JP2004255420A - Friction stir welding method for different metallic material - Google Patents

Friction stir welding method for different metallic material Download PDF

Info

Publication number
JP2004255420A
JP2004255420A JP2003049479A JP2003049479A JP2004255420A JP 2004255420 A JP2004255420 A JP 2004255420A JP 2003049479 A JP2003049479 A JP 2003049479A JP 2003049479 A JP2003049479 A JP 2003049479A JP 2004255420 A JP2004255420 A JP 2004255420A
Authority
JP
Japan
Prior art keywords
pin
steel
aluminum
friction stir
hard material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049479A
Other languages
Japanese (ja)
Other versions
JP4336744B2 (en
Inventor
Masahiro Fukumoto
昌宏 福本
Toshiaki Yasui
利明 安井
Masami Tsubaki
正己 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Industrial Science Research Institute
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to JP2003049479A priority Critical patent/JP4336744B2/en
Publication of JP2004255420A publication Critical patent/JP2004255420A/en
Application granted granted Critical
Publication of JP4336744B2 publication Critical patent/JP4336744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To butt a steel and an aluminum material so as to be joined by friction stir welding. <P>SOLUTION: In the friction stir welding method for various metallic materials, the pin 3 of a stir rod 3 having a hardness ratio with a steel H of ≥5 is inserted so as to be infiltrated into the side of the steel H by ≥0.05 mm to a butt line m formed by butting the steel H and an aluminum material S and in such a manner that the greater part thereof is arranged on the aluminum material S. Further, the pin 3 is moved to the direction of the butt line m while being rotated in the moving direction of the pin 3 and in the direction going from the steel H to the side of the aluminum material S. When the infiltration distance (displacement quantity) δof the pin 3 is ≥0.05 mm, the welding force of the weld zone is higher than that of the aluminum base material, and rupture occurs on the base material side of the aluminum material S in a tensile test. Further, the welding force is maintained also by controlling the displacement quantity to 0.4 mm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、異種金属間の摩擦撹拌接合に関する。
【0002】
【従来の技術】
従来から、アルミニウム材を中心に摩擦撹拌接合法(Friction Stir Welding法)による接合が知られている。この摩擦撹拌接合法は、二材料を突合わせて固定し、この突合せ部に回転ピンを押し込み、回転しながらこれを移動することによって、固相状態による塑性流動現象を生じさせて接合する方法である。
【0003】
この二材料が十分に塑性流動を起して良好な接合を得るためには、融点や硬度が近似していることが条件とされ、多くの場合、アルミニウムーアルミニウムなど同種材料に適用されている。
【0004】
最近、摩擦撹拌接合法について異種金属材料間への適用が検討されている。
非特許文献1では、異種金属である銅材(無酸素銅)とアルミニウム材(JIS規格1100)との接合を試みている。ここでは、ピンの円周面に螺旋ねじを形成し、このピンを塑性流動現象を生じやすいアルミニウム材側に挿入し、ピンの螺旋ねじを銅材界面に押し当てながら摩擦接合している。これにより、アルミニウムの母材と同等の引張り強度が得られたとしている。
【0005】
非特許文献2では、異種金属である鋼材(JIS規格SS400)とアルミニウム材(JIS規格A5083)との接合を試みている。ここでは、ピンにスターロッドとして常用されている工具鋼を使用している。突合わせ線から0.2mmだけ鋼材側に入り込み、大部分がアルミニウム材側にあるように配置して挿入した試験を行っている。試験の結果、ピンの回転速度が250rpmで引張り強度の一番大きな接合力が得られ、回転速度が1250rpmでは、接合部に欠陥が多く、接合できなかったとしている。また、ピンが、突合わせ線から0.2mmだけ鋼材側に入り込み、ピンのほとんどがアルミニウム材側にあるように挿入した試験を行い、突合わせ線からのその入り込み距離(以下、変位量という。)が0.2mmの場合に高い接合力が得られたとしている。そして、変位量が0.2mmより大きくなると、かえって引張り強度が低下していることを報告している。
【0006】
【非特許文献1】岡村久宣 青田欣也 青野泰久,「摩擦撹拌作用を利用した異種金属の摩擦拡散接合(第1報)」,溶接学会全国大会講演概要,社団法人溶接学会,平成14年9月3日,第71集 p.442,p.443
【非特許文献2】渡辺健彦 柳沢敦 高山博史,「界面活性凝着接合法による鉄鋼とアルミニウム合金の接合 回転ニードルによる異種金属材料の界面活性凝着接合法(第1報),溶接学会全国大会講演概要,社団法人溶接学会,平成14年9月3日,第71集 p.446,p.447
【0007】
【発明が解決しようとする課題】
非特許文献1に示された銅材とアルミニウムとの摩擦撹拌法では、良好な接合がなされたと報告されている。しかし、例えば、鋼材とアルミニウム材との接合に適用すると、十分な接合力を得ることができず、その適用は接合する材料間の硬度差が小さいものに限定されている。
【0008】
非特許文献2に示された摩擦撹拌法では、鋼材とアルミニウム材との接合を試みたものであるが、ピンとして、工具鋼(SKD)を使用しており、その硬さはビッカース硬度(Hv)で600kgf/mm程度である。一方、硬質材である鋼材の硬さはHv200kgf/mm程度であって、硬質材との硬度比(ピン/鋼材)が3程度のピンを使用している。そして、ピンの突合わせ線からの変位量が0.2mmの場合に高い接合力が得られるとしている一方、変位量が0.6mmでは、その接合力が約10分の1程度まで極めて小さくなることも報告している。従って、非特許文献2に示された発明による接合方法では、ピンの突合わせ線から鋼材側への変位量に対して極めて敏感であり、接合距離が長くなると、安定した接合力が得られないおそれがある。また、250rpmの低速の回転速度が望ましいとされ、1250rpmと高速回転では接合しないとされている。さらに、最も高い引張り強度を示した入込み距離が0.2mmの試験においても、接合強度が母材強度にまで至っていない。
【0009】
【課題を解決するための手段】
この発明では、硬質材と、硬質材より硬度の小さな軟質材からなる異種金属材を突合わせて、突合わせ面を摩擦撹拌接合により接合する接合方法において、硬質材との硬度比が5以上のスターロッドのピンを、硬質材と軟質材を突合わせて形成される突合わせ線に対して、硬質材側に0.05mm以上入り込み、大部分を軟質材側に変位して配置し、また、ピンを、ピンの移動方向で硬質材から軟質材側に向かう方向に回転しながら、突合わせ線の方向に移動する。
【0010】
なお、この明細書では、「硬質材」の語を、接合する二つの材料の内硬い材料を意味し、相対的な概念で使用している。同様に「軟質材」の語は、接合する二つの材料の対比において軟らかい方の材料を意味する。例えば、鋼材とアルミニウム材との接合においては、硬質材は鋼材であり、軟質材はアルミニウム材を意味する。また、変位量とは、硬質材と軟質材を突合わせて形成される突合わせ線に対して、大部分を軟質材側に挿入するピンが硬質材側に入り込んだ距離をいう。
【0011】
硬質材と軟質材とを突合わせると、両端面により形成される突合わせ線に対して、スターロッドのピンが0.05mm以上硬質材側に入り込んで、大部分を軟質材側になるようにピンを配置する。次に、スターロッドをピンの移動方向に対して前側で硬質材料から軟質材料側に向かって回転する方向に回転しながら、ピンを両材料の表面から押し込める。そして、突合わせ線に対して平行に移動して摩擦接合を行う。
【0012】
硬質材側にわずかに入り込んでいるピンは、硬質材の端面を削り、新しい界面を削り出す。ピンが硬質材界面を削って、新しい界面の削り出しを十分に行なうには、硬質材との硬度比が大きい必要があり、硬質材との硬度比が5以上のものを使用する。硬度比が5未満では、ピンが激しく摩耗して耐久性に欠けるばかりか、ピンから生じる粗大な摩耗片が摩擦流動した軟質材中に混在して、接合強度を低下させる。硬質材が鋼材の場合には、高温硬度および靱性にも優れた超硬合金やサーメットを使用することができる。また、硬質材が硬度Hv80kgf/mm程度の銅材の場合には、硬度Hv600kgf/mmの工具鋼を使用することができる。
【0013】
ピンは硬質材側にわずかに入り込んでいるために、ピンが硬質材の新しい界面を削り出すと同時に、ピンと接触している軟質材の近傍の領域では、塑性流動する。ピンの進行方向に対して後側となる領域では、塑性流動した軟質材が大きな圧縮力を受けて、新しく露出した清浄な硬質材表面との間で接合がなされる。また、ピンの硬質材側への変位量は、硬質材の界面がピンによって削られて新しい界面が十分に露出する0.05mm以上あればよい。また、変位量を大きくしても、その接合力には影響しないが、ピンの耐久性の向上などの問題から0.05mm以上1.0mm以下が望ましい。特に、0.05mm以上0.5mm以下が望ましい
【0014】
【発明の実施の形態】
以下、硬質材として鋼材を、軟質材としてアルミニウム材とした実施の形態を詳細に説明する。
【0015】
(回転方向による影響試験)
回転方向が摩擦接合に及ぼす影響を試験した。
鋼材は、硬度Hvが200kgf/mmの一般構造鋼材(JIS規格 SS400)、アルミニウム材はアルミニウムダイキャスト材(JIS規格 ADC12)を、ともに20mm×200mm×8mmの寸法にフライス加工して、試験片を製作した。
【0016】
摩擦撹拌加工装置として、エンシュウ株式会社製、S400型のマシニングセンターを使用した。また、スターロッド1は、硬度Hvが1400kgf/mmの超硬合金(JIS規格 K10)を使用した。超硬合金は、従来スターロッドとして広く知られている工具鋼よりもはるかに硬質であり、靱性に優れている。また、接合対象である鋼材との比較において、その硬度差が極めて大きいことから使用した。図1に示すように、スターロッド1の先端のショルダー部2を直径10mmとし、ピン3を長さ2.5mm、直径4.0mmのストレートピン3の形状に一体成形品を使用した。
【0017】
試験は、図1に示すように、摩擦撹拌加工装置に鋼材Hとアルミニウム材Sの試験片の端面を突合わせた。突き合わせた両界面によって形成される突合わせ線mからピン3が鋼材H側に入り込んだ変位量δを0.1mmにピン3を位置させ、また、スターロッド1を試験片に対して垂直方向、すなわち前進角を0°にセットした。また、ピン3の先端の押込み深さを2.3mm、スターロッド1の回転数を6000rpm、接合速度を50mm/min.として、突合わせ線mに対して平行に移動して摩擦撹拌接合を行った。
【0018】
試験は、図2に示すように、移動方向に対して前側で硬質材の鋼材H側から軟質材であるアルミニウム材Sに向かって回転する方向(以下、正回転方向という。)と、これとは逆に、図3に示すように、移動方向に対して前側がアルミニウム材S側から鋼材H側に向かって回転する方向(以下、逆回転方向という。)について調べた。その結果、正回転方向で実施すると、十分な接合強度が得られた。一方、逆回転方向での試験では十分な接合強度が得られなかった。
【0019】
スターロッド1の回転方向により相違する結果が得られた理由として、以下のメカニズムが推定される。正回転方向における実施では、図2に示すように、スターロッド1の進行方向に対して先端の領域Haでは、ピン3が鋼材界面を削って、新しい界面の削り出しが行われる。また、アルミニウム材のピン3と接触している近傍の領域Saでは、ピン3の回転によって撹拌が行われて塑性流動している。スターロッド1の進行方向に対して後側となる領域Sbでは、塑性流動したアルミニウム材Sがピン3の回転力によって大きな圧縮力を受け、新しい清浄な鋼材界面との間で接合がなされる。
【0020】
一方、図3に示すように、逆回転方向における実施において、アルミニウム材Sがピン3と接触している近傍の領域Sbでは、ピン3の回転に伴いアルミニウム材Sが塑性流動している。そして、スターロッド1の進行方向に対して先端の領域Saでは、塑性流動したアルミニウム材Sが鋼材Hの界面に衝突し、大きな圧縮力を受ける。しかし、ピン3は、突合わせ面の鋼材H側にわずかに侵入して配置されているために、鋼材Hの面を削り、新しい面の削り出しが行われる。従って、接合が行われるスターロッドの進行方向に対して後側となる領域Sbでは、塑性流動したアルミニウム材に大きな圧縮力が加えられていない状態で接合がなされる。このメカニズムによって、逆回転方向で実施するとアルミニウム材に大きな圧縮力が加えられていないために十分な接合強度が得られない。
【0021】
(ピン3の鋼材側に侵入する距離が及ぼす影響試験)
鋼材Hとアルミニウム材Sとの突合わせ線mに対して、ピン3の入込み距離δが接合に及ぼす影響を試験した。
【0022】
試験材料、スターロッド1、摩擦撹拌加工装置などの多くについては、上述した回転方向による影響試験に使用したものと同じ条件、同じものを使用した。
【0023】
試験は、図4に示すように、鋼材Hとアルミニウム材Sの試験片の突合せ面により形成される突合せ線mに対して、スターロッド1のピン3の変位量δを変化させて摩擦撹拌接合を行った。なお、スターロッド1の回転はいずれも正回転方向とした。摩擦接合して得られた各試験片を引張り試験用の試料に切り出して引張り試験を行い、その接合力を測定した。
【0024】
試験の結果、表及び図5に示す結果が得られた。
【0025】
【表】

Figure 2004255420
【0026】
突合せ線mからのピン3の変位量δが、−0.3mmと−0.2mmとした鋼材Hの界面から大きく離れている比較例1及び比較例2では、外観上は接合されているが、その接合力(引張り強度)は極めて弱く、引張り試験用の試験片に切り出す際に破断するなど、実質的に接合していない。比較例3では、ピン3が鋼材Hの界面から離れているとはいえ、極めて近いために、鋼材端面の凹凸などによって、鋼材の界面の一部が削られて新しい界面を削り出している結果、摩擦撹拌接合が突合せ面の一部において行われていると考えられる。比較例4では、ピン3が鋼材Hの界面にあり、鋼材の界面の一部が削られて新しい界面を削り出している結果、摩擦撹拌接合が突合せ面の一部において行われていると考えられる。このため、上記入込み距離δが0mmに近くなるに従って、引張り強度が高くなっている。また、実施例1〜実施例4では、引張り試験による破断位置がアルミニウム材の母材側で生じており、接合部では、アルミニウム母材よりも高い接合力を示している。なお、実施例3の引張り強度が126MPaとわずかに小さいが、これは試験に使用したアルミニウム材がダイキャスト材であり、アルミニウム母材のばらつきと思われる。
【図面の簡単な説明】
【図1】摩擦撹拌している状態の断面図
【図2】ピンが正回転方向の場合の説明図
【図3】ピンが逆回転方向の場合の説明図
【図4】ピンの配設位置を説明する説明図
【図5】試験結果を示すグラフ
【符号の説明】
1…スターロッド
2…ショルダー部
3…ピン
H…硬質材
S…軟質材
δ…変位量
m…突合せ線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to friction stir welding between dissimilar metals.
[0002]
[Prior art]
BACKGROUND ART Conventionally, joining by a friction stir welding method (Friction Stir Welding method) mainly on an aluminum material has been known. This friction stir welding method is a method in which two materials are butted and fixed, and a rotating pin is pushed into the butted portion and moved while rotating, thereby causing a plastic flow phenomenon in a solid state to join. is there.
[0003]
In order for these two materials to cause sufficient plastic flow and obtain good bonding, it is a condition that melting points and hardness are close to each other, and in many cases, they are applied to similar materials such as aluminum-aluminum. .
[0004]
Recently, application of friction stir welding to dissimilar metal materials has been studied.
Non-Patent Document 1 attempts to join a copper material (oxygen-free copper), which is a dissimilar metal, to an aluminum material (JIS standard 1100). Here, a helical screw is formed on the circumferential surface of the pin, this pin is inserted into the aluminum material side where the plastic flow phenomenon is likely to occur, and friction welding is performed while pressing the helical screw of the pin against the copper material interface. It is said that the tensile strength equivalent to that of the aluminum base material was thereby obtained.
[0005]
Non-Patent Document 2 attempts to join a steel material (JIS standard SS400) and an aluminum material (JIS A5083), which are different metals. Here, a tool steel commonly used as a star rod is used for the pin. A test is performed in which the steel sheet is inserted into the steel material side by 0.2 mm from the butt line, and is arranged and inserted so that the majority is on the aluminum material side. As a result of the test, it was stated that the highest bonding strength with tensile strength was obtained when the rotation speed of the pin was 250 rpm, and that when the rotation speed was 1250 rpm, there were many defects in the bonding portion and the bonding could not be performed. In addition, a test is performed in which the pin enters the steel material side by 0.2 mm from the butt line, and the pin is inserted so that most of the pin is on the aluminum material side, and the insertion distance from the butt line (hereinafter, referred to as a displacement amount). ) Is 0.2 mm, a high bonding force is obtained. It is reported that when the displacement amount is larger than 0.2 mm, the tensile strength is rather reduced.
[0006]
[Non-Patent Document 1] Hisabu Okamura Kinya Aota Yasuhisa Aono, "Friction diffusion bonding of dissimilar metals using friction stir action (1st report)", Outline of the National Meeting of the Welding Society of Japan, Welding Society of Japan, September 2002 March 3rd, p. 71 p. 442, p. 443
[Non-Patent Document 2] Takehiko Watanabe Atsushi Yanagisawa Hiroshi Takayama, "Joining Steel and Aluminum Alloy by Surface Active Adhesion Bonding Method Surface Active Adhesion Bonding Method of Dissimilar Metallic Materials Using Rotary Needle (Report 1), National Meeting of Japan Welding Society" Outline of the lecture, Japan Welding Society, September 3, 2002, Vol. 71, p.446, p.447
[0007]
[Problems to be solved by the invention]
It has been reported that the friction stir method between a copper material and aluminum shown in Non-Patent Literature 1 results in good joining. However, for example, when applied to the joining of a steel material and an aluminum material, a sufficient joining force cannot be obtained, and the application is limited to those having a small difference in hardness between the joining materials.
[0008]
The friction stir method disclosed in Non-Patent Document 2 attempts to join a steel material and an aluminum material. However, tool steel (SKD) is used as a pin, and the hardness is Vickers hardness (Hv). ) Is about 600 kgf / mm 2 . On the other hand, the hardness of a steel material as a hard material is about 200 kgf / mm 2 Hv, and a pin having a hardness ratio (pin / steel material) to the hard material of about 3 is used. It is stated that a high joining force is obtained when the displacement amount of the pin from the butting line is 0.2 mm, while the joining force is extremely small to about 1/10 when the displacement amount is 0.6 mm. It also reports that. Therefore, the joining method according to the invention disclosed in Non-Patent Document 2 is extremely sensitive to the amount of displacement of the pin from the butt line to the steel material side, and if the joining distance is long, a stable joining force cannot be obtained. There is a risk. Further, it is desirable that a low rotation speed of 250 rpm is desirable, and it is said that bonding is not performed at a high rotation speed of 1250 rpm. Furthermore, even in the test where the penetration distance showing the highest tensile strength was 0.2 mm, the bonding strength did not reach the base metal strength.
[0009]
[Means for Solving the Problems]
According to the present invention, in a joining method in which a hard material and a dissimilar metal material made of a soft material having a lower hardness than the hard material are butted and the butted surfaces are joined by friction stir welding, the hardness ratio of the hard material to the hard material is 5 or more. The pin of the star rod is inserted into the hard material side at least 0.05 mm with respect to the butt line formed by butting the hard material and the soft material, and most of the pins are displaced to the soft material side, The pin moves in the direction of the butting line while rotating in the direction from the hard material toward the soft material in the direction of movement of the pin.
[0010]
In this specification, the term “hard material” means a hard material of two materials to be joined, and is used as a relative concept. Similarly, the term "soft material" means a material that is softer in comparison between the two materials to be joined. For example, in joining a steel material and an aluminum material, the hard material is a steel material, and the soft material is an aluminum material. Further, the displacement amount refers to a distance between a butting line formed by abutting a hard material and a soft material and a pin inserted into the soft material side for the most part into the hard material side.
[0011]
When the hard material and the soft material butt, the pin of the star rod enters the hard material side more than 0.05mm with respect to the butt line formed by both end faces, so that the majority is on the soft material side Place pins. Next, the pin is pushed in from the surface of both materials while rotating the star rod in the direction rotating from the hard material toward the soft material side on the front side with respect to the moving direction of the pin. Then, frictional welding is performed by moving in parallel to the butting line.
[0012]
Pins that penetrate slightly into the hard material cut the end surface of the hard material and cut out a new interface. In order for the pin to cut the hard material interface and to sufficiently cut a new interface, the hardness ratio with the hard material needs to be large, and a material having a hardness ratio of 5 or more with the hard material is used. If the hardness ratio is less than 5, not only the pins will be severely worn but lack durability, but also coarse wear pieces generated from the pins will be mixed in the frictionally flowed soft material to lower the bonding strength. When the hard material is a steel material, a cemented carbide or cermet excellent in high-temperature hardness and toughness can be used. Further, when the hard material is hardness Hv80kgf / mm 2 approximately of the copper material can be used tool steel hardness Hv600kgf / mm 2.
[0013]
Since the pin penetrates slightly into the hard material side, the pin cuts out a new interface of the hard material, and at the same time, plastically flows in a region near the soft material in contact with the pin. In the region on the rear side with respect to the traveling direction of the pin, the soft material that has plastically flowed receives a large compressive force, and is joined to the newly exposed clean hard material surface. Further, the displacement amount of the pin toward the hard material side may be 0.05 mm or more at which the interface of the hard material is shaved by the pin and a new interface is sufficiently exposed. Further, even if the displacement amount is increased, the joining force is not affected, but it is preferably 0.05 mm or more and 1.0 mm or less from the viewpoint of improving the durability of the pin. In particular, the thickness is preferably 0.05 mm or more and 0.5 mm or less.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which a steel material is used as a hard material and an aluminum material is used as a soft material will be described in detail.
[0015]
(Effect test by rotation direction)
The effect of rotating direction on friction welding was tested.
The steel material is a general structural steel material (JIS SS400) having a hardness Hv of 200 kgf / mm 2 , and the aluminum material is an aluminum die-cast material (JIS standard ADC12), both of which are milled to a size of 20 mm × 200 mm × 8 mm. Was made.
[0016]
As a friction stir processing apparatus, an S400 type machining center manufactured by Enshu Co., Ltd. was used. The star rod 1 used was a cemented carbide (JIS K10) having a hardness Hv of 1400 kgf / mm 2 . Cemented carbide is much harder than tool steel conventionally widely known as a star rod and has excellent toughness. Further, in comparison with the steel material to be joined, it was used because its hardness difference was extremely large. As shown in FIG. 1, the shoulder 2 at the tip of the star rod 1 was 10 mm in diameter, the pin 3 was 2.5 mm in length, and an integrally molded product having a shape of a straight pin 3 having a diameter of 4.0 mm was used.
[0017]
In the test, as shown in FIG. 1, the end faces of the test pieces of the steel material H and the aluminum material S were butted against a friction stir processing apparatus. The pin 3 is positioned at a displacement δ at which the pin 3 enters the steel material H side from the butting line m formed by the butted interfaces at 0.1 mm, and the star rod 1 is moved perpendicularly to the test piece. That is, the advance angle was set to 0 °. The depth of the pin 3 at the tip is 2.3 mm, the number of rotations of the star rod 1 is 6000 rpm, and the joining speed is 50 mm / min. The friction stir welding was performed by moving in parallel to the butt line m.
[0018]
In the test, as shown in FIG. 2, a direction (hereinafter, referred to as a normal rotation direction) in which the steel material H, which is a hard material, is rotated toward the aluminum material S, which is a soft material, on the front side with respect to the moving direction. Conversely, as shown in FIG. 3, a direction in which the front side rotates from the aluminum material S side toward the steel material H side with respect to the moving direction (hereinafter, referred to as a reverse rotation direction) was examined. As a result, when performed in the normal rotation direction, sufficient bonding strength was obtained. On the other hand, a sufficient joint strength was not obtained in the test in the reverse rotation direction.
[0019]
The following mechanism is presumed as the reason that the result different depending on the rotation direction of the star rod 1 was obtained. In the implementation in the forward rotation direction, as shown in FIG. 2, in the region Ha at the tip end with respect to the traveling direction of the star rod 1, the pin 3 cuts the steel material interface, and a new interface is cut out. Further, in the region Sa near the pin 3 made of aluminum material, the pin 3 is rotated by the rotation of the pin 3 and plastically flows. In the region Sb on the rear side with respect to the traveling direction of the star rod 1, the plastically flowed aluminum material S receives a large compressive force due to the rotational force of the pin 3, and is joined to a new clean steel material interface.
[0020]
On the other hand, as shown in FIG. 3, in the reverse rotation direction, in the region Sb near the contact of the aluminum material S with the pin 3, the aluminum material S is plastically flowing with the rotation of the pin 3. Then, in the region Sa at the distal end with respect to the traveling direction of the star rod 1, the plastically flowed aluminum material S collides with the interface of the steel material H and receives a large compressive force. However, since the pin 3 is disposed so as to slightly penetrate the steel material H side of the abutting surface, the surface of the steel material H is ground and a new surface is ground. Therefore, in the region Sb on the rear side with respect to the traveling direction of the star rod in which the joining is performed, the joining is performed without applying a large compressive force to the plastically flowed aluminum material. By this mechanism, if the operation is performed in the reverse rotation direction, sufficient joining strength cannot be obtained because a large compressive force is not applied to the aluminum material.
[0021]
(Effect test of the distance of the pin 3 entering the steel material side)
The effect of the insertion distance δ of the pin 3 on the joining line m between the steel material H and the aluminum material S on the joining was tested.
[0022]
For many of the test materials, the star rod 1, the friction stir processing apparatus, and the like, the same conditions and the same as those used in the above-described influence test by the rotation direction were used.
[0023]
As shown in FIG. 4, the friction stir welding was performed by changing the displacement δ of the pin 3 of the star rod 1 with respect to a butt line m formed by the butt surfaces of the test pieces of the steel H and the aluminum S as shown in FIG. Was done. In addition, all the rotations of the star rod 1 were in the forward rotation direction. Each test piece obtained by friction joining was cut into a sample for a tensile test, and a tensile test was performed to measure the joining strength.
[0024]
As a result of the test, the results shown in the table and FIG. 5 were obtained.
[0025]
【table】
Figure 2004255420
[0026]
In Comparative Examples 1 and 2, in which the displacement amount δ of the pin 3 from the butt line m is far away from the interface of the steel material H at −0.3 mm and −0.2 mm, the external appearance is joined. However, the joining force (tensile strength) is extremely weak, and the joints are not substantially joined, such as being broken when cut into test pieces for a tensile test. In Comparative Example 3, although the pin 3 was far away from the interface of the steel material H, it was very close, so that a part of the interface of the steel material was shaved due to irregularities on the end face of the steel material, and a new interface was cut out. It is considered that friction stir welding is performed on a part of the butt surface. In Comparative Example 4, it was considered that the friction stir welding was performed on a part of the butt surface as a result of the pin 3 being at the interface of the steel material H and the steel material being partially cut off and cutting out a new interface. Can be For this reason, the tensile strength increases as the insertion distance δ approaches 0 mm. Further, in Examples 1 to 4, the breaking position in the tensile test is generated on the base material side of the aluminum material, and the bonding portion has a higher bonding force than the aluminum base material. In addition, although the tensile strength of Example 3 was slightly small at 126 MPa, it is considered that the aluminum material used in the test was a die-cast material, and this was considered to be a variation in the aluminum base material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a state in which friction stirring is performed. FIG. 2 is an explanatory view when a pin is in a forward rotation direction. FIG. 3 is an explanatory view when a pin is in a reverse rotation direction. FIG. 5 is a graph showing test results.
DESCRIPTION OF SYMBOLS 1 ... Star rod 2 ... Shoulder part 3 ... Pin H ... Hard material S ... Soft material δ ... Displacement m ... Butting line

Claims (3)

硬質材と、該硬質材より硬度の小さな軟質材からなる異種金属材を突合わせて、該突合わせ面を摩擦撹拌接合により接合する接合方法において、
硬質材との硬度比が5以上のスターロッドのピンを、前記硬質材と前記軟質材を突合わせて形成される突合わせ線に対して、該硬質材側に0.05mm以上入り込み、大部分を前記軟質材側に配置し、また、前記ピンを、該ピンの移動方向で該硬質材から該軟質材側に向かう方向に回転しながら、該突合わせ線の方向に移動することを特徴とする異種材を摩擦撹拌接合する接合方法。
In a joining method in which a hard material and a dissimilar metal material made of a soft material having a smaller hardness than the hard material are butted, and the butted surfaces are joined by friction stir welding,
A star rod pin having a hardness ratio of 5 or more with respect to the hard material is inserted into the hard material side at a distance of 0.05 mm or more with respect to a butt line formed by abutting the hard material and the soft material. Is disposed on the soft material side, and the pin moves in the direction of the butting line while rotating in the direction of movement of the pin from the hard material toward the soft material side. Joining method for friction stir welding of dissimilar materials.
スターロッドのピンを超硬合金により構成していることを特徴とする請求項1記載の接合方法。The joining method according to claim 1, wherein the pin of the star rod is made of a cemented carbide. 硬質材が鋼材であり、軟質材がアルミニウムであることを特徴とする請求項1、2記載の接合方法。3. The joining method according to claim 1, wherein the hard material is a steel material and the soft material is aluminum.
JP2003049479A 2003-02-26 2003-02-26 Friction stir welding method for dissimilar metal materials Expired - Fee Related JP4336744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049479A JP4336744B2 (en) 2003-02-26 2003-02-26 Friction stir welding method for dissimilar metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049479A JP4336744B2 (en) 2003-02-26 2003-02-26 Friction stir welding method for dissimilar metal materials

Publications (2)

Publication Number Publication Date
JP2004255420A true JP2004255420A (en) 2004-09-16
JP4336744B2 JP4336744B2 (en) 2009-09-30

Family

ID=33115189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049479A Expired - Fee Related JP4336744B2 (en) 2003-02-26 2003-02-26 Friction stir welding method for dissimilar metal materials

Country Status (1)

Country Link
JP (1) JP4336744B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508682B2 (en) 2005-09-19 2009-03-24 Hitachi, Ltd. Housing for an electronic circuit
JP2009202212A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Method and apparatus for joining different kinds of material
JP2009269077A (en) * 2008-05-09 2009-11-19 Osg Corp Friction stir welding method and friction stir welding apparatus
CN103008875A (en) * 2012-12-28 2013-04-03 北京理工大学 Dissimilar metal welding joint and welding method thereof
JP2013163208A (en) * 2012-02-12 2013-08-22 Furukawa-Sky Aluminum Corp Friction stir welding method
JP2013248647A (en) * 2012-05-31 2013-12-12 Hitachi Automotive Systems Ltd Friction stirring and joining method and method of manufacturing disk brake
CN104107978A (en) * 2014-07-17 2014-10-22 上海交通大学 Method for improving strength and plasticity of dissimilar material stir friction welding joint
CN104923911A (en) * 2015-07-16 2015-09-23 辽宁石油化工大学 Dissimilar metal friction-stir welding one-side welding double-side forming method and device
JP2016182628A (en) * 2015-03-26 2016-10-20 国立大学法人大阪大学 Friction stir welding method and friction stir welded member
CN106271031A (en) * 2016-10-09 2017-01-04 兰州理工大学 Aluminum steel friction stir connecting method
JP2020138203A (en) * 2019-02-26 2020-09-03 冨士端子工業株式会社 Manufacturing method of dissimilar metal bonded body
CN113523533A (en) * 2020-04-13 2021-10-22 中国科学院金属研究所 Differential thickness method friction stir welding process for realizing dissimilar material connection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332724B (en) * 2014-10-24 2016-08-24 江苏万奇电器集团有限公司 A kind of copper aluminium docking adds the busbar that splices
EP3610979B1 (en) 2017-04-14 2021-09-08 Asahi Kasei Kabushiki Kaisha Dissimilar metal joint including flame-retardant magnesium alloy layer, and method of producing such joint
CN111633321A (en) * 2020-06-10 2020-09-08 上海航天设备制造总厂有限公司 Friction stir welding method for dissimilar metal butt joint

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508682B2 (en) 2005-09-19 2009-03-24 Hitachi, Ltd. Housing for an electronic circuit
JP2009202212A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Method and apparatus for joining different kinds of material
JP2009269077A (en) * 2008-05-09 2009-11-19 Osg Corp Friction stir welding method and friction stir welding apparatus
JP2013163208A (en) * 2012-02-12 2013-08-22 Furukawa-Sky Aluminum Corp Friction stir welding method
JP2013248647A (en) * 2012-05-31 2013-12-12 Hitachi Automotive Systems Ltd Friction stirring and joining method and method of manufacturing disk brake
CN103008875A (en) * 2012-12-28 2013-04-03 北京理工大学 Dissimilar metal welding joint and welding method thereof
CN104107978A (en) * 2014-07-17 2014-10-22 上海交通大学 Method for improving strength and plasticity of dissimilar material stir friction welding joint
JP2016182628A (en) * 2015-03-26 2016-10-20 国立大学法人大阪大学 Friction stir welding method and friction stir welded member
CN104923911A (en) * 2015-07-16 2015-09-23 辽宁石油化工大学 Dissimilar metal friction-stir welding one-side welding double-side forming method and device
CN106271031A (en) * 2016-10-09 2017-01-04 兰州理工大学 Aluminum steel friction stir connecting method
JP2020138203A (en) * 2019-02-26 2020-09-03 冨士端子工業株式会社 Manufacturing method of dissimilar metal bonded body
JP7270149B2 (en) 2019-02-26 2023-05-10 冨士端子工業株式会社 Dissimilar metal bonded body manufacturing method
CN113523533A (en) * 2020-04-13 2021-10-22 中国科学院金属研究所 Differential thickness method friction stir welding process for realizing dissimilar material connection

Also Published As

Publication number Publication date
JP4336744B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP2004255420A (en) Friction stir welding method for different metallic material
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
US7275675B1 (en) Friction stir weld tools
JP6737347B2 (en) Double-sided friction stir welding method and double-sided friction stir welding apparatus for metal plates
EP1361014A2 (en) Tapered friction stir welding tool
US10286481B2 (en) FSW tool with graduated composition change
JP6041499B2 (en) Friction stir welding method
JP4838389B1 (en) Double-side friction stir welding method for metal plates with gaps in the butt
JP2007301579A (en) Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same
JP2003326372A (en) Tool for friction-stirring joining
JP2007237258A (en) Tool for friction stir welding, welding method using the same tool, and workpiece obtained by the same method
JP2009214170A (en) Tool for friction stirring, and friction stirring method
EP1279459A3 (en) Friction stir welding method and rotary tool
JP2003225779A (en) Dissimilar metal joining method using rotary needle
JP7070642B2 (en) Double-sided friction stir welding method and double-sided friction stir welding device for metal plates
JP2004082144A (en) Tool and method for friction stir welding
JP4543204B2 (en) Friction stir welding method
Widener et al. High-rotational speed friction stir welding with a fixed shoulder
US20200361025A1 (en) Rotating tool for and method of friction stir welding
EP3804901A1 (en) Friction stir welding tool and friction stir welding method
JP2006320958A (en) Tool for friction stir welding, welding method using the same and workpiece made by the method
JP2012166270A (en) Spot friction stir welding method of bimetallic metals
JP6675554B2 (en) Dissimilar material friction stir welding method
JP2004034141A (en) Method of producing joint, joint, friction stirring joining method, joining apparatus and cutting tool for planing
JP4346282B2 (en) Metal plate joined by friction welding, metal plate joining method by friction welding, and metal plate joining apparatus by friction welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

R150 Certificate of patent or registration of utility model

Ref document number: 4336744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees