JP2004255663A - Elastic structure and its manufacturing method - Google Patents

Elastic structure and its manufacturing method Download PDF

Info

Publication number
JP2004255663A
JP2004255663A JP2003047663A JP2003047663A JP2004255663A JP 2004255663 A JP2004255663 A JP 2004255663A JP 2003047663 A JP2003047663 A JP 2003047663A JP 2003047663 A JP2003047663 A JP 2003047663A JP 2004255663 A JP2004255663 A JP 2004255663A
Authority
JP
Japan
Prior art keywords
substrate
elastic structure
surface plate
plate
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047663A
Other languages
Japanese (ja)
Other versions
JP3899325B2 (en
Inventor
Takehiko Kawashima
武彦 河嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Rubber Chemical Co Ltd
Original Assignee
Asahi Rubber Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Rubber Chemical Co Ltd filed Critical Asahi Rubber Chemical Co Ltd
Priority to JP2003047663A priority Critical patent/JP3899325B2/en
Publication of JP2004255663A publication Critical patent/JP2004255663A/en
Application granted granted Critical
Publication of JP3899325B2 publication Critical patent/JP3899325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elastic structure constituted of a hard base plate 11, a soft surface plate 12 and a large number of pillar-shaped members made of an elastic material interposed between the plates 11 and 12 in an erected state to connect the plates 11 and 12, not only to make the flexible function thereof equal over the whole of the structure but also to stabilize the same over a long period of time. <P>SOLUTION: The pillar-shaped members 13 constituting the elastic structure 10A are integrally formed on the rear surface of the surface plate 12 to be arranged equally and the leading end parts of them are fixed in the joined state embedded in a thermoplastic synthetic resin layer 14 for covering the surface of the base plate 11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、衝撃吸収機能を有する構造体(衝撃吸収構造体という)、消音機能を有する構造体(消音構造体という)、防音機能を有する構造体(防音構造体という)、防振機能を有する構造体(防振構造体という)、制振機能を有する構造体(制振構造体という)等の構造体に好適に適用し得る弾性構造体に関する。本発明においては、これらの各機能を有する各構造体を総称して弾性構造体を定義する。
【0002】
【従来の技術】
従来のこの種の弾性構造体は、少なくとも一層が弾性層状体である複層構造の弾性構造体と、中間層または下層が複数の柱状体で構成されている弾性構造体の2種類の形式の弾性構造体に大別される。
【0003】
前者の形式の弾性構造体としては、例えば、合成繊維不織布層、連続気泡発泡層、および充填剤とバインダー成分からなる防音層を互いに積層して構成された複層構造の弾性構造体を制振防音材として提案され(特許文献1参照)、例えば、壁体の少なくとも音源側に中空部を有する層状の弾性体を取付けた複層構造の弾性構造体を衝撃吸収性防音壁として提案され(特許文献2参照)、例えば、複数枚の合板の間に圧縮ウレタンを介在させてなる複層構造の弾性構造体を衝撃吸収防音保温材として提案されている(特許文献3参照)。
【0004】
一方、後者の形式の弾性構造体としては、例えば、多数の柱状中空部を有する弾性体からなるクッション材を畳床して構成された弾性構造体を防音性、防振性、衝撃吸収性に優れた畳として提案され(特許文献4参照)、例えば、床版と床材間に複数の柱状の衝撃吸収部材を介在させてなる弾性構造体を防音床材として提案されている(特許文献5参照)。
【0005】
【特許文献1】
特開平9−131824号公報
【0006】
【特許文献2】
特開2002−294639号公報
【0007】
【特許文献3】
特開2001−254455号公報
【0008】
【特許文献4】
特開2003−20785号公報
【0009】
【特許文献5】
特開2002−188238号公報
【0010】
【発明が解決しようとする課題】
ところで、この種の弾性構造体においては、適用すべき衝撃吸収構造体、消音構造体、防音構造体、防振構造体、制振構造体等のそれぞれの機能に対応すべく、その弾性に起因する可撓性を的確に設定する必要がある。これに対処するには、前者の形式の弾性構造体では、当該弾性構造体を構成する層状体の特性を適宜調整することになるが、層状体の弾力性、柔軟性、反撥性、吸音性等の機能を材料の面から調整するには自ずと限界があり、仮に、機能的に対処し得たとしても物理的に無理があって耐久性等強度的な問題が新たに発生する。
【0011】
これに対して、後者の形式の弾性構造体は、前者の形式のこれらの問題を解消し得るものである。当該弾性構造体においては、中間層または下層を構成する多数の柱状体は起立状態に配置されていて、当該中間層または下層は、多数の柱状体と柱状空間部が混在する立体構造を形成して可撓性機能を確保している。
【0012】
当該可撓性機能は、衝撃吸収機能、消音機能、防音機能、防振機能、制振機能等に直接関与する重要な機能であって、弾性構造体の全体に均等であること、長期間変化することなく安定であること等が要請され、また、当該中間層または下層が特殊な構造であることから、弾性構造体自体の耐久性が要請される。
【0013】
しかしながら、当該形式の従来の弾性構造体においては、中間層や下層を形成する複数の柱状体と表層および/または下層を形成する層状体との結合関係、柱状体の配列関係、柱状体の形状等に問題があり、上記した各要請には十分には配慮されていないのが実状である。従って、本発明の目的は、当該形式の弾性構造体において、上記した各要請に十分に対処することにある。
【0014】
【課題を解決するための手段】
本発明は、弾性構造体に関する。本発明に係る第1の弾性構造体は、硬質の基板と、軟質の表面板と、同表面板と前記基板間に起立状態で介在してこれら両板を互いに連結する弾性材料からなる多数の柱状体を構成部材とする三段構造の弾性構造体である。また、本発明に係る第2の弾性構造体は、当該三段構造の弾性構造体と、同構造体の前記表面板の表面側に位置する補強板を構成部材とする四段構造の弾性構造体である。
【0015】
しかして、当該三段構造の弾性構造体においては、前記各柱状体は前記表面板の裏面側に一体的に形成されて同裏面側に均等に配列されていて、同柱状体の先端部が前記基板の表面を被覆する熱可塑性合成樹脂層に埋没した接合状態で固着されていることを特徴とするものである。
【0016】
また、当該四段構造の弾性構造体においては、前記各柱状体は前記表面板の裏面側に一体的に形成されて同裏面側に均等に配列されていて、同柱状体の先端部が前記基板の表面を被覆する熱可塑性合成樹脂層に埋没した接合状態で固着されており、かつ、前記補強板と前記基板とは前記表面板および前記各柱状体を挟持した状態で互いに連結されていることを特徴とするものである。
【0017】
本発明に係るこれらの弾性構造体においては、前記基板を金属材料またはセラミック材料からなる板体を採用し、かつ、前記表面板と前記各柱状体とを弾性ゴム材料にて一体に成形されたゴム成形体を採用することができる。また、前記各柱状体を、前記基板および前記表面板に対して千鳥配列状態に均等に配列することができ、前記表面板の裏面から漸次縮径して前記基板側に先細り状態で延びる円柱状の形状にすることができる。
【0018】
また、本発明に係るこれらの弾性構造体においては、前記表面板および各柱状体の成形材料として、エチレンプロピレンゴム、ブチルゴム、ブタジェンゴム、イソプレンゴムおよびクロロプレンゴムの群から選択される弾性ゴムを採用することができ、前記各柱状体を基板に固着する熱可塑性合成樹脂として、ポリレフィン系の熱可塑性合成樹脂の群から選択されれる熱可塑性合成樹脂を採用することができる。
【0019】
また、本発明は、これらの各弾性構造体の製造方法に関する。本発明に係る第1の製造方法は、硬質の基板と、軟質の表面板と、同表面板と前記基板間に起立状態で介在してこれら両板を互いに連結する弾性材料からなる多数の柱状体を構成部材とする三段構造の弾性構造体の製造方法である。また、本発明に係る第2の製造方法は、当該三段構造の弾性構造体と、同構造体の前記表面板の表面側に位置する補強板を構成部材とする四段構造の弾性構造体の製造方法である。
【0020】
しかして、本発明に係る第1の製造方法においては、前記基板を加熱状態で熱可塑性合成樹脂の粉末が飛散する雰囲気に曝して同基板の表面に熱可塑性合成樹脂の被覆層を形成し、前記表面板と一体の前記各柱状体の先端部を溶融状態にある同被覆層に押圧状態で接合し、同被覆層を固化することによって、前記各柱状体を前記基板の表面に固着することを特徴とするものである。
【0021】
また、本発明に係る第2の製造方法においては、前記基板を加熱状態で熱可塑性合成樹脂の粉末が飛散する雰囲気に曝して同基板の表面に熱可塑性合成樹脂の被覆層を形成し、前記表面板と一体の前記各柱状体の先端部を溶融状態にある同被覆層に押圧状態で接合し、同被覆層を固化することによって前記各柱状体を前記基板の表面に固着し、前記補強板を前記表面板に載置した状態で前記基板に連結することを特徴とするものである。
【0022】
【発明の作用・効果】
本発明に係る各弾性構造体においては、各柱状体が形成する中間層には、各柱状体の形状および材質を適宜選定することによって、要求される衝撃吸収機能、消音機能、防音機能、防振機能、制振機能等に的確に対応し得る可撓性機能を確保することができる。この種の形式の弾性構造体においては、当該可撓性機能が弾性構造体の全体に均等であること、および、長期間変化することなく安定であること等が要請され、また、弾性構造体自体の耐久性が要請される。
【0023】
本発明に係る各弾性構造体においては、中間層を形成している各柱状体が基板および表面板の全面に対して均等に配列した状態にあり、かつ、各柱状体が表面板とは一体であるとともに、基板に対しては、同基板を被覆する熱可塑性合成樹脂に先端部を埋没されて強固に固着されている状態にある。このため、中間層が特殊な構造であるにも関わらず、当該可撓性機能が弾性構造体の全体に均等であり、かつ、長期間変化することなく安定しているとともに、弾性構造体は高い耐久性を有している。従って、本発明に係る各弾性構造体は、上記した各要請に十分に対処し得るものである。
【0024】
また、本発明に係る各製造方法においては、表面板と一体の各柱状体を基板に固着するための接着剤として熱可塑性合成樹脂層を採用し、当該熱可塑性合成樹脂層が基板上で溶融状態にある時点で、各柱状体の先端部を熱可塑性合成樹脂の溶融層に押圧状態で接合して当該溶融層を固化する手段を採っている。このため、各柱状体の基板に対する固着形態では、各柱状体の先端部が熱可塑性合成樹脂層に埋没した強固な固着状態を形成して、本発明に係る各弾性構造体を製造することができる。
【0025】
本発明に係る各製造方法においては、特に、基板を加熱状態で熱可塑性合成樹脂の粉末が飛散する雰囲気に曝して同基板の表面に熱可塑性合成樹脂の溶融被覆層を形成する手段を採っている。このため、各柱状体の基板に対する固着作業が無駄なくかつ容易にすることができる利点がある。
【0026】
【発明の実施の形態】
本発明は、弾性構造体およびその製造方法に関するもので、図1には本発明に係る第1の弾性構造体の一実施形態を縦断した状態で示しており、図3には本発明に係る第2の弾性構造体の一実施形態を縦断した状態で示している。また、図2には、これらの実施形態で採用しているゴム成形体を下からみた底面を示している。
【0027】
本発明に係る第1の弾性構造体10Aは、図1および図2に示すように、基板11と、表面板12と、表面板12と基板11間に起立状態で介在してこれら両板11,12を互いに連結する多数の柱状体13を構成部材とするもので、三段構造の弾性構造体である。当該弾性構造体10Aは、基板11の表面を被覆する熱可塑性合成樹脂層14を接着剤とし、各柱状体13は熱可塑性合成樹脂層14を介して、基板11に強固に固着している。
【0028】
当該弾性構造体10Aを構成する基板11は硬質のものであり、鉄板、アルミ板等の金属板を好適に採用することができる。また、表面板12は軟質のもので、ゴム材料からなる板体を好適に採用することができる。各柱状体13は弾性材料からなるもので、ゴム材料からなる円柱状の成形体を好適に採用することができる。
【0029】
本実施形態である弾性構造体10Aでは、表面板12と各柱状体13とを、同一のゴム材料を用いて一体成形されたゴム成形体10aとしている。従って、以下の説明では、表面板12と各柱状体13とが一体に成形されているた成形体を、便宜的にゴム成形体10aと称することがある。ゴム成形体10aを構成する各柱状体13は、特に図2に示すように、表面板12の裏面側に千鳥配列状態に均等に配列されていて、同裏面側から漸次縮径して先細り状に延びる円柱状に形成されている。
【0030】
ゴム成形体10aのゴム成形材料は、各柱状体13に要求される弾性、可撓性、および、後述する接着剤として機能する熱可塑性合成樹脂層14との固着性を考慮すれば、エチレンプロピレンゴム、ブチルゴム、ブタジェンゴム、イソプレンゴムおあよびクロロプレンゴムの群から選択される弾性ゴムの材料が好ましく、より好ましくは、エチレンとプロピレンの共重合体、エチレンとプロピレンと他の成分との共重合体(エチレンプロピレンゴムと総称する)である。
【0031】
当該弾性構造体10Aにおいては、ゴム成形体10aは、同成形体を構成する各柱状体13の先端部を、基体11の表面を被覆する熱可塑性合成樹脂層14内に埋没させた状態で、強固に固着されている。熱可塑性合成樹脂層14を構成する熱可塑性合成樹脂としては、ポリレフィン系の熱可塑性合成樹脂、例えば、商品名フローセン(住友精化株式会社製)が採用されている。
【0032】
ゴム成形体10aを基板11の表面側に固着するには、熱可塑性合成樹脂層14が溶融状態にある溶融層の表面に、ゴム成形体10aの各柱状体13の先端部を押圧して埋没させるか、各柱状体13の先端部を上側にして載置されているゴム成形体10aの各柱状体13の先端部上に基板11を載置する。この状態で、溶融層を固化すれば熱可塑性合成樹脂層14が形成されて、ゴム成形体10aは各柱状体13の先端部にて基板11の表面側に強固に固着される。
【0033】
このように、当該弾性構造体10Aは三段構造の構造体であって、その中間層を形成している各柱状体13が基板11および表面板12の全面に対して均等に千鳥配列した状態にあり、かつ、各柱状体13が表面板12とは一体(ゴム成形体10a)であるとともに、基板11に対しては、その表面を被覆する熱可塑性合成樹脂層14に先端部を埋没されて強固に固着されている状態にある。
【0034】
かかる構成の当該弾性構造体10Aにおいては、その中間層を構成する各柱状体13の形状、大きさ、材質等を適宜選定することにより、衝撃吸収構造体、消音構造体、防音構造体、防振構造体、制振構造体等に要求される可撓性機能を確保することができる。当該弾性構造体10Aでは、中間層が特殊な構造であるにも関わらず、当該可撓性機能に方向性がなくて弾性構造体の全体に均等であるとともに、当該可撓性機能は長期間変化することがなくて安定しており、かつ、弾性構造体自体高い耐久性を有している。
【0035】
このように優れた特性の当該弾性構造体10Aを製造する最大のポイントは、如何なる手段で、ゴム成形体10aを基板11の表面側に固着するかにある。本発明に係る製造方法では、先ず、基板11の表面に熱可塑性合成樹脂の溶融樹脂層を形成し、当該溶融樹脂層に、ゴム成形体10aの各柱状体13の先端部を押圧して埋没させる手段を採っている。図4には、基板11の表面に熱可塑性合成樹脂の溶融樹脂層を形成するための被覆処理装置20を示している。
【0036】
当該被覆処理装置20は、微粉末状樹脂を浮遊させる浮遊室を有する樹脂処理槽を主要部とするもので、樹脂処理槽を構成する槽本体21内には、その底部の近傍にフィルター22が配設されている。また、槽本体21の側壁には、その底部の近傍に圧縮空気の供給管23が接続されている。かかる構成においては、槽本体21内のフィルター22より上方の室が、微粉末状樹脂の浮遊室24となっている。
【0037】
当該被覆処理装置20においては、浮遊室24には、熱可塑性合成樹脂であるポリオレフィン系合成樹脂(ポリエチレンの変性体等)の微粉末状樹脂が収容されていて、圧縮空気が供給管23を通して槽本体21内に供給されると、圧縮空気はフィルター22の全体を均等に透過して、浮遊室24に収容されている微粉末状樹脂を吹き上げて浮遊状態として、浮遊室24内に微粉末樹脂が浮遊する雰囲気を形成する。なお、浮遊室24内の微粉末状樹脂は、本発明における熱可塑性樹脂層14を構成する樹脂成分であることから、当該微粉末状樹脂を以下では微粉末状樹脂14aと称する。
【0038】
当該被覆処理装置20を使用して基板11の表面に熱可塑性合成樹脂層14を形成するには、予め260℃〜310℃に加熱されている基板11を、図示しないハンガーに掛止した状態で、当該被覆処理装置20の浮遊室24内の微粉末状樹脂14aが浮遊する雰囲気に所定時間吊下状態で滞留させる。これにより、浮遊している微粉末樹脂14aは、加熱状態にある基板11の表面に無数に溶着して、可塑性合成樹脂層14の溶融層を形成する。
【0039】
当該弾性構造体10Aを製造するには、浮遊室24から取出された被覆処理済みの基板11を、熱可塑性合成樹脂層14が溶融状態にある時点(溶融層)で、基台に各柱状体13の先端部を上側にして載置されているゴム生成体10aの、各柱状体13の先端部上に載置する。この載置状態では、基板11は自重によってゴム成形体10aを押圧し、各柱状体13の先端部を樹脂溶融層内に押し込む。これにより、樹脂溶融層が冷却固化して熱可塑性合成樹脂層14になった際には、各柱状体13の先端部は熱可塑性合成樹脂層14内に所定長さ埋没して、ゴム成形体10aと基板11とは、強固な固着状態となる。
【0040】
これとは逆に、浮遊室24から取出された被覆処理済みの基板11を基台11に載置し、基台11の表面の熱可塑性合成樹脂層14が溶融層に、各柱状体13の先端部を押圧して接合するようにしてもよい。これにより、溶融層が冷却固化して熱可塑性合成樹脂層14になった際には、各柱状体13の先端部は熱可塑性合成樹脂層14内に所定長さ埋没して、ゴム成形体10aと基板11とは、強固な固着状態となる。
【0041】
本発明に係る第2の弾性構造体10Bは、図3に示すように、基板11と、表面板12と、表面板12と基板11間に起立状態で介在してこれら両板11,12を互いに連結する多数の柱状体13と、表面板12の表面側に位置する補強板15を構成部材とするもので、四段構造の弾性構造体である。当該弾性構造体10Bは、補強板15以外は、弾性構造体10Aと同一の構成材料で形成されているとともに、接着剤層としても同一材質の熱可塑性合成樹脂層14が使用され、かつ、表面板12と各柱状体13が一体のゴム成形体10bが使用されている。
【0042】
補強板15は、鉄板、アルミ板等の硬質の板であって、基板11とは表面板12および各柱状体13(ゴム成形体10b)を挟持した状態で互いに連結されている。連結手段としては、補強板15と基板11とを、各隅部にて連結ボルトを介して直接連結する手段を採ることができる。また、表面板12がゴム製である場合には、表面板12の表面に加硫接着することにより、補強板15は、ゴム成形体10bを介して基板11に連結する。
【0043】
かかる構成の当該弾性構造体10Bにおいては、中間層を構成するゴム生成体10bが第1の弾性構造体の実施形態である弾性構造体10Aのゴム成形体10aと同一構成であることから、同等の可撓性機能を有するものである。また、当該弾性構造体10Bは、弾性構造体10Aに補強板15を付加してなる弾性構造体である。当該補強板15は、ゴム成形体10bを構成する表面板12を覆蓋した状態で保護する。
【0044】
また、当該弾性構造体10Bを構成する補強板15は、ゴム成形体10bに対して、外部からの各種の衝撃を均等に分散して伝達させる機能を有する。このため、補強板15は、ゴム成形体10bの全体を略均等に撓ませて局部的な撓みを防止し、当該弾性構造体10Bの可撓性機能を的確に発揮させるとともに、ゴム成形体10bの局部的な撓みに起因するゴム成形体10bの早期の損傷を防止する。
【図面の簡単な説明】
【図1】本発明に係る第1の弾性構造体を示す縦断面図である。
【図2】同弾性構造体を構成するゴム成形体の底面図である。
【図3】本発明に係る第2の弾性構造体を示す縦断面図である。
【図4】熱可塑性合成樹脂層の溶融層を形成する被覆処理装置の縦断面図である。
【符号の説明】
10A,10B…弾性構造体、10a,10b…ゴム成形体、11…基板、12…表面板、13…柱状体、14…熱可塑性合成樹脂層、14a…微粉末状樹脂、15…補強板、20…被覆処理装置、21…槽本体、22…フィルター、23…供給管、24…浮遊室。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a structure having a shock absorbing function (referred to as a shock absorbing structure), a structure having a sound absorbing function (referred to as a sound absorbing structure), a structure having a soundproofing function (referred to as a soundproofing structure), and a vibration damping function. The present invention relates to an elastic structure suitably applicable to a structure such as a structure (referred to as a vibration damping structure) or a structure having a vibration damping function (referred to as a vibration damping structure). In the present invention, each structure having each of these functions is generically defined as an elastic structure.
[0002]
[Prior art]
Conventional elastic structures of this type are of two types: an elastic structure having a multilayer structure in which at least one layer is an elastic layer, and an elastic structure in which an intermediate layer or a lower layer is constituted by a plurality of pillars. They are roughly divided into elastic structures.
[0003]
As the elastic structure of the former type, for example, a synthetic fiber nonwoven fabric layer, an open-cell foam layer, and an elastic structure having a multilayer structure formed by laminating a soundproof layer made of a filler and a binder component are damped. It has been proposed as a soundproofing material (see Patent Document 1). For example, a multilayered elastic structure having a layered elastic body having a hollow portion at least on the sound source side of a wall body has been proposed as a shock-absorbing soundproofing wall (Patent Document 1). For example, an elastic structure having a multilayer structure in which compressed urethane is interposed between a plurality of plywoods has been proposed as a shock-absorbing sound-insulating and heat-insulating material (see Patent Document 3).
[0004]
On the other hand, as the elastic structure of the latter type, for example, an elastic structure formed by folding a cushion material made of an elastic body having a large number of columnar hollow portions on a tatami floor is used for soundproofing, vibration-proofing, and shock absorbing. It has been proposed as an excellent tatami mat (see Patent Document 4). For example, an elastic structure in which a plurality of columnar shock absorbing members are interposed between a floor slab and a floor material has been proposed as a soundproof floor material (Patent Document 5). reference).
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 9-131824
[Patent Document 2]
JP 2002-294639 A
[Patent Document 3]
JP 2001-254455 A
[Patent Document 4]
JP 2003-20785 A
[Patent Document 5]
Japanese Patent Application Laid-Open No. 2002-188238
[Problems to be solved by the invention]
By the way, in this kind of elastic structure, due to its elasticity, it is necessary to correspond to the respective functions of the shock absorbing structure, sound-absorbing structure, sound-proof structure, vibration-proof structure, vibration-damping structure, etc. It is necessary to accurately set the flexibility to perform. In order to cope with this, in the case of the elastic structure of the former type, the characteristics of the layered body constituting the elastic structure are appropriately adjusted, but the elasticity, flexibility, repulsion, and sound absorption of the layered body are required. There is naturally a limit in adjusting such functions from the aspect of the material, and even if the functions can be dealt with functionally, it is physically impossible, and a new problem such as durability occurs.
[0011]
On the other hand, the latter type of elastic structure can solve these problems of the former type. In the elastic structure, a large number of columnar bodies constituting the intermediate layer or the lower layer are arranged in an upright state, and the intermediate layer or the lower layer forms a three-dimensional structure in which a large number of columnar bodies and columnar space portions are mixed. Flexible function.
[0012]
The flexible function is an important function directly related to the shock absorbing function, the sound deadening function, the soundproofing function, the vibration damping function, the vibration damping function, etc. It is required that the elastic structure itself be stable without the intermediate layer or the lower layer having a special structure.
[0013]
However, in the conventional elastic structure of this type, the connection relationship between the plurality of pillars forming the intermediate layer and the lower layer and the layer forming the surface layer and / or the lower layer, the arrangement relationship of the pillars, and the shape of the pillars However, there is a problem in the actual situation, and the above requests are not sufficiently considered. Accordingly, it is an object of the present invention to sufficiently address each of the above requirements in an elastic structure of this type.
[0014]
[Means for Solving the Problems]
The present invention relates to an elastic structure. The first elastic structure according to the present invention comprises a hard substrate, a soft surface plate, and a large number of elastic materials interposed between the surface plate and the substrate in an upright state and connecting these two plates to each other. This is a three-stage elastic structure having a columnar member as a constituent member. Further, the second elastic structure according to the present invention has a three-stage elastic structure and a four-stage elastic structure in which a reinforcing plate located on the surface side of the surface plate of the structure is a constituent member. Body.
[0015]
Thus, in the elastic structure of the three-stage structure, each of the columnar members is formed integrally on the back side of the front plate and is evenly arranged on the back side, and the tip of the columnar body is It is characterized by being fixed in a bonded state buried in a thermoplastic synthetic resin layer covering the surface of the substrate.
[0016]
Further, in the four-stage elastic structure, each of the columnar bodies is formed integrally on the back side of the front plate and is evenly arranged on the back side, and the tip of the columnar body is It is fixed in a bonded state buried in a thermoplastic synthetic resin layer covering the surface of the substrate, and the reinforcing plate and the substrate are connected to each other while sandwiching the surface plate and each columnar body. It is characterized by the following.
[0017]
In these elastic structures according to the present invention, the substrate adopts a plate made of a metal material or a ceramic material, and the surface plate and each of the columnar bodies are integrally formed of an elastic rubber material. A rubber molded body can be employed. Further, each of the columnar bodies can be uniformly arranged in a staggered arrangement state with respect to the substrate and the front surface plate, and has a columnar shape which gradually decreases in diameter from the back surface of the front surface plate and extends in a tapered state toward the substrate side. Can be formed.
[0018]
Further, in these elastic structures according to the present invention, as the molding material for the surface plate and each column, an elastic rubber selected from the group consisting of ethylene propylene rubber, butyl rubber, butadiene rubber, isoprene rubber and chloroprene rubber is employed. A thermoplastic synthetic resin selected from the group of polyrefin-based thermoplastic synthetic resins can be used as the thermoplastic synthetic resin for fixing each of the columnar bodies to the substrate.
[0019]
The present invention also relates to a method for manufacturing each of these elastic structures. The first manufacturing method according to the present invention comprises a plurality of columnar members made of a hard substrate, a soft surface plate, and an elastic material interposed between the surface plate and the substrate in an upright state and connecting these two plates to each other. This is a method for producing a three-stage elastic structure having a body as a constituent member. Further, the second manufacturing method according to the present invention is directed to a four-stage elastic structure in which the three-stage elastic structure and the reinforcing plate located on the surface side of the surface plate of the same structure are used as constituent members. Is a manufacturing method.
[0020]
Thus, in the first manufacturing method according to the present invention, the substrate is exposed to an atmosphere in which the thermoplastic synthetic resin powder is scattered in a heated state to form a thermoplastic synthetic resin coating layer on the surface of the substrate. By bonding the tip of each columnar body integral with the surface plate to the coating layer in a molten state in a pressed state, and solidifying the coating layer, the columnar bodies are fixed to the surface of the substrate. It is characterized by the following.
[0021]
Further, in the second manufacturing method according to the present invention, the substrate is exposed to an atmosphere in which thermoplastic synthetic resin powder is scattered in a heated state to form a thermoplastic synthetic resin coating layer on the surface of the substrate. The front end of each of the columnar bodies integral with the surface plate is pressed and bonded to the coating layer in a molten state, and the coating layer is solidified to fix each of the columnar bodies to the surface of the substrate, thereby reinforcing the substrate. A plate is connected to the substrate while being placed on the surface plate.
[0022]
[Action and Effect of the Invention]
In each of the elastic structures according to the present invention, the intermediate layer formed by each of the pillars has a required shock absorbing function, a silencing function, a soundproofing function, and a soundproofing function by appropriately selecting the shape and material of each of the pillars. It is possible to secure a flexible function that can appropriately cope with a vibration function, a vibration suppression function, and the like. In an elastic structure of this type, it is required that the flexible function is uniform over the entire elastic structure and that the elastic function is stable without being changed for a long period of time. Its own durability is required.
[0023]
In each of the elastic structures according to the present invention, the columnar bodies forming the intermediate layer are uniformly arranged on the entire surface of the substrate and the surface plate, and each columnar body is integrated with the surface plate. In addition, with respect to the substrate, the tip is buried in a thermoplastic synthetic resin that covers the substrate and is firmly fixed. For this reason, even though the intermediate layer has a special structure, the flexible function is equal to the entire elastic structure, and is stable without being changed for a long time. Has high durability. Therefore, each elastic structure according to the present invention can sufficiently cope with each of the above-mentioned requirements.
[0024]
Further, in each manufacturing method according to the present invention, a thermoplastic synthetic resin layer is employed as an adhesive for fixing each columnar body integral with the surface plate to the substrate, and the thermoplastic synthetic resin layer is melted on the substrate. In this state, a means is employed in which the distal end of each columnar body is pressed against the molten layer of the thermoplastic synthetic resin in a pressed state to solidify the molten layer. For this reason, in the fixed form of each columnar body to the substrate, it is possible to form a strong fixed state in which the tip end of each columnar body is buried in the thermoplastic synthetic resin layer, and manufacture each elastic structure according to the present invention. it can.
[0025]
In each of the manufacturing methods according to the present invention, in particular, a method is employed in which the substrate is exposed to an atmosphere in which the thermoplastic synthetic resin powder is scattered in a heated state to form a molten coating layer of the thermoplastic synthetic resin on the surface of the substrate. I have. For this reason, there is an advantage that the work of fixing each columnar body to the substrate can be made easy and easy.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to an elastic structure and a method for manufacturing the same. FIG. 1 shows an embodiment of a first elastic structure according to the present invention in a longitudinal section, and FIG. One embodiment of the second elastic structure is shown in a longitudinal section. FIG. 2 shows a bottom view of the rubber molded body employed in these embodiments as viewed from below.
[0027]
As shown in FIGS. 1 and 2, the first elastic structure 10 </ b> A according to the present invention includes a substrate 11, a surface plate 12, and an intervening state between the surface plate 12 and the substrate 11. , 12 are connected to each other, and are composed of a large number of pillars 13 as a constituent member, which is an elastic structure having a three-stage structure. In the elastic structure 10A, a thermoplastic synthetic resin layer 14 covering the surface of the substrate 11 is used as an adhesive, and each column 13 is firmly fixed to the substrate 11 via the thermoplastic synthetic resin layer 14.
[0028]
The substrate 11 that constitutes the elastic structure 10A is hard, and a metal plate such as an iron plate or an aluminum plate can be suitably used. The surface plate 12 is soft, and a plate made of a rubber material can be suitably used. Each column 13 is made of an elastic material, and a columnar molded body made of a rubber material can be suitably used.
[0029]
In the elastic structure 10A according to the present embodiment, the surface plate 12 and each of the columnar bodies 13 are formed as a single-piece rubber molded body 10a using the same rubber material. Accordingly, in the following description, a molded body in which the surface plate 12 and each columnar body 13 are integrally molded may be referred to as a rubber molded body 10a for convenience. As shown in FIG. 2 in particular, the columnar bodies 13 constituting the rubber molded body 10a are uniformly arranged in a staggered arrangement on the back side of the front plate 12, and are gradually tapered from the back side to become tapered. It is formed in the shape of a column extending to.
[0030]
The rubber molding material of the rubber molded body 10a is made of ethylene propylene in consideration of the elasticity and flexibility required for each columnar body 13 and the adhesion to the thermoplastic synthetic resin layer 14 functioning as an adhesive described later. Rubber, butyl rubber, butadiene rubber, elastic rubber material selected from the group of isoprene rubber and chloroprene rubber are preferred, more preferably a copolymer of ethylene and propylene, a copolymer of ethylene and propylene and other components (Collectively referred to as ethylene propylene rubber).
[0031]
In the elastic structure 10A, the rubber molded body 10a is formed by burying the distal end of each column 13 forming the molded body in the thermoplastic synthetic resin layer 14 covering the surface of the base 11, It is firmly fixed. As the thermoplastic synthetic resin constituting the thermoplastic synthetic resin layer 14, a polyrefin-based thermoplastic synthetic resin, for example, FLOWSEN (manufactured by Sumitomo Seika Co., Ltd.) is employed.
[0032]
In order to fix the rubber molded body 10a to the surface side of the substrate 11, the tip of each columnar body 13 of the rubber molded body 10a is pressed and buried on the surface of the molten layer in which the thermoplastic synthetic resin layer 14 is in a molten state. Alternatively, the substrate 11 is placed on the tip of each pillar 13 of the rubber molded body 10a placed with the tip of each pillar 13 facing upward. When the molten layer is solidified in this state, the thermoplastic synthetic resin layer 14 is formed, and the rubber molded body 10 a is firmly fixed to the front surface of the substrate 11 at the tip of each column 13.
[0033]
In this manner, the elastic structure 10A is a three-stage structure in which the columnar bodies 13 forming the intermediate layer are evenly staggered over the entire surface of the substrate 11 and the surface plate 12. And each column 13 is integral with the surface plate 12 (rubber molded body 10a), and the tip of the substrate 11 is buried in the thermoplastic synthetic resin layer 14 covering the surface thereof. In a state of being firmly fixed.
[0034]
In the elastic structure 10A having such a configuration, by appropriately selecting the shape, size, material, and the like of each column 13 forming the intermediate layer, a shock absorbing structure, a sound absorbing structure, a soundproofing structure, Flexible functions required for the vibration structure, the vibration control structure, and the like can be secured. In the elastic structure 10A, although the intermediate layer has a special structure, the flexible function has no direction and is uniform over the entire elastic structure, and the flexible function is maintained for a long time. It is stable without change, and has high durability itself.
[0035]
The most important point in manufacturing the elastic structure 10A having such excellent characteristics is to fix the rubber molded body 10a to the surface of the substrate 11 by any means. In the manufacturing method according to the present invention, first, a molten resin layer of a thermoplastic synthetic resin is formed on the surface of the substrate 11, and the tip of each columnar body 13 of the rubber molded body 10a is pressed and buried in the molten resin layer. We take means to make it. FIG. 4 shows a coating apparatus 20 for forming a molten resin layer of a thermoplastic synthetic resin on the surface of the substrate 11.
[0036]
The coating treatment apparatus 20 mainly includes a resin treatment tank having a floating chamber for floating the fine powder resin, and a filter 22 is provided in the vicinity of a bottom in a tank body 21 constituting the resin treatment tank. It is arranged. A compressed air supply pipe 23 is connected to the side wall of the tank main body 21 near the bottom thereof. In such a configuration, a chamber above the filter 22 in the tank body 21 is a floating chamber 24 of the fine powder resin.
[0037]
In the coating treatment apparatus 20, the floating chamber 24 contains a fine powder resin of a polyolefin-based synthetic resin (a modified polyethylene or the like) which is a thermoplastic synthetic resin. When the compressed air is supplied into the main body 21, the compressed air uniformly permeates the entire filter 22 and blows up the fine powder resin contained in the floating chamber 24 to be in a floating state. Creates an atmosphere in which air floats. Since the fine powder resin in the floating chamber 24 is a resin component constituting the thermoplastic resin layer 14 in the present invention, the fine powder resin is hereinafter referred to as a fine powder resin 14a.
[0038]
In order to form the thermoplastic synthetic resin layer 14 on the surface of the substrate 11 using the coating processing apparatus 20, the substrate 11 previously heated to 260 to 310 ° C. is hung on a hanger (not shown). Then, the resin is suspended in the atmosphere in which the fine powdery resin 14a is floating in the floating chamber 24 of the coating treatment apparatus 20 for a predetermined time. Thereby, the floating fine powder resin 14 a is innumerably welded to the surface of the substrate 11 in a heated state, and forms a molten layer of the plastic synthetic resin layer 14.
[0039]
In order to manufacture the elastic structure 10A, the coated substrate 11 taken out of the floating chamber 24 is placed on the base at the time when the thermoplastic synthetic resin layer 14 is in a molten state (melted layer). 13 is placed on the tip of each column 13 of the rubber body 10a placed with its tip facing upward. In this mounted state, the substrate 11 presses the rubber molded body 10a by its own weight, and pushes the tip of each column 13 into the resin melt layer. Thus, when the molten resin layer is cooled and solidified to form the thermoplastic synthetic resin layer 14, the tip of each column 13 is buried in the thermoplastic synthetic resin layer 14 for a predetermined length, and the rubber molded body is formed. 10a and the substrate 11 are in a firmly fixed state.
[0040]
Conversely, the coated substrate 11 taken out of the floating chamber 24 is placed on the base 11, and the thermoplastic synthetic resin layer 14 on the surface of the base 11 becomes a molten layer, You may make it join by pressing a front-end | tip part. Thereby, when the molten layer is cooled and solidified to form the thermoplastic synthetic resin layer 14, the tip of each column 13 is buried in the thermoplastic synthetic resin layer 14 for a predetermined length, and the rubber molded body 10a is formed. And the substrate 11 are in a firmly fixed state.
[0041]
As shown in FIG. 3, the second elastic structure 10 </ b> B according to the present invention includes the substrate 11, the surface plate 12, and the two plates 11, 12 interposed between the surface plate 12 and the substrate 11 in an upright state. It is composed of a number of columnar members 13 connected to each other and a reinforcing plate 15 located on the surface side of the surface plate 12, and is a four-stage elastic structure. The elastic structure 10B is made of the same constituent material as the elastic structure 10A, except for the reinforcing plate 15, and uses the same thermoplastic synthetic resin layer 14 as an adhesive layer. A rubber molded body 10b in which the face plate 12 and each columnar body 13 are integrated is used.
[0042]
The reinforcing plate 15 is a hard plate such as an iron plate or an aluminum plate, and is connected to the substrate 11 while sandwiching the surface plate 12 and each column 13 (rubber molded body 10b). As the connecting means, means for directly connecting the reinforcing plate 15 and the substrate 11 at each corner via connecting bolts can be employed. When the surface plate 12 is made of rubber, the reinforcing plate 15 is connected to the substrate 11 via the rubber molded body 10b by being vulcanized and bonded to the surface of the surface plate 12.
[0043]
In the elastic structure 10B having such a configuration, the rubber generator 10b constituting the intermediate layer has the same configuration as the rubber molded body 10a of the elastic structure 10A which is the embodiment of the first elastic structure. It has a flexible function. The elastic structure 10B is an elastic structure obtained by adding a reinforcing plate 15 to the elastic structure 10A. The reinforcing plate 15 protects the surface plate 12 constituting the rubber molded body 10b while covering it.
[0044]
Further, the reinforcing plate 15 constituting the elastic structure 10B has a function of uniformly dispersing and transmitting various external impacts to the rubber molded body 10b. For this reason, the reinforcing plate 15 bends the entire rubber molded body 10b substantially evenly to prevent local bending, and properly exerts the flexibility function of the elastic structure 10B. Premature damage of the rubber molded body 10b due to local deflection of the rubber molded body 10b is prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first elastic structure according to the present invention.
FIG. 2 is a bottom view of a rubber molded body constituting the elastic structure.
FIG. 3 is a longitudinal sectional view showing a second elastic structure according to the present invention.
FIG. 4 is a longitudinal sectional view of a coating apparatus for forming a molten layer of a thermoplastic synthetic resin layer.
[Explanation of symbols]
10A, 10B: elastic structure, 10a, 10b: rubber molded body, 11: substrate, 12: surface plate, 13: columnar body, 14: thermoplastic synthetic resin layer, 14a: fine powder resin, 15: reinforcing plate, Reference numeral 20 denotes a coating treatment apparatus, 21 denotes a tank body, 22 denotes a filter, 23 denotes a supply pipe, and 24 denotes a floating chamber.

Claims (9)

硬質の基板と、軟質の表面板と、同表面板と前記基板間に起立状態で介在してこれら両板を互いに連結する弾性材料からなる多数の柱状体を構成部材とする三段構造の弾性構造体であり、前記各柱状体は前記表面板の裏面側に一体的に形成されて同裏面側に均等に配列し、同柱状体の先端部が前記基板の表面を被覆する熱可塑性合成樹脂層に埋没した接合状態で固着されていることを特徴とする弾性構造体。A three-stage elastic structure comprising a rigid substrate, a soft surface plate, and a number of columnar members made of an elastic material interposed between the surface plate and the substrate in an upright state and connecting the two plates to each other. A structural body, wherein each of the columnar bodies is integrally formed on the back side of the front plate and is evenly arranged on the back side, and a front end of the columnar body covers a surface of the substrate. An elastic structure characterized by being fixed in a bonded state buried in a layer. 硬質の基板と、軟質の表面板と、同表面板と前記基板間に起立状態で介在してこれら両板を互いに連結する弾性材料からなる多数の柱状体と、前記表面板の表面側に位置する補強板を構成部材とする四段構造の弾性構造体であり、前記各柱状体は前記表面板の裏面側に一体的に形成されて同裏面側に均等に配列し、同柱状体の先端部が前記基板の表面を被覆する熱可塑性合成樹脂層に埋没した接合状態で固着されており、かつ、前記補強板と前記基板とは前記表面板および前記各柱状体を挟持した状態で互いに連結されていることを特徴とする弾性構造体。A hard substrate, a soft surface plate, a number of columnar bodies made of an elastic material interposed in an upright state between the surface plate and the substrate and connecting these two plates to each other, and located on the surface side of the surface plate. A four-stage elastic structure having a reinforcing plate as a constituent member, wherein each of the pillars is formed integrally on the back side of the front plate and is evenly arranged on the back side. The part is fixed in a bonded state buried in a thermoplastic synthetic resin layer covering the surface of the substrate, and the reinforcing plate and the substrate are connected to each other while sandwiching the surface plate and each columnar body. An elastic structure characterized by being made. 請求項1または2に記載の弾性構造体において、前記基板は金属材料またはセラミック材料からなる板体であり、かつ、前記表面板と前記各柱状体とは弾性ゴム材料にて一体的に成形されたゴム成形体であることを特徴とする弾性構造体。3. The elastic structure according to claim 1, wherein the substrate is a plate made of a metal material or a ceramic material, and the surface plate and each of the pillars are integrally formed of an elastic rubber material. 4. An elastic structure characterized by being a rubber molded body. 請求項1〜3のいずれか一項に記載の弾性構造体において、前記各柱状体は、前記基板および前記表面板に対して千鳥配列状態に均等に配列していることを特徴とする弾性構造体。The elastic structure according to any one of claims 1 to 3, wherein each of the columnar bodies is uniformly arranged in a staggered arrangement with respect to the substrate and the surface plate. body. 請求項1〜4のいずれか一項に記載の弾性構造体において、前記各柱状体は前記表面板の裏面から漸次縮径して前記基板側に先細り状態に延びる円柱体であることを特徴とする弾性構造体。The elastic structure according to any one of claims 1 to 4, wherein each of the columnar bodies is a columnar body that gradually decreases in diameter from a back surface of the front plate and that tapers toward the substrate. Elastic structure. 請求項1〜5のいずれか一項に記載の弾性構造体において、前記表面板および各柱状体は、エチレンプロピレンゴム、ブチルゴム、ブタジェンゴム、イソプレンゴムおよびクロロプレンゴムの群から選択される弾性ゴムを成形材料としていることを特徴とする弾性構造体。The elastic structure according to any one of claims 1 to 5, wherein the surface plate and each column are formed of an elastic rubber selected from the group consisting of ethylene propylene rubber, butyl rubber, butadiene rubber, isoprene rubber, and chloroprene rubber. An elastic structure made of a material. 請求項6に記載の弾性構造体において、前記各柱状体を基板に固着する熱可塑性合成樹脂は、ポリレフィン系の熱可塑性合成樹脂の群から選択されれる熱可塑性合成樹脂であることを特徴とする弾性構造体。7. The elastic structure according to claim 6, wherein the thermoplastic synthetic resin for fixing each of the columnar bodies to the substrate is a thermoplastic synthetic resin selected from the group of polyolefin-based thermoplastic synthetic resins. Elastic structure. 硬質の基板と、軟質の表面板と、同表面板と前記基板間に起立状態で介在してこれら両板を互いに連結する弾性材料からなる多数の柱状体を構成部材とする三段構造の弾性構造体の製造方法であり、前記基板を加熱状態で熱可塑性合成樹脂の粉末が飛散する雰囲気に曝して同基板の表面に熱可塑性合成樹脂の被覆層を形成し、前記表面板と一体の前記各柱状体の先端部を溶融状態にある同被覆層に押圧状態で接合し、同被覆層を固化することにより、前記各柱状体を前記基板の表面側に固着することを特徴とする弾性構造体の製造方法。A three-stage elastic structure comprising a rigid substrate, a soft surface plate, and a number of columnar members made of an elastic material interposed between the surface plate and the substrate in an upright state and connecting the two plates to each other. A method of manufacturing a structure, wherein the substrate is exposed to an atmosphere in which thermoplastic synthetic resin powder is scattered in a heated state to form a coating layer of the thermoplastic synthetic resin on the surface of the substrate, and the surface plate is integrated with the surface plate. An elastic structure characterized in that the columnar body is fixed to the surface side of the substrate by bonding the tip end of each columnar body to the coating layer in a molten state in a pressing state and solidifying the coating layer. How to make the body. 硬質の基板と、軟質の表面板と、同表面板と前記基板間に起立状態で介在してこれら両板を互いに連結する弾性材料からなる多数の柱状体と、前記表面板の表面側に位置する補強板を構成部材とする四段構造の弾性構造体であり、前記基板を加熱状態で熱可塑性合成樹脂の粉末が飛散する雰囲気に曝して同基板の表面に熱可塑性合成樹脂の被覆層を形成し、前記表面板と一体の前記各柱状体の先端部を溶融状態にある同被覆層に押圧状態で接合し、同被覆層を固化することによって前記各柱状体を前記基板の表面に固着し、前記補強板を前記表面板に載置した状態で前記基板に連結することを特徴とする弾性構造体の製造方法。A hard substrate, a soft surface plate, a number of columnar bodies made of an elastic material interposed in an upright state between the surface plate and the substrate and connecting these two plates to each other, and located on the surface side of the surface plate. Is a four-stage elastic structure having a reinforcing plate as a constituent member, and exposing the substrate to an atmosphere in which thermoplastic synthetic resin powder is scattered in a heated state to form a coating layer of the thermoplastic synthetic resin on the surface of the substrate. Forming and bonding the tip of each columnar body integral with the surface plate to the coating layer in a molten state in a pressed state, and solidifying the coating layer, thereby fixing each columnar body to the surface of the substrate. And a step of connecting the reinforcing plate to the substrate while the reinforcing plate is placed on the surface plate.
JP2003047663A 2003-02-25 2003-02-25 Elastic structure and manufacturing method thereof Expired - Fee Related JP3899325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047663A JP3899325B2 (en) 2003-02-25 2003-02-25 Elastic structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047663A JP3899325B2 (en) 2003-02-25 2003-02-25 Elastic structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004255663A true JP2004255663A (en) 2004-09-16
JP3899325B2 JP3899325B2 (en) 2007-03-28

Family

ID=33113856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047663A Expired - Fee Related JP3899325B2 (en) 2003-02-25 2003-02-25 Elastic structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3899325B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083862A1 (en) * 2012-11-27 2014-06-05 豊田鉄工株式会社 Stacked composite component
WO2014087678A1 (en) * 2012-12-06 2014-06-12 豊田鉄工株式会社 Multi-layer composite part
JP2018002071A (en) * 2016-07-07 2018-01-11 しげる工業株式会社 Armrest for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083862A1 (en) * 2012-11-27 2014-06-05 豊田鉄工株式会社 Stacked composite component
JP2014104658A (en) * 2012-11-27 2014-06-09 Toyoda Iron Works Co Ltd Superposition composite component
CN104812565A (en) * 2012-11-27 2015-07-29 丰田铁工株式会社 Stacked composite component
WO2014087678A1 (en) * 2012-12-06 2014-06-12 豊田鉄工株式会社 Multi-layer composite part
CN104853909A (en) * 2012-12-06 2015-08-19 丰田铁工株式会社 Multi-layer composite part
JP2018002071A (en) * 2016-07-07 2018-01-11 しげる工業株式会社 Armrest for vehicle

Also Published As

Publication number Publication date
JP3899325B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP5890833B2 (en) Broadband sound absorber
US9369805B2 (en) Acoustic absorber, acoustic transducer, and method for producing an acoustic absorber or an acoustic transducer
EP1955899A1 (en) Constrained layer damping for vehicle
JPS5947785B2 (en) soundproofing elements
JP2002201730A (en) Soundproof floor structure, soundproof floor material and execution method of soundproof floor structure
JP2007509816A (en) Sound insulation system
JP2004210287A (en) Vehicle component having sound effect
KR101269110B1 (en) A method for manufacturing and execution of works with a panel for absorbing and cutting off impact noise
JPH0886080A (en) Soundproof floor board
KR102283510B1 (en) speaker panel
JP2010234991A (en) Sound insulating material for vehicle
JP3583644B2 (en) Soundproofing material
JP2004255663A (en) Elastic structure and its manufacturing method
JP2006208859A (en) Sound insulating material
JP4407950B2 (en) Noise reduction structure of concrete viaduct
JP3421982B2 (en) Soundproof floor material and soundproof floor structure
JP2003147947A (en) Vibration control heat insulating floor structure of building
JP2008213652A (en) Floor structure for railway vehicle
JP3218787U (en) Steel bridge girder of bridge
JPH0641901A (en) Vibration proofing sleeper
KR20150078304A (en) building material to noise prevention
JP2021530652A (en) Multi-layer damping material
JPH0868191A (en) Floor plate
JPH0814195B2 (en) Soundproof flooring
JP6362205B2 (en) Damping floor structure and construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3899325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees