JP2009269077A - Friction stir welding method and friction stir welding apparatus - Google Patents

Friction stir welding method and friction stir welding apparatus Download PDF

Info

Publication number
JP2009269077A
JP2009269077A JP2008123654A JP2008123654A JP2009269077A JP 2009269077 A JP2009269077 A JP 2009269077A JP 2008123654 A JP2008123654 A JP 2008123654A JP 2008123654 A JP2008123654 A JP 2008123654A JP 2009269077 A JP2009269077 A JP 2009269077A
Authority
JP
Japan
Prior art keywords
welding
tool
load
friction stir
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008123654A
Other languages
Japanese (ja)
Other versions
JP5048583B2 (en
Inventor
Yoichiro Shimoda
陽一朗 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2008123654A priority Critical patent/JP5048583B2/en
Publication of JP2009269077A publication Critical patent/JP2009269077A/en
Application granted granted Critical
Publication of JP5048583B2 publication Critical patent/JP5048583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably obtain the predetermined welding quality regarding the welding strength and the bead appearance or the like irrespective of dimensional errors of a weld part when executing the friction stir welding by butting edges of dissimilar metal materials having different hardness. <P>SOLUTION: When executing the friction stir welding by moving a welding tool 10 along the welding line W, the welding tool 10 is moved along the welding line W while adjusting the X-direction position Lx of the welding tool so that the X-direction load Fx substantially perpendicular to the welding line W is the predetermined target load (the optimum load fxbest). Thus, the excellent welding quality according to the target load is stably obtained irrespective of any difference in the materials (hardness or the like) of a pair of welded members 42, 44 and dimensional errors of a weld part indicated by the welding line W. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は摩擦攪拌接合方法に係り、特に、硬さが異なる異種金属材料の端縁を突き合わせて摩擦攪拌接合する際に所定の接合品質が安定して得られるようにする技術に関するものである。   The present invention relates to a friction stir welding method, and more particularly to a technique for stably obtaining predetermined joining quality when friction stir welding is performed by abutting edges of dissimilar metal materials having different hardnesses.

先端に攪拌用突部が突設された接合工具を軸心Sまわりに回転駆動しつつ、一対の被接合部材の端縁が互いに突き合わされた接合ラインW上にその攪拌用突部を押圧し、摩擦熱でその被接合部材を軟化させて攪拌用突部を没入させるとともに、その接合ラインWに沿ってその接合工具を相対移動させることにより、その一対の被接合部材の端縁近傍をその攪拌用突部で攪拌して混ぜ合わせて一体的に接合する摩擦攪拌接合方法(FSW:Friction Stir Welding )が、アルミニウム合金などの金属板材の接合方法として提案されている(特許文献1参照)。具体的には、鉄道車両や自動車などの車体を構成している金属板の接合などに利用されており、金属を融点温度以下で軟化させて混ぜ合わせることにより接合するため、レーザー溶接やスポット溶接のように金属を溶かして接合する場合に比較して加工温度が低く、変形や歪が小さい等の利点がある。   While rotating the joining tool with the agitating protrusion protruding at the tip about the axis S, the agitating protrusion is pressed onto the joining line W where the edges of the pair of members to be joined are abutted with each other. The member to be joined is softened by frictional heat so that the stirring protrusion is immersed, and the joining tool is relatively moved along the joining line W so that the vicinity of the edges of the pair of members to be joined A friction stir welding method (FSW: Friction Stir Welding) in which stirring is performed with a stirring protrusion and mixed together is proposed as a method for joining a metal plate such as an aluminum alloy (see Patent Document 1). Specifically, it is used for joining metal plates that make up car bodies such as railway cars and automobiles, and is made by softening the metals below the melting point and joining them together, so laser welding and spot welding. As described above, there are advantages such as lower processing temperature and smaller deformation and distortion compared to melting and joining metals.

図7は、このような摩擦攪拌接合方法の一例を説明する図で、(a) は一対の被接合部材30、32の端縁を突き合わせて接合工具10により摩擦攪拌接合する際の斜視図、(b) は(a) におけるVIIB−VIIB断面の拡大図である。接合工具10は、円柱形状の軸部12と、その軸部12の先端中央部に軸部12と同心に突設された小径の攪拌用突部14とを一体に備えている。攪拌用突部14は、略円柱形状(図では先端側程やや小径のテーパ形状)を成しており、その外周面には、例えば工具回転方向と逆ねじれのおねじ等の凹凸が設けられているとともに、先端面(突部先端面)18は部分球面形状を成している。また、軸部12の先端面であって攪拌用突部14よりも外周側に位置する円環状部分には、その外周縁から攪拌用突部14に向かうに従って徐々に深くなる凹所20が設けられている。   FIG. 7 is a diagram for explaining an example of such a friction stir welding method, where (a) is a perspective view when the edges of a pair of members 30 and 32 are abutted and friction stir welding is performed by the welding tool 10; (b) is an enlarged view of the section VIIB-VIIB in (a). The joining tool 10 is integrally provided with a cylindrical shaft portion 12 and a small-diameter stirring protrusion 14 that is provided concentrically with the shaft portion 12 at the center of the tip of the shaft portion 12. The stirring protrusion 14 has a substantially cylindrical shape (in the figure, a taper shape with a slightly smaller diameter toward the tip side), and the outer peripheral surface thereof is provided with irregularities such as a screw that is reversely twisted in the tool rotation direction. In addition, the tip surface (projection tip surface) 18 has a partial spherical shape. In addition, the annular portion located on the outer peripheral side of the stirring protrusion 14 on the tip surface of the shaft portion 12 is provided with a recess 20 that gradually becomes deeper from the outer periphery toward the stirring protrusion 14. It has been.

一対の被接合部材30、32は、その端縁が互いに接するように突き合わされる状態で平坦な支持台34上に位置決めして載置されており、その突き合わされた端縁部分すなわち接合すべき接合ラインWが前記接合工具10によって摩擦攪拌接合される。すなわち、接合工具10が軸心Sの右まわりに回転駆動されつつ接合ラインW上に押圧されると、摩擦熱で被接合部材30、32の端縁近傍が軟化させられ、攪拌用突部14がその軟化部分36内に没入させられることにより、軟化部分36がその攪拌用突部14により攪拌されて混ぜ合わされる。そして、その状態で接合工具10が矢印Aで示すように接合ラインWに沿って相対移動させられると、軟化部分36がその接合ラインWに沿って連続的に移動し、移動元の軟化部分36が順次冷却硬化させられることにより、両被接合部材30、32が接合ラインWの全長に亘って順次一体的に接合される。図7(a) の符号38は、軟化部分36が冷却硬化した攪拌接合部である。
特開2001−198683号公報
The pair of members to be joined 30 and 32 are positioned and placed on the flat support base 34 in a state in which their edges are abutted so as to contact each other. The joining line W is friction stir welded by the joining tool 10. That is, when the welding tool 10 is pressed on the welding line W while being rotated clockwise around the axis S, the vicinity of the edges of the members 30 and 32 to be welded is softened by frictional heat, and the stirring protrusion 14 Is immersed in the softened portion 36, the softened portion 36 is stirred and mixed by the stirring protrusion 14. In this state, when the welding tool 10 is relatively moved along the joining line W as indicated by the arrow A, the softened portion 36 continuously moves along the joining line W, and the softened portion 36 that is the movement source. Are sequentially cooled and hardened, so that both the joined members 30 and 32 are sequentially and integrally joined over the entire length of the joining line W. Reference numeral 38 in FIG. 7A denotes a stir joint where the softened portion 36 is cooled and hardened.
JP 2001-198683 A

このような摩擦攪拌接合方法は、従来、一対の被接合部材が同一の金属材料の板材にて構成されている場合に用いられていたが、硬さが異なる異種金属から成る一対の被接合部材を接合しようとすると、工具の軸心Sと接合ラインWとの位置関係により、接合強度やビード外観等の接合品質が大きく変化するという問題を見い出した。すなわち、本発明者等の実験、研究によれば、図8の(a) 〜(c) に示すように、一対の被接合部材30、32が同一の金属材料(例えばアルミニウム合金)の場合には、接合工具10の軸心Sが接合ラインWの左右にずれても摩擦攪拌接合が可能で、且つ接合強度やビード外観等の接合品質に関して略同じ品質が安定して得られるのに対し、図8の(d) 〜(f) に示すように異種金属の場合、すなわち一方の被接合部材30が鉄鋼材料で他方の被接合部材32がアルミニウム合金の場合には、接合工具10の軸心Sと接合ラインWとの位置関係により、攪拌用突部14の摩耗で接合部に空隙(巣)が生じたり接合強度が低下したりするなどして接合品質が大きく変化し、実質的に接合不可となる場合があった。具体的には、図8の(e) に示すように、攪拌用突部14が被接合部材(鉄鋼材料)30側へ少しだけ侵入するように接合工具10の軸心Sが接合ラインWよりも被接合部材(アルミニウム合金)32側へずれている場合には接合可能であるが、(d) や(f) のように攪拌用突部14の被接合部材(鉄鋼材料)30側への侵入寸法が大きくなると、接合工具10に大きな偏荷重が生じるようになって攪拌用突部14の摩耗が激しくなり、前記攪拌接合部38に空隙が生じるなどして接合品質が大きく損なわれる。   Such a friction stir welding method has been conventionally used when a pair of members to be joined is made of the same metal plate, but a pair of members made of different metals having different hardnesses. When trying to join, a problem has been found that the joining quality such as joining strength and bead appearance greatly changes depending on the positional relationship between the axis S of the tool and the joining line W. That is, according to the experiments and researches of the present inventors, as shown in FIGS. 8A to 8C, when the pair of members 30 and 32 are made of the same metal material (for example, aluminum alloy). The friction stir welding is possible even when the axis S of the welding tool 10 is shifted to the left and right of the welding line W, and substantially the same quality can be stably obtained with respect to the bonding quality such as the bonding strength and the bead appearance. As shown in FIGS. 8D to 8F, in the case of dissimilar metals, that is, when one member 30 is a steel material and the other member 32 is an aluminum alloy, the axis of the joining tool 10 is used. Depending on the positional relationship between S and the joining line W, the joining quality is greatly changed, for example, a gap (nest) is formed in the joined portion due to wear of the stirring protrusion 14 or the joining strength is lowered. There were cases where it was impossible. Specifically, as shown in FIG. 8 (e), the shaft center S of the welding tool 10 is connected to the joining line W so that the stirring protrusion 14 slightly enters the member to be joined (steel material) 30 side. Can also be joined if they are shifted to the member to be joined (aluminum alloy) 32 side, but as shown in (d) and (f), the stirring protrusion 14 is directed to the member to be joined (steel material) 30 side. When the intrusion dimension is increased, a large offset load is generated in the welding tool 10 and the agitation protrusion 14 is abruptly worn.

したがって、一対の被接合部材30、32が異種金属の場合には、図8の(e) に示すように、硬質の被接合部材(鉄鋼材料)30に対する攪拌用突部14の侵入寸法が小さくなるように接合工具10の軸心Sを接合ラインWよりも反対側、すなわち被接合部材(アルミニウム合金)32側へずらして摩擦攪拌接合を行うようにすれば良いが、実際の被接合部材30、32の端縁すなわち接合ラインWは必ずしも設計通りでなく誤差を有するとともに、その接合ラインWを検出して接合工具10の位置をコントロールすることは困難であるため、略一定の接合品質を安定して得ることは難しい。なお、図8の(a) 〜(f) は、何れも図7の(b) に対応する断面図であるが、特に軸心Sと接合ラインWとの位置関係を説明するためのもので、前記軟化部分36の図示を省略するとともに各部の形状を単純化した概略図である。   Therefore, when the pair of members to be joined 30 and 32 are made of different metals, the intrusion dimension of the stirring protrusion 14 with respect to the hard member to be joined (steel material) 30 is small as shown in FIG. In this way, the friction stir welding may be performed by shifting the axis S of the welding tool 10 to the opposite side of the welding line W, that is, the member to be joined (aluminum alloy) 32, but the actual member 30 to be joined. 32, that is, the joining line W is not always designed and has an error, and it is difficult to control the position of the joining tool 10 by detecting the joining line W, so that a substantially constant joining quality is stable. It is difficult to get. 8 (a) to 8 (f) are all cross-sectional views corresponding to FIG. 7 (b), but are particularly for explaining the positional relationship between the shaft center S and the joining line W. FIG. FIG. 5 is a schematic view in which the softened portion 36 is omitted and the shape of each portion is simplified.

本発明は以上の事情を背景として為されたもので、その目的とするところは、硬さが異なる異種金属材料の端縁を突き合わせて摩擦攪拌接合する際に、接合部分の寸法誤差に拘らず接合強度やビード外観等に関する所定の接合品質が安定して得られるようにすることにある。   The present invention has been made against the background of the above circumstances, and the purpose of the present invention is to match the edges of dissimilar metal materials with different hardnesses when performing friction stir welding, regardless of dimensional errors at the joints. The object is to stably obtain a predetermined bonding quality relating to bonding strength, bead appearance, and the like.

かかる目的を達成するために、第1発明は、先端に攪拌用突部が突設された接合工具を軸心Sまわりに回転駆動しつつ、一対の被接合部材の端縁が互いに突き合わされた接合ラインW上にその攪拌用突部を押圧し、摩擦熱でその被接合部材を軟化させてその攪拌用突部を没入させるとともに、その接合ラインWに沿ってその接合工具を相対移動させることにより、その一対の被接合部材の端縁近傍をその攪拌用突部で攪拌して混ぜ合わせて一体的に接合する摩擦攪拌接合方法において、(a) 前記一対の被接合部材は、互いに硬さが異なる異種金属にて構成されており、(b) 前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、その接合ラインWに対して交差するX方向荷重Fxが予め定められた目標荷重となるように、その接合工具のそのX方向の位置を調整しながら前記接合ラインWに沿って相対移動させることを特徴とする。   In order to achieve such an object, according to the first aspect of the present invention, the edges of the pair of members to be joined are abutted against each other while the joining tool having a protruding protrusion for stirring at the tip is rotated about the axis S. Pressing the stirring protrusion on the joining line W, softening the member to be joined by frictional heat, immersing the stirring protrusion, and moving the joining tool relative to the joining line W Thus, in the friction stir welding method in which the vicinity of the edges of the pair of members to be joined is agitated and mixed by the stirring protrusions and integrally joined together, (a) the pair of members to be joined are hardened to each other. (B) When performing the friction stir welding by relatively moving the joining tool along the joining line W, the X-direction load Fx intersecting the joining line W Will be a predetermined target load In, and wherein the relatively moving along the joint line W while adjusting the X-direction position of the welding.

第2発明は、第1発明の摩擦攪拌接合方法において、(a) 前記接合ラインWを基準とする前記接合工具のX方向位置Lxと、その接合工具に作用する前記X方向荷重Fxとの関係を表す荷重特性データ、および適切な接合状態が得られる前記X方向位置Lxとして設定された最適工具位置lxbestが予め記憶されたデータ記憶手段を備えており、(b) 前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、実際のX方向荷重Fxを検出する荷重検出工程と、(c) 前記荷重特性データに基づいて前記X方向荷重Fxに対応するX方向位置Lxを算出する位置算出工程と、(d) そのX方向位置Lxと前記最適工具位置lxbestとの位置偏差Mxを算出する位置偏差算出工程と、を有し、(e) その位置偏差Mxだけ前記接合工具の前記X方向位置Lxを変位させることを特徴とする。   The second invention is the friction stir welding method according to the first invention, wherein (a) the relationship between the X-direction position Lx of the welding tool relative to the welding line W and the X-direction load Fx acting on the welding tool. And a data storage means in which the optimum tool position lxbest set as the X-direction position Lx for obtaining an appropriate joining state is stored in advance, and (b) the joining tool is connected to the joining line. A load detecting step of detecting an actual X-direction load Fx when performing friction stir welding by relatively moving along W, and (c) an X-direction corresponding to the X-direction load Fx based on the load characteristic data A position calculating step for calculating the position Lx, and (d) a position deviation calculating step for calculating a position deviation Mx between the X-direction position Lx and the optimum tool position lxbest, and (e) only the position deviation Mx. in front Characterized in that for displacing the X-direction position Lx of welding.

第3発明は、先端に攪拌用突部が突設された接合工具を軸心Sまわりに回転駆動しつつ、一対の被接合部材の端縁が互いに突き合わされた接合ラインW上にその攪拌用突部を押圧し、摩擦熱でその被接合部材を軟化させてその攪拌用突部を没入させるとともに、その接合ラインWに沿ってその接合工具を相対移動させることにより、その一対の被接合部材の端縁近傍をその攪拌用突部で攪拌して混ぜ合わせて一体的に接合する摩擦攪拌接合装置において、(a) 前記一対の被接合部材は、互いに硬さが異なる異種金属にて構成されており、(b) 前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、その接合ラインWに対して交差するX方向荷重Fxを検出する荷重検出手段と、(c) その荷重検出手段によって検出された前記X方向荷重Fxが予め定められた目標荷重となるように、前記接合工具の前記X方向の位置を調整するX方向位置調整手段と、を有することを特徴とする。   In the third aspect of the present invention, while the welding tool having a stirring protrusion projecting at the tip is driven to rotate about the axis S, the edge of the pair of members to be joined is placed on the joining line W where the edges of each other are butted together. The pair of members to be joined is pressed by pressing the protrusions, softening the member to be joined by frictional heat and immersing the stirring protrusion, and relatively moving the joining tool along the joining line W. In the friction stir welding apparatus that stirs and mixes the vicinity of the edges of the edges with a stirring protrusion and integrally joins them, (a) the pair of members to be joined are made of different metals having different hardnesses. (B) a load detecting means for detecting an X-direction load Fx that intersects the joining line W when performing the friction stir welding by relatively moving the joining tool along the joining line W; (c) Detected by the load detection means Wherein as X direction load Fx becomes the target load a predetermined, characterized by having a a X-direction position adjusting means for adjusting the X-direction position of the bonding tool.

第4発明は、第3発明の摩擦攪拌接合装置において、(a) 前記接合ラインWを基準とする前記接合工具のX方向位置Lxと、その接合工具に作用する前記X方向荷重Fxとの関係を表す荷重特性データ、および適切な接合状態が得られる前記X方向位置Lxとして設定された最適工具位置lxbestが予め記憶されたデータ記憶手段を備えており、(b) 前記X方向位置調整手段は、(b-1) 前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、前記荷重検出手段によって検出された実際のX方向荷重Fxに対応するX方向位置Lxを前記荷重特性データに基づいて算出する位置算出手段と、(b-2) そのX方向位置Lxと前記最適工具位置lxbestとの位置偏差Mxを算出する位置偏差算出手段と、を有し、(b-3) その位置偏差Mxだけ前記接合工具の前記X方向位置Lxを変位させることを特徴とする。   4th invention is the friction stir welding apparatus of 3rd invention, (a) The relationship between the X direction position Lx of the said welding tool on the basis of the said welding line W, and the said X direction load Fx which acts on the said welding tool And a data storage means in which an optimum tool position lxbest set as the X-direction position Lx at which an appropriate joining state is obtained is stored in advance, and (b) the X-direction position adjusting means includes: (B-1) An X-direction position Lx corresponding to an actual X-direction load Fx detected by the load detecting means when performing friction stir welding by relatively moving the joining tool along the joining line W. (B-2) position deviation calculating means for calculating a position deviation Mx between the X-direction position Lx and the optimum tool position lxbest, b-3) Only the position deviation Mx, characterized in that for displacing the X-direction position Lx of the bonding tool.

第5発明は、第3発明または第4発明の摩擦攪拌接合装置において、前記接合工具を前記接合ラインWに沿って相対移動させながら実際の接合条件に従って摩擦攪拌接合する際に、前記接合ラインWを基準とする前記接合工具のX方向位置Lxを変化させるとともに、その接合工具に作用する前記X方向荷重Fxを検出して、それ等のX方向位置LxとX方向荷重Fxとの関係を表す荷重特性データを取得するデータ取得手段を有することを特徴とする。   The fifth invention is the friction stir welding apparatus according to the third or fourth invention, wherein when the friction stir welding is performed according to actual welding conditions while the welding tool is relatively moved along the welding line W, the welding line W The X-direction position Lx of the joining tool with respect to the welding tool is changed, and the X-direction load Fx acting on the joining tool is detected to express the relationship between the X-direction position Lx and the X-direction load Fx. It has the data acquisition means which acquires load characteristic data, It is characterized by the above-mentioned.

第1発明の摩擦攪拌接合方法によれば、接合工具を接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、その接合ラインWに対して交差するX方向荷重Fxが予め定められた目標荷重となるように、その接合工具のX方向の位置を調整しながら接合ラインWに沿って相対移動させるため、一対の被接合部材の材質(硬さ等)の相違や接合ラインWが表す接合部分の寸法誤差に拘らず、目標荷重に応じた優れた接合品質が安定して得られるようになる。すなわち、接合工具の軸心Sと接合ラインWとの位置関係に応じてX方向荷重Fxは変化し、X方向荷重Fxが略一定であれば接合工具の軸心Sと接合ラインWとの位置関係も略一定に維持され、略一定の接合品質が安定して得られるようになるのである。特に、X方向荷重Fxは、実際の接合ラインWすなわち一対の被接合部材の突合せ位置を検出する場合に比較して、簡単に且つ高い精度で検出することができるため、優れた接合品質が安定して得られる摩擦攪拌接合を簡便に実施することができる。   According to the friction stir welding method of the first invention, when the friction stir welding is performed by relatively moving the welding tool along the welding line W, the X-direction load Fx intersecting the welding line W is determined in advance. Since the relative movement is performed along the joining line W while adjusting the position of the joining tool in the X direction so that the target load becomes the target load, the difference in the material (hardness, etc.) of the pair of joined members and the joining line W Regardless of the dimensional error of the joint portion to be expressed, excellent joint quality according to the target load can be stably obtained. That is, the X-direction load Fx changes according to the positional relationship between the axis S of the joining tool and the joining line W. If the X-direction load Fx is substantially constant, the position between the axis S of the joining tool and the joining line W The relationship is also maintained substantially constant, and a substantially constant joining quality can be stably obtained. In particular, the X-direction load Fx can be detected easily and with high accuracy as compared with the case where the actual joining line W, that is, the butting position of a pair of members to be joined, is detected. Thus, the friction stir welding obtained can be carried out easily.

また、このようにX方向荷重Fxが目標荷重となるようにX方向の位置が調整されることから、X方向荷重Fxが目標荷重を大きく上回って過大になることが防止され、偏荷重による攪拌用突部の摩耗が抑制されて接合工具の寿命が向上する。   Further, since the position in the X direction is adjusted so that the X-direction load Fx becomes the target load in this way, the X-direction load Fx is prevented from becoming excessively larger than the target load, and agitation due to uneven load is prevented. Wear of the projection is suppressed and the life of the joining tool is improved.

第2発明では、接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に実際のX方向荷重Fxを検出し、予め設定された荷重特性データに基づいてそのX方向荷重Fxに対応するX方向位置Lxを算出するとともに、そのX方向位置Lxと予め定められた最適工具位置lxbestとの位置偏差Mxを求め、その位置偏差Mxだけ接合工具のX方向位置Lxを変位させるため、例えばX方向荷重Fxが目標荷重と一致するようにX方向位置Lxをフィードバック制御する場合に比較して、そのX方向位置Lxが最適工具位置lxbestへ速やかに変位させられ、接合工具が最適工具位置lxbestに良好に保持されるようになって、接合品質が一層安定する。   In the second invention, when the friction stir welding is performed by relatively moving the welding tool along the welding line W, the actual X-direction load Fx is detected, and the X-direction load is determined based on preset load characteristic data. An X-direction position Lx corresponding to Fx is calculated, a position deviation Mx between the X-direction position Lx and a predetermined optimum tool position lxbest is obtained, and the X-direction position Lx of the joining tool is displaced by the position deviation Mx. Therefore, for example, the X-direction position Lx is quickly displaced to the optimum tool position lxbest, compared to the case where the X-direction position Lx is feedback-controlled so that the X-direction load Fx matches the target load, and the joining tool is optimal. It becomes possible to hold the tool position lxbest well, and the joining quality is further stabilized.

なお、上記最適工具位置lxbestはX方向荷重Fxの目標荷重に対応するもので、接合工具のX方向位置Lxを最適工具位置lxbestへ変位させる制御は、X方向荷重Fxが目標荷重となるようにX方向位置Lxを調整することと実質的に同じである。言い換えれば、接合工具のX方向位置LxとX方向荷重Fxとの関係を表す荷重特性データにおいて、最適工具位置lxbestに対応するX方向荷重Fxが目標荷重である。   The optimum tool position lxbest corresponds to the target load of the X direction load Fx, and the control for displacing the X direction position Lx of the joining tool to the optimum tool position lxbest is performed so that the X direction load Fx becomes the target load. This is substantially the same as adjusting the X-direction position Lx. In other words, in the load characteristic data representing the relationship between the X direction position Lx and the X direction load Fx of the joining tool, the X direction load Fx corresponding to the optimum tool position lxbest is the target load.

第3発明の摩擦攪拌接合装置は、第1発明の摩擦攪拌接合方法を好適に実施できる装置に関するもので、実質的に第1発明と同様の作用効果が得られる。第4発明は、第2発明の摩擦攪拌接合方法を好適に実施できる装置に関するもので、実質的に第2発明と同様の作用効果が得られる。   The friction stir welding apparatus according to the third aspect of the invention relates to an apparatus that can suitably carry out the friction stir welding method according to the first aspect of the invention, and substantially the same effects as those of the first invention can be obtained. The fourth invention relates to an apparatus that can suitably carry out the friction stir welding method of the second invention, and substantially the same operational effects as the second invention can be obtained.

第5発明は、接合ラインWを基準とする接合工具のX方向位置Lxを変化させるとともに、その接合工具に作用するX方向荷重Fxを検出して、それ等のX方向位置LxとX方向荷重Fxとの関係を表す荷重特性データを取得するデータ取得手段を備えているため、被接合部材の材質が異なるなど種々の接合条件で摩擦攪拌接合を行う場合でも、実際の接合条件で予備的に摩擦攪拌接合を行うことにより、実際の接合条件に応じた荷重特性データを簡単に取得できるとともに、接合ラインW上の各部の接合品質を調べることにより、最良の接合品質が得られる前記目標荷重や最適工具位置lxbestなどを容易に設定することができる。   The fifth aspect of the invention changes the X-direction position Lx of the joining tool with respect to the joining line W, detects the X-direction load Fx acting on the joining tool, and detects the X-direction position Lx and the X-direction load. Since data acquisition means for acquiring load characteristic data representing the relationship with Fx is provided, even when friction stir welding is performed under various joining conditions such as different materials of the members to be joined, the actual joining conditions preliminarily By performing friction stir welding, load characteristic data according to actual welding conditions can be easily obtained, and by examining the bonding quality of each part on the bonding line W, the target load and the best load quality can be obtained. The optimum tool position lxbest and the like can be easily set.

本発明の摩擦攪拌接合方法および摩擦攪拌接合装置は、一対の被接合部材として例えばアルミニウム合金と鉄鋼材料とを摩擦攪拌接合する場合に好適に用いられるが、他の異種金属を接合する場合にも同様に適用され得る。接合工具の材質としては、被接合部材よりも高硬度で耐熱性に優れた材料を採用する必要があり、超硬合金が好適に用いられるが、被接合部材の材質に応じて適宜定められる。   The friction stir welding method and the friction stir welding apparatus of the present invention are preferably used when, for example, an aluminum alloy and a steel material are friction stir welded as a pair of members to be joined, but also when other dissimilar metals are joined. It can be applied as well. As a material of the joining tool, it is necessary to employ a material having higher hardness and superior heat resistance than the member to be joined, and a cemented carbide is preferably used, but is appropriately determined according to the material of the member to be joined.

接合工具としては、例えば前記図7の接合工具10のように、先端側程やや小径のテーパ形状乃至は円柱形状の攪拌用突部を有し、その攪拌用突部の外周面には、例えば工具回転方向と逆ねじれのおねじ等の凹凸が設けられるとともに、攪拌用突部の先端面は部分球面形状を成しており、且つ軸部の先端面であって攪拌用突部よりも外周側に位置する円環状部分には、その外周縁から攪拌用突部に向かうに従って徐々に深くなる凹所が設けられているものが好適に用いられるが、角柱形状の攪拌用突部を採用したりおねじ以外の凹凸を設けたり軸部の先端面(攪拌用突部の外周側)を平坦面としたりしても良いなど、種々の態様が可能である。   As the joining tool, for example, as in the joining tool 10 of FIG. 7, the tip side has a slightly smaller diameter tapered or cylindrical stirring protrusion, and the outer peripheral surface of the stirring protrusion has, for example, Concavities and convexities, such as external threads that are counter-twisted with the tool rotation direction, are provided, and the tip surface of the stirring projection has a partial spherical shape, and is the tip surface of the shaft portion and is more outer than the stirring projection. The annular portion located on the side is preferably provided with a recess that gradually becomes deeper from the outer peripheral edge toward the stirring protrusion, but a prism-shaped stirring protrusion is employed. Various modes are possible, such as providing irregularities other than the male screw and making the tip surface of the shaft portion (the outer peripheral side of the stirring projection) a flat surface.

一対の被接合部材の端縁が突き合わされた接合ラインWは、その接合ラインWに沿って接合工具を相対移動させる関係で一直線であることが望ましく、例えばその一直線に対して直角となる方向がX方向とされるが、複数の直線を接続した折れ線状や連続的に湾曲した曲線状等の接合ラインW、すなわち端縁形状を採用することもできる。折れ線状の場合は、例えば複数の直線部分に分割してそれぞれX方向や目標荷重、最適工具位置lxbest等を別個に設定すれば良く、曲線状の場合は、例えばその曲線に沿って接合工具の移動経路を多数の直線部分に分割し、その直線部分毎にX方向や目標荷重、最適工具位置lxbest等を別個に設定すれば良いなど、種々の態様が可能である。なお、X方向荷重FxやX方向位置LxのX方向は、接合ラインWに対して直角な方向が望ましいが、直角以外の所定の角度で交差する方向をX方向とすることもできる。   The joining line W in which the edges of the pair of members to be joined are abutted is preferably a straight line in relation to relatively move the joining tool along the joining line W. For example, the direction perpendicular to the straight line is Although it is set as the X direction, it is also possible to adopt a joining line W such as a broken line shape connecting a plurality of straight lines or a continuously curved curve shape, that is, an edge shape. In the case of a polygonal line, for example, the X direction, the target load, the optimum tool position lxbest, etc. may be set separately by dividing into a plurality of straight line parts. Various modes are possible, such as dividing the movement path into a large number of straight line portions and separately setting the X direction, the target load, the optimum tool position lxbest, and the like for each straight line portion. Note that the X direction of the X direction load Fx and the X direction position Lx is preferably a direction perpendicular to the joining line W, but a direction intersecting at a predetermined angle other than a right angle may be the X direction.

第2発明、第4発明では、予め設定された荷重特性データに基づいて実際のX方向荷重Fxに対応するX方向位置Lxを算出するとともに、そのX方向位置Lxと予め定められた最適工具位置lxbestとの位置偏差Mxを求め、その位置偏差Mxだけ接合工具のX方向位置Lxを変位させるが、第1発明や第3発明の実施に際しては、X方向荷重Fxが目標荷重と一致するように、それ等の偏差に応じてX方向位置Lxをフィードバック制御するようにしても良いなど、種々の態様が可能である。接合ラインWに沿う接合工具の相対移動を、予め定められた移動経路データに従ってNC制御等により制御する場合、その移動経路データそのものや学習補正値を上記位置偏差Mx等によって書き換えることもできるなど、周知の学習制御を採用することも可能である。   In the second and fourth inventions, the X-direction position Lx corresponding to the actual X-direction load Fx is calculated based on preset load characteristic data, and the X-direction position Lx and a predetermined optimum tool position are calculated. The position deviation Mx with respect to lxbest is obtained, and the X-direction position Lx of the welding tool is displaced by the position deviation Mx. However, when the first invention and the third invention are implemented, the X-direction load Fx matches the target load. Various modes are possible, such as feedback control of the X-direction position Lx according to the deviation. When the relative movement of the welding tool along the welding line W is controlled by NC control or the like according to predetermined movement path data, the movement path data itself or the learning correction value can be rewritten by the position deviation Mx or the like. It is also possible to employ known learning control.

第5発明のデータ取得手段は、例えば接合ラインWが一直線の場合、攪拌用突部がその一直線の接合ラインWを跨いで一方から他方へ移動するように、その接合ラインWに対して小さな所定の角度(例えば10°以下)で交差するように定められた一直線のデータ取得ラインに沿って接合工具を相対移動させることにより、接合ラインWに沿って摩擦攪拌接合する際の実際の接合条件と略同じ条件で、接合ラインWを基準とする接合工具のX方向位置Lxを連続的に変化させて荷重特性データを簡便に取得することができる。但し、X方向位置Lxを段階的に変化させたり、そのX方向位置Lxが異なる複数の摩擦攪拌接合を別々に実施したりして、そのX方向位置LxとX方向荷重Fxとの関係を表す荷重特性データを取得するとともに、攪拌接合部の接合状態を調べて目標荷重を定めることもできるなど、種々の態様が可能である。   For example, when the joining line W is a straight line, the data acquisition means of the fifth aspect of the invention is a small predetermined with respect to the joining line W so that the stirring protrusion moves from one side to the other across the joining line W. The actual welding conditions at the time of friction stir welding along the welding line W by relatively moving the welding tool along a straight data acquisition line determined to intersect at an angle (for example, 10 ° or less) Under substantially the same conditions, the load characteristic data can be easily obtained by continuously changing the X-direction position Lx of the welding tool with the welding line W as a reference. However, the relationship between the X direction position Lx and the X direction load Fx is expressed by changing the X direction position Lx stepwise or by separately performing a plurality of friction stir weldings with different X direction positions Lx. Various aspects are possible, such as obtaining the load characteristic data and determining the target load by examining the joining state of the stirring joint.

一対の被接合部材の接合ラインWに沿って摩擦攪拌接合する際の接合工具の回転方向および相対移動方向は、本発明者等の実験によれば硬質側の被接合部材に対してアップカットで攪拌するように設定することが望ましい。例えば、前記図7に示すように接合工具10を上方から見て軸心Sの右まわりに回転駆動しつつ矢印Aで示すように向こう側へ移動させて摩擦攪拌接合する場合、左側の被接合部材30を鉄鋼材料等の比較的硬質の金属材料とし、右側の被接合部材32をアルミニウム合金等の比較的軟質の金属材料とするのである。但し、回転速度や移動速度(送り速度)、両被接合部材の材質等の接合条件によっては、硬質側の被接合部材をダウンカットで攪拌するようにして摩擦攪拌接合を行うことも可能である。   According to the experiments by the inventors, the rotation direction and the relative movement direction of the welding tool when the friction stir welding is performed along the joining line W of the pair of members to be joined are up-cut with respect to the hard-side members to be joined. It is desirable to set to stir. For example, as shown in FIG. 7, when the friction stir welding is performed by moving the welding tool 10 in the clockwise direction of the axis S as viewed from above and moving the welding tool 10 to the opposite side as indicated by an arrow A, the left workpiece is joined. The member 30 is made of a relatively hard metal material such as a steel material, and the right joined member 32 is made of a relatively soft metal material such as an aluminum alloy. However, depending on the joining conditions such as the rotational speed, the moving speed (feeding speed), the material of both the joined members, etc., it is also possible to perform the friction stir welding by stirring the hard side joined member by down-cutting. .

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である摩擦攪拌接合装置40により前記接合工具10を用いて一対の被接合部材42、44を摩擦攪拌接合する際の概略斜視図で、前記図7の従来例と同様にして摩擦攪拌接合を行うものであるが、一方の被接合部材40は鉄鋼材料等の比較的硬質の金属材料であるのに対し、他方の被接合部材42はアルミニウム合金等の比較的軟質の金属材料である。接合工具10は、電動モータ等の回転駆動装置50により軸心Oまわりに回転駆動されるとともに、三次元移動装置52によりX、Y、Zの各軸方向へ予め定められた移動経路データに従って移動させられるようになっており、電子制御装置54によるNC制御で前記攪拌用突部14が所定寸法だけ被接合部材42、44内に没入させられた状態で、矢印Aで示すように接合ラインWに沿って移動させられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic perspective view when a pair of members to be joined 42 and 44 are friction stir welded using the welding tool 10 by a friction stir welding apparatus 40 according to an embodiment of the present invention. Friction stir welding is performed in the same manner as in the example, but one member 40 is a relatively hard metal material such as a steel material, while the other member 42 is a comparison of aluminum alloy or the like. Soft metal material. The joining tool 10 is rotationally driven around the axis O by a rotational drive device 50 such as an electric motor, and is moved by the three-dimensional movement device 52 in the X, Y, and Z axial directions according to predetermined movement path data. In the state in which the stirring protrusion 14 is immersed in the members to be joined 42 and 44 by a predetermined dimension by NC control by the electronic control unit 54, as shown by the arrow A, the joining line W Is moved along.

接合ラインWは略一直線で、一対の被接合部材42、44は、支持台34上に略水平、すなわち三次元移動装置52のZ軸方向に対して略垂直となる姿勢で載置され、且つ接合ラインWがY軸方向と略一致する姿勢に位置決めされており、接合工具10の移動方向である前記矢印AはY軸方向と略一致する。また、接合工具10の回転方向および移動方向Aは、硬質側の被接合部材42に対してアップカットで攪拌するように定められ、接合工具10は、上方から見て軸心Sの右まわりに回転駆動されるとともに、図の右奥方向へ接合ラインWに沿って移動させられる。接合工具10は、硬質側の被接合部材42よりも高硬度で且つ耐熱性に優れた材料製で、本実施例ではK種の超硬合金にて構成されている。   The joining line W is substantially straight, and the pair of members to be joined 42 and 44 are placed on the support base 34 in a posture that is substantially horizontal, that is, substantially perpendicular to the Z-axis direction of the three-dimensional movement device 52, and The joining line W is positioned in a posture that substantially coincides with the Y-axis direction, and the arrow A that is the moving direction of the joining tool 10 substantially coincides with the Y-axis direction. Further, the rotational direction and the moving direction A of the welding tool 10 are determined so as to stir up-cut with respect to the hard-side member 42, and the welding tool 10 is rotated clockwise around the axis S as viewed from above. While being rotationally driven, it is moved along the joining line W in the right back direction in the figure. The joining tool 10 is made of a material having higher hardness and heat resistance than the hard-side member to be joined 42, and is composed of K type cemented carbide in this embodiment.

一方、本実施例の摩擦攪拌接合装置40は、接合工具10の攪拌用突部14を被接合部材42、44内に没入させ、移動方向Aへ移動させて接合ラインWに沿って摩擦攪拌接合を行う際に、接合ラインWに対して略直角なX軸方向に作用するX方向荷重Fxを検出する動力計等の荷重センサ56を備えており、そのX方向荷重Fxを表す信号を前記電子制御装置54に供給する。この荷重センサ56は荷重検出手段に相当する。   On the other hand, the friction stir welding apparatus 40 of the present embodiment is configured so that the stirring protrusion 14 of the welding tool 10 is immersed in the members 42 and 44 to be moved in the moving direction A and friction stir welding is performed along the welding line W. , A load sensor 56 such as a dynamometer that detects an X-direction load Fx acting in the X-axis direction substantially perpendicular to the joining line W is provided, and a signal representing the X-direction load Fx is transmitted to the electronic device. It supplies to the control apparatus 54. This load sensor 56 corresponds to a load detection means.

電子制御装置54は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って所定の信号処理を行うことにより、図2のブロック線図に示す各機能を実行する。図2において、三次元位置制御手段66は、前記接合ラインWに沿って摩擦攪拌接合を行うために予め設定された移動経路データに従って前記接合工具10をNC制御により移動させるもので、X方向位置補正手段64は、前記荷重センサ56から供給される実際のX方向荷重Fxと、データ記憶手段60に予め記憶された荷重特性データおよび最適工具位置lxbestとに基づいて、接合工具10の実際のX方向位置Lxがその最適工具位置lxbestと略一致するように、上記三次元位置制御手段66によって制御されるX方向位置Lxを補正する。このX方向位置補正手段64はX方向位置調整手段に相当する。   The electronic control unit 54 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. A predetermined signal is used in accordance with a program stored in the ROM in advance using the temporary storage function of the RAM. By performing the processing, each function shown in the block diagram of FIG. 2 is executed. In FIG. 2, the three-dimensional position control means 66 moves the welding tool 10 by NC control in accordance with movement path data set in advance for performing friction stir welding along the welding line W. The correcting means 64 is based on the actual X-direction load Fx supplied from the load sensor 56, the load characteristic data stored in advance in the data storage means 60, and the optimum tool position lxbest. The X-direction position Lx controlled by the three-dimensional position control means 66 is corrected so that the direction position Lx substantially coincides with the optimum tool position lxbest. The X direction position correcting means 64 corresponds to the X direction position adjusting means.

上記荷重特性データは、図3の(a) に示すように接合工具10のX方向位置LxとX方向荷重Fxとの関係で、データ取得手段62により予め取得されて、RAM等にて構成されるデータ記憶手段60に記憶されている。データ取得手段62は、例えば図3の(b) に示すように、接合工具10の攪拌用突部14が一直線の接合ラインWを跨いで一方から他方へ移動するように、その接合ラインWに対して小さな所定の角度(例えば10°以下)で交差するように定められた一直線のデータ取得ラインWdに沿って接合工具10を移動させながら、回転速度nや移動速度f等の接合条件を実際に摩擦攪拌接合する時と同じ条件として事前(予備的)に摩擦攪拌接合を行い、前記荷重センサ56によって検出されるX方向荷重Fxを連続的に読み込むことにより、上記荷重特性データを取得する。X方向位置Lxは、接合ラインWを基準とする接合工具10のX軸方向の位置で、本実施例では攪拌用突部14が硬質の被接合部材42側へ侵入する侵入寸法であり、接合工具10がデータ取得ラインWdに沿って直線移動させられることにより連続的に変化させられる。この荷重特性データは、データマップや演算式等によりデータ記憶手段60に記憶される。   As shown in FIG. 3A, the load characteristic data is acquired in advance by the data acquisition means 62 in relation to the X-direction position Lx of the welding tool 10 and the X-direction load Fx, and is configured by a RAM or the like. Stored in the data storage means 60. For example, as shown in FIG. 3 (b), the data acquisition means 62 is connected to the joining line W so that the stirring protrusion 14 of the joining tool 10 moves from one to the other across the straight joining line W. While the welding tool 10 is moved along a straight data acquisition line Wd determined to intersect with a small predetermined angle (for example, 10 ° or less), the welding conditions such as the rotation speed n and the movement speed f are actually set. The friction characteristic welding is performed in advance (preliminary) under the same conditions as when the friction stir welding is performed, and the load characteristic data is acquired by continuously reading the X-direction load Fx detected by the load sensor 56. The X-direction position Lx is a position in the X-axis direction of the welding tool 10 with respect to the welding line W. In this embodiment, the agitation protrusion 14 is an intrusion dimension that penetrates into the hard member 42 side. The tool 10 is continuously changed by being linearly moved along the data acquisition line Wd. This load characteristic data is stored in the data storage means 60 by a data map, an arithmetic expression, or the like.

また、上記データ記憶手段60に予め記憶される最適工具位置lxbestは、最良の接合品質が得られるX方向位置Lxで、上記データ取得手段62によって荷重特性データを取得する際にデータ取得ラインWdに沿って摩擦攪拌接合された攪拌接合部38の複数箇所の接合状態、例えば接合強度や空隙の有無、ビード形状などを調べることにより、最良の接合品質が得られる最適ポイントQを求め、その最適ポイントQのX方向位置Lxを最適工具位置lxbestとして作業者により入力設定される。因みに、図4に示すように一方の被接合部材42が鉄鋼材料「S45C」(JIS記号)で、他方の被接合部材44がアルミニウム合金「A6063」(JIS記号)で、それ等の板厚bが6mmの場合に、以下の接合条件で摩擦攪拌接合を行う場合の最適工具位置lxbestは約0.1mmで、攪拌用突部14が0.1mmだけ鉄鋼材料の被接合部材42側へ侵入した状態、言い換えれば残りの3.9mmがアルミニウム合金の被接合部材44側に位置する状態で摩擦攪拌接合する場合に、最良の接合品質が得られた。また、その最適工具位置lxbest≒0.1mmで摩擦攪拌接合する際のX方向荷重Fx、すなわち最適荷重fxbest(図3(a) 参照)は約20MPaであった。
(接合条件)
・攪拌用突部14の径寸法φ:4mm
・攪拌用突部14の没入寸法a:4mm
・接合工具10の回転速度n:4000rpm
・接合工具10の移動速度f:1000mm/min
Further, the optimum tool position lxbest stored in advance in the data storage means 60 is the X-direction position Lx at which the best joining quality is obtained, and when the load characteristic data is obtained by the data obtaining means 62, the data acquisition line Wd is obtained. The optimum point Q at which the best joining quality is obtained is obtained by examining the joining states of the stir welded portions 38 that are friction stir welded along, for example, the joining strength, the presence or absence of voids, and the bead shape. The X direction position Lx of Q is input and set by the operator as the optimum tool position lxbest. Incidentally, as shown in FIG. 4, one member 42 is made of a steel material “S45C” (JIS symbol) and the other member 44 is an aluminum alloy “A6063” (JIS symbol). When the friction stir welding is performed under the following joining conditions, the optimum tool position lxbest is about 0.1 mm, and the stirring protrusion 14 has entered the steel material to be joined 42 side by 0.1 mm. The best joining quality was obtained when the friction stir welding was performed in a state where the remaining 3.9 mm was located on the aluminum alloy bonded member 44 side. Further, the X-direction load Fx when the friction stir welding was performed at the optimum tool position lxbest≈0.1 mm, that is, the optimum load fxbest (see FIG. 3A) was about 20 MPa.
(Joining conditions)
-Diameter dimension φ of the protrusion 14 for stirring: 4 mm
・ Immersion dimension a of the stirring protrusion 14: 4 mm
・ Rotation speed n of the welding tool 10: 4000 rpm
-Moving speed f of the welding tool 10: 1000 mm / min

一方、前記X方向位置補正手段64は、上記データ取得手段62によって荷重特性データが取得されてデータ記憶手段60に記憶されるとともに、上記最適工具位置lxbestが設定された後に、実際に接合工具10を軸心Sまわりに回転駆動しつつ攪拌用突部14を接合ラインW上において被接合部材42、44内に没入させ、接合ラインWに沿って移動させて摩擦攪拌接合する際に、図5に示すフローチャートに従って信号処理を行う。このフローチャートのステップS1は荷重検出工程に相当し、ステップS2は位置算出工程に相当し、ステップS3は位置偏差算出工程に相当する。また、ステップS2は位置算出手段として機能し、ステップS3は位置偏差算出手段として機能する。   On the other hand, the X-direction position correction means 64 acquires the load characteristic data by the data acquisition means 62 and stores it in the data storage means 60, and after the optimum tool position lxbest is set, the welding tool 10 is actually set. When the agitating protrusion 14 is immersed in the members 42 and 44 to be joined on the joining line W and is moved along the joining line W while being rotationally driven around the axis S, the friction stir welding is performed as shown in FIG. Signal processing is performed according to the flowchart shown in FIG. Step S1 in this flowchart corresponds to a load detection process, step S2 corresponds to a position calculation process, and step S3 corresponds to a position deviation calculation process. Step S2 functions as a position calculation unit, and step S3 functions as a position deviation calculation unit.

図5のステップS1では、前記荷重センサ56からX方向荷重Fxを表す信号を読み込み、ステップS2では、X方向荷重Fxに対応するX方向位置Lxをデータ記憶手段60に記憶された荷重特性データから算出する。図6は、この荷重特性データの一例で、前記図3(a) と同じものであり、実際のX方向荷重FxがFxrの場合、実線で示す荷重特性データに基づいてX方向位置LxとしてLxrが算出される。続くステップS3では、データ記憶手段60に予め記憶された前記最適工具位置lxbestと上記X方向位置Lx(=Lxr)との差である位置偏差Mxを算出し、ステップS4で、その位置偏差MxだけX方向位置Lxを変更する指令を前記三次元位置制御装置66に出力する。これにより、接合工具10のX方向位置Lxが位置偏差Mx分だけ変位させられ、最適工具位置lxbestと一致させられ、前記最適荷重fxbestで摩擦攪拌接合が行われるようになる。この最適荷重fxbestは目標荷重に相当する。   In step S1 of FIG. 5, a signal representing the X-direction load Fx is read from the load sensor 56. In step S2, the X-direction position Lx corresponding to the X-direction load Fx is read from the load characteristic data stored in the data storage means 60. calculate. FIG. 6 shows an example of the load characteristic data, which is the same as that shown in FIG. 3A. When the actual X-direction load Fx is Fxr, Lxr is set as the X-direction position Lx based on the load characteristic data indicated by the solid line. Is calculated. In subsequent step S3, a position deviation Mx which is a difference between the optimum tool position lxbest stored in advance in the data storage means 60 and the X-direction position Lx (= Lxr) is calculated. In step S4, only the position deviation Mx is calculated. A command for changing the X-direction position Lx is output to the three-dimensional position control device 66. As a result, the X-direction position Lx of the welding tool 10 is displaced by the position deviation Mx, and is matched with the optimum tool position lxbest, and the friction stir welding is performed with the optimum load fxbest. This optimum load fxbest corresponds to the target load.

このように、本実施例の摩擦攪拌接合装置40によれば、接合工具10を接合ラインWに沿って移動させて摩擦攪拌接合を行う際に、その接合ラインWに対して略直角なX方向荷重Fxが予め定められた目標荷重(最適荷重fxbest)となるように、その接合工具10のX方向位置Lxを調整しながら接合ラインWに沿って移動させるため、一対の被接合部材42、44の材質(硬さ等)の相違や接合ラインWが表す接合部分の寸法誤差に拘らず、目標荷重に応じた優れた接合品質が安定して得られるようになる。特に、X方向荷重Fxは、実際の接合ラインWすなわち被接合部材42、44の突合せ位置を検出する場合に比較して、簡単に且つ高い精度で検出することができるため、優れた接合品質が安定して得られる摩擦攪拌接合を簡便に実施することができる。   Thus, according to the friction stir welding apparatus 40 of the present embodiment, when the friction stir welding is performed by moving the welding tool 10 along the welding line W, the X direction substantially perpendicular to the welding line W is performed. In order to move the welding tool 10 along the joining line W while adjusting the position Lx in the X direction so that the load Fx becomes a predetermined target load (optimum load fxbest), a pair of joined members 42 and 44 Regardless of the difference in material (hardness, etc.) and the dimensional error of the joined portion represented by the joining line W, excellent joining quality according to the target load can be stably obtained. In particular, the X-direction load Fx can be detected easily and with high accuracy as compared with the case of detecting the actual joining line W, that is, the butting position of the members 42 and 44 to be joined. Friction stir welding obtained stably can be carried out easily.

また、このようにX方向荷重Fxが目標荷重(最適荷重fxbest)となるようにX方向位置Lxが調整されることから、X方向荷重Fxが目標荷重(最適荷重fxbest)を大きく上回って過大になることが防止され、偏荷重による攪拌用突部14の摩耗が抑制されて接合工具10の寿命が向上する。   Since the X-direction position Lx is adjusted so that the X-direction load Fx becomes the target load (optimum load fxbest) in this way, the X-direction load Fx greatly exceeds the target load (optimum load fxbest). Thus, the wear of the stirring protrusion 14 due to the uneven load is suppressed, and the life of the welding tool 10 is improved.

また、本実施例では、接合工具10を接合ラインWに沿って移動させて摩擦攪拌接合を行う際に実際のX方向荷重Fxを検出し、予め設定された荷重特性データに基づいてそのX方向荷重Fxに対応するX方向位置Lxを算出するとともに、そのX方向位置Lxと予め定められた最適工具位置lxbestとの位置偏差Mxを求め、その位置偏差Mxだけ接合工具10のX方向位置Lxを変位させるため、例えばX方向荷重Fxが目標荷重(最適荷重fxbest)と一致するようにX方向位置Lxをフィードバック制御する場合に比較して、そのX方向位置Lxが最適工具位置lxbestへ速やかに変位させられ、接合工具10が最適工具位置lxbestに良好に保持されるようになって、接合品質が一層安定する。   In this embodiment, when the friction stir welding is performed by moving the welding tool 10 along the welding line W, the actual load X in the X direction is detected, and the X direction based on the preset load characteristic data is detected. An X-direction position Lx corresponding to the load Fx is calculated, a position deviation Mx between the X-direction position Lx and a predetermined optimum tool position lxbest is obtained, and the X-direction position Lx of the welding tool 10 is calculated by the position deviation Mx. For example, the X-direction position Lx is quickly displaced to the optimum tool position lxbest compared to the feedback control of the X-direction position Lx so that the X-direction load Fx matches the target load (optimum load fxbest). As a result, the joining tool 10 is well held at the optimum tool position lxbest, and the joining quality is further stabilized.

また、本実施例では、接合ラインWを基準とする接合工具10のX方向位置Lxを連続的に変化させるとともに、その接合工具10に作用するX方向荷重Fxを連続的に検出して、それ等のX方向位置LxとX方向荷重Fxとの関係を表す荷重特性データを取得するデータ取得手段62を備えているため、被接合部材42、44の材質が異なるなど種々の接合条件で摩擦攪拌接合を行う場合でも、実際の接合条件で例えば図3の(b) に示すデータ取得ラインWdに沿って予備的に摩擦攪拌接合を行うことにより、実際の接合条件に応じた荷重特性データを簡単に取得できるとともに、接合ラインW上の各部の接合品質を調べて最適ポイントQを求めることにより、その荷重特性データから最良の接合品質が得られる最適工具位置lxbestを求めて容易に設定することができる。   In the present embodiment, the X-direction position Lx of the welding tool 10 with respect to the welding line W is continuously changed, and the X-direction load Fx acting on the welding tool 10 is continuously detected. Since the data acquisition means 62 for acquiring the load characteristic data representing the relationship between the X-direction position Lx and the X-direction load Fx is provided, friction stir is performed under various joining conditions such as different materials of the joined members 42 and 44. Even in the case of joining, the load characteristic data corresponding to the actual joining conditions can be easily obtained by performing preliminary friction stir welding along the data acquisition line Wd shown in FIG. The optimum tool position lxbest at which the best joint quality can be obtained from the load characteristic data is obtained by examining the joint quality of each part on the joint line W and obtaining the optimum point Q. It can be easily set as required.

なお、上記実施例では実際のX方向荷重Fxを検出し、予め設定された荷重特性データに基づいてそのX方向荷重Fxに対応するX方向位置Lxを算出するとともに、そのX方向位置Lxと予め定められた最適工具位置lxbestとの位置偏差Mxを求め、その位置偏差Mxだけ接合工具10のX方向位置Lxを変位させるようになっていたが、前記最適荷重fxbestを目標荷重として、X方向荷重Fxがその目標荷重(最適荷重fxbest)と一致するように、それ等の荷重の偏差に応じてX方向位置Lxをフィードバック制御するようにしても良い。この場合は、最良の接合品質が得られる最適荷重fxbestが分かれば良いため、前記荷重特性データや最適工具位置lxbestは必ずしも必要ない。   In the above embodiment, the actual X-direction load Fx is detected, the X-direction position Lx corresponding to the X-direction load Fx is calculated based on preset load characteristic data, and the X-direction position Lx The position deviation Mx with respect to the determined optimum tool position lxbest is obtained, and the X-direction position Lx of the welding tool 10 is displaced by the position deviation Mx. The X-direction load is set with the optimum load fxbest as a target load. The X-direction position Lx may be feedback controlled in accordance with the deviation of these loads so that Fx matches the target load (optimum load fxbest). In this case, the load characteristic data and the optimum tool position lxbest are not necessarily required because it is only necessary to know the optimum load fxbest for obtaining the best joining quality.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention implements in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

本発明方法に従って異種金属材料から成る一対の被接合部材を摩擦攪拌接合する際の要部を説明する概略斜視図である。It is a schematic perspective view explaining the principal part at the time of carrying out friction stir welding of a pair of to-be-joined member which consists of a dissimilar metal material according to the method of this invention. 図1の電子制御装置が備えている機能を説明するブロック線図である。It is a block diagram explaining the function with which the electronic control apparatus of FIG. 1 is provided. 図2のデータ記憶手段に記憶されている荷重特性データを説明する図で、(a) は荷重特性データの一例を示す図、(b) は荷重特性データの取得方法を説明する図である。FIGS. 3A and 3B are diagrams illustrating load characteristic data stored in the data storage unit of FIG. 2, in which FIG. 3A is a diagram illustrating an example of load characteristic data, and FIG. 図3の(b) のデータ取得方法に従って実際に荷重特性データを取得した際の各部の寸法や接合条件等を具体的に説明する図である。It is a figure which demonstrates concretely the dimension of each part, joining conditions, etc. at the time of actually acquiring load characteristic data according to the data acquisition method of (b) of FIG. 図2のX方向位置補正手段の機能を具体的に説明するフローチャートである。3 is a flowchart for specifically explaining a function of an X-direction position correcting unit in FIG. 2. 図5のステップS2で荷重特性データを用いてX方向荷重FxからX方向位置Lxを算出する際の手順を説明する図である。It is a figure explaining the procedure at the time of calculating X direction position Lx from X direction load Fx using load characteristic data at Step S2 of FIG. 摩擦攪拌接合を説明する図で、(a) は概略斜視図、(b) は(a) におけるVIIB−VIIB断面の拡大図である。It is a figure explaining friction stir welding, (a) is a schematic perspective view, (b) is an enlarged view of the VIIB-VIIB cross section in (a). 図7の摩擦攪拌接合で一対の被接合部材を接合する際の接合ラインWと工具の軸心Sとの位置関係、および被接合部材の材質をそれぞれ変更し、摩擦攪拌接合の可否を調べた結果を説明する図である。The positional relationship between the joining line W and the tool shaft center S when joining a pair of members to be joined in the friction stir welding in FIG. 7 and the material of the members to be joined were changed, and the feasibility of the friction stir welding was examined. It is a figure explaining a result.

符号の説明Explanation of symbols

10:接合工具 14:攪拌用突部 40:摩擦攪拌接合装置 42、44:被接合部材 56:荷重センサ(荷重検出手段) 60:データ記憶手段 62:データ取得手段 64:X方向位置補正手段(X方向位置調整手段) S:工具の軸心 W:接合ライン Lx:X方向位置 Fx:X方向荷重 fxbest:最適荷重(目標荷重) lxbest:最適工具位置 ステップS1:荷重検出工程 ステップS2:位置算出工程、位置算出手段 ステップS3:位置偏差算出工程、位置偏差算出手段   10: Joining tool 14: Stirring protrusion 40: Friction stir welding device 42, 44: Member to be joined 56: Load sensor (load detection means) 60: Data storage means 62: Data acquisition means 64: X direction position correction means ( X direction position adjusting means) S: Tool axis W: Joining line Lx: X direction position Fx: Load in X direction fxbest: Optimal load (target load) lxbest: Optimal tool position Step S1: Load detection step Step S2: Position calculation Step, position calculation means Step S3: Position deviation calculation step, position deviation calculation means

Claims (5)

先端に攪拌用突部が突設された接合工具を軸心Sまわりに回転駆動しつつ、一対の被接合部材の端縁が互いに突き合わされた接合ラインW上に該攪拌用突部を押圧し、摩擦熱で該被接合部材を軟化させて該攪拌用突部を没入させるとともに、該接合ラインWに沿って該接合工具を相対移動させることにより、該一対の被接合部材の端縁近傍を該攪拌用突部で攪拌して混ぜ合わせて一体的に接合する摩擦攪拌接合方法において、
前記一対の被接合部材は、互いに硬さが異なる異種金属にて構成されており、
前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、該接合ラインWに対して交差するX方向荷重Fxが予め定められた目標荷重となるように、該接合工具の該X方向の位置を調整しながら前記接合ラインWに沿って相対移動させる
ことを特徴とする摩擦攪拌接合方法。
While rotating a joining tool having a stirring protrusion protruding at the tip about the axis S, the stirring protrusion is pressed onto a joining line W where the edges of the pair of members to be joined are abutted with each other. , By softening the member to be joined by frictional heat and immersing the stirring protrusion, and by relatively moving the joining tool along the joining line W, the vicinity of the edges of the pair of members to be joined In the friction stir welding method in which the stirring protrusions are agitated and mixed together and integrally joined,
The pair of members to be joined are made of different metals having different hardnesses,
When the friction stir welding is performed by relatively moving the welding tool along the welding line W, the welding is performed so that the X-direction load Fx intersecting the welding line W becomes a predetermined target load. A friction stir welding method, wherein the tool is relatively moved along the joining line W while adjusting the position of the tool in the X direction.
前記接合ラインWを基準とする前記接合工具のX方向位置Lxと、該接合工具に作用する前記X方向荷重Fxとの関係を表す荷重特性データ、および適切な接合状態が得られる前記X方向位置Lxとして設定された最適工具位置lxbestが予め記憶されたデータ記憶手段を備えており、
前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、実際のX方向荷重Fxを検出する荷重検出工程と、
前記荷重特性データに基づいて前記X方向荷重Fxに対応するX方向位置Lxを算出する位置算出工程と、
該X方向位置Lxと前記最適工具位置lxbestとの位置偏差Mxを算出する位置偏差算出工程と、
を有し、該位置偏差Mxだけ前記接合工具の前記X方向位置Lxを変位させる
ことを特徴とする請求項1に記載の摩擦攪拌接合方法。
Load characteristic data representing the relationship between the X-direction position Lx of the welding tool relative to the welding line W and the X-direction load Fx acting on the welding tool, and the X-direction position where an appropriate joining state is obtained A data storage means in which the optimum tool position lxbest set as Lx is stored in advance;
A load detecting step of detecting an actual X-direction load Fx when performing friction stir welding by relatively moving the welding tool along the welding line W;
A position calculating step of calculating an X direction position Lx corresponding to the X direction load Fx based on the load characteristic data;
A position deviation calculating step of calculating a position deviation Mx between the X direction position Lx and the optimum tool position lxbest;
The friction stir welding method according to claim 1, wherein the position Lx in the X direction of the welding tool is displaced by the position deviation Mx.
先端に攪拌用突部が突設された接合工具を軸心Sまわりに回転駆動しつつ、一対の被接合部材の端縁が互いに突き合わされた接合ラインW上に該攪拌用突部を押圧し、摩擦熱で該被接合部材を軟化させて該攪拌用突部を没入させるとともに、該接合ラインWに沿って該接合工具を相対移動させることにより、該一対の被接合部材の端縁近傍を該攪拌用突部で攪拌して混ぜ合わせて一体的に接合する摩擦攪拌接合装置において、
前記一対の被接合部材は、互いに硬さが異なる異種金属にて構成されており、
前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、該接合ラインWに対して交差するX方向荷重Fxを検出する荷重検出手段と、
該荷重検出手段によって検出された前記X方向荷重Fxが予め定められた目標荷重となるように、前記接合工具の前記X方向の位置を調整するX方向位置調整手段と、
を有することを特徴とする摩擦攪拌接合装置。
While rotating a joining tool having a stirring protrusion protruding at the tip about the axis S, the stirring protrusion is pressed onto a joining line W where the edges of the pair of members to be joined are abutted with each other. , By softening the member to be joined by frictional heat and immersing the stirring protrusion, and by relatively moving the joining tool along the joining line W, the vicinity of the edges of the pair of members to be joined In the friction stir welding apparatus that stirs and mixes the stirring protrusions and integrally joins,
The pair of members to be joined are made of different metals having different hardnesses,
Load detecting means for detecting an X-direction load Fx intersecting the welding line W when performing friction stir welding by relatively moving the welding tool along the welding line W;
X-direction position adjusting means for adjusting the position of the joining tool in the X direction so that the X-direction load Fx detected by the load detecting means becomes a predetermined target load;
A friction stir welding apparatus comprising:
前記接合ラインWを基準とする前記接合工具のX方向位置Lxと、該接合工具に作用する前記X方向荷重Fxとの関係を表す荷重特性データ、および適切な接合状態が得られる前記X方向位置Lxとして設定された最適工具位置lxbestが予め記憶されたデータ記憶手段を備えており、
前記X方向位置調整手段は、
前記接合工具を前記接合ラインWに沿って相対移動させて摩擦攪拌接合を行う際に、前記荷重検出手段によって検出された実際のX方向荷重Fxに対応するX方向位置Lxを前記荷重特性データに基づいて算出する位置算出手段と、
該X方向位置Lxと前記最適工具位置lxbestとの位置偏差Mxを算出する位置偏差算出手段と、
を有し、該位置偏差Mxだけ前記接合工具の前記X方向位置Lxを変位させる
ことを特徴とする請求項3に記載の摩擦攪拌接合装置。
Load characteristic data representing the relationship between the X-direction position Lx of the welding tool relative to the welding line W and the X-direction load Fx acting on the welding tool, and the X-direction position where an appropriate joining state is obtained A data storage means in which the optimum tool position lxbest set as Lx is stored in advance;
The X-direction position adjusting means is
When performing friction stir welding by relatively moving the welding tool along the welding line W, an X-direction position Lx corresponding to an actual X-direction load Fx detected by the load detection means is used as the load characteristic data. Position calculating means for calculating based on
Position deviation calculating means for calculating a position deviation Mx between the X direction position Lx and the optimum tool position lxbest;
The friction stir welding apparatus according to claim 3, wherein the position Lx of the welding tool is displaced by the position deviation Mx.
前記接合工具を前記接合ラインWに沿って相対移動させながら実際の接合条件に従って摩擦攪拌接合する際に、前記接合ラインWを基準とする前記接合工具のX方向位置Lxを変化させるとともに、該接合工具に作用する前記X方向荷重Fxを検出して、該X方向位置Lxと該X方向荷重Fxとの関係を表す荷重特性データを取得するデータ取得手段を有する
ことを特徴とする請求項3または4に記載の摩擦攪拌接合装置。
When the friction stir welding is performed in accordance with actual welding conditions while the welding tool is relatively moved along the welding line W, the X-direction position Lx of the welding tool with respect to the welding line W is changed, and the welding tool The data acquisition means which detects the X direction load Fx which acts on a tool, and acquires load characteristic data showing the relation between the X direction position Lx and the X direction load Fx. 4. The friction stir welding apparatus according to 4.
JP2008123654A 2008-05-09 2008-05-09 Friction stir welding method and friction stir welding apparatus Active JP5048583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123654A JP5048583B2 (en) 2008-05-09 2008-05-09 Friction stir welding method and friction stir welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123654A JP5048583B2 (en) 2008-05-09 2008-05-09 Friction stir welding method and friction stir welding apparatus

Publications (2)

Publication Number Publication Date
JP2009269077A true JP2009269077A (en) 2009-11-19
JP5048583B2 JP5048583B2 (en) 2012-10-17

Family

ID=41436086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123654A Active JP5048583B2 (en) 2008-05-09 2008-05-09 Friction stir welding method and friction stir welding apparatus

Country Status (1)

Country Link
JP (1) JP5048583B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200880A (en) * 2010-03-24 2011-10-13 Honda Motor Co Ltd Friction stir welding method and friction stir welding equipment
CN103223553A (en) * 2013-04-28 2013-07-31 江苏科技大学 Bidirectional spacing-adjustable split-type dual-shaft-shoulder stirring friction head
WO2013150801A1 (en) * 2012-04-06 2013-10-10 Jfeスチール株式会社 Method for friction-stir welding of steel sheet
US10279423B2 (en) * 2016-08-17 2019-05-07 The Boeing Company Apparatuses and methods for fabricating metal matrix composite structures
CN110573289A (en) * 2017-08-22 2019-12-13 日本轻金属株式会社 Method for manufacturing liquid cooling jacket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066331A (en) * 2002-08-09 2004-03-04 Hitachi Cable Ltd Friction agitation welding method of different kind of metal
JP2004136331A (en) * 2002-10-18 2004-05-13 Hitachi Ltd Equipment and method for friction stir welding
JP2004255420A (en) * 2003-02-26 2004-09-16 Nagoya Industrial Science Research Inst Friction stir welding method for different metallic material
JP2005007454A (en) * 2003-06-20 2005-01-13 Mitsubishi Heavy Ind Ltd Method of manufacturing rocket tank cylinder and apparatus therefor
WO2008069886A1 (en) * 2006-12-05 2008-06-12 The Boeing Company Apparatus and method for measuring loads on a friction stir welding tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066331A (en) * 2002-08-09 2004-03-04 Hitachi Cable Ltd Friction agitation welding method of different kind of metal
JP2004136331A (en) * 2002-10-18 2004-05-13 Hitachi Ltd Equipment and method for friction stir welding
JP2004255420A (en) * 2003-02-26 2004-09-16 Nagoya Industrial Science Research Inst Friction stir welding method for different metallic material
JP2005007454A (en) * 2003-06-20 2005-01-13 Mitsubishi Heavy Ind Ltd Method of manufacturing rocket tank cylinder and apparatus therefor
WO2008069886A1 (en) * 2006-12-05 2008-06-12 The Boeing Company Apparatus and method for measuring loads on a friction stir welding tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200880A (en) * 2010-03-24 2011-10-13 Honda Motor Co Ltd Friction stir welding method and friction stir welding equipment
WO2013150801A1 (en) * 2012-04-06 2013-10-10 Jfeスチール株式会社 Method for friction-stir welding of steel sheet
JP5522316B2 (en) * 2012-04-06 2014-06-18 Jfeスチール株式会社 Friction stir welding method for steel sheet
CN103223553A (en) * 2013-04-28 2013-07-31 江苏科技大学 Bidirectional spacing-adjustable split-type dual-shaft-shoulder stirring friction head
US10279423B2 (en) * 2016-08-17 2019-05-07 The Boeing Company Apparatuses and methods for fabricating metal matrix composite structures
CN110573289A (en) * 2017-08-22 2019-12-13 日本轻金属株式会社 Method for manufacturing liquid cooling jacket

Also Published As

Publication number Publication date
JP5048583B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
De Backer et al. Investigation of path compensation methods for robotic friction stir welding
JP5048583B2 (en) Friction stir welding method and friction stir welding apparatus
JP2013039613A (en) Friction stir welding method
JP2008221338A (en) Tapered friction stir welding tool
WO2020095483A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP5151036B2 (en) Friction stir welding method
JP7101140B2 (en) Friction stir welding tool
JP5915802B2 (en) Friction stir welding method
US20220105589A1 (en) Dissimilar metal welding method
JP2007326126A (en) Joining tool for friction stir joining, and friction stir joining method
JP4450728B2 (en) Friction stir welding method
JP2006297452A (en) Laser welding method
JP6756105B2 (en) Joining method
JP4668437B2 (en) Friction stir welding method and friction stir welding apparatus
JP2021062376A (en) Friction stirring and joining tool and friction stirring and joining method
JP6164337B2 (en) Friction stir welding method
JP6897024B2 (en) Joining method
JP5962807B2 (en) Friction stir welding method
JP6153964B2 (en) Friction stir welding method
JP6112175B2 (en) Friction stir welding method
JP6756252B2 (en) Joining method
JP2009208121A (en) Friction stir welding method
JP2018086674A (en) Junction method
JP6662094B2 (en) Joining method
JP2009279595A (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250