JP2004254466A - Permanent magnet reluctant rotating electric machine - Google Patents

Permanent magnet reluctant rotating electric machine Download PDF

Info

Publication number
JP2004254466A
JP2004254466A JP2003044218A JP2003044218A JP2004254466A JP 2004254466 A JP2004254466 A JP 2004254466A JP 2003044218 A JP2003044218 A JP 2003044218A JP 2003044218 A JP2003044218 A JP 2003044218A JP 2004254466 A JP2004254466 A JP 2004254466A
Authority
JP
Japan
Prior art keywords
rotor core
peripheral side
pair
rotor
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003044218A
Other languages
Japanese (ja)
Other versions
JP4070630B2 (en
Inventor
Takao Hirano
恭男 平野
Nobutake Aikura
伸建 相倉
Takashi Araki
貴志 荒木
Masakatsu Matsubara
正克 松原
Sukeyasu Mochizuki
資康 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2003044218A priority Critical patent/JP4070630B2/en
Publication of JP2004254466A publication Critical patent/JP2004254466A/en
Application granted granted Critical
Publication of JP4070630B2 publication Critical patent/JP4070630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet reluctant rotating electric machine that can keep the strength of a centrifugal force while preventing the lowering of performance caused by the flux leakage of a permanent magnet. <P>SOLUTION: A pair of magnet insertion holes 3, 3 are formed at the external periphery of a rotor core 2 so that an opposing distance between the holes is continuously increased toward the external periphery, the permanent magnets 4, 4 are inserted and fixed to the pair of magnet insertion holes 3, 3, and a hollow part 7 is formed between the pair of permanent magnets 4, 4 at the rotor core 2. A support rod 13 of which the end is regulated by both end plates of the rotor core 2 is inserted in the hollow part 7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石を複合した永久磁石式リラクタンス型回転電機に関するものである。
【0002】
【従来の技術】
永久磁石式リラクタンス型回転電機は、磁束が通り易い部分(d軸と称する)と磁束が通り難い部分(q軸と称する)とが形成され(所謂磁気的凹凸が形成され)、且つ、永久磁石を有する回転子を備えており、回転子は、固定子巻線が施された固定子内に配置されている。そして、回転子においては、磁気抵抗の小さい部分(d軸)では空隙磁束密度が高く、磁気抵抗の大きい部分(q軸)では空隙磁束密度が小さくなり、この磁束密度の変化によってリラクタンストルクが発生し、又、永久磁石と固定子の磁極との間の磁気吸引力および磁気反発力によってもトルクが発生する。
【0003】
図20および図21は従来の永久磁石式リラクタンス型回転電機の回転子の一例を示すもので、8極の場合ある。即ち、図20において、回転子100は、円環状の多数の珪素鋼板を積層してなる回転子鉄心101を有する。回転子鉄心101の外周部には、略長方形の一対の磁石挿入孔部102、102が形成されており、この一対の磁石挿入孔部102、102に永久磁石103、103が挿入固定されている。更に、回転子鉄心101の外周部には、一対の永久磁石103、13間に位置して空洞部104が形成されており、この空洞部104は、略三角形状をなしている。そして、回転子100において、一対の磁石挿入孔部102、102および永久磁石103、103並びに空洞部104が設けられた部分が磁束の通り難い磁気的凹部(q軸)であり、磁気的凹部105、105間の部分が磁極たる磁束の通り易い磁気的凸部(d軸)106である。この回転子100は、固定子巻線が施された図示しない固定子内に配置されるようになっている(例えば特許文献1参照。)。
【0004】
【特許文献1】
特開1001−339922号公報(図1)
【0005】
【発明が解決しようとする課題】
上記従来の構成では、回転子鉄心101には、図21に示すように、一対の磁石挿入孔部102、102の内周側端部間に位置してブリッジ部107が必然的に形成されるとともに、一対の磁石挿入孔部102、102の外周側端部と外周との間に位置してチップ部108が必然的に形成されるが、永久磁石103の磁束がこのブリッジ部107、チップ部108を通ってN極からS極に漏洩することによる性能の低下を防止するため、ブリッジ部107、チップ部108の幅寸法はできるだけ小になるように設定されている。しかしながら、ブリッジ部107、チップ部108の幅寸法が小に設定されると、回転子100が回転して部分105に遠心力が作用したときに、ブリッジ部107、チップ部108に応力が集中して遠心力強度が維持できなくなる問題がある。
【0006】
本発明は上述の事情に鑑みてなされたものであり、その目的は、永久磁石の磁束漏洩による性能の低下を防止しながらも、遠心力強度も維持することができる永久磁石式リラクタンス型回転電機を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、両端部に端板を備えた回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に外周に向かうに従って対向距離が順次大となるように設けられた一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、この空洞部に挿通され、端部が前記回転子鉄心の両端板により規制される支持棒とを備えて構成されていることを特徴とする。
【0008】
このような構成によれば、ブリッジ部およびチップ部の幅寸法を小にして磁束漏洩による性能低下を防止しながらも、支持棒により遠心力強度を維持することができ、強度の信頼性の向上を図ることができる。
【0009】
請求項2記載の永久磁石式リラクタンス型回転電機は、空洞部の縁部は、複数点で支持棒に支持されるようになっていることを特徴とする。このような構成によれば、支持棒による支持が安定し、一層強度の信頼性の向上を図ることができる。
【0010】
請求項3記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、両端部に端板を備えた回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に外周に向かうに従って対向距離が順次大となるように設けられ、内周側端部に内周方向に延びる内周側補助孔部を有し且つ外周側端部に外周側に延びる外周側補助孔部を有する一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、前記内周側補助孔部に挿通され、端部が前記回転子鉄心の両端板により規制される支持棒とを備えて構成されていることを特徴とする。
このような構成によっても、請求項1と同様の作用効果が得られる。
【0011】
請求項4記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、両端部に端板を備えた回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に外周に向かうに従って対向距離が順次大となるように設けられ、内周側端部に内周方向に延びる内周側補助孔部を有し且つ外周側端部に外周側に延びる外周側補助孔部を有する一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、前記外周側補助孔部に挿通され、端部が前記回転子鉄心の両端板により規制される支持棒とを備えて構成されていることを特徴とする。
このような構成によっても、請求項1と同様の作用効果が得られる。
【0012】
【発明の実施の形態】
(第1の実施例)
以下、本発明の第1の実施例について、図1ないし図4を参照しながら説明する。
まず、図3および図4は、永久磁石式リラクタンス型回転電機の回転子の一例を示すもので、8極の場合ある。ここで、図3は、径方向断面図、図4は縦断側面図である。
【0013】
回転子1は、円環状の多数の珪素鋼板を積層してなる回転子鉄心2を有する。回転子鉄心2の外周部には、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部3、3が形成されており(従って、一対の磁石挿入孔部3、3は、外周側からみてハ字形になっている。)、この一対の磁石挿入孔部3、3に永久磁石4、4が挿入されて接着により固定されている。この場合、磁石挿入孔部3、3には、内周側端部に内周方向に延びる内周側補助孔部3a、3aが形成され、且つ、外周側端部に外周側に延びる外周側補助孔部3b、3bが形成されており、内周側補助孔部3a、3a間が幅寸法の小なるブリッジ部5とされ、外周側補助孔部3b、3bと外周との間が幅寸法の小なるチップ部6、6とされている(図1参照)。そして、内周側補助孔部3aおよび外周側補助孔部3bには、外周方向に突出して永久磁石4の端面に係止される係止突起3cおよび3dが形成されている。
【0014】
更に、回転子鉄心2の外周部には、一対の永久磁石4、4間に位置して空洞部7が形成されており、この空洞部7は、一対の永久磁石4、4に平行な二辺部と外周に沿う辺部とを有する略三角形状をなしている。そして、回転子1において、一対の磁石挿入孔部3、3及び永久磁石4、4並びに空洞部7が設けられた部分が磁束の通り難い磁気的凹部(q軸)8であり、磁気的凹部8、8間の部分が磁束の通り易い磁気的凸部(d軸)9である。そして、回転子鉄心2の内周には、180度の間隔を存して2個のキー10が軸方向に延びるようにして形成されている。なお、回転子鉄心2の両端部には円環状をなす端板11、12(図4参照)が配置されている。
【0015】
さて、回転子鉄心2における各磁気的凹部8の空洞部7には、断面円形をなす金属製の支持棒13(この実施例では合計8本)が挿通されており、その支持棒13の両端部は、端板11、12の一側面に形成された円形の支持凹部11a、12a(図4参照)に嵌合支持されている。すなわち、支持棒13の両端部と支持凹部11a、12aとの間には、隙間が形成されている。
【0016】
図4に示す回転軸14において、外周の途中部位には、鍔部15が一体に形成され、外周の鍔部15から一方の端部(図4では左端部)にかけて前記2個のキー10に対応して2個のキー溝16が形成され、そして、左端部の外周には、ねじ部17が形成されている。
【0017】
ここで、回転軸14に回転子鉄心2、端板11、12および支持棒13を組み込み固定する手順について述べる。まず、回転軸14に端板11をその左端部側から嵌め込んで鍔部15に当接するまで移動させる。次に、回転軸14に回転子鉄心2を、そのキー10をキー溝16に合致させながら嵌め込んで右端部が端板11に当接するまで移動させる。しかる後、各空洞部7に支持棒13を挿通してその右端部を端板11の支持凹部11aに嵌合支持させる。そして、回転軸14の左端部に端板12を嵌め込んで支持凹部12aを支持棒13の左端部に嵌合させ、しかる後、回転軸14のねじ部17にワッシャ18を介してナット19を螺合させて締め付け、以て、回転子1の組立てを完了する。なお、上記場合において、回転子鉄心2と支持棒13の組み立て順序は逆でもよい。
【0018】
図4においては、図1ないし図3とは、支持棒13の位置、キー10の位置がが異なるが、これは、支持棒13と支持凹部11a、12aとの関係およびキー10とキー溝16との関係がわかり易いように抽象的に示したものである。
【0019】
しかして、回転子1は、固定子巻線が施された図示しない固定子内に配置されるようになっている。回転子1には、磁束が通り難い磁気的凹部(q軸)8と磁束が通り易い磁気的凸部(d軸)9とが形成されているので、これらの磁気的凹部8及び磁気的凸部9上の空隙部分で、固定子巻線に電流を流すことにより蓄えられる磁気エネルギーが異なり、この磁気エネルギーの変化によりリラクタンストルクが発生する。また、回転子1には、永久磁石4、4も設けられているので、永久磁石4、4と固定子の磁極との間の磁気吸引力及び磁気反発力によってもトルクが発生する。これにより、回転子1が回転するようになる。
【0020】
回転子1が回転すると、磁気的凹部8に遠心力が作用し、支持棒13の両端部が端板11、12の支持凹部11a、12aに規制されて保持される。また、磁気的凹部8への遠心力の作用により、磁気的凹部8の鉄心が変形し或いは変形しようとして空洞部7の縁部たる内周側二辺部が支持棒13に支持されるようになる。すなわち、空洞部7の辺部は、図2に示すように、支持棒13に複数点たる二点の支持点S1、S1で支持されるようになる。この場合、支持棒13の外周側面部と空洞部7の外周側辺部との間には隙間20(図2参照)が形成されている。
【0021】
このように本実施例によれば、磁束漏洩による性能低下を防止するためにブリッジ部5およびチップ部6の幅寸法を小にしても、支持棒13により空洞部7の辺部が支持されるので、ブリッジ部5およびチップ部6へ応力集中を防止することができて、遠心力強度を維持することかでき、強度の信頼性の向上を図ることができる。しかも、磁気的凹部8の空洞部7の辺部は支持棒13に二点の支持点S1、S1で支持されるので、一層強度の信頼性の向上を図ることができる。しかも、支持棒13の外周側面部と空洞部7の外周側辺部との間には空隙20が形成されるようになっているので、支持棒13設けるようにしても磁気的凹部8の磁気特性に影響を与えることはない。
【0022】
(第2の実施例)
図5は本発明の第2の実施例であり、上記第1の実施例(図2)と異なるところは、支持棒13の代わりに断面楕円形をなす金属製の支持棒21が設けられた点にあり、したがって、端板11、12の支持凹部11a、12aも楕円形の支持凹部に変更される。その他の構成は、第1の実施例と同様である。
このような構成によれば、磁気的凹部8における空洞部7の内周側の辺部は、支持棒21に複数点たる二点の支持点S2、S2で支持されるが、二点の支持点S2、S2間の距離は、第1の実施例の支持点S1、S1間の距離よりも大であるので、より安定した支持を行なうことができて、遠心力強度を維持することができ、強度の信頼性のより一層の向上を図ることができる。
【0023】
(第3の実施例)
図6は本発明の第3の実施例であり、前記第1の実施例(図2)と異なるところは、支持棒13の代わりに空洞部7と相似形をなす断面略三角形をなす金属製の支持棒22が設けられた点にあり、したがって、端板11、12の支持凹部11a、12aも略三角形の支持凹部に変更される。その他の構成は、第1の実施例と同様である。
このような構成によれば、磁気的凹部8における空洞部7の内周側の辺部は、支持棒22に多数点の支持点S3……で支持されるので、より一層安定した支持を行なうことができて、遠心力強度を確実に維持することができ、強度の信頼性の格別な向上を図ることができる。
【0024】
(第4ないし第6の実施例)
図7は本発明の第4の実施例であり、前記第1の実施例(図2)と異なるところは、回転子鉄心2に、空洞部7の代わりに円形状の空洞部23が形成されており、したがって、空洞部23の縁部は支持棒13に1点の支持点S4で支持されている。
図8は本発明の第5の実施例であり、前記第2の実施例(図5)と異なるところは、回転子鉄心2に、空洞部7の代わりに菱形状の空洞部24が形成された点にある。
図9は本発明の第6の実施例であり、上記第5の実施例(図8)と異なるところは、支持棒21の代わりに支持棒13が設けられた点にある。
これらの第4ないし第6の実施例によっても上述して実施例と略同様の効果が得られる。
【0025】
(第7の実施例)
図10は本発明の第7の実施例であり、前記第1の実施例(図3)と異なるところは、キー10の位置より90度ずれた位置の磁気的凸部9を挟む磁気的凹部8、8(合計4箇所)の空洞部7に支持棒21を挿設した点にある。
この第7の実施例によれば、4本という数少ない支持棒21を設けるだけで第1の実施例と同様の効果を得ることができるとともに、回転バランスを保つことができる。
【0026】
(第8の実施例)
図11は本発明の第8の実施例であり、前記第1の実施例(図3)と異なるところは、8箇所の磁気的凹部8のうちの一つ置きの4箇所の磁気的凹部8の空洞部7に支持棒21を挿設した点にある。
この第8の実施例によっても上記第7の実施例と同様の効果を得ることができる。
【0027】
(第9の実施例)
図12は本発明の第9の実施例であり、前記第1の実施例(図1)と異なるところは、磁気的凹部8における磁石挿入孔部3、3の内周側補助孔部3a、3aに金属製の断面円形をなす支持棒25、25が挿通され、これらの支持棒25、25の両端部は、支持棒13と同様に端板11、12(図4参照)の支持凹部に嵌合されている。したがって、内周側補助孔部3a、3aの縁部は各1点の支持点S5、S5で支持棒25、25に支持されるようになる。
この第9の実施例によっても前記第1の実施例と同様の効果を得ることができる。
【0028】
(第10の実施例)
図13は本発明の第10の実施例であり、前記第1の実施例(図1)と異なるところは、磁気的凹部8における磁石挿入孔部3、3のっ外周側補助孔部3b、3bに金属製の断面円形をなす支持棒26、26が挿通され、これらの支持棒26、26の両端部は、支持棒13と同様に端板11、12(図4参照)の支持凹部に嵌合されている。
この第10の実施例によっても前記第1の実施例と同様の効果を得ることができる。
【0029】
(第11の実施例)
図14は本発明の第11の実施例であり、これは第9の実施例と第10の実施例とを組み合わせたもので、磁気的凹部8における磁石挿入孔部3、3の内周側補助孔部3a、3aおよび外周側補助孔部3b、3bに支持棒25、25および26、26が挿設されたものである。
この第11の実施例によれば、前記第9および第10の実施例に比し遠心力強度を一層維持することができる。
【0030】
(第12の実施例)
図15は本発明の第12の実施例であり、これは第2の実施例と第11の実施例とを組み合わせたもので、磁気的凹部8における空洞部7に支持棒21が挿設され、かつ、磁石挿入孔部3、3における内周側補助孔部3a、3aおよび外周側補助孔部3b、3bに支持棒25、25および26、26が挿設されたものである。
この第12の実施例によれば、前記第2、第11の実施例に比し遠心力強度をより一層維持することができる。
【0031】
(第13の実施例)
図16は本発明の第13の実施例であり、前記第1の実施例(図4)と異なるところは、端板11、12に支持棒27、28を溶接により一体に取付けられ、これらの支持棒27、28が支持棒13の代わりに空洞部7に挿入されている。したがって、支持棒27、28の各一端部は、端板11、12に一体化されることにより規制されるものである。
この第13の実施例によっても、前記第1の実施例と同様の効果を得ることができる。
【0032】
(第14の実施例)
図17は本発明の第14の実施例であり、前記第1の実施例(図4)と異なるところは、パイプ状の支持棒29が支持棒13の代わりに空洞部7に挿入されており、その両端部が端板11、12に一体に形成された支持突起30、31に嵌合されて規制されるようになっている。
この第14の実施例によっても、第1の実施例と同様の効果を得ることができる。
【0033】
(第15の実施例)
図18は本発明の第15の実施例であり、前記第1の実施例(図4)と異なるところは、支持棒13の両端部にテーパ部13a(一方のみ図示)が形成されており、その両端部が端板11、12に一体に形成されたテーパ状の支持凹部12b(一方のみ図示)に圧入されて規制されるようになっている。
この第15の実施例によっても、前記第1の実施例と同様の効果を得ることができ、特に、支持棒13の端板11、12に対する支持が確実になる。
【0034】
(第16の実施例)
図19は本発明の第16の実施例であり、前記第1の実施例(図4)と異なるところは、支持棒13の両端部が先端部が径小な段付部3b(一方のみ図示)に形成されており、その両端部は、端板11、12に一体に形成された挿通孔12c(一方のみ図示)を貫通して外側に突出し、その突出端部がかしめられてかしめ部13cとされて規制されるようになっている。
この第16の実施例では、端板11(図4参照)は、回転軸14に溶接などにより一体に形成されるようになっており、したがって、ワッシャ18およびナット19は不要になる。
【0035】
尚、本発明は上記しかつ図面に示す実施例にのみ限定されるものではなく、例えば、支持棒は非磁性材で形成してもよく、また、第1の実施例から第16の実施例の技術を適宜組合せて実施し得るなど、要旨を逸脱しない範囲内で適宜変形して実施し得ることは勿論である。
【0036】
【発明の効果】
本発明の永久磁石式リラクタンス型回転電機は、以上説明したように、永久磁石の磁束漏洩による性能の低下を防止しながらも、遠心力強度も維持することができるという優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す腰部の拡大断面図
【図2】主要部の拡大断面図
【図3】回転子の横断面図
【図4】回転子の縦断面図
【図5】本発明の第2の実施例を示す図2相当図
【図6】本発明の第3の実施例を示す図2相当図
【図7】本発明の第4の実施例を示す図2相当図
【図8】本発明の第5の実施例を示す図2相当図
【図9】本発明の第6の実施例を示す図2相当図
【図10】本発明の第7の実施例を示す図3相当図
【図11】本発明の第8の実施例を示す図3相当図
【図12】本発明の第9の実施例を示す図1相当図
【図13】本発明の第10の実施例を示す図1相当図
【図14】本発明の第11の実施例を示す図1相当図
【図15】本発明の第12の実施例を示す図1相当図
【図16】本発明の第13の実施例を示す図4相当図
【図17】本発明の第14の実施例を示す図4相当図
【図18】本発明の第15の実施例を示す図4部分相当図
【図19】本発明の第16の実施例を示す図18相当図
【図20】従来例を示す図3相当図
【図21】図1相当図
【符号の説明】
図面中、1は回転子、2は回転子鉄心、3は磁石挿入孔部、3aは内周側補助孔部、3bは外周側補助孔部、4は永久磁石、5はブリッジ部、6はチップ部、7は空洞部、8は磁気的凹部、9は磁気的凸部、11および12は端板、13支持棒、14は回転軸、20は空隙、21および22は支持棒、23および24は空洞部、25ないし29は支持棒を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet type reluctance type rotating electric machine combining permanent magnets.
[0002]
[Prior art]
The permanent magnet type reluctance type rotary electric machine has a portion through which magnetic flux easily passes (referred to as d-axis) and a portion through which magnetic flux does not pass easily (referred to as q-axis) (so-called magnetic irregularities are formed). , And the rotor is disposed in the stator on which the stator windings are provided. In the rotor, the air gap magnetic flux density is high in a portion having a small magnetic resistance (d-axis), and the air gap magnetic flux density is low in a portion having a large magnetic resistance (q-axis). In addition, torque is generated by a magnetic attraction force and a magnetic repulsion force between the permanent magnet and the magnetic pole of the stator.
[0003]
20 and 21 show an example of a rotor of a conventional permanent magnet type reluctance type rotary electric machine, which has eight poles. That is, in FIG. 20, the rotor 100 has a rotor core 101 formed by laminating a number of annular silicon steel plates. A pair of substantially rectangular magnet insertion holes 102, 102 are formed in the outer peripheral portion of the rotor core 101, and permanent magnets 103, 103 are inserted and fixed in the pair of magnet insertion holes 102, 102. . Further, a hollow portion 104 is formed on the outer peripheral portion of the rotor core 101 between the pair of permanent magnets 103 and 13, and the hollow portion 104 has a substantially triangular shape. In the rotor 100, a portion where the pair of magnet insertion holes 102 and 102, the permanent magnets 103 and 103, and the cavity 104 are provided is a magnetic concave portion (q-axis) in which magnetic flux is difficult to pass, and a magnetic concave portion 105. , 105 is a magnetic projection (d-axis) 106 through which magnetic flux as a magnetic pole easily passes. The rotor 100 is arranged in a stator (not shown) provided with a stator winding (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 1001-339922 A (FIG. 1)
[0005]
[Problems to be solved by the invention]
In the above-described conventional configuration, a bridge portion 107 is inevitably formed in the rotor core 101 between the inner peripheral ends of the pair of magnet insertion holes 102, 102, as shown in FIG. At the same time, a tip 108 is inevitably formed between the outer periphery of the pair of magnet insertion holes 102, 102 and the outer periphery. The magnetic flux of the permanent magnet 103 is generated by the bridge 107, the tip In order to prevent a decrease in performance due to leakage from the N-pole to the S-pole through 108, the widths of the bridge 107 and the chip 108 are set to be as small as possible. However, if the widths of the bridge portion 107 and the tip portion 108 are set to be small, when the rotor 100 rotates and centrifugal force acts on the portion 105, stress concentrates on the bridge portion 107 and the tip portion 108. Therefore, there is a problem that the centrifugal force intensity cannot be maintained.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent permanent magnets from deteriorating in performance due to magnetic flux leakage and to maintain a centrifugal strength while maintaining a permanent magnet type reluctance type rotating electric machine. Is to provide.
[0007]
[Means for Solving the Problems]
The permanent magnet type reluctance type rotating electric machine according to claim 1 includes a stator having a stator winding, and a rotor having a rotor core having end plates at both ends,
The rotor has a pair of magnet insertion holes provided on the outer periphery of the rotor core such that the opposing distance increases in order toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet, a hollow portion provided in the rotor core between the pair of permanent magnets, and a support rod inserted into the hollow portion and having an end regulated by both end plates of the rotor core. It is characterized by comprising.
[0008]
According to such a configuration, the strength of the centrifugal force can be maintained by the support rods, and the reliability of the strength can be improved, while reducing the width of the bridge portion and the tip portion to prevent performance degradation due to magnetic flux leakage. Can be achieved.
[0009]
According to a second aspect of the present invention, there is provided the permanent magnet type reluctance type rotating electric machine, wherein the edge of the hollow portion is supported by the support rod at a plurality of points. According to such a configuration, the support by the support rod is stabilized, and the reliability of strength can be further improved.
[0010]
The permanent magnet type reluctance type rotating electric machine according to claim 3 includes a stator having a stator winding, and a rotor having a rotor core having end plates at both ends,
The rotor is provided on the outer peripheral portion of the rotor core such that the facing distance is sequentially increased toward the outer periphery, and has an inner peripheral side auxiliary hole portion extending in the inner peripheral direction at an inner peripheral end portion; A pair of magnet insertion holes having outer peripheral side auxiliary holes extending to the outer peripheral side at the outer peripheral side end, a permanent magnet inserted and fixed in the pair of magnet insertion holes, and the pair of permanent magnets in the rotor core; A hollow portion provided between the magnets, and a support rod inserted through the inner peripheral side auxiliary hole portion and having an end portion regulated by both end plates of the rotor core. Features.
With such a configuration, the same operation and effect as those of the first aspect can be obtained.
[0011]
The permanent magnet type reluctance type rotating electric machine according to claim 4 includes a stator having a stator winding and a rotor having a rotor core having end plates at both ends,
The rotor is provided on the outer peripheral portion of the rotor core such that the facing distance is sequentially increased toward the outer periphery, and has an inner peripheral side auxiliary hole portion extending in the inner peripheral direction at an inner peripheral end portion; A pair of magnet insertion holes having outer peripheral side auxiliary holes extending to the outer peripheral side at the outer peripheral side end, a permanent magnet inserted and fixed in the pair of magnet insertion holes, and the pair of permanent magnets in the rotor core; It is characterized by comprising a cavity provided between magnets, and a support rod inserted into the outer peripheral side auxiliary hole and having an end regulated by both end plates of the rotor core. And
With such a configuration, the same operation and effect as those of the first aspect can be obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
First, FIGS. 3 and 4 show an example of a rotor of a permanent magnet type reluctance type rotary electric machine, which may have eight poles. Here, FIG. 3 is a radial sectional view, and FIG. 4 is a vertical sectional side view.
[0013]
The rotor 1 has a rotor core 2 formed by laminating a number of annular silicon steel plates. A pair of substantially rectangular magnet insertion holes 3, 3 are formed in the outer peripheral portion of the rotor core 2 so that the opposing distances are gradually increased toward the outer periphery (accordingly, the pair of magnet insertion holes 3, 3). Are shaped like a letter C when viewed from the outer peripheral side.) The permanent magnets 4, 4 are inserted into the pair of magnet insertion holes 3, 3, and are fixed by bonding. In this case, the magnet insertion holes 3, 3 are formed with inner peripheral side auxiliary holes 3a, 3a extending in the inner peripheral direction at the inner peripheral side end, and the outer peripheral side extending outwardly at the outer peripheral end. Auxiliary holes 3b, 3b are formed, a bridge portion 5 having a small width between the inner peripheral side auxiliary holes 3a, 3a, and a width between the outer peripheral side auxiliary holes 3b, 3b and the outer periphery. (See FIG. 1). The inner peripheral auxiliary hole 3a and the outer peripheral auxiliary hole 3b are formed with locking projections 3c and 3d that protrude in the outer peripheral direction and are locked to the end surface of the permanent magnet 4.
[0014]
Further, a hollow portion 7 is formed in the outer peripheral portion of the rotor core 2 between the pair of permanent magnets 4, 4, and the hollow portion 7 is formed in parallel with the pair of permanent magnets 4, 4. It has a substantially triangular shape having sides and sides along the outer periphery. In the rotor 1, a portion where the pair of magnet insertion holes 3, 3 and the permanent magnets 4, 4 and the cavity 7 are provided is a magnetic recess (q-axis) 8, which hardly passes a magnetic flux. The portion between 8 and 8 is a magnetic projection (d-axis) 9 through which magnetic flux easily passes. Two keys 10 are formed on the inner periphery of the rotor core 2 so as to extend in the axial direction at intervals of 180 degrees. In addition, annular end plates 11 and 12 (see FIG. 4) are arranged at both ends of the rotor core 2.
[0015]
Now, metal support rods 13 (a total of eight in this embodiment) having a circular cross section are inserted into the hollow portions 7 of the magnetic concave portions 8 in the rotor core 2, and both ends of the support rods 13 are provided. The portions are fitted and supported in circular support concave portions 11a and 12a (see FIG. 4) formed on one side surface of the end plates 11 and 12. That is, a gap is formed between both ends of the support rod 13 and the support recesses 11a and 12a.
[0016]
In the rotary shaft 14 shown in FIG. 4, a flange 15 is integrally formed at an intermediate part of the outer periphery, and the two keys 10 extend from the outer periphery flange 15 to one end (the left end in FIG. 4). Correspondingly, two key grooves 16 are formed, and a screw portion 17 is formed on the outer periphery of the left end.
[0017]
Here, a procedure for assembling and fixing the rotor core 2, the end plates 11, 12 and the support rod 13 to the rotating shaft 14 will be described. First, the end plate 11 is fitted to the rotating shaft 14 from the left end side and moved until it comes into contact with the flange 15. Next, the rotor core 2 is fitted to the rotating shaft 14 while the key 10 is aligned with the key groove 16, and is moved until the right end abuts on the end plate 11. Thereafter, the support rod 13 is inserted into each cavity 7 and the right end thereof is fitted and supported in the support recess 11 a of the end plate 11. Then, the end plate 12 is fitted to the left end of the rotating shaft 14 to fit the support recess 12a to the left end of the support rod 13, and then the nut 19 is screwed into the threaded portion 17 of the rotating shaft 14 via the washer 18. The rotor 1 is screwed and tightened to complete the assembly of the rotor 1. In the above case, the order of assembling the rotor core 2 and the support rod 13 may be reversed.
[0018]
4, the position of the support rod 13 and the position of the key 10 are different from those of FIGS. 1 to 3 because of the relationship between the support rod 13 and the support recesses 11a and 12a, and the key 10 and the key groove 16. It is shown abstractly so that the relationship with is easy to understand.
[0019]
Thus, the rotor 1 is arranged in a stator (not shown) provided with a stator winding. The rotor 1 has a magnetic concave portion (q-axis) 8 through which magnetic flux hardly passes and a magnetic convex portion (d-axis) 9 through which magnetic flux easily passes. The magnetic energy stored by flowing a current through the stator winding differs in the air gap portion on the portion 9, and a reluctance torque is generated due to the change in the magnetic energy. Further, since the rotor 1 is also provided with the permanent magnets 4, 4, a torque is also generated by a magnetic attraction force and a magnetic repulsion force between the permanent magnets 4, 4 and the magnetic poles of the stator. This causes the rotor 1 to rotate.
[0020]
When the rotor 1 rotates, centrifugal force acts on the magnetic recess 8, and both ends of the support rod 13 are regulated and held by the support recesses 11 a and 12 a of the end plates 11 and 12. Also, by the action of the centrifugal force on the magnetic recess 8, the core of the magnetic recess 8 is deformed or about to be deformed so that the inner peripheral two sides, which are the edges of the cavity 7, are supported by the support rod 13. Become. That is, as shown in FIG. 2, the sides of the cavity 7 are supported by the support bar 13 at two support points S1 and S1, which are a plurality of points. In this case, a gap 20 (see FIG. 2) is formed between the outer peripheral side of the support rod 13 and the outer peripheral side of the cavity 7.
[0021]
As described above, according to the present embodiment, even when the widths of the bridge portion 5 and the chip portion 6 are reduced in order to prevent performance degradation due to magnetic flux leakage, the side portions of the hollow portion 7 are supported by the support rod 13. Therefore, stress concentration on the bridge portion 5 and the tip portion 6 can be prevented, the strength of the centrifugal force can be maintained, and the reliability of the strength can be improved. In addition, since the sides of the cavity 7 of the magnetic recess 8 are supported by the support rod 13 at the two support points S1 and S1, the reliability of the strength can be further improved. In addition, since the gap 20 is formed between the outer peripheral side surface of the support rod 13 and the outer peripheral side part of the cavity 7, even if the support rod 13 is provided, the magnetic force of the magnetic recess 8 is increased. It does not affect the properties.
[0022]
(Second embodiment)
FIG. 5 shows a second embodiment of the present invention. The difference from the first embodiment (FIG. 2) is that a metal support rod 21 having an elliptical cross section is provided instead of the support rod 13. Therefore, the supporting recesses 11a, 12a of the end plates 11, 12 are also changed to elliptical supporting recesses. Other configurations are the same as those of the first embodiment.
According to such a configuration, the inner circumferential side of the cavity 7 in the magnetic recess 8 is supported by the support rod 21 at two support points S2 and S2, which are a plurality of points. Since the distance between the points S2 and S2 is larger than the distance between the support points S1 and S1 in the first embodiment, more stable support can be performed and the centrifugal force strength can be maintained. Further, the reliability of strength can be further improved.
[0023]
(Third embodiment)
FIG. 6 shows a third embodiment of the present invention. The difference from the first embodiment (FIG. 2) is that instead of the support rod 13, a metal having a substantially triangular cross section similar to the cavity 7 is used. Therefore, the support recesses 11a and 12a of the end plates 11 and 12 are also changed to substantially triangular support recesses. Other configurations are the same as those of the first embodiment.
According to such a configuration, the inner circumferential side of the cavity 7 in the magnetic recess 8 is supported by the support rod 22 at the multiple support points S3. As a result, the strength of the centrifugal force can be reliably maintained, and the reliability of the strength can be significantly improved.
[0024]
(Fourth to sixth embodiments)
FIG. 7 shows a fourth embodiment of the present invention. The difference from the first embodiment (FIG. 2) is that a circular hollow portion 23 is formed in the rotor core 2 instead of the hollow portion 7. Therefore, the edge of the hollow portion 23 is supported by the support rod 13 at one support point S4.
FIG. 8 shows a fifth embodiment of the present invention. The difference from the second embodiment (FIG. 5) is that a rhombic hollow portion 24 is formed in the rotor core 2 instead of the hollow portion 7. It is in the point.
FIG. 9 shows a sixth embodiment of the present invention. The difference from the fifth embodiment (FIG. 8) is that a support bar 13 is provided instead of the support bar 21.
According to the fourth to sixth embodiments, substantially the same effects as those of the above-described embodiment can be obtained.
[0025]
(Seventh embodiment)
FIG. 10 shows a seventh embodiment of the present invention. The difference from the first embodiment (FIG. 3) is that a magnetic concave portion sandwiching a magnetic convex portion 9 at a position shifted by 90 degrees from the position of the key 10 is provided. The point is that the support rods 21 are inserted into the cavities 7 at 8, 8 (a total of four places).
According to the seventh embodiment, the same effect as that of the first embodiment can be obtained by providing only a few support rods 21 such as four, and the rotational balance can be maintained.
[0026]
(Eighth embodiment)
FIG. 11 shows an eighth embodiment of the present invention. The difference from the first embodiment (FIG. 3) is that every four magnetic recesses 8 out of eight magnetic recesses 8 are provided. The point is that the support bar 21 is inserted in the hollow portion 7.
According to the eighth embodiment, the same effect as that of the seventh embodiment can be obtained.
[0027]
(Ninth embodiment)
FIG. 12 shows a ninth embodiment of the present invention. The difference from the first embodiment (FIG. 1) is that the inner peripheral side auxiliary holes 3a of the magnet insertion holes 3, 3 in the magnetic concave portion 8, Support rods 25, 25 each having a circular cross section made of metal are inserted through 3a. Both ends of these support rods 25, 25 are inserted into support recesses of the end plates 11, 12 (see FIG. 4) similarly to the support rod 13. Mated. Therefore, the edges of the inner peripheral side auxiliary holes 3a, 3a are supported by the support rods 25, 25 at the respective one support points S5, S5.
According to the ninth embodiment, the same effect as that of the first embodiment can be obtained.
[0028]
(Tenth embodiment)
FIG. 13 shows a tenth embodiment of the present invention. The difference from the first embodiment (FIG. 1) is that the outer peripheral side auxiliary holes 3b of the magnet insertion holes 3, 3 in the magnetic recess 8 are formed. Metal support rods 26, 26 each having a circular cross section are inserted through 3b, and both ends of these support rods 26, 26 are inserted into the support recesses of the end plates 11, 12 (see FIG. 4) similarly to the support rod 13. Mated.
According to the tenth embodiment, the same effect as that of the first embodiment can be obtained.
[0029]
(Eleventh embodiment)
FIG. 14 shows an eleventh embodiment of the present invention, which is a combination of the ninth embodiment and the tenth embodiment, and is the inner side of the magnet insertion holes 3, 3 in the magnetic recess 8. The support rods 25, 25 and 26, 26 are inserted into the auxiliary holes 3a, 3a and the outer peripheral side auxiliary holes 3b, 3b.
According to the eleventh embodiment, the strength of the centrifugal force can be further maintained as compared with the ninth and tenth embodiments.
[0030]
(Twelfth embodiment)
FIG. 15 shows a twelfth embodiment of the present invention, which is a combination of the second embodiment and the eleventh embodiment, in which the support rod 21 is inserted into the cavity 7 in the magnetic recess 8. The support rods 25, 25 and 26, 26 are inserted into the inner peripheral auxiliary holes 3a, 3a and the outer peripheral auxiliary holes 3b, 3b of the magnet insertion holes 3, 3.
According to the twelfth embodiment, the strength of centrifugal force can be further maintained as compared with the second and eleventh embodiments.
[0031]
(Thirteenth embodiment)
FIG. 16 shows a thirteenth embodiment of the present invention. The difference from the first embodiment (FIG. 4) is that support rods 27 and 28 are integrally attached to end plates 11 and 12 by welding. The support rods 27 and 28 are inserted into the cavity 7 instead of the support rod 13. Therefore, one end of each of the support rods 27 and 28 is regulated by being integrated with the end plates 11 and 12.
According to the thirteenth embodiment, the same effect as that of the first embodiment can be obtained.
[0032]
(14th embodiment)
FIG. 17 shows a fourteenth embodiment of the present invention. The difference from the first embodiment (FIG. 4) is that a pipe-shaped support rod 29 is inserted into the cavity 7 instead of the support rod 13. Both ends are fitted to and supported by support projections 30 and 31 formed integrally with the end plates 11 and 12.
According to the fourteenth embodiment, the same effect as that of the first embodiment can be obtained.
[0033]
(Fifteenth embodiment)
FIG. 18 shows a fifteenth embodiment of the present invention. The difference from the first embodiment (FIG. 4) is that tapered portions 13a (only one is shown) are formed at both ends of the support rod 13. Both ends are press-fitted into a tapered support concave portion 12b (only one is shown) formed integrally with the end plates 11 and 12, and is regulated.
According to the fifteenth embodiment, the same effect as that of the first embodiment can be obtained. In particular, the support of the support rod 13 to the end plates 11 and 12 is ensured.
[0034]
(Sixteenth embodiment)
FIG. 19 shows a sixteenth embodiment of the present invention, which is different from the first embodiment (FIG. 4) in that both ends of the support rod 13 have stepped portions 3b having small diameter tips (only one is shown). ), And both end portions protrude outward through an insertion hole 12c (only one is shown) formed integrally with the end plates 11, 12, and the protruding end portion is caulked to form a caulking portion 13c. It is being regulated.
In the sixteenth embodiment, the end plate 11 (see FIG. 4) is formed integrally with the rotating shaft 14 by welding or the like, so that the washer 18 and the nut 19 become unnecessary.
[0035]
Note that the present invention is not limited to the embodiment described above and shown in the drawings. For example, the support rod may be formed of a non-magnetic material. It is needless to say that the present invention can be carried out by appropriately modifying the present invention without departing from the gist, for example, by appropriately combining the above techniques.
[0036]
【The invention's effect】
As described above, the permanent magnet type reluctance type rotating electric machine of the present invention has an excellent effect that the strength of the centrifugal force can be maintained while preventing the performance from being deteriorated due to the magnetic flux leakage of the permanent magnet. is there.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of a waist showing a first embodiment of the present invention; FIG. 2 is an enlarged sectional view of a main part; FIG. 3 is a transverse sectional view of a rotor; FIG. 5 is a diagram corresponding to FIG. 2 showing a second embodiment of the present invention. FIG. 6 is a diagram corresponding to FIG. 2 showing a third embodiment of the present invention. FIG. 7 is a diagram showing a fourth embodiment of the present invention. FIG. 8 is a diagram corresponding to FIG. 2 showing a fifth embodiment of the present invention. FIG. 9 is a diagram corresponding to FIG. 2 showing a sixth embodiment of the present invention. FIG. 10 is a seventh embodiment of the present invention. FIG. 3 corresponding to FIG. 3 showing an example FIG. 11 corresponds to FIG. 3 showing an eighth embodiment of the present invention FIG. 12 corresponds to FIG. 1 showing a ninth embodiment of the present invention FIG. FIG. 14 is a diagram corresponding to FIG. 1 showing a tenth embodiment. FIG. 14 is a diagram corresponding to FIG. 1 showing an eleventh embodiment of the present invention. FIG. 15 is a diagram corresponding to FIG. 1 showing a twelfth embodiment of the present invention. FIG. 21 shows a thirteenth embodiment of the present invention. FIG. 17 is a diagram corresponding to FIG. 4 showing a fourteenth embodiment of the present invention. FIG. 18 is a diagram corresponding to FIG. 4 showing a fifteenth embodiment of the present invention. FIG. 19 is a sixteenth embodiment of the present invention. FIG. 18 equivalent view showing an example FIG. 20 equivalent view of FIG. 3 showing a conventional example FIG. 21 equivalent view of FIG.
In the drawings, 1 is a rotor, 2 is a rotor core, 3 is a magnet insertion hole, 3a is an inner peripheral auxiliary hole, 3b is an outer auxiliary hole, 4 is a permanent magnet, 5 is a bridge, and 6 is a bridge. Tip portion, 7 is a hollow portion, 8 is a magnetic concave portion, 9 is a magnetic convex portion, 11 and 12 are end plates, 13 support rods, 14 is a rotating shaft, 20 is a gap, 21 and 22 are support rods, 23 and Reference numeral 24 denotes a hollow portion, and reference numerals 25 to 29 denote support rods.

Claims (4)

固定子巻線を有する固定子と、両端部に端板を備えた回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に外周に向かうに従って対向距離が順次大となるように設けられた一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、
この空洞部に挿通され、端部が前記回転子鉄心の両端板により規制される支持棒とを備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding and a rotor having a rotor core having end plates at both ends,
The rotor,
A pair of magnet insertion holes provided so that the opposing distance is sequentially increased toward the outer periphery on the outer periphery of the rotor core,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A hollow portion provided in the rotor core between the pair of permanent magnets,
A permanent magnet type reluctance type rotating electric machine characterized by comprising a support rod inserted into the hollow portion and having an end regulated by both end plates of the rotor core.
空洞部の縁部は、複数点で支持棒に支持されるようになっていることを特徴とする請求項1記載の永久磁石式リラクタンス型回転電機。2. The permanent magnet type reluctance type rotating electric machine according to claim 1, wherein an edge of the hollow portion is supported by a support rod at a plurality of points. 固定子巻線を有する固定子と、両端部に端板を備えた回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に外周に向かうに従って対向距離が順次大となるように設けられ、内周側端部に内周方向に延びる内周側補助孔部を有し且つ外周側端部に外周側に延びる外周側補助孔部を有する一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、
前記内周側補助孔部に挿通され、端部が前記回転子鉄心の両端板により規制される支持棒とを備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding and a rotor having a rotor core having end plates at both ends,
The rotor,
The outer peripheral portion of the rotor core is provided so that the opposing distance is gradually increased toward the outer periphery, and has an inner peripheral side auxiliary hole portion extending in the inner peripheral direction at the inner peripheral side end and at the outer peripheral side end A pair of magnet insertion holes having an outer peripheral side auxiliary hole extending to the outer peripheral side,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A hollow portion provided in the rotor core between the pair of permanent magnets,
A permanent magnet type reluctance type rotating electric machine, comprising: a support rod inserted into the inner peripheral side auxiliary hole and having an end regulated by both end plates of the rotor core.
固定子巻線を有する固定子と、両端部に端板を備えた回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に外周に向かうに従って対向距離が順次大となるように設けられ、内周側端部に内周方向に延びる内周側補助孔部を有し且つ外周側端部に外周側に延びる外周側補助孔部を有する一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、
前記外周側補助孔部に挿通され、端部が前記回転子鉄心の両端板により規制される支持棒とを備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding and a rotor having a rotor core having end plates at both ends,
The rotor,
The outer peripheral portion of the rotor core is provided so that the opposing distance is gradually increased toward the outer periphery, and has an inner peripheral side auxiliary hole portion extending in the inner peripheral direction at the inner peripheral side end and at the outer peripheral side end A pair of magnet insertion holes having an outer peripheral side auxiliary hole extending to the outer peripheral side,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A hollow portion provided in the rotor core between the pair of permanent magnets,
A permanent magnet type reluctance type rotating electric machine, comprising: a support rod which is inserted into the outer peripheral side auxiliary hole and whose end is regulated by both end plates of the rotor core.
JP2003044218A 2003-02-21 2003-02-21 Permanent magnet type reluctance type rotating electrical machine Expired - Fee Related JP4070630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044218A JP4070630B2 (en) 2003-02-21 2003-02-21 Permanent magnet type reluctance type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044218A JP4070630B2 (en) 2003-02-21 2003-02-21 Permanent magnet type reluctance type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2004254466A true JP2004254466A (en) 2004-09-09
JP4070630B2 JP4070630B2 (en) 2008-04-02

Family

ID=33026977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044218A Expired - Fee Related JP4070630B2 (en) 2003-02-21 2003-02-21 Permanent magnet type reluctance type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4070630B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154309A (en) * 2006-12-14 2008-07-03 Daikin Ind Ltd Rotor for motor, motor, and compressor
DE102007036315A1 (en) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Disc pack for a rotor or stator of an electrical machine and corresponding electrical machine
US7560842B2 (en) 2005-09-21 2009-07-14 Toyota Jidosha Kabushiki Kaisha Permanent magnet type rotating electric machine capable of suppressing deformation of rotor core
JP2010081754A (en) * 2008-09-26 2010-04-08 Fuji Electric Systems Co Ltd Permanent magnet rotary machine
US7948138B2 (en) * 2005-04-28 2011-05-24 Toyota Jidosha Kabushiki Kaisha Rotor
JP2011114927A (en) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp Rotor, magnet embedded electric motor, and electric compressor
US8008825B2 (en) * 2007-03-20 2011-08-30 Kabushiki Kaisha Yaskawa Denki Electromagnetic steel plate forming member, electromagnetic steel plate laminator, permanent magnet type synchronous rotating electric machine rotor provided with the same, permanent magnet type synchronous rotating electric machine, and vehicle, elevator, fluid machine, and processing machine using the rotating electric machine
JP2011229395A (en) * 2011-07-05 2011-11-10 Nissan Motor Co Ltd Permanent magnet type motor
JP2011259691A (en) * 2010-05-12 2011-12-22 Denso Corp Rotator of rotating electrical machine
JP2013146186A (en) * 2013-03-18 2013-07-25 Daikin Ind Ltd Assembly method of rotor for motor, motor and compressor
DE102008006074B4 (en) * 2007-01-30 2014-09-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Rotor of a permanent magnet machine
US9003639B2 (en) 2006-02-27 2015-04-14 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a rotor
CN108599407A (en) * 2018-05-24 2018-09-28 浙江达可尔汽车电子科技有限公司 Efficient permanent magnet new-energy automobile power motor electromagnetism punching

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948138B2 (en) * 2005-04-28 2011-05-24 Toyota Jidosha Kabushiki Kaisha Rotor
US7560842B2 (en) 2005-09-21 2009-07-14 Toyota Jidosha Kabushiki Kaisha Permanent magnet type rotating electric machine capable of suppressing deformation of rotor core
US9003639B2 (en) 2006-02-27 2015-04-14 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a rotor
JP2008154309A (en) * 2006-12-14 2008-07-03 Daikin Ind Ltd Rotor for motor, motor, and compressor
DE102008006074B4 (en) * 2007-01-30 2014-09-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Rotor of a permanent magnet machine
US8546990B2 (en) 2007-03-20 2013-10-01 Kabushiki Kaisha Yaskawa Denki Permanent magnet synchronous rotating electric machine and rotor core
US8008825B2 (en) * 2007-03-20 2011-08-30 Kabushiki Kaisha Yaskawa Denki Electromagnetic steel plate forming member, electromagnetic steel plate laminator, permanent magnet type synchronous rotating electric machine rotor provided with the same, permanent magnet type synchronous rotating electric machine, and vehicle, elevator, fluid machine, and processing machine using the rotating electric machine
US8227953B2 (en) 2007-03-20 2012-07-24 Kabushiki Kaisha Yaskawa Denki Rotor, rotating electric machine, vehicle, elevator, fluid machine, and processing machine
CN102751799A (en) * 2007-03-20 2012-10-24 株式会社安川电机 Permanent magnet synchronous rotating electric machine and rotor core
DE102007036315A1 (en) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Disc pack for a rotor or stator of an electrical machine and corresponding electrical machine
JP2010081754A (en) * 2008-09-26 2010-04-08 Fuji Electric Systems Co Ltd Permanent magnet rotary machine
JP2011114927A (en) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp Rotor, magnet embedded electric motor, and electric compressor
JP2011259691A (en) * 2010-05-12 2011-12-22 Denso Corp Rotator of rotating electrical machine
JP2011229395A (en) * 2011-07-05 2011-11-10 Nissan Motor Co Ltd Permanent magnet type motor
JP2013146186A (en) * 2013-03-18 2013-07-25 Daikin Ind Ltd Assembly method of rotor for motor, motor and compressor
CN108599407A (en) * 2018-05-24 2018-09-28 浙江达可尔汽车电子科技有限公司 Efficient permanent magnet new-energy automobile power motor electromagnetism punching

Also Published As

Publication number Publication date
JP4070630B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP2004104962A (en) Permanent magnet type reluctance rotary electric machine
KR101880377B1 (en) Interior permanent magnet rotating electric machine
EP1158651B1 (en) Permanent magnet reluctance motor
US11114909B2 (en) Motor
CN109565198B (en) Rotor and reluctance motor
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
US20130113325A1 (en) Rotating element with embedded permanent magnet and rotating electrical machine
JP2005184957A (en) Permanent magnet type reluctance rotary electric machine
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
JPH08275419A (en) Rotor of permanent magnet type rotary machine
JP2015204715A (en) Rotor for rotary electric machine
US20150270752A1 (en) Permanent-magnet-type rotating electric mechanism
JP4070630B2 (en) Permanent magnet type reluctance type rotating electrical machine
US6774521B2 (en) Brushless DC motor
US20210218301A1 (en) Rotating electric machine
US20110163618A1 (en) Rotating Electrical Machine
JP5969290B2 (en) Rotor and motor
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2003319583A (en) Synchronous motor
JP2009044893A (en) Rotor and rotary electric machine
JP3172504B2 (en) Rotor of permanent magnet type reluctance type rotating electric machine
JPH09266646A (en) Brushless dc motor
JP2018198534A (en) Rotary electric machine
JP2004135375A (en) Rotor structure of coaxial motor
JP3210634B2 (en) Permanent magnet type reluctance type rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4070630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees