、スラグ層内にガスが捕捉されてスラグの体積が膨張する現象下において、そのスラグの体積が容器の容積を越えるときに発生する現象であり、転炉溶銑の脱Si・脱P精錬下におけるフォーミング現象は、精錬スラグ中を通過するガスがスラグ内に捕捉されることにより発生する。
【0016】
従って、第二工程前半のスラグのフォーミングを抑制には、スラグ中に捕捉されるガス量を減少させること、もしくはガスが捕捉されにくいスラグとする。あるいは強制的にガス抜きさせることが、フォーミングの抑制には有効であると考えられる。
【0017】
一方、転炉内溶銑の脱Si・脱P後の第三工程にスラグの排滓を高効率で行うには、スラグ中に捕捉されるガス量の増大を図り、スラグのフォーミングを助長することにより、スラグの容積を増加させることが有効であると考えられる。
【0018】
そこで、本発明者らは上記考えを基に鋭意努力を重ねた結果、転炉上吹撹拌エネルギーを制御することにより、スラグのフォーミングを制御し、更にスラグのスロッピングを抑制しつつ、同時に排滓性を確保し得る転炉操業法を確立することを考えた。
【0019】
まず、第一工程で装入する溶銑は、高炉溶銑を用いるが、事前に脱Sした溶銑の方が、処理時間の短縮や脱Sを効率的に行える上で望ましい。
【0020】
次に、(2)式を満足する条件下において、上吹き送酸速度及び上吹きランス高さの及ぼす脱Si・脱P後のP濃度及びスラグ排滓への影響を検討した。脱Si脱P精錬を実施する際に、上吹き送酸速度を1.5〜3.0Nm3/t・s/minに、ランス高さを2500〜4500mmに変化させて、上吹撹拌エネルギーと処理後のP濃度、スラグの排滓率の関係を調査した。なお、上吹撹拌エネルギーとは、以下の式(2)(浅井滋生他著「撹拌を利用した最近の製鋼技術の動向」.(株)日本鉄鋼協会,p71)で表され、上吹送酸速度とランス高さの両者の影響が反映させられるものであり、上吹きランスから炉内に吹く酸素による撹拌エネルギーの大きさを表している。
図1は上記(2)式の理解を容易にするために示した転炉における吹錬中の炉内の模式図である。
【0021】
【数1】
【0022】
その結果(図2)、転炉上吹撹拌エネルギーを上昇させるに伴い、処理後P濃度は低下し、2.0kW/t・s以上で0.04%以下とすることができた。すなわち、スロッピング発生による吹錬中断が減少し、脱Pが進行したと考えられる。
【0023】
一方、排滓率については、上吹撹拌エネルギーが1.5kW/t・s以下であれば60%以上を確保可能だが、上吹撹拌エネルギーの上昇とともに、悪化する傾向があることがわかった。
【0024】
また、第二工程における脱Pにおいては、酸素ポテンシャルを上昇させることでスラグ中P濃度(%P)とメタル中P濃度[%P]の比(%P)/[%P]を上昇可能であることが知られており、酸素ポテンシャルの上昇は、スラグ中の酸化鉄成分を高めることで可能である。そこで、上吹き撹拌エネルギーを2.0kW/t・s以上一定の条件下で、酸化鉄の生成速度を決める酸素供給速度、溶銑の循環速度、酸化鉄を還元するCの供給速度のバランスを与える指標を用いて、第二工程処理後P濃度との関係を調査した。ここで、酸化鉄の酸化と還元のバランスを与える指標は、酸素供給速度を表す第二工程末期前までの上底吹き酸素供給速度(Q)、溶銑の供給速度を表す均一混合時間(τ)、Cの供給速度を表す脱P処理後溶銑C濃度推定値を用いた(1)式を使用した。
(Q)×(τ)/[%C] …(1)
但し、(Q):第二工程末期前までの上底吹き酸素供給速度(Nm3/min/t・s)
(τ):均一混合時間(sec)
[%C]:脱P処理後溶銑C濃度推定値[wt%]
ここで均一混合時間(τ)は下記(3)式を用いた。
(τ)=800×{(εb+0.1×εt)×1000}(−0.4)…(3)
但し、εb:底吹撹拌エネルギー(kW/t・s)
また脱P処理後溶銑C濃度推定値[%C]は、処理前溶銑C濃度と酸素吹込予定量から推定する値を用いた。 その結果(図3)、(1)式が20以上で処理後P濃度のばらつきが低減することが分かった。
【0025】
従って、処理後P濃度低下と、排滓率上昇を両立させるためには、脱P末期前までは、(1)式を20以上とする条件下において、転炉上吹撹拌エネルギーを2.0kW/t・s以上として脱Pを充分に行い、脱P末期には上吹撹拌エネルギーを1.5kW/t・s以下に変化させることにより、排滓率を確保する事で、排滓後の脱炭期のインプットP濃度を低位とすることが可能であると考えた。ここで脱P末期とは、簡易的には、例えば第二工程での脱Siするのに必要な酸素量を除いた酸素量(以下脱Si外酸素量)で判断し、脱Si外酸素量の70〜90%のタイミングが良いと経験的に分かっている。
【0026】
また図2により、上吹撹拌エネルギーを変化させることで、脱Pと排滓性をコントロールできることが分かるが、操業上、上吹撹拌エネルギーを簡易的に変更する手段としては、上吹き送酸速度とランス高さのみであり、この両者で変更するのがよい。
なお、脱Si、脱P、脱Sを行う第二工程におけるスラグの塩基度は、従来技術より脱P効率と排滓性を考慮し、1.0〜2.5が望ましい。
【0027】
【実施例】
以下、本発明を実施例に基づいて説明する。表1、表2(表1につづき)に本発明と比較のための比較例について示す。
【0028】
【表1】
【表2】
【0029】
表1、表2中のNo.1〜16の何れも、365t上底吹き転炉を用い、高炉溶銑、スクラップを主原料として装入する第一工程、酸素を吹き込んで脱Si・脱P・脱Sを行う第二工程、生成したスラグを排滓する第三工程、酸素を吹き込んで脱Cを行う第四工程を順次行う溶鋼精錬法において、第二工程における塩基度C/S、(Q)×(τ)/[%C]、上吹撹拌エネルギーεtの条件を変化させて、第二工程後(第四工程)の溶銑P濃度及び第三工程における排滓率を評価した。(Q)×(τ)/[%C]については、これまでの実測結果より[%C]=3.7%一定とし、底吹ガス流量を変化させることにより底吹攪拌エネルギーを増減させ、(Q)及び(τ)を変化させた。また、均一混合時間(τ)については前記(3)式の計算値を用いた。ここで、溶銑P濃度については、目標である0.04%以下となった場合を成功とし、排滓率については、60%以上を成功とする。
【0030】
表1、表2中No.1〜4は、高炉溶銑を装入し、塩基度を1.0〜2.5、(Q)×(τ)/[%C]を20以上、上吹撹拌エネルギーを2.0kW/t・s以上とした脱P吹錬の末期(脱Si外酸素量の80%のタイミング)に、上吹送酸速度及びランス高さによって上吹撹拌エネルギーを1.5kW/t・s以下に変化させた例である。いずれも、第二工程後のP濃度が0.04%以下で且つ排滓率も60%以上であり、良好な結果が得られている。
【0031】
一方、試験番号5〜8は前述条件のうち、脱S溶銑を使用した本発明の実施例である。本発明における条件の範囲内であれば、いずれも脱C吹錬時の装入P濃度は0.04%と低位に抑えられており、排滓率も60%以上と高位となっていることがわかる。
【0032】
これに対して、試験番号9〜16は比較例である。試験番号9、10は(Q)×(τ)/[%C]が条件外の例である。この場合、排滓率は高いものの、脱Pが進行せず0.04%以上と高めになった。
試験番号11、12は脱P初期の上吹撹拌エネルギーが前記条件よりも低い例である。この場合、処理中にスロッピングが発生したため吹錬を中断せざるを得ず、その結果第二工程後のP濃度は高めに推移した。
【0033】
試験番号13、14は脱P末期の上吹撹拌エネルギーが前記条件よりも高い例である。この場合、脱Pは進行し、P濃度は低位になったものの、排滓率が低く失敗であった。
試験番号15、16は上吹撹拌エネルギーが一定の例である。この場合も、処理後のP濃度は低位であるが、排滓率が悪く失敗である。
【0034】
このように、条件が適正でないと、脱P吹錬中のスロッピング影響での吹錬中断による脱P不足もしくは排滓率の低下により、第四工程での脱C吹錬時の装入P濃度が目標に対して高めに推移した。
【0035】
【発明の効果】
本発明によれば、同一精錬容器にて溶銑予備処理と脱C処理を行うプロセスにおいて、本発明を実施することにより、従来技術と比較して、脱P処理時間短縮を図りつつ、予備処理後スラグの排出量を高めることができ、生石灰原単位の低減が可能である。また、生産障害となり得るスロッピングなしに、安定的に脱P・S処理を行うことができ、生産性の向上を図ることが可能である。
【図面の簡単な説明】
【図1】転炉における吹錬中の炉内の模式図である。
【図2】上吹撹拌エネルギーによる、脱P処理後のP濃度及び排滓率の関係を示した図である。
【図3】(Q)×(τ)/[%C]と、第二工程処理後P濃度の関係を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for refining molten steel in a converter.
[0002]
[Prior art]
Conventional refining of hot metal in converters generally involves charging a blast furnace hot metal into a converter, introducing a flux mainly composed of quick lime, and removing P and C from the hot metal by oxygen blowing to produce steel. It was a target.
[0003]
After that, refining functions (pre-treatment of molten iron such as de-Si, de-P, and de-S) are performed in the converter, and the energy loss of the molten iron is significantly reduced, and the fixed cost of the process before and after the converter is performed. There has been proposed a method capable of significantly reducing (equipment costs and labor costs). (See, for example, Patent Document 1).
[0004]
In the invention according to Patent Document 1, molten iron is charged as a first step, and flux removal and oxygen blowing are performed as a second step to remove Si and remove P, thereby reducing the P content to a predetermined P content. As a process, the converter is tilted to discharge the slag generated in the second process, and then, as a fourth process, decarbonization is performed to a predetermined C content by flux addition and oxygen blowing in the same converter. The slag generated in the fourth step as a fifth step is tapped while leaving it in the converter and the process returns to the first step, and the steps up to the fifth step are repeatedly performed. This is a method of discharging the entire amount of slag after tapping in the fifth step without returning the generated slag to the first step.
[0005]
In the converter, a step of charging hot metal (first step), a de-P refining step (second step), a waste step (third step), and then a de-C step in the same converter, In the second step of the method for producing molten steel, in which the slag is recycled to the first step while leaving it in the converter, the upper blowing acid transfer rate is set to 2.5 Nm 3 / min / t · s or more. Proposed. (See, for example, Patent Document 2).
[Patent Document 1]
JP-A-4-72007 [Patent Document 2]
JP-A-5-247511
[Problems to be solved by the invention]
In the method according to Patent Document 1, since the de-P and de-C steps are performed in a continuous process using the same converter, energy loss when the process is shifted from the de-P step to the de-C step can be reduced. Further, fixed costs (equipment costs and labor costs) can be significantly reduced.
[0007]
However, if the amount of slag discharged in the third step is small, the P removed in the slag in the second step returns to the molten steel again in the fourth step (this is referred to as “return P”). It is necessary to remove P again, and the amount of flux such as quicklime must be increased, which leads to an increase in cost. In addition, since the slag having an increased P concentration in the fourth step is reused in the second step, the load of removing P in the second step is increased and the cost is increased. If the amount of slag discharged in the third step is small as described above, an increase in the load for performing the removal of P cannot be avoided, leading to a problem that the cost is increased.
[0008]
Further, in the method according to Patent Document 2, the time required for the de-P treatment is reduced by setting the upper blowing acid transfer rate of the second step, which is the de-P refining, constant at 2.5 Nm 3 / min / t · s or more. However, due to the high acid feed rate, the slag forming property, which is necessary to efficiently discharge the slag after the de-P treatment, is deteriorated, and it is difficult to secure the slag discharge amount in the third step. was there.
[0009]
Furthermore, if the upper-blow acid transfer rate in the second step is set to a low and constant rate, the de-P treatment time is prolonged, and in addition to impairing productivity, the amount of oxygen necessary to achieve a predetermined hot metal P concentration is reduced. Before reaching, slag forming (hereinafter, referred to as slopping) exceeding the allowable capacity of the converter furnace (hereinafter, referred to as freeboard) is generated. As a result, the molten iron yield is reduced, the converter incidental equipment is burned, and the like, which is a factor of lowering productivity and worsening costs.
[0010]
As described above, the increase in the upper blowing acid rate in the hot metal de-Si / P removal technology in the converter increases the productivity by shortening the removal time of the P removal treatment, while discharging the slag after the removal of P treatment due to the deterioration of the slag forming property. The amount had been reduced.
[0011]
Also, in the de-P reaction, when the oxygen potential of the slag is low, even if the required oxygen amount for achieving the predetermined P concentration is reached, the return of P from the slag side occurs, and the P concentration is reduced to the predetermined P concentration. There was a problem that can not be.
[0012]
In order to solve the above-mentioned problems, the present invention has sufficiently promoted the removal of P without impairing the productivity, secured the forming properties of the slag after the removal of the P and S, and improved the waste property. A method for refining molten steel is provided.
[0013]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) Using a top-bottom blow converter, a first step of charging molten iron and scrap as main raw materials, a second step of blowing oxygen to remove Si, P, and S, and discharging generated slag In the molten steel refining method in which the third step of slagging and the fourth step of degassing by blowing oxygen are sequentially performed, the following equation (1) is satisfied until the end of the second step, and the stirring energy on the converter is blown. A method for refining molten steel, which is performed at 2.0 kW / t · s or more and reduced to 1.5 kW / t · s or less at the end of the second step.
(Q) × (τ) / [% C] ≧ 20 (1)
However, (Q): top and bottom blown oxygen supply rate until the end of the second step (Nm 3 / min / t · s)
τ: uniform mixing time (sec)
[% C]: Estimated value of C concentration after hot metal removal [wt%]
(2) The method for refining molten steel according to (1), wherein in the first step, molten iron removed in advance is used.
(3) The method for refining molten steel according to (1) or (2), wherein in the second step, the upper blowing stirring energy is adjusted by the upper blowing acid feeding speed and / or the upper blowing lance height.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In the present invention, hot metal pretreatment and decarbonization are integrated and operated by the same converter. In the present process, the forming is necessary only for improving the slag discharge property after the hot metal pre-treatment, and the removal of Si, removal of P, removal of S may cause operation instability such as slopping. Therefore, the present inventors need only to form the slag in the third step of the waste process, de-Si, de-P, the first half of the second step of the de-S refining process suppresses the slag forming, By forming at the end of the second step, it was thought that the waste property could be secured without impairing the productivity.
[0015]
The slag slagging phenomenon is a phenomenon that occurs when the volume of the slag exceeds the volume of the vessel under the phenomenon that gas is captured in the slag layer and the volume of the slag expands. The forming phenomenon under the Si / P-free refining occurs when gas passing through the refining slag is captured in the slag.
[0016]
Therefore, in order to suppress the slag forming in the first half of the second step, the amount of gas captured in the slag is reduced, or the slag is hardly captured. Alternatively, it is considered that forcible degassing is effective for suppressing the forming.
[0017]
On the other hand, in order to efficiently discharge slag in the third step after the removal of Si and P from the hot metal in the converter, the amount of gas captured in the slag should be increased to promote slag forming. Thus, it is considered effective to increase the volume of the slag.
[0018]
The inventors of the present invention have made intensive efforts based on the above idea, and as a result, controlling the blasting energy of the converter, thereby controlling the slag forming, and further suppressing the slag slopping while simultaneously discharging the slag. We considered to establish a converter operation method that could secure slag properties.
[0019]
First, blast furnace hot metal is used as the hot metal charged in the first step, but hot metal that has been desulfurized in advance is more desirable in terms of shortening the processing time and efficiently performing desulfurization.
[0020]
Next, under the conditions satisfying the expression (2), the effects of the top blowing acid transfer rate and the top blowing lance height on the P concentration after de-Si / P removal and slag discharge were examined. When performing de-Si de-P refining, the top blowing acid transfer rate is changed to 1.5 to 3.0 Nm 3 / ts · min, the lance height is changed to 2500 to 4500 mm, and the top blowing stirring energy and The relationship between the P concentration after the treatment and the slag discharge rate was investigated. The upper blowing energy is expressed by the following equation (2) (Shigeo Asai et al., “Recent Trends in Steelmaking Technology Utilizing Stirring”, Iron and Steel Institute of Japan, p71). And the height of the lance are reflected, and represent the magnitude of the stirring energy by the oxygen blown into the furnace from the top blowing lance.
FIG. 1 is a schematic diagram showing the inside of a furnace during blowing in a converter shown to facilitate understanding of the above equation (2).
[0021]
(Equation 1)
[0022]
As a result (FIG. 2), the P concentration after the treatment decreased with the increase of the stirring energy in the converter, and could be reduced to 2.04% or more at 2.0 kW / t · s or more. That is, it is considered that the blowing interruption due to the occurrence of the slopping was reduced, and the de-P was advanced.
[0023]
On the other hand, it was found that if the top blowing stirring energy is 1.5 kW / t · s or less, the waste rate can be 60% or more, but tends to deteriorate as the top blowing stirring energy increases.
[0024]
In the removal of P in the second step, the ratio (% P) / [% P] of the slag P concentration (% P) and the metal P concentration [% P] can be increased by increasing the oxygen potential. It is known that the oxygen potential can be increased by increasing the iron oxide component in the slag. Thus, under a constant condition of 2.0 kW / t.s or more of the top blowing agitation energy, a balance is provided between the oxygen supply rate that determines the iron oxide generation rate, the hot metal circulation rate, and the C supply rate that reduces iron oxide. Using the index, the relationship with the P concentration after the second step treatment was investigated. Here, the index that gives the balance between the oxidation and reduction of iron oxide is the top and bottom blown oxygen supply rate (Q) before the end of the second step, which represents the oxygen supply rate, and the uniform mixing time (τ), which represents the supply rate of hot metal. Equation (1) using the estimated value of the C concentration of the hot metal after the de-P treatment, which indicates the supply rate of C, was used.
(Q) × (τ) / [% C] (1)
However, (Q): top and bottom blown oxygen supply rate until the end of the second step (Nm 3 / min / t · s)
(Τ): Uniform mixing time (sec)
[% C]: Estimated value of C concentration after hot metal removal [wt%]
Here, the following formula (3) was used for the uniform mixing time (τ).
(Τ) = 800 × {(εb + 0.1 × εt) × 1000} (−0.4) (3)
Here, εb: bottom blowing stirring energy (kW / t · s)
As the estimated value of the hot metal C concentration after the de-P treatment [% C], a value estimated from the hot metal C concentration before the treatment and the expected oxygen injection amount was used. As a result, it was found that the variation in the P concentration after processing was reduced when the value of the expression (1) was 20 or more (FIG. 3).
[0025]
Therefore, in order to achieve both a decrease in the P concentration after the treatment and an increase in the waste rate, before the end of the removal of P, the converter top blowing agitating energy is set to 2.0 kW under the condition that the expression (1) is 20 or more. / T · s or more and sufficiently removes P, and in the final stage of removal of P, changing the top-blowing stirring energy to 1.5 kW / t · s or less to secure the waste rate, and It was considered possible to lower the input P concentration during the decarburization period. Here, the end of de-P is simply determined by, for example, the amount of oxygen excluding the amount of oxygen necessary for de-Si in the second step (hereinafter, the amount of oxygen outside of Si), and the amount of oxygen outside of Si. It is empirically known that the timing of 70 to 90% of the above is good.
[0026]
From FIG. 2, it can be seen that the removal of P and the rejectability can be controlled by changing the top blowing agitating energy. And only the lance height, and it is better to change both.
In addition, the basicity of the slag in the second step of removing Si, removing P, and removing S is preferably 1.0 to 2.5 in consideration of the removal P efficiency and the waste property compared to the related art.
[0027]
【Example】
Hereinafter, the present invention will be described based on examples. Tables 1 and 2 (continued from Table 1) show the present invention and comparative examples for comparison.
[0028]
[Table 1]
[Table 2]
[0029]
No. in Tables 1 and 2 In any of 1 to 16, using a 365 ton top-bottom blow converter, the first step of charging blast furnace molten iron and scrap as main raw materials, the second step of blowing oxygen to remove Si, P, and S, production In the molten steel refining method in which a third step of discharging the waste slag and a fourth step of blowing oxygen to remove C are sequentially performed, the basicity C / S in the second step, (Q) × (τ) / [% C ], The conditions of the top blowing stirring energy εt were changed, and the hot metal P concentration after the second step (fourth step) and the waste rate in the third step were evaluated. For (Q) × (τ) / [% C], [% C] = 3.7% constant from the actual measurement results so far, and the bottom blowing gas flow rate is changed to increase or decrease the bottom blowing stirring energy. (Q) and (τ) were changed. For the uniform mixing time (τ), the calculated value of the above equation (3) was used. Here, regarding the hot metal P concentration, a case where the target is 0.04% or less, which is a target, is regarded as a success, and a waste rate is 60% or more, which is a success.
[0030]
In Tables 1 and 2, No. 1-4, charged with blast furnace hot metal, having a basicity of 1.0 to 2.5, (Q) × (τ) / [% C] of 20 or more, and an upper stirring energy of 2.0 kW / t · In the last stage of the de-P blowing, which was performed at s or more (at a timing of 80% of the amount of oxygen removed from the outside of Si), the upper blowing stirring energy was changed to 1.5 kW / t · s or less by the upper blowing acid speed and the lance height. It is an example. In each case, the P concentration after the second step was 0.04% or less and the waste rate was 60% or more, and good results were obtained.
[0031]
On the other hand, Test Nos. 5 to 8 are examples of the present invention in which S-free hot metal is used among the above-described conditions. In any case within the range of the conditions in the present invention, the charged P concentration at the time of de-C blowing is suppressed to a low level of 0.04%, and the waste rate is as high as 60% or more. I understand.
[0032]
On the other hand, Test Nos. 9 to 16 are comparative examples.
Test Nos. 11 and 12 are examples in which the upper blowing agitating energy in the initial stage of the removal of P is lower than the above condition. In this case, blowing had to be interrupted because slopping occurred during the treatment, and as a result, the P concentration after the second step was higher.
[0033]
Test Nos. 13 and 14 are examples in which the upper blowing agitating energy at the end of the removal of P is higher than the above conditions. In this case, although the removal of P proceeded and the P concentration became low, the waste rate was low and the P concentration was unsuccessful.
Test Nos. 15 and 16 are examples in which the top blowing stirring energy is constant. In this case as well, the P concentration after the treatment is low, but the waste rate is poor and the test is unsuccessful.
[0034]
As described above, if the conditions are not appropriate, the charging P at the time of the de-C blowing in the fourth step is insufficient due to the shortage of the de-P due to the interruption of the blowing due to the slopping effect during the de-P blowing or the reduction of the waste rate. The concentration remained higher than the target.
[0035]
【The invention's effect】
According to the present invention, in the process of performing the hot metal pretreatment and the de-C treatment in the same refining vessel, by performing the present invention, it is possible to reduce the time required for the de-P treatment compared to the prior art, and The amount of slag discharged can be increased, and the unit consumption of quicklime can be reduced. In addition, it is possible to stably perform the P / S removal processing without slopping which may be a production obstacle, and it is possible to improve productivity.
[Brief description of the drawings]
FIG. 1 is a schematic view of the inside of a furnace during blowing in a converter.
FIG. 2 is a diagram showing the relationship between the P concentration and the waste rate after the de-P treatment by the upper blowing stirring energy.
FIG. 3 is a diagram showing the relationship between (Q) × (τ) / [% C] and the P concentration after the second step treatment.
Claims (3)
(Q)×(τ)/[%C]≧20
但し、(Q):第二工程末期前までの上底吹き酸素供給速度(Nm3/min/t・s)
τ:均一混合時間(sec)
[%C]:脱P処理後溶銑C濃度推定値[wt%]First step of charging blast furnace hot metal and scrap as main raw materials using an upper and bottom blown converter, second step of blowing oxygen to remove Si, P, and S, and discharging the generated slag In the molten steel refining method in which the three steps, the fourth step of degassing by blowing oxygen, are sequentially performed, the following equation is satisfied until the end of the second step, and the stirring energy on the converter is 2.0 kW / t · s (abbreviation of t-steel) or more, and at the end of the second step, it is reduced to 1.5 kW / t · s or less.
(Q) × (τ) / [% C] ≧ 20
However, (Q): top and bottom blown oxygen supply rate until the end of the second step (Nm 3 / min / t · s)
τ: uniform mixing time (sec)
[% C]: Estimated value of C concentration after hot metal removal [wt%]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003045792A JP4150272B2 (en) | 2003-02-24 | 2003-02-24 | Method for refining molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003045792A JP4150272B2 (en) | 2003-02-24 | 2003-02-24 | Method for refining molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004256833A true JP2004256833A (en) | 2004-09-16 |
JP4150272B2 JP4150272B2 (en) | 2008-09-17 |
Family
ID=33112517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003045792A Expired - Fee Related JP4150272B2 (en) | 2003-02-24 | 2003-02-24 | Method for refining molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4150272B2 (en) |
-
2003
- 2003-02-24 JP JP2003045792A patent/JP4150272B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4150272B2 (en) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101648652B1 (en) | Method for preliminary treatment of molten iron | |
JP5440733B2 (en) | Hot metal refining method | |
WO1995001458A1 (en) | Steel manufacturing method using converter | |
JP4977870B2 (en) | Steel making method | |
JP5063966B2 (en) | Manufacturing method of molten steel | |
JP5614306B2 (en) | Method for melting manganese-containing low carbon steel | |
JP5233378B2 (en) | Hot phosphorus dephosphorization method | |
JP6468084B2 (en) | Converter discharge method | |
JP2020180322A (en) | Method of manufacturing molten steel using a converter | |
JP4025751B2 (en) | Hot metal refining method | |
JP2004256833A (en) | Refining method of molten steel | |
JP2002012908A (en) | Method for smelting nitrogen-containing steel | |
JP2000109924A (en) | Melting method for extremely low sulfur steel | |
JP2003064411A (en) | Refining method of molten steel | |
JP5979017B2 (en) | Hot metal refining method | |
JP5286892B2 (en) | Dephosphorization method of hot metal | |
JP2003147430A (en) | Reducing agent for steelmaking, and steelmaking method | |
JP3924059B2 (en) | Steelmaking method using multiple converters | |
JPH08311519A (en) | Converter steelmaking | |
JP7598020B2 (en) | Method for producing low phosphorus steel | |
JP2018115350A (en) | Refining method of hot metal | |
JP2958842B2 (en) | Converter refining method | |
JPH0734113A (en) | Converter refining method | |
JP4025713B2 (en) | Dephosphorization method of hot metal | |
JPH0892618A (en) | Prerefining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080627 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4150272 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |