JP2008213652A - Floor structure for railway vehicle - Google Patents

Floor structure for railway vehicle Download PDF

Info

Publication number
JP2008213652A
JP2008213652A JP2007053369A JP2007053369A JP2008213652A JP 2008213652 A JP2008213652 A JP 2008213652A JP 2007053369 A JP2007053369 A JP 2007053369A JP 2007053369 A JP2007053369 A JP 2007053369A JP 2008213652 A JP2008213652 A JP 2008213652A
Authority
JP
Japan
Prior art keywords
layer
vehicle
floor structure
absorbing layer
vibration absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007053369A
Other languages
Japanese (ja)
Other versions
JP4794479B2 (en
Inventor
Hideyuki Nogami
秀之 野上
Tadashi Iinuma
正 飯沼
Toshiyuki Koshi
敏幸 高子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKARA KENZAI SEISAKUSHO KK
Original Assignee
TAKARA KENZAI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKARA KENZAI SEISAKUSHO KK filed Critical TAKARA KENZAI SEISAKUSHO KK
Priority to JP2007053369A priority Critical patent/JP4794479B2/en
Publication of JP2008213652A publication Critical patent/JP2008213652A/en
Application granted granted Critical
Publication of JP4794479B2 publication Critical patent/JP4794479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a floor structure for a railway vehicle having excellent sound-proofing characteristic and simplifying a manufacturing step. <P>SOLUTION: A vibration absorption layer 3 constituted by an elastic material having an average Young's modulus of 22-62 MPa is formed on a corrugated sheet 9 fixed to a lateral beam 11, and a load-resistance layer constituted by a material having an average Young's modulus of 3,000-4,000 MPa is formed on an upper surface of the vibration absorption layer 3. Since vibration from a lower side of a floor of the vehicle is absorbed by the vibration absorption layer 3, the radiation sound is reduced and the permeation sound is shut off by the load-resistance layer. Thereby, the sound-proofing effect is outstandingly enhanced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は鉄道車両の床構造に関するものである。   The present invention relates to a railcar floor structure.

従来から鉄道車両の床構造として、図10の断面図に示すものが採用されている。この床構造101は、鉄道車両の台枠(図示せず)に固定された横梁111上に、ステンレス等の板を波状に折り曲げて形成した波板109(キーストンプレートとも称される)を溶接し、その波板109の上面に詰物層103を塗り込み、さらにその上に目止め層150及び不陸調整層102を塗り込んだものである。また、不陸調整層102の上には塩化ビニル等からなる床敷物110が敷かれている。   Conventionally, as shown in the cross-sectional view of FIG. 10, a floor structure of a railway vehicle has been adopted. The floor structure 101 is formed by welding a corrugated plate 109 (also referred to as a keystone plate) formed by bending a plate of stainless steel or the like into a corrugated shape on a horizontal beam 111 fixed to a railcar frame (not shown). The filling layer 103 is applied to the upper surface of the corrugated plate 109, and the sealing layer 150 and the unevenness adjusting layer 102 are further applied thereon. Further, a floor covering 110 made of vinyl chloride or the like is laid on the non-land adjustment layer 102.

詰物層103は、図12の拡大図に示すように、軽量骨材106をバインダー104で結合一体化した材料が用いられる。このバインダー104は、エポキシ樹脂にアミン化合物を含む硬化剤を混合することによって硬化させる、いわゆる2液硬化型のエポキシ樹脂が従来から用いられている。また、不陸調整層102(図10参照)も同様に、軽量骨材を2液硬化型のエポキシ樹脂で結合したものが用いられている。   As shown in the enlarged view of FIG. 12, the filling layer 103 is made of a material in which a lightweight aggregate 106 is bonded and integrated with a binder 104. As the binder 104, a so-called two-component curable epoxy resin that is cured by mixing a curing agent containing an amine compound with an epoxy resin has been conventionally used. Similarly, the non-land adjustment layer 102 (see FIG. 10) is formed by bonding a lightweight aggregate with a two-component curable epoxy resin.

しかし、詰物層103にエポキシ樹脂を用いると硬くなるため、振動や音を吸収しにくくなる。そのため、車両床下で発生した騒音や振動が客室に伝わりやすくなり、乗客に不快感を与える問題が生じていた。   However, when an epoxy resin is used for the filling layer 103, the padding layer 103 becomes hard, so it is difficult to absorb vibration and sound. For this reason, noise and vibration generated under the vehicle floor are easily transmitted to the passenger cabin, which causes a problem of discomfort to passengers.

客室へ伝わる騒音を低減するために、例えば下記特許文献1に、詰物層103のバインダー又は骨材に弾性材料を用いた鉄道車両の床構造が開示されている。バインダー又は骨材を弾性材料とすることにより、振動を効率的に減衰でき、客室に伝わる騒音を小さくできる。
特開2000−127964号公報
In order to reduce noise transmitted to the passenger room, for example, Patent Document 1 below discloses a floor structure of a railway vehicle using an elastic material as a binder or an aggregate of the filling layer 103. By using a binder or aggregate as an elastic material, vibration can be efficiently damped and noise transmitted to the passenger cabin can be reduced.
JP 2000-127964 A

しかし、上記発明でも騒音の低減効果は十分ではなかった。鉄道車両の騒音は大まかに分けると2種類あって、一つは床下から伝播した振動が床面を振動させて生じる放射音であり、他の一つは床を透過する透過音である。床に弾性材料を使用すると振動を減衰できるため、上述の騒音のうち放射音を減少することが可能となる。しかし、これだけでは透過音が通過してしまうため、防音特性を大幅に改善することができない。   However, even in the above invention, the noise reduction effect is not sufficient. There are roughly two types of noise in railway vehicles. One is radiated sound that is generated when vibration propagated from under the floor vibrates the floor, and the other is transmitted sound that passes through the floor. When an elastic material is used for the floor, vibration can be damped, so that it is possible to reduce radiated sound among the above-mentioned noises. However, the transmitted sound passes only with this, so that the soundproof characteristic cannot be improved significantly.

一方、図11の部分拡大図に示すように、従来の床構造では、詰物層103の上面に目止め層150を塗り、固化させた後に下側接着層112を塗布し、その上に不陸調整層102を塗り込んでいた。そして、その不陸調整層102が固化した後に上側接着層113を塗布し、その上に敷物層110を敷設していた。ここで目止め層150及び不陸調整層102を塗るのは、以下の理由による。すなわち、図12に示すように、詰物層103は軽量化のために空隙Nを多く含む材料を使用しているため、表面S’(図11参照)が凹凸になっている。この凹凸の表面を平坦化するために不陸調整層102が必要となるが、これを直接塗り込むと、空隙Nに不陸調整層102が入ってしまい、厚さを正確にコントロールできなくなる。そのため、詰物層103と不陸調整層102との間に目止め層150を介在させて、空隙Nに不陸調整層102が入ることを防止している。しかし、この製造方法を採用すると、目止め層150を塗る作業が1工程増えるとともに、目止め層150が乾燥するまで次の工程を行えないため、製造時間が長くなるという問題があった。そのため、目止め層150を塗る工程を省略できる床構造が望まれていた。   On the other hand, as shown in the partially enlarged view of FIG. 11, in the conventional floor structure, the sealing layer 150 is applied to the upper surface of the filling layer 103 and solidified, and then the lower adhesive layer 112 is applied, and then the surface is non-landing. The adjustment layer 102 was applied. Then, after the unevenness adjusting layer 102 is solidified, the upper adhesive layer 113 is applied, and the rug layer 110 is laid thereon. The sealing layer 150 and the unevenness adjusting layer 102 are applied here for the following reason. That is, as shown in FIG. 12, since the filling layer 103 uses a material containing a large amount of voids N for weight reduction, the surface S ′ (see FIG. 11) is uneven. In order to flatten the surface of the unevenness, the unevenness adjusting layer 102 is necessary. However, if the unevenness adjusting layer 102 is directly applied, the unevenness adjusting layer 102 enters the gap N, and the thickness cannot be accurately controlled. Therefore, the sealing layer 150 is interposed between the filling layer 103 and the non-land adjustment layer 102 to prevent the non-land adjustment layer 102 from entering the gap N. However, when this manufacturing method is adopted, there is a problem that the number of steps of applying the sealing layer 150 is increased by one step, and the next step cannot be performed until the sealing layer 150 is dried. Therefore, a floor structure that can omit the step of applying the sealing layer 150 has been desired.

本発明の課題は、優れた防音特性を有するとともに、製造工程を簡略化できる鉄道車両の床構造を提供することにある。   An object of the present invention is to provide a railcar floor structure that has excellent soundproofing characteristics and can simplify the manufacturing process.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の鉄道車両の床構造は、
鉄道車両の底部をなす台枠に対して、車両横幅方向に延びる形で各々固定され、車両長手方向に所定間隔をおいて複数本配置された横梁と、
車両長手方向に延出し、横梁との交差領域において横梁上に固定された底板部と、底板部の車両横幅方向第一側の縁部から上方に突出する第一側板部と、第一側板部の上端から車両横幅方向第一側に延出する上板部と、上板部の車両横幅方向第一側縁部から下方に延出し横梁に至る第二側板部とを備えた波状単位を、車両横幅方向に複数個連続する形で形成した金属製の波板と、
底板部と、隣接する第一側板部及び第二側板部とによって形成された凹状の空間を充填し、上板部の上面を被覆するとともに、自身の上面が平坦化され、平均的なヤング率が22〜62MPaの弾性材料から構成され、鉄道車両の走行に伴って発生し台枠から上方へ伝播する振動を吸収する振動吸収層と、
振動吸収層の上面に積層され、上面に接着されるとともに、平均的なヤング率が3000〜4000MPaの材料から構成され、鉄道車両の走行に伴って床下から発生した透過音を遮音するとともに、乗客の重量を受け止める耐荷重層と、
耐荷重層の上面に敷設され、客室の底部露出面をなす敷物層と、
を備えることを特徴とする。
In order to solve the above problems, the floor structure of the railway vehicle of the present invention is
A transverse beam that is fixed in a form extending in the vehicle lateral width direction and arranged in a plurality of predetermined intervals in the longitudinal direction of the vehicle, with respect to the frame that forms the bottom of the railway vehicle,
A bottom plate portion that extends in the longitudinal direction of the vehicle and is fixed on the cross beam in a crossing area with the cross beam, a first side plate portion that protrudes upward from an edge of the bottom plate portion on the first side in the vehicle lateral width direction, and a first side plate portion A wavy unit comprising an upper plate portion extending from the upper end of the vehicle to the vehicle lateral direction first side, and a second side plate portion extending downward from the vehicle lateral width direction first side edge portion of the upper plate portion to reach the horizontal beam, A metal corrugated plate formed in a continuous form in the vehicle transverse direction;
Fills the concave space formed by the bottom plate part, the adjacent first side plate part and the second side plate part, covers the upper surface of the upper plate part, and flattens its own upper surface, and average Young's modulus Is composed of an elastic material of 22 to 62 MPa, and a vibration absorbing layer that absorbs vibrations that are generated as the railway vehicle travels and propagates upward from the underframe,
It is laminated on the upper surface of the vibration absorbing layer and bonded to the upper surface, and is composed of a material having an average Young's modulus of 3000 to 4000 MPa. A load bearing layer that accepts the weight of
A rug layer laid on the top surface of the load bearing layer and forming the bottom exposed surface of the cabin;
It is characterized by providing.

上記発明によると、鉄道車両の台枠に固定された複数本の横梁に、金属製の波板が固定され、その波板の上面を平坦化する形で、振動吸収層が形成されている。この振動吸収層は、平均的なヤング率が22〜62MPaの弾性材料から構成されており、軟らかいため、床下からの振動を効率的に減衰することができる。そのため、放射音を効果的に低減することが可能となる。振動吸収層の平均的なヤング率が62MPaを超えると、硬すぎて振動を十分に吸収できなくなる。また、22MPa未満では軟らかすぎて、床の剛性を確保できない場合がある。   According to the above invention, the metal corrugated plate is fixed to the plurality of horizontal beams fixed to the frame of the railway vehicle, and the vibration absorbing layer is formed so as to flatten the upper surface of the corrugated plate. This vibration absorbing layer is made of an elastic material having an average Young's modulus of 22 to 62 MPa and is soft, so that vibration from under the floor can be efficiently damped. For this reason, it is possible to effectively reduce the radiated sound. When the average Young's modulus of the vibration absorbing layer exceeds 62 MPa, the vibration absorbing layer is too hard to sufficiently absorb vibration. Moreover, if it is less than 22 MPa, it may be too soft to ensure the rigidity of the floor.

また、振動吸収層の上面には、平均的なヤング率が3000〜4000MPaの材料から構成された耐荷重層が積層されている。上述したように騒音は、大まかにいうと放射音と透過音の2種類があって、このうち透過音を耐荷重層にて遮音することが可能となる。また、耐荷重層は、平均的なヤング率が3000〜4000MPaと比較的硬い材料から構成されているため、乗客の体重を十分に受け止めることができる。例えば、ハイヒールを履いた乗客が乗っても凹むことはない。ヤング率が3000MPa未満では軟らかすぎて、例えばハイヒールで陥没する恐れがある。   A load bearing layer made of a material having an average Young's modulus of 3000 to 4000 MPa is laminated on the upper surface of the vibration absorbing layer. As described above, there are roughly two types of noise, radiated sound and transmitted sound, and among these, the transmitted sound can be insulated by the load-bearing layer. Moreover, since the load bearing layer is made of a relatively hard material having an average Young's modulus of 3000 to 4000 MPa, the weight of the passenger can be sufficiently received. For example, even if a passenger wearing high heels gets on, it will not dent. If the Young's modulus is less than 3000 MPa, it is too soft and, for example, there is a risk of sinking with high heels.

このように本発明では、走行中の鉄道車両から発生した騒音に含まれる放射音と透過音とを、各々別の層を使って取り除いている。つまり、鉄道車両から発生した放射音と透過音とを各々最も効率よく除去できるように、振動吸収層と耐荷重層のヤング率を設定している。また、耐荷重層に関しては、乗客の体重を支える上でも支障がないようにヤング率を決めている。   As described above, in the present invention, the radiated sound and the transmitted sound included in the noise generated from the running railway vehicle are removed using different layers. That is, the Young's modulus of the vibration absorbing layer and the load bearing layer is set so that the radiated sound and transmitted sound generated from the railway vehicle can be removed most efficiently. Regarding the load bearing layer, the Young's modulus is determined so that there is no problem in supporting the weight of the passenger.

より詳しくは、上板部における振動吸収層の厚さは5〜10mmであり、耐荷重層の厚さは3〜5mmであることが好ましい。鉄道車両の床構造では、車両の型式でその厚さが決められているため、振動吸収層と耐荷重層とを足した厚さを一定(上板部において15mm)にする必要がある。上記構成によると、振動吸収層が軟らかい(平均的なヤング率22〜62MPa)ため、薄くても(5〜10mm)十分な振動吸収効果を発揮でき、その薄くした分だけ耐荷重層を厚く(3〜5mm)できるため、透過音の遮音特性を一層向上することができる。   More specifically, the thickness of the vibration absorbing layer in the upper plate portion is preferably 5 to 10 mm, and the thickness of the load bearing layer is preferably 3 to 5 mm. In the floor structure of a railway vehicle, the thickness is determined depending on the type of the vehicle. Therefore, the thickness obtained by adding the vibration absorbing layer and the load bearing layer needs to be constant (15 mm in the upper plate portion). According to the above configuration, since the vibration absorbing layer is soft (average Young's modulus 22 to 62 MPa), even if it is thin (5 to 10 mm), a sufficient vibration absorbing effect can be exhibited, and the load-bearing layer is thickened by the thinning (3 ˜5 mm), the sound insulation property of transmitted sound can be further improved.

一方、本発明は在来線の鉄道車両に広く応用が効くものであって、上述のように波板を有する鉄道車両に限らず使用することができる。具体的には、ダブルスキンと称される床構体を使用した鉄道車両に利用することが可能である。すなわち、本発明の鉄道車両の床構造は、
鉄道車両の底部をなす台枠に対して、車両横幅方向に延びる形で各々固定され、車両長手方向に所定間隔をおいて複数本配置された横梁と、
横梁上に固定された下板と、下板の上方に所定間隔をおいて配置された上板とを有し、これら上板と下板とを接続するとともに、上板との接続部から下板との接続部まで車両横幅方向に傾斜し、車両長手方向に延出する形で形成された第一傾斜板部と、下板との接続部から上板まで第一傾斜板部に対して反対方向に傾斜する形で形成された第二傾斜板部とを備える波状単位が、車両横幅方向に複数個連続する形で形成された金属製のダブルスキン床構体と、
ダブルスキン床構体の上板に積層され、上板に接着されるとともに、自身の上面が平坦化され、平均的なヤング率が22〜62MPaの弾性材料から構成され、鉄道車両の走行に伴って発生し台枠から上方へ伝播する振動を吸収する振動吸収層と、
振動吸収層の上面に積層され、上面に接着されるとともに、平均的なヤング率が3000〜4000MPaの材料から構成され、鉄道車両の走行に伴って床下から発生した透過音を遮音するとともに、乗客の重量を受け止める耐荷重層と、
耐荷重層の上面に敷設され、客室の底部露出面をなす敷物層と、
を備えることを特徴とする。
On the other hand, the present invention is widely applicable to conventional railway vehicles, and can be used not only for railway vehicles having corrugated sheets as described above. Specifically, the present invention can be used for a railway vehicle using a floor structure called a double skin. That is, the floor structure of the railway vehicle of the present invention is
A transverse beam that is fixed in a form extending in the vehicle lateral width direction and arranged in a plurality of predetermined intervals in the longitudinal direction of the vehicle, with respect to the frame that forms the bottom of the railway vehicle,
It has a lower plate fixed on the cross beam and an upper plate arranged above the lower plate at a predetermined interval. The upper plate and the lower plate are connected to each other. Inclined in the vehicle lateral width direction to the connection portion with the plate and extended in the longitudinal direction of the vehicle, and the first inclined plate portion from the connection portion with the lower plate to the upper plate A metal double skin floor structure formed of a plurality of wavy units each including a second inclined plate portion formed in a shape inclined in the opposite direction, in the vehicle lateral width direction;
It is laminated on the upper plate of the double skin floor structure, adhered to the upper plate, and its upper surface is flattened, and is composed of an elastic material having an average Young's modulus of 22 to 62 MPa. A vibration absorbing layer that absorbs vibrations that are generated and propagate upward from the underframe;
It is laminated on the upper surface of the vibration absorbing layer and bonded to the upper surface, and is composed of a material having an average Young's modulus of 3000 to 4000 MPa. A load bearing layer that accepts the weight of
A rug layer laid on the top surface of the load bearing layer and forming the bottom exposed surface of the cabin;
It is characterized by providing.

上記構成の場合でも、振動吸収層と耐荷重層とが発揮する効果は波板の場合と同じなので、その詳細な説明は省略する。   Even in the case of the above-described configuration, the effects exerted by the vibration absorbing layer and the load bearing layer are the same as in the case of the corrugated sheet, and thus detailed description thereof is omitted.

次に、振動吸収層は空隙率が1%未満の緻密材料から構成され、振動吸収層の上面と自身の下面とが密着する形で接着層が塗布形成され、
耐荷重層は、骨材と樹脂材料との混合物を流動状態にて接着層の上面に対して塗り込み、固化して形成したものとすることができる。
Next, the vibration absorbing layer is composed of a dense material having a porosity of less than 1%, and an adhesive layer is applied and formed so that the upper surface of the vibration absorbing layer and its lower surface are in close contact with each other,
The load bearing layer may be formed by applying a mixture of aggregate and resin material to the upper surface of the adhesive layer in a fluidized state and solidifying.

この構成によると、振動吸収層は空隙率が1%未満の緻密材料から構成されているため、この上に耐荷重層を塗り込んだ場合でも、振動吸収層の空隙に耐荷重層が入り込むような不具合は生じにくい。従って、振動吸収層と耐荷重層との間に接着層のみが介在する構造を採用でき、従来のように目止め層を介在させる必要がない。そのため、目止め層を塗る工程を省略でき、工程の簡略化を達成できる。   According to this configuration, since the vibration absorbing layer is made of a dense material having a porosity of less than 1%, even when the load bearing layer is applied on the vibration absorbing layer, the load bearing layer enters the void of the vibration absorbing layer. Is unlikely to occur. Therefore, it is possible to employ a structure in which only the adhesive layer is interposed between the vibration absorbing layer and the load bearing layer, and there is no need to interpose a sealing layer as in the prior art. Therefore, the process of applying the sealing layer can be omitted, and the process can be simplified.

一方、振動吸収層は、ゴムチップとウレタン樹脂とを含む混合物から構成し、耐荷重層は、無機骨材とエポキシ樹脂とを含む混合物から構成することができる。振動吸収層は、骨材(ゴムチップ)とバインダー(ウレタン樹脂)の双方を弾性材料とすることにより、どちらか一方のみを弾性材料とした場合と比較して、振動を効果的に吸収することが可能となる。また、耐荷重層は、無機骨材とエポキシ樹脂との混合物を使用することにより、平均的なヤング率を3000〜4000MPaにすることができる。   On the other hand, the vibration absorbing layer can be made of a mixture containing a rubber chip and a urethane resin, and the load bearing layer can be made of a mixture containing an inorganic aggregate and an epoxy resin. The vibration-absorbing layer can absorb vibrations more effectively by using both an aggregate (rubber chip) and a binder (urethane resin) as an elastic material, compared to the case where only one of them is an elastic material. It becomes possible. The load bearing layer can have an average Young's modulus of 3000 to 4000 MPa by using a mixture of inorganic aggregate and epoxy resin.

次に、ゴムチップの平均粒径は、1.0〜2.0mmとすることが好ましい。ゴムチップの平均粒径が2.0mmを超えると、振動吸収層の空隙率が増加するため、耐荷重層を塗り込んだときに、その空隙に耐荷重層が入ってしまう場合がある。その結果、目止め層が必要となることがある。また、振動吸収層は軟らかいウレタン樹脂を使用しているため、空隙率が増加すると、曲げ応力が加わったときに割れやすくなる。一方、振動吸収層は、ゴムチップとウレタン樹脂とを、モルタルミキサを使って混練して製造するのであるが、ここでゴムチップが小さくなる(平均粒径が1.0mm以下)と、分散性が悪化しやすくなる。   Next, the average particle size of the rubber chip is preferably 1.0 to 2.0 mm. When the average particle size of the rubber chip exceeds 2.0 mm, the porosity of the vibration absorbing layer increases, and thus when the load bearing layer is applied, the load bearing layer may enter the void. As a result, a sealing layer may be required. In addition, since the vibration absorbing layer uses a soft urethane resin, when the porosity increases, the vibration absorbing layer easily breaks when bending stress is applied. On the other hand, the vibration absorbing layer is manufactured by kneading rubber chips and urethane resin using a mortar mixer, but here the dispersibility deteriorates when the rubber chips are small (average particle size is 1.0 mm or less). It becomes easy to do.

次に、振動吸収層よりも密度が低い材料からなり、車両長手方向に延びる形に形成された軽量化部材を、波板の底板部に配置することができる。上述したように、振動吸収層は空隙率が小さいため、密度が比較的高い。そのため、波板の底板部に軽量化部材を配置することにより、全体の重量を軽くすることが可能となる。また、軽量化部材として、ヤング率が振動吸収層よりも高い材料を選択すると、全体の剛性を高めることが可能になる。軽量化部材としては、例えば発泡倍率が10〜15倍のアクリル樹脂を好適に用いることができる。   Next, a weight reducing member made of a material having a density lower than that of the vibration absorption layer and extending in the vehicle longitudinal direction can be disposed on the bottom plate portion of the corrugated plate. As described above, since the vibration absorbing layer has a low porosity, the density is relatively high. Therefore, it is possible to reduce the overall weight by arranging the weight reducing member on the bottom plate portion of the corrugated plate. Further, if a material having a Young's modulus higher than that of the vibration absorbing layer is selected as the weight reducing member, the overall rigidity can be increased. As the weight reducing member, for example, an acrylic resin having an expansion ratio of 10 to 15 times can be suitably used.

本発明の実施形態を、図面を参照しながら以下に説明する。図1は鉄道車両21の縦断面図であり、図2は同じく横断面図である。図示するように本発明の床構造1は、鉄道車両21の底部をなす台枠19に対して、車両横幅方向に延びる形で各々固定され(図1)、車両長手方向に所定間隔をおいて複数本配置された(図2)横梁11を備える。台枠19は、鉄道車両21の重量を支え、車両全体を維持するとともに、車両の重量を車輪20に伝達するための基礎構造である。横梁11は、台枠19の上面に、例えば溶接によって固定される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a railway vehicle 21, and FIG. 2 is a transverse sectional view. As shown in the figure, the floor structure 1 of the present invention is fixed to a frame 19 that forms the bottom of a railway vehicle 21 so as to extend in the lateral direction of the vehicle (FIG. 1), with a predetermined interval in the longitudinal direction of the vehicle. A plurality of transverse beams 11 are arranged (FIG. 2). The underframe 19 is a basic structure for supporting the weight of the railway vehicle 21, maintaining the entire vehicle, and transmitting the weight of the vehicle to the wheels 20. The horizontal beam 11 is fixed to the upper surface of the frame 19 by, for example, welding.

次に、床構造1の部分拡大断面図を図3に示す。図示するように、横梁11の上に、金属製の波板9(キーストンプレート)が溶接されている。より詳しくは、この波板9は、車両長手方向に延出し、横梁11との交差領域Aにおいて横梁11上に固定された底板部9aと、底板部9aの車両横幅方向第一側の縁部40から上方に突出する第一側板部9bと、第一側板部9bの上端41から車両横幅方向第一側に延出する上板部9cと、上板部9cの車両横幅方向第一側縁部42から下方に延出し横梁11に至る第二側板部9dとを備えた波状単位Wを、車両横幅方向に複数個連続する形で形成したものである。   Next, the partial expanded sectional view of the floor structure 1 is shown in FIG. As shown in the figure, a metal corrugated plate 9 (keystone plate) is welded onto the cross beam 11. More specifically, the corrugated plate 9 extends in the longitudinal direction of the vehicle and is fixed on the cross beam 11 in the crossing area A with the cross beam 11, and an edge of the bottom plate portion 9a on the first side in the vehicle width direction. A first side plate portion 9b protruding upward from 40, an upper plate portion 9c extending from the upper end 41 of the first side plate portion 9b to the vehicle lateral width direction first side, and a vehicle lateral width direction first side edge of the upper plate portion 9c. A plurality of wavy units W including a second side plate portion 9d extending downward from the portion 42 and reaching the horizontal beam 11 are formed in a form that is continuous in the vehicle lateral width direction.

そして波板9の上面に、振動吸収層3が塗り込まれている。より詳しくは、振動吸収層3は、底板部9aと、隣接する第一側板部9b及び第二側板部9dとによって形成された凹状の空間30を充填し、上板部9cの上面S1を被覆するとともに、自身の上面S2が平坦化され、平均的なヤング率が22〜62MPaの弾性材料から構成されている。鉄道車両が走行すると振動が発生し、台枠から上方へ伝播するが、振動吸収層3が軟らかいため、床下からの振動を効率的に減衰することができる。これにより、放射音を低減することが可能となる。振動吸収層の平均的なヤング率が62MPaを超えると、硬すぎて振動を十分に吸収できなくなる。また、22MPa未満では軟らかすぎて、床の剛性を確保できない場合がある。   The vibration absorbing layer 3 is coated on the upper surface of the corrugated plate 9. More specifically, the vibration absorbing layer 3 fills the concave space 30 formed by the bottom plate portion 9a, the adjacent first side plate portion 9b and the second side plate portion 9d, and covers the upper surface S1 of the upper plate portion 9c. In addition, the upper surface S2 of itself is flattened, and is made of an elastic material having an average Young's modulus of 22 to 62 MPa. When the railway vehicle travels, vibration is generated and propagates upward from the underframe. However, since the vibration absorbing layer 3 is soft, vibration from under the floor can be efficiently damped. Thereby, it becomes possible to reduce radiated sound. When the average Young's modulus of the vibration absorbing layer exceeds 62 MPa, the vibration absorbing layer is too hard to sufficiently absorb vibration. Moreover, if it is less than 22 MPa, it may be too soft to ensure the rigidity of the floor.

また、振動吸収層3の上面S2には、平均的なヤング率が3000〜4000MPaの材料から構成された耐荷重層2が積層され、上面S2に接着されている。この耐荷重層2により、透過音を効果的に遮音することが可能となる。また、耐荷重層2は、平均的なヤング率が3000〜4000MPaと比較的硬い材料から構成されているため、乗客の体重を十分に受け止めることができる。例えばハイヒールを履いた乗客が乗っても凹むことはない。また、ヤング率が3000MPa未満では軟らかすぎて、例えばハイヒールで陥没する恐れがある。   A load bearing layer 2 made of a material having an average Young's modulus of 3000 to 4000 MPa is laminated on the upper surface S2 of the vibration absorbing layer 3 and bonded to the upper surface S2. This load bearing layer 2 can effectively block the transmitted sound. Moreover, since the load bearing layer 2 is made of a relatively hard material having an average Young's modulus of 3000 to 4000 MPa, the weight of the passenger can be sufficiently received. For example, passengers wearing high heels will not dent even if they get on. Further, if the Young's modulus is less than 3000 MPa, it is too soft, and there is a risk that it will sink, for example, with high heels.

このように本発明では、走行中の鉄道車両21から発生した騒音のうち、放射音と透過音とを各々別の層を使って取り除いている。つまり、鉄道車両21から発生した放射音と透過音とを各々最も効率よく除去できるように、振動吸収層3と耐荷重層2のヤング率を設定している。また、耐荷重層2に関しては、乗客の体重を支える上でも支障がないようにヤング率を決めている。   As described above, in the present invention, the radiated sound and the transmitted sound are removed from the noise generated from the running railway vehicle 21 using different layers. That is, the Young's modulus of the vibration absorbing layer 3 and the load bearing layer 2 is set so that the radiated sound and transmitted sound generated from the railway vehicle 21 can be removed most efficiently. Moreover, regarding the load bearing layer 2, the Young's modulus is determined so as not to hinder the weight of the passenger.

振動吸収層3のヤング率は、より好ましくは30〜35MPaである。また、耐荷重層2のヤング率は、より好ましくは3000〜3600MPaである。   The Young's modulus of the vibration absorbing layer 3 is more preferably 30 to 35 MPa. The Young's modulus of the load bearing layer 2 is more preferably 3000 to 3600 MPa.

一方、耐荷重層2の上面S3には、上側接着層13を介して敷物層10が敷設されている。敷物層10は例えば塩化ビニルからなり、その上面S4が、客室の底部露出面とされている。   On the other hand, a rug layer 10 is laid on the upper surface S3 of the load bearing layer 2 with an upper adhesive layer 13 interposed therebetween. The rug layer 10 is made of, for example, vinyl chloride, and its upper surface S4 is a bottom exposed surface of the cabin.

上板部9cにおける振動吸収層3の厚さT2は5〜10mmであり、耐荷重層2の厚さT1は3〜5mmとされている。鉄道車両21の床構造1では、車両の型式でその厚さが決められているため、振動吸収層3と耐荷重層2とを足した厚さ(T1+T2)を一定(15mm)にする必要がある。上記構成によると、振動吸収層3が軟らかい(平均的なヤング率22〜62MPa)ため、T2が薄くても(5〜10mm)十分な振動吸収効果を発揮でき、その薄くした分だけ耐荷重層2を厚く(3〜5mm)できるため、耐荷重層2の遮音特性を一層向上させることができる。   The thickness T2 of the vibration absorbing layer 3 in the upper plate portion 9c is 5 to 10 mm, and the thickness T1 of the load bearing layer 2 is 3 to 5 mm. Since the thickness of the floor structure 1 of the railcar 21 is determined by the vehicle model, the thickness (T1 + T2) obtained by adding the vibration absorbing layer 3 and the load bearing layer 2 needs to be constant (15 mm). . According to the above configuration, since the vibration absorbing layer 3 is soft (average Young's modulus 22 to 62 MPa), even if T2 is thin (5 to 10 mm), a sufficient vibration absorbing effect can be exhibited. Therefore, the sound insulation characteristics of the load bearing layer 2 can be further improved.

より詳しくは、振動吸収層3は空隙率が1%未満の緻密材料から構成され、振動吸収層3の上面S2と自身の下面とが密着する形で接着層12が塗布形成され、耐荷重層2は、骨材(鉱物発泡体6と硅砂等の無機骨材8、図5参照)と樹脂材料7との混合物を流動状態にて接着層12の上面に対して塗り込み、固化して形成したものである。   More specifically, the vibration absorbing layer 3 is made of a dense material having a porosity of less than 1%, and the adhesive layer 12 is applied and formed so that the upper surface S2 of the vibration absorbing layer 3 and the lower surface of the vibration absorbing layer 3 are in close contact with each other. Is formed by applying a mixture of aggregate (mineral foam 6 and inorganic aggregate 8 such as silica sand, see FIG. 5) and resin material 7 to the upper surface of the adhesive layer 12 in a fluidized state and solidifying. Is.

振動吸収層3は空隙率が1%未満の緻密材料から構成されているため、この上に耐荷重層2を塗り込んだ場合でも、振動吸収層3の空隙に耐荷重層2が入り込むような不具合は生じにくい。従って、振動吸収層3と耐荷重層2との間に接着層12のみが介在する構造を採用でき、従来のように目止め層150(図10参照)を介在させる必要がない。そのため、目止め層150を塗る工程を省略でき、工程の簡略化を達成できる。   Since the vibration absorbing layer 3 is made of a dense material having a porosity of less than 1%, even when the load bearing layer 2 is coated on the vibration absorbing layer 3, there is a problem that the load bearing layer 2 enters the void of the vibration absorbing layer 3. Hard to occur. Therefore, a structure in which only the adhesive layer 12 is interposed between the vibration absorbing layer 3 and the load bearing layer 2 can be employed, and there is no need to interpose the sealing layer 150 (see FIG. 10) as in the conventional case. Therefore, the process of applying the sealing layer 150 can be omitted, and the process can be simplified.

一方、図4に示すように、振動吸収層3は、ゴムチップ5とウレタン樹脂4とを含む混合物から構成されている。このように、骨材(ゴムチップ5)とバインダー(ウレタン樹脂4)の双方を弾性材料とすることにより、どちらか一方のみを弾性材料とした場合と比較して、振動を効果的に吸収することが可能となる。より詳しくは、振動吸収層3は、カオリナイト系粘土質鉱物を1000〜1200℃で焼成することにより内部に気泡を有する状態にし、所定の平均粒径にした鉱物発泡体6を含有している。この鉱物発泡体6を含むことにより、振動吸収層3を軽量化することができるとともに、難燃性を高めることが可能となる。   On the other hand, as shown in FIG. 4, the vibration absorbing layer 3 is composed of a mixture including a rubber chip 5 and a urethane resin 4. Thus, by using both the aggregate (rubber chip 5) and the binder (urethane resin 4) as elastic materials, it is possible to effectively absorb vibration compared to the case where only one of them is used as an elastic material. Is possible. More specifically, the vibration absorbing layer 3 contains a mineral foam 6 having a predetermined average particle diameter by firing the kaolinite clay mineral at 1000 to 1200 ° C. . By including this mineral foam 6, the vibration absorbing layer 3 can be reduced in weight and flame retardancy can be enhanced.

振動吸収層3は、例えば古タイヤを裁断して形成したゴムチップ5と、鉱物発泡体6と、ウレタン樹脂4とをモルタルミキサで混練し、波板9(図3参照)の上面に塗り込むことによって形成される。   The vibration absorbing layer 3 is prepared by kneading, for example, a rubber chip 5 formed by cutting an old tire, a mineral foam 6 and a urethane resin 4 with a mortar mixer, and coating the upper surface of the corrugated sheet 9 (see FIG. 3). Formed by.

また、図5の拡大断面図に示すように、耐荷重層2は、無機骨材8(硅砂)とエポキシ樹脂7とを含む混合物から構成されている。また、振動吸収層3でも使用した鉱物発泡体6を含有している。これらの材料を混合することで、平均的なヤング率が3000〜4000MPaの材料を得ることができる。この耐荷重層2は、無機骨材8と、鉱物発泡体6と、エポキシ樹脂7とをモルタルミキサで混練し、接着層12(図3参照)を介して振動吸収層3に塗り込むことによって形成される。   Moreover, as shown in the enlarged sectional view of FIG. 5, the load bearing layer 2 is composed of a mixture including the inorganic aggregate 8 (salt sand) and the epoxy resin 7. Further, the mineral foam 6 used also in the vibration absorbing layer 3 is contained. By mixing these materials, a material having an average Young's modulus of 3000 to 4000 MPa can be obtained. The load bearing layer 2 is formed by kneading the inorganic aggregate 8, the mineral foam 6 and the epoxy resin 7 with a mortar mixer and applying the mixture to the vibration absorbing layer 3 through the adhesive layer 12 (see FIG. 3). Is done.

図4に戻る。ゴムチップ5の平均粒径は、1.0〜2.0mmとされている。ゴムチップの平均粒径が2.0mmを超えると、振動吸収層3の空隙率が増加するため、耐荷重層2を塗り込んだときに、その空隙に耐荷重層2が入ってしまう場合がある。その結果、目止め層が必要となることがある。また、振動吸収層3は軟らかいウレタン樹脂4を使用しているため、空隙率が増加すると、曲げ応力が加わったときに割れやすくなる。一方、ゴムチップ5の平均粒径が1.0mm未満になると、混練作業を行うときに分散性が悪化しやすくなる。   Returning to FIG. The average particle diameter of the rubber chip 5 is 1.0 to 2.0 mm. When the average particle size of the rubber chip exceeds 2.0 mm, the porosity of the vibration absorbing layer 3 increases, and thus when the load bearing layer 2 is applied, the load bearing layer 2 may enter the void. As a result, a sealing layer may be required. Further, since the vibration absorbing layer 3 uses the soft urethane resin 4, when the porosity increases, the vibration absorbing layer 3 is easily cracked when bending stress is applied. On the other hand, when the average particle diameter of the rubber chip 5 is less than 1.0 mm, the dispersibility tends to deteriorate when the kneading operation is performed.

次に、別の実施形態を図6に示す。この実施形態では、振動吸収層3よりも密度が低い材料からなり、車両長手方向に延びる形に形成された軽量化部材14を、波板9の底板部9aに配置している。上述したように、振動吸収層3は空隙率が小さいため、密度が比較的高い。そのため、波板9の底板部9aに軽量化部材14を配置することにより、全体の重量を軽くすることが可能となる。また、軽量化部材14として、ヤング率が振動吸収層3よりも高い材料を選択すると、全体の剛性を高めることが可能になる。軽量化部材14としては、例えば発泡倍率が10〜15倍のアクリル樹脂を好適に用いることができる。また、軽量化部材14の厚さT4は、底板部9aから上板部9cまでの高さT3よりも薄くされている。これにより、軽量化部材14の上に十分な厚さの振動吸収層3を確保することができ、床下からの振動を十分に吸収させることが可能となる。   Next, another embodiment is shown in FIG. In this embodiment, a weight reducing member 14 made of a material having a density lower than that of the vibration absorbing layer 3 and extending in the longitudinal direction of the vehicle is disposed on the bottom plate portion 9 a of the corrugated plate 9. As described above, since the vibration absorbing layer 3 has a low porosity, the density is relatively high. Therefore, by arranging the weight reducing member 14 on the bottom plate portion 9a of the corrugated plate 9, it is possible to reduce the overall weight. Further, if a material having a Young's modulus higher than that of the vibration absorbing layer 3 is selected as the weight reducing member 14, the overall rigidity can be increased. As the weight reduction member 14, for example, an acrylic resin having an expansion ratio of 10 to 15 times can be suitably used. Further, the thickness T4 of the weight reducing member 14 is made thinner than the height T3 from the bottom plate portion 9a to the upper plate portion 9c. Thereby, the vibration absorbing layer 3 having a sufficient thickness can be secured on the lightening member 14, and vibrations from under the floor can be sufficiently absorbed.

なお、本発明は在来線の鉄道車両21に広く応用が効くものであって、上述のように波板9を有する鉄道車両21に限らず使用することができる。具体的には、図7に示すように、ダブルスキンと称される床構体23を使用した鉄道車両21に利用することが可能である。図示するようにダブルスキン床構体23は、横梁11上に固定された下板23aと、下板23aの上方に所定間隔をおいて配置された上板23bとを有し、これら上板23aと下板23bとを接続するとともに、上板23との接続部50から下板23aとの接続部51まで車両横幅方向に傾斜し、車両長手方向に延出する形で形成された第一傾斜板部23cと、下板23aとの接続部51から上板23bまで第一傾斜板部23に対して反対方向に傾斜する形で形成された第二傾斜板部23dとを備える波状単位Wが、車両横幅方向に複数個連続する形で形成されている。また、ダブルスキン床構体23の上板23bに、平均的なヤング率が22〜62MPaの弾性材料から構成された振動吸収層3が積層され、その振動吸収層3の上面S2に、平均的なヤング率が3000〜4000MPaの材料から構成された耐荷重層2が、接着層12を介して積層形成されている。さらに、その耐荷重層2の上面S3に、上側接着層13を介して敷物層10が敷設されている。   The present invention is widely applicable to conventional railway vehicles 21 and can be used not only for the railway vehicles 21 having the corrugated sheet 9 as described above. Specifically, as shown in FIG. 7, the present invention can be used for a railway vehicle 21 that uses a floor structure 23 called a double skin. As shown in the figure, the double skin floor structure 23 has a lower plate 23a fixed on the cross beam 11, and an upper plate 23b disposed above the lower plate 23a at a predetermined interval. A first inclined plate formed to connect the lower plate 23b and to incline in the vehicle lateral direction from the connecting portion 50 to the upper plate 23 to the connecting portion 51 to the lower plate 23a and extend in the vehicle longitudinal direction. A wavy unit W comprising a portion 23c and a second inclined plate portion 23d formed in a shape inclined in the opposite direction with respect to the first inclined plate portion 23 from the connecting portion 51 to the upper plate 23b to the lower plate 23a, It is formed in a form in which a plurality are continuous in the vehicle lateral width direction. Further, the vibration absorbing layer 3 made of an elastic material having an average Young's modulus of 22 to 62 MPa is laminated on the upper plate 23b of the double skin floor structure 23, and the upper surface S2 of the vibration absorbing layer 3 has an average value. A load bearing layer 2 made of a material having a Young's modulus of 3000 to 4000 MPa is laminated through an adhesive layer 12. Further, a rug layer 10 is laid on the upper surface S3 of the load bearing layer 2 with an upper adhesive layer 13 interposed therebetween.

次に、図8を用いて、最初の実施形態の床構造1の製造方法について説明する。まず図8(A)に示すように、鉄道車両21の台枠(図示しない)に固定された横梁11に、波板9を溶接する。一方、ゴムチップ5と、鉱物発泡体6と、ウレタン樹脂4とをモルタルミキサで混練して流動状態としたものを用意する。これを図8(B)に示すように波板9の上面に塗り込み、振動吸収層3を形成する。振動吸収層3が固化するまで、例えば1日ほど待機する。次に、無機骨材8と、鉱物発泡体6と、エポキシ樹脂7とをモルタルミキサで混練して流動状態としたものを用意する。そして、振動吸収層3が固化した後、振動吸収層3の上面S2に接着層12を塗布し、その上に上記混練物を塗り込んで、耐荷重層2を形成する(図8(C))。耐荷重層2が固化するまで、例えば1日ほど待機する。固化した後に上側接着層(図3参照)を塗布し、敷物層10を敷設する。これにより、図3に示す床構造1が完成する。   Next, the manufacturing method of the floor structure 1 of the first embodiment will be described with reference to FIG. First, as shown in FIG. 8A, the corrugated sheet 9 is welded to the cross beam 11 fixed to the frame (not shown) of the railway vehicle 21. On the other hand, a rubber chip 5, a mineral foam 6 and a urethane resin 4 are kneaded with a mortar mixer to prepare a fluidized state. This is applied to the upper surface of the corrugated sheet 9 as shown in FIG. 8B to form the vibration absorbing layer 3. It waits for about 1 day, for example until vibration absorption layer 3 solidifies. Next, an inorganic aggregate 8, a mineral foam 6, and an epoxy resin 7 are kneaded with a mortar mixer to prepare a fluidized state. Then, after the vibration absorbing layer 3 is solidified, the adhesive layer 12 is applied to the upper surface S2 of the vibration absorbing layer 3, and the kneaded material is applied thereon to form the load bearing layer 2 (FIG. 8C). . It waits for about one day until the load bearing layer 2 solidifies, for example. After solidifying, an upper adhesive layer (see FIG. 3) is applied, and a rug layer 10 is laid. Thereby, the floor structure 1 shown in FIG. 3 is completed.

本発明の実施例について説明する。まず、上述の製造方法を用いて図3及び図6に示す床構造1を製造し、試験片を取り出して実施例1及び実施例2とし、防音特性を確認した。また、図10に示す従来の床構造101を製造して、同様に防音特性を確認した。   Examples of the present invention will be described. First, the floor structure 1 shown in FIG.3 and FIG.6 was manufactured using the above-mentioned manufacturing method, the test piece was taken out and it was set as Example 1 and Example 2, and the soundproof characteristic was confirmed. Moreover, the conventional floor structure 101 shown in FIG. 10 was manufactured, and the soundproof characteristic was confirmed similarly.

実施例の振動吸収層3及び耐荷重層2に関して、骨材の平均粒径、粒度分布、密度、全体の空隙率、密度及びヤング率等を計測した結果を示す。   The result of having measured the average particle diameter of aggregate, the particle size distribution, the density, the whole porosity, the density, the Young's modulus, etc. about the vibration absorption layer 3 and the load bearing layer 2 of an Example is shown.

Figure 2008213652
Figure 2008213652

Figure 2008213652
Figure 2008213652

また、振動吸収層3及び耐荷重層2に含有される鉱物発泡体6の組成を以下に示す。   The composition of the mineral foam 6 contained in the vibration absorbing layer 3 and the load bearing layer 2 is shown below.

Figure 2008213652
Figure 2008213652

次に、放射音の測定装置を図9に示す。試験対象となるサンプルを弾性支持体28によって吊り下げ、その試験対象の下面に連接棒26を介して加振器29を配置した。加振器29はノイズ発生器27から信号が送られ、それに応じて様々な周波数の振動Vを発生するものである。振動Vは連接棒26を通って試験対象に伝わり、放射音を発生させる。試験対象の上方に配置したインテンシティマイク24により放射音を測定し、それをハイパスフィルターを介して直接積分型インテンシティ計25へ導いた。そして測定値をコンピュータに記憶した。   Next, FIG. 9 shows an apparatus for measuring radiated sound. A sample to be tested was suspended by an elastic support 28, and a vibrator 29 was disposed on the lower surface of the test object via a connecting rod 26. The vibrator 29 receives a signal from the noise generator 27 and generates vibrations V having various frequencies in response thereto. The vibration V is transmitted to the test object through the connecting rod 26 and generates a radiated sound. The emitted sound was measured by the intensity microphone 24 arranged above the test object, and the sound was directly guided to the integral-type intensity meter 25 through the high-pass filter. The measured values were stored in a computer.

一方、実施例1、2及び比較例1の陥没強度試験と、繰り返し荷重試験を行った。さらに、JISK6911に規定された測定方法を用いて、上側樹脂層及び下側樹脂層の特性を測定した。その結果を下記の表4に示す。   On the other hand, the depression strength test of Examples 1 and 2 and Comparative Example 1 and the repeated load test were performed. Furthermore, the characteristics of the upper resin layer and the lower resin layer were measured using the measurement method defined in JISK6911. The results are shown in Table 4 below.

Figure 2008213652
Figure 2008213652

上記表4のうち、面密度は計算によって求めた値である。この表4から明らかなように、実施例1及び実施例2は、比較例1よりも放射音特性(100〜4kHzの総和)が低減されている。   In Table 4, the surface density is a value obtained by calculation. As is apparent from Table 4, the radiated sound characteristics (total of 100 to 4 kHz) of Example 1 and Example 2 are reduced as compared with Comparative Example 1.

鉄道車両の縦断面図Rail car longitudinal section 鉄道車両の横断面図Cross section of railway vehicle 床構造の部分拡大図Partial enlarged view of the floor structure 振動吸収層3の拡大断面図Enlarged sectional view of vibration absorbing layer 3 耐荷重層2の拡大断面図Expanded cross section of load bearing layer 2 床構造の他の実施形態Other embodiments of floor structure ダブルスキン床構体を用いた床構造の例Example of floor structure using double skin floor structure 床構造の製造方法を説明するための図The figure for explaining the manufacturing method of the floor structure 防音特性の測定方法を説明するための図Diagram for explaining the measurement method of soundproofing characteristics 従来の床構造Conventional floor structure 図10の部分拡大図Partial enlarged view of FIG. 詰物層の拡大図Enlarged view of the filling layer

符号の説明Explanation of symbols

1 床構造
2 耐荷重層
3 振動吸収層
4 ウレタン樹脂
5 ゴムチップ
6 鉱物発泡耐
7 エポキシ樹脂
8 無機骨材
9 波板
9a 底板部
9b 第一側板部
9c 上板部
9d 第二側板部
10 敷物層
11 横梁
12 接着層
14 軽量化部材
19 台枠
21 鉄道車両
23 ダブルスキン床構体
30 凹状の空間
A 底板部と横梁との交差領域
W 波状単位
DESCRIPTION OF SYMBOLS 1 Floor structure 2 Load bearing layer 3 Vibration absorption layer 4 Urethane resin 5 Rubber chip 6 Mineral foaming resistance 7 Epoxy resin 8 Inorganic aggregate 9 Corrugated sheet 9a Bottom plate part 9b First side plate part 9c Upper plate part 9d Second side plate part 10 Rug layer 11 Cross beam 12 Adhesive layer 14 Light-weight member 19 Undercarriage 21 Railway vehicle 23 Double skin floor structure 30 Concave space A Intersection region between bottom plate and cross beam W Wavy unit

Claims (8)

鉄道車両の床構造であって、
該鉄道車両の底部をなす台枠に対して、車両横幅方向に延びる形で各々固定され、車両長手方向に所定間隔をおいて複数本配置された横梁と、
前記車両長手方向に延出し、前記横梁との交差領域において該横梁上に固定された底板部と、該底板部の車両横幅方向第一側の縁部から上方に突出する第一側板部と、該第一側板部の上端から車両横幅方向第一側に延出する上板部と、該上板部の車両横幅方向第一側縁部から下方に延出し前記横梁に至る第二側板部とを備えた波状単位を、前記車両横幅方向に複数個連続する形で形成した金属製の波板と、
前記底板部と、隣接する前記第一側板部及び前記第二側板部とによって形成された凹状の空間を充填し、前記上板部の上面を被覆するとともに、自身の上面が平坦化され、平均的なヤング率が22〜62MPaの弾性材料から構成され、前記鉄道車両の走行に伴って発生し前記台枠から上方へ伝播する振動を吸収する振動吸収層と、
該振動吸収層の前記上面に積層され、該上面に接着されるとともに、平均的なヤング率が3000〜4000MPaの材料から構成され、前記鉄道車両の走行に伴って床下から発生した透過音を遮音するとともに、乗客の重量を受け止める耐荷重層と、
該耐荷重層の上面に敷設され、客室の底部露出面をなす敷物層と、
を備えることを特徴とする鉄道車両の床構造。
A floor structure of a railway vehicle,
A plurality of transverse beams fixed to the frame that forms the bottom of the railway vehicle in a manner extending in the lateral direction of the vehicle and arranged at a predetermined interval in the longitudinal direction of the vehicle;
A bottom plate portion that extends in the longitudinal direction of the vehicle and is fixed on the cross beam in an intersecting region with the cross beam; a first side plate portion that protrudes upward from an edge of the bottom plate portion on the first side in the vehicle lateral width direction; An upper plate extending from the upper end of the first side plate to the vehicle lateral direction first side; a second side plate extending downward from the vehicle lateral width direction first side edge of the upper plate to the horizontal beam; A corrugated unit made of a metal corrugated plate formed in a continuous form in the vehicle lateral width direction,
The concave space formed by the bottom plate portion, the adjacent first side plate portion and the second side plate portion is filled, and covers the upper surface of the upper plate portion, and the upper surface of the upper plate portion is flattened and averaged. A vibration-absorbing layer that is composed of an elastic material having a typical Young's modulus of 22 to 62 MPa and absorbs vibrations that are generated as the railway vehicle travels and propagates upward from the underframe;
It is laminated on the upper surface of the vibration absorbing layer and adhered to the upper surface, and is composed of a material having an average Young's modulus of 3000 to 4000 MPa, and transmits sound generated from under the floor as the railway vehicle travels. And load-bearing layer to catch the weight of passengers,
A rug layer laid on the top surface of the load bearing layer and forming a bottom exposed surface of the passenger cabin;
A floor structure of a railway vehicle, comprising:
前記上板部における前記振動吸収層の厚さは5〜10mmであり、前記耐荷重層の厚さは3〜5mmであることを特徴とする請求項1に記載の鉄道車両の床構造。   2. The railcar floor structure according to claim 1, wherein a thickness of the vibration absorbing layer in the upper plate portion is 5 to 10 mm, and a thickness of the load bearing layer is 3 to 5 mm. 鉄道車両の床構造であって、
該鉄道車両の底部をなす台枠に対して、車両横幅方向に延びる形で各々固定され、車両長手方向に所定間隔をおいて複数本配置された横梁と、
該横梁上に固定された下板と、該下板の上方に所定間隔をおいて配置された上板とを有し、これら前記上板と前記下板とを接続するとともに、前記上板との接続部から前記下板との接続部まで車両横幅方向に傾斜し、前記車両長手方向に延出する形で形成された第一傾斜板部と、前記下板との接続部から前記上板まで前記第一傾斜板部に対して反対方向に傾斜する形で形成された第二傾斜板部とを備える波状単位が、車両横幅方向に複数個連続する形で形成された金属製のダブルスキン床構体と、
該ダブルスキン床構体の前記上板に積層され、該上板に接着されるとともに、自身の上面が平坦化され、平均的なヤング率が22〜62MPaの弾性材料から構成され、前記鉄道車両の走行に伴って発生し前記台枠から上方へ伝播する振動を吸収する振動吸収層と、
該振動吸収層の前記上面に積層され、該上面に接着されるとともに、平均的なヤング率が3000〜4000MPaの材料から構成され、前記鉄道車両の走行に伴って床下から発生した透過音を遮音するとともに、乗客の重量を受け止める耐荷重層と、
該耐荷重層の上面に敷設され、客室の底部露出面をなす敷物層と、
を備えることを特徴とする鉄道車両の床構造。
A floor structure of a railway vehicle,
A plurality of transverse beams fixed to the frame that forms the bottom of the railway vehicle in a manner extending in the lateral direction of the vehicle and arranged at a predetermined interval in the longitudinal direction of the vehicle;
A lower plate fixed on the cross beam, and an upper plate disposed above the lower plate at a predetermined interval, connecting the upper plate and the lower plate, and A first inclined plate portion that is inclined in a vehicle lateral width direction from a connecting portion to a connecting portion with the lower plate and extends in the longitudinal direction of the vehicle, and a connecting portion between the lower plate and the upper plate A metal double skin having a plurality of wavy units each having a second inclined plate portion formed in a shape inclined in the opposite direction with respect to the first inclined plate portion. Floor structure,
It is laminated on the upper plate of the double-skin floor structure and bonded to the upper plate, and its upper surface is flattened, and is composed of an elastic material having an average Young's modulus of 22 to 62 MPa. A vibration-absorbing layer that absorbs vibrations generated along with traveling and propagating upward from the underframe;
It is laminated on the upper surface of the vibration absorbing layer and adhered to the upper surface, and is composed of a material having an average Young's modulus of 3000 to 4000 MPa, and transmits sound generated from under the floor as the railway vehicle travels. And load-bearing layer to catch the weight of passengers,
A rug layer laid on the top surface of the load bearing layer and forming a bottom exposed surface of the passenger cabin;
A floor structure of a railway vehicle, comprising:
前記振動吸収層の厚さは5〜10mmであり、前記耐荷重層の厚さは3〜5mmであることを特徴とする請求項3に記載の鉄道車両の床構造。   The floor structure of a railway vehicle according to claim 3, wherein the vibration absorbing layer has a thickness of 5 to 10 mm, and the load bearing layer has a thickness of 3 to 5 mm. 前記振動吸収層は空隙率が1%未満の緻密材料から構成され、該振動吸収層の上面と自身の下面とが密着する形で接着層が塗布形成され、
前記耐荷重層は、骨材と樹脂材料との混合物を流動状態にて前記接着層の上面に対して塗り込み、固化して形成したものであることを特徴とする請求項1ないし4のいずれか1項に記載の鉄道車両の床構造。
The vibration absorbing layer is composed of a dense material having a porosity of less than 1%, and an adhesive layer is applied and formed so that the upper surface of the vibration absorbing layer and the lower surface of the vibration absorbing layer are in close contact with each other,
The load-bearing layer is formed by applying a mixture of an aggregate and a resin material to the upper surface of the adhesive layer in a fluidized state and solidifying the mixture. The floor structure of a railway vehicle according to item 1.
前記振動吸収層は、ゴムチップとウレタン樹脂とを含む混合物から構成され、前記耐荷重層は、無機骨材とエポキシ樹脂とを含む混合物から構成されていることを特徴とする請求項1ないし5のいずれか1項に記載の鉄道車両の床構造。   6. The vibration absorbing layer is made of a mixture containing a rubber chip and a urethane resin, and the load bearing layer is made of a mixture containing an inorganic aggregate and an epoxy resin. 2. The floor structure of a railway vehicle according to claim 1. 前記ゴムチップの平均粒径が1.0〜2.0mmとされていることを特徴とする請求項6に記載の鉄道車両の床構造。   The floor structure of a railway vehicle according to claim 6, wherein the rubber chips have an average particle diameter of 1.0 to 2.0 mm. 前記振動吸収層よりも密度が低い材料からなり、前記車両長手方向に延びる形に形成された軽量化部材が、前記波板の前記底板部に配置されていることを特徴とする請求項1又は2に記載の鉄道車両の床構造。   The weight reducing member made of a material having a density lower than that of the vibration absorbing layer and extending in the longitudinal direction of the vehicle is disposed on the bottom plate portion of the corrugated plate. The floor structure of a railway vehicle according to 2.
JP2007053369A 2007-03-02 2007-03-02 Railcar floor structure Active JP4794479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053369A JP4794479B2 (en) 2007-03-02 2007-03-02 Railcar floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053369A JP4794479B2 (en) 2007-03-02 2007-03-02 Railcar floor structure

Publications (2)

Publication Number Publication Date
JP2008213652A true JP2008213652A (en) 2008-09-18
JP4794479B2 JP4794479B2 (en) 2011-10-19

Family

ID=39834207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053369A Active JP4794479B2 (en) 2007-03-02 2007-03-02 Railcar floor structure

Country Status (1)

Country Link
JP (1) JP4794479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254162A (en) * 2009-04-27 2010-11-11 Hitachi Ltd Rolling stock structure, floor structure provided to rolling stock structure, and its manufacturing method
DE102018102579A1 (en) * 2018-02-06 2019-08-08 Alstom Transport Technologies Base plate for a wagon body of a railway carriage, car body and method for producing a base plate
US11872945B2 (en) 2018-09-14 2024-01-16 Kotobukiya Fronte Co., Ltd. Automotive sound absorption material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134688A (en) * 1976-05-07 1977-11-11 Takara Kenzai Seisakushiyo Gou Vibration absorbing fire floor for vehicles and ships
JPH05254429A (en) * 1992-03-13 1993-10-05 Tokyu Car Corp Underframe for railway vehicle
JPH0754431A (en) * 1993-08-19 1995-02-28 Abc Trading Co Ltd Lightweight floor having keystone construction
JP2000127964A (en) * 1998-10-26 2000-05-09 Kinki Sharyo Co Ltd Floor structure of rolling stock
JP2000225943A (en) * 1999-02-02 2000-08-15 Hitachi Ltd Floor structure of rolling stock
JP2004203221A (en) * 2002-12-25 2004-07-22 East Japan Railway Co Rolling stock floor panel, floor panel disassembling method, rolling stock floor structure, and rolling stock recycling method
JP2005239014A (en) * 2004-02-26 2005-09-08 Takara Kenzai Seisakusho:Kk Floor plate for rolling stock
JP2005291220A (en) * 2004-03-31 2005-10-20 Railway Technical Res Inst Vibration damping and soundproofing method for body floor, and car body
JP2006131113A (en) * 2004-11-05 2006-05-25 Tokyu Car Corp Railway vehicle floor structure
JP2006321257A (en) * 2005-05-17 2006-11-30 Kinki Sharyo Co Ltd Floor finishing structure of railway vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134688A (en) * 1976-05-07 1977-11-11 Takara Kenzai Seisakushiyo Gou Vibration absorbing fire floor for vehicles and ships
JPH05254429A (en) * 1992-03-13 1993-10-05 Tokyu Car Corp Underframe for railway vehicle
JPH0754431A (en) * 1993-08-19 1995-02-28 Abc Trading Co Ltd Lightweight floor having keystone construction
JP2000127964A (en) * 1998-10-26 2000-05-09 Kinki Sharyo Co Ltd Floor structure of rolling stock
JP2000225943A (en) * 1999-02-02 2000-08-15 Hitachi Ltd Floor structure of rolling stock
JP2004203221A (en) * 2002-12-25 2004-07-22 East Japan Railway Co Rolling stock floor panel, floor panel disassembling method, rolling stock floor structure, and rolling stock recycling method
JP2005239014A (en) * 2004-02-26 2005-09-08 Takara Kenzai Seisakusho:Kk Floor plate for rolling stock
JP2005291220A (en) * 2004-03-31 2005-10-20 Railway Technical Res Inst Vibration damping and soundproofing method for body floor, and car body
JP2006131113A (en) * 2004-11-05 2006-05-25 Tokyu Car Corp Railway vehicle floor structure
JP2006321257A (en) * 2005-05-17 2006-11-30 Kinki Sharyo Co Ltd Floor finishing structure of railway vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254162A (en) * 2009-04-27 2010-11-11 Hitachi Ltd Rolling stock structure, floor structure provided to rolling stock structure, and its manufacturing method
DE102018102579A1 (en) * 2018-02-06 2019-08-08 Alstom Transport Technologies Base plate for a wagon body of a railway carriage, car body and method for producing a base plate
DE102018102579B4 (en) 2018-02-06 2019-09-05 Alstom Transport Technologies Base plate for a wagon body of a railway carriage, car body and method for producing a base plate
US11872945B2 (en) 2018-09-14 2024-01-16 Kotobukiya Fronte Co., Ltd. Automotive sound absorption material

Also Published As

Publication number Publication date
JP4794479B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JPS5947785B2 (en) soundproofing elements
JP4794479B2 (en) Railcar floor structure
JP5794859B2 (en) Damping shape
JP2010254162A (en) Rolling stock structure, floor structure provided to rolling stock structure, and its manufacturing method
CN102713101B (en) Panel floor structure and architectural structural object
JP3615215B1 (en) Railcar floorboard
JP5238324B2 (en) Soundproofing method for railcar panels and railcar soundproofing panel structure used therefor
JP2000127964A (en) Floor structure of rolling stock
JP6780098B2 (en) Rail car
JP2007032165A (en) Noise reduction structure of viaduct
JP2000289610A (en) Underframe for railway vehicle
JP3615216B1 (en) Rail vehicle wall or ceiling panels
JP5357950B2 (en) Railcar floor structure
CN113928356A (en) High sound insulation laminate flooring of lightweight for railcar
JP4914150B2 (en) Railcar floor structure
JP3899325B2 (en) Elastic structure and manufacturing method thereof
JP2007099206A (en) Railroad vehicle floor structure
JP3888742B2 (en) Soundproof structure of bridge
JP2009255732A (en) Floor structure for railway vehicle
JP2004042735A (en) Skirt body for vehicle
JP5445376B2 (en) Panel floor structure
JP2012061904A (en) Railway vehicle structure
JP6749802B2 (en) Railway vehicle floor structure
CN208168258U (en) A kind of old premises face sound insulation shock-damping structure
JP2003184002A (en) Diminished sound structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4794479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250