JP2004253787A - Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same - Google Patents

Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same Download PDF

Info

Publication number
JP2004253787A
JP2004253787A JP2004015071A JP2004015071A JP2004253787A JP 2004253787 A JP2004253787 A JP 2004253787A JP 2004015071 A JP2004015071 A JP 2004015071A JP 2004015071 A JP2004015071 A JP 2004015071A JP 2004253787 A JP2004253787 A JP 2004253787A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
zinc oxide
phase
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004015071A
Other languages
Japanese (ja)
Inventor
Ryoji Nakayama
亮治 中山
Muneaki Watanabe
宗明 渡辺
Kazunori Igarashi
和則 五十嵐
Yoshinori Sone
佳紀 曽根
Masaru Itakura
賢 板倉
Yoshiji Tomokiyo
芳二 友清
Noriyuki Kuwano
範之 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004015071A priority Critical patent/JP2004253787A/en
Publication of JP2004253787A publication Critical patent/JP2004253787A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a complex soft magnetic sintered material with a high strength, a high magnetic flux density, and a high resistance. <P>SOLUTION: In the method of manufacturing the complex soft magnetic sintered material, a coating of a surface ZnO layer of soft magnetic sintered metal powder is applied to prepare zinc oxide coated soft magnetic metal powder, glass powder is added to and mixed with the zinc oxide coated soft magnetic metal powder to prepare mixed powder, the mixed powder is compacted and molded, and then, the mixed powder is sintered in the air or in a nonoxidative atmosphere at 300 to 1000°C. Further, the soft magnetic sintered compact is composed of a soft magnetic metal particle phase 1 obtained by the manufacturing method and a grain boundary phase 4 surrounding the soft magnetic metal particle phase 1. The soft magnetic sintered compact has a constitution in which the grain boundary phase 4 is composed of a ZnO phase 3 having a hexagonal structure, a mixed oxide phase 2 made of Fe and Zn with a cubic structure, and a glass phase 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、モータ、アクチュエータ、磁気センサなどの製造に使用される高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材およびその製造方法に関するものである。   The present invention relates to a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance used for manufacturing motors, actuators, magnetic sensors, and the like, and a method for manufacturing the same.

一般に、モータ、アクチュエータ、磁気センサなどの磁心には鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末(以下、これらを軟磁性金属粉末と総称する)を焼結して得られた軟磁性焼結材が用いられることは知られている。前記軟磁性金属粉末などを焼結して得られた軟磁性焼結材は、磁束密度が高いが比抵抗が低いために高周波特性が悪い。そこで比抵抗を高めて高周波特性を向上させるべく軟磁性焼結材料を水ガラスまたは低融点ガラスにより結合した圧粉磁性材料などの提案されている(特許文献1または2参照)。
特開平5−258934号公報 特開昭63−158810号公報
Generally, iron powder, Fe-Al based iron-based soft magnetic alloy powder, Fe-Ni based iron-based soft magnetic alloy powder, Fe-Cr based iron-based soft magnetic alloy powder, Fe-Cr based iron-based soft magnetic alloy powder are used for magnetic cores of motors, actuators, magnetic sensors, and the like. A soft magnetic sintered material obtained by sintering a Si-based iron-based soft magnetic alloy powder or an Fe-Si-Al-based iron-based soft magnetic alloy powder (hereinafter, these are collectively referred to as soft magnetic metal powders); It is known that A soft magnetic sintered material obtained by sintering the soft magnetic metal powder or the like has a high magnetic flux density but a low specific resistance, and thus has poor high frequency characteristics. Therefore, a powder magnetic material in which a soft magnetic sintered material is combined with water glass or low-melting glass in order to increase specific resistance and improve high-frequency characteristics has been proposed (see Patent Document 1 or 2).
JP-A-5-258934 JP-A-63-158810

しかし、前記軟磁性金属粉末を水ガラスまたは低融点ガラスで結合した複合軟磁性焼結材は、軟磁性金属粉末と水ガラスまたは低融点ガラスとは密着性が悪いために、軟磁性金属粉末を水ガラスまたは低融点ガラスで結合して強度を確保しようとすると、水ガラスまたは低融点ガラスの中に軟磁性金属粉末が分散する程度に大量の水ガラスまたは低融点ガラスと混合しなければならず、このように水ガラスまたは低融点ガラスを大量に使用して得られた圧粉軟磁性材料の比抵抗は大きくなるものの磁束密度が極端に低下し、モータ、アクチュエータ、磁気センサの磁心など各種電子部品の材料として使用することができない。   However, a composite soft magnetic sintered material in which the soft magnetic metal powder is bonded with water glass or low melting point glass has a poor adhesion between the soft magnetic metal powder and water glass or low melting point glass. In order to secure strength by combining with water glass or low melting glass, it must be mixed with a large amount of water glass or low melting glass to the extent that soft magnetic metal powder is dispersed in water glass or low melting glass. In this way, the soft magnetic material obtained by using a large amount of water glass or low-melting glass has a large specific resistance, but its magnetic flux density is extremely low, and various electronic components such as motors, actuators, magnetic cores of magnetic sensors, etc. It cannot be used as a component material.

そこで、本発明者らは、高強度、高磁束密度および高抵抗を共に有する軟磁性焼結材を得るべく研究を行った結果、
(イ)軟磁性金属粉末にZn粉末を0.02〜10質量%(好ましくは、0.1〜5質量%)添加した混合粉末を加熱しながら撹拌すると、Znは気化してZn蒸気となり、軟磁性金属粉末の表面にZn層、Zn−Fe層、またはZn層およびZn−Fe層からなる複合層(以下、Zn合金層という)が形成され、このZn合金層が形成された軟磁性金属粉末を炭酸ガスなどの酸化雰囲気中で加熱すると、軟磁性金属粉末の表面に酸化亜鉛層が形成された酸化亜鉛被覆軟磁性金属粉末が生成し、この酸化亜鉛被覆軟磁性金属粉末に少量のガラス粉末:0.05〜10質量%添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結すると、酸化亜鉛層とガラスとは密着性に優れるところから、高強度を有しかつ高抵抗を有する複合軟磁性焼結材が得られ、さらにこの複合軟磁性焼結材は磁束密度に優れる、
(ロ)前記得られた高強度、高磁束密度および高抵抗を共に有する軟磁性焼結材は、軟磁性金属粒子相とこの軟磁性金属粒子相を包囲する粒界相からなり、前記粒界相は、六方晶構造を有するZnO型相、立方晶構造を有するFeとZnの混合酸化物相およびガラス相とからなり、前記六方晶構造を有するZnO型相は大部分が前記軟磁性金属粒子相に接して分散しており、前記立方晶構造を有するFeとZnの混合酸化物相は大部分が前記ZnO型相に接して分散しており、前記ガラス相は前記立方晶構造を有するFeとZnの混合酸化物相に挟まれて分散している組織を有する、
(ハ)前記六方晶構造を有するZnO型相および立方晶構造を有するFeとZnの混合酸化物相は、何れも平均粒径が1〜500nmの範囲内にある、
(ニ)前記軟磁性金属粉末は、鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末およびFe−Si系鉄基軟磁性合金粉末の内のいずれかの粉末を使用することができ、これら軟磁性金属粉末を使用して作製した複合軟磁性焼結材の軟磁性金属粒子相は鉄、Fe−Al系鉄基軟磁性合金、Fe−Ni系鉄基軟磁性合金、Fe−Cr系鉄基軟磁性合金、Fe−Si−Al系鉄基軟磁性合金およびFe−Si系鉄基軟磁性合金の内のいずれかの粒子相からなる、などの研究結果が得られたのである。
Therefore, the present inventors have conducted research to obtain a soft magnetic sintered material having both high strength, high magnetic flux density and high resistance.
(A) When stirring a mixed powder obtained by adding 0.02 to 10% by mass (preferably 0.1 to 5% by mass) of Zn powder to a soft magnetic metal powder, Zn is vaporized into Zn vapor, On the surface of the soft magnetic metal powder, a Zn layer, a Zn—Fe layer, or a composite layer (hereinafter, referred to as a Zn alloy layer) composed of a Zn layer and a Zn—Fe layer is formed. When the powder is heated in an oxidizing atmosphere such as carbon dioxide gas, a zinc oxide-coated soft magnetic metal powder having a zinc oxide layer formed on the surface of the soft magnetic metal powder is generated, and a small amount of glass is added to the zinc oxide-coated soft magnetic metal powder. Powder: A mixed powder obtained by adding and mixing 0.05 to 10% by mass is compacted, molded, and then sintered at a temperature of 300 to 1000 ° C., where the zinc oxide layer and glass have excellent adhesion. Has high strength and Composite soft magnetic sintered material is obtained having a resistance, further the composite soft magnetic sintered material is superior in magnetic flux density,
(B) The obtained soft magnetic sintered material having both high strength, high magnetic flux density and high resistance comprises a soft magnetic metal particle phase and a grain boundary phase surrounding the soft magnetic metal particle phase. The phase is composed of a ZnO-type phase having a hexagonal structure, a mixed oxide phase of Fe and Zn having a cubic structure, and a glass phase. Most of the mixed oxide phase of Fe and Zn having the cubic structure is dispersed in contact with the ZnO type phase, and the glass phase is Fe having the cubic structure. Having a structure interposed and dispersed between mixed oxide phases of Zn and
(C) The ZnO-type phase having a hexagonal structure and the mixed oxide phase of Fe and Zn having a cubic structure have an average particle diameter in a range of 1 to 500 nm.
(D) The soft magnetic metal powder includes iron powder, Fe-Al-based iron-based soft magnetic alloy powder, Fe-Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si- Any of the Al-based iron-based soft magnetic alloy powder and the Fe-Si-based iron-based soft magnetic alloy powder can be used, and the composite soft magnetic sintered material produced using these soft magnetic metal powders The soft magnetic metal particle phase is iron, Fe-Al-based soft magnetic alloy, Fe-Ni-based soft magnetic alloy, Fe-Cr-based soft magnetic alloy, Fe-Si-Al-based soft magnetic alloy Research results such as the fact that it is composed of any one of the particle phases of Fe-Si based iron-based soft magnetic alloys were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)軟磁性金属粒子相とこの軟磁性金属粒子相を包囲する粒界相からなり、前記粒界相は、六方晶構造を有するZnO型相、立方晶構造を有するFeとZnの混合酸化物相およびガラス相とからなり、前記六方晶構造を有するZnO型相は前記軟磁性金属粒子相に接して分散しており、前記立方晶構造を有するFeとZnの混合酸化物相は前記ZnO型相に接して分散しており、前記ガラス相は前記立方晶構造を有するFeとZnの混合酸化物相に接して挟まれて分散している組織を有する高密度、高強度および高磁束密度を有する複合軟磁性焼結材、
(2)前記六方晶構造を有するZnO型相および立方晶構造を有するFeとZnの混合酸化物相は、何れも平均粒径:1〜500nmの微細粒子相からなる組織を有する前記(1)記載の高密度、高強度および高磁束密度を有する複合軟磁性焼結材、
(3)前記軟磁性金属粒子相は、鉄、Fe−Al系鉄基軟磁性合金、Fe−Ni系鉄基軟磁性合金、Fe−Cr系鉄基軟磁性合金、Fe−Si−Al系鉄基軟磁性合金およびFe−Si系鉄基軟磁性合金の内のいずれかの粒子相である前記(1)または(2)記載の高密度、高強度および高磁束密度を有する複合軟磁性焼結材、
(4)軟磁性金属粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆軟磁性金属粉末を作製し、この酸化亜鉛被覆軟磁性金属粉末にガラス粉末を添加し混合した混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、に特徴を有するものである。
The present invention has been made based on such research results,
(1) A soft magnetic metal particle phase and a grain boundary phase surrounding the soft magnetic metal particle phase, wherein the grain boundary phase is a ZnO type phase having a hexagonal structure, and a mixed oxidation of Fe and Zn having a cubic structure. The ZnO-type phase having a hexagonal structure is dispersed in contact with the soft magnetic metal particle phase, and the mixed oxide phase of Fe and Zn having the cubic structure is the ZnO-type phase. A high-density, high-strength, and high-flux-density structure having a structure in which the glass phase is dispersed in contact with the mixed oxide phase of Fe and Zn having the cubic structure. A composite soft magnetic sintered material having
(2) Each of the ZnO-type phase having a hexagonal structure and the mixed oxide phase of Fe and Zn having a cubic structure has a structure composed of a fine particle phase having an average particle diameter of 1 to 500 nm. A composite soft magnetic sintered material having high density, high strength and high magnetic flux density according to the description.
(3) The soft magnetic metal particle phase is iron, Fe-Al-based iron-based soft magnetic alloy, Fe-Ni-based iron-based soft magnetic alloy, Fe-Cr-based iron-based soft magnetic alloy, Fe-Si-Al-based iron The composite soft magnetic sinter having high density, high strength and high magnetic flux density according to the above (1) or (2), which is a particle phase of any one of the base soft magnetic alloy and the Fe-Si based iron based soft magnetic alloy. Timber,
(4) A zinc oxide-coated soft magnetic metal powder having a zinc oxide layer formed on the surface of the soft magnetic metal powder is produced, and a glass powder is added to the zinc oxide-coated soft magnetic metal powder and mixed, and the mixed powder is compacted and molded. After that, a method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance, which is sintered at a temperature of 300 to 1000 ° C.

この発明の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法をさらに一層具体的に説明する。
この発明の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法において使用する軟磁性金属粉末は、従来から一般に知られている鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末などであり、一層具体的には、
鉄粉末は純鉄粉末であり、
Fe−Al系鉄基軟磁性合金粉末はAl:0.1〜20を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15%Alからなる組成を有するアルパーム粉末)であり、
Fe−Ni系鉄基軟磁性合金粉末はNi:35〜85%を含有し、必要に応じてMo:5%以下、Cu:5%以下、Cr:2%以下、Mn:0.5%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるニッケル基軟磁性合金粉末(例えば、Fe−49%Ni粉末)であり、
Fe−Cr系鉄基軟磁性合金粉末はCr:1〜20%を含有し、必要に応じてAl:5%以下、Ni:5%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末であり、
Fe−Si−Al系鉄基軟磁性合金粉末はSi:0.1〜10%、Al:0.1〜20を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末(以上、%は質量%を示す)であり、
Fe−Si系鉄基軟磁性合金粉末はSi:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であることが好ましいが、特にこれらに限定されるものではない。
The method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance according to the present invention will be described more specifically.
The soft magnetic metal powder used in the method for producing a composite soft magnetic sintered material having a high strength, a high magnetic flux density and a high resistance according to the present invention is an iron powder, a Fe-Al based iron-based soft magnetic material generally known in the art. Alloy powder, Fe-Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, etc. Yes, and more specifically,
Iron powder is pure iron powder,
The Fe-Al-based iron-based soft magnetic alloy powder contains Al: 0.1 to 20, and the balance is Fe-Al-based iron-based soft magnetic alloy powder composed of Fe and unavoidable impurities (for example, composed of Fe-15% Al). Alpalm powder having the composition)
The Fe-Ni-based iron-based soft magnetic alloy powder contains Ni: 35 to 85%, and if necessary, Mo: 5% or less, Cu: 5% or less, Cr: 2% or less, Mn: 0.5% or less. A nickel-based soft magnetic alloy powder (e.g., Fe-49% Ni powder) containing at least one of the following, and the balance being Fe and unavoidable impurities;
The Fe-Cr-based iron-based soft magnetic alloy powder contains 1 to 20% of Cr, and optionally contains one or two of Al: 5% or less and Ni: 5% or less, with the balance being the balance. Fe-Cr based iron-based soft magnetic alloy powder comprising Fe and unavoidable impurities,
The Fe-Si-Al-based iron-based soft magnetic alloy powder contains 0.1 to 10% of Si and 0.1 to 20 of Al, and the balance is Fe-Si-Al-based iron-based soft magnetic alloy composed of Fe and inevitable impurities. Magnetic alloy powder (the above,% indicates mass%)
The Fe-Si-based iron-based soft magnetic alloy powder is preferably an Fe-Si-based iron-based soft magnetic alloy powder containing 0.1 to 10% of Si and the balance being Fe and unavoidable impurities. However, the present invention is not limited to this.

したがって、この発明は、
(5)鉄粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆鉄粉末を作製し、この酸化亜鉛被覆鉄粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、
(6)Fe−Al系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Al系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Al系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、
(7)Fe−Ni系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Ni系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Ni系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、
(8)Fe−Cr系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Cr系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Cr系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、
(9)Fe−Si−Al系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Si−Al系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Si−Al系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、
(10)Fe−Si系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Si系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Si系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結する高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、
(11)前記ガラス粉末の添加量は、0.05〜10質量%である前記(4)、(5)、(6)、(7)、(8)、(9)または(10)記載の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法、に特徴を有するものである。
Therefore, the present invention
(5) After preparing a zinc oxide-coated iron powder having a zinc oxide layer formed on the surface of the iron powder, adding and mixing a glass powder to the zinc oxide-coated iron powder, compacting and molding the mixed powder. A method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance, which is sintered at a temperature of 300 to 1000 ° C.
(6) A zinc oxide-coated Fe-Al-based iron-based soft magnetic alloy powder having a zinc oxide layer formed on the surface of the Fe-Al-based iron-based soft-magnetic alloy powder is produced, and the zinc oxide-coated Fe-Al-based iron-based soft magnetic alloy powder is prepared. A mixed soft magnetic powder having high strength, high magnetic flux density and high resistance is sintered at a temperature of 300 to 1000 ° C. after the mixed powder obtained by adding and mixing the glass powder to the magnetic alloy powder is molded. Manufacturing method of binder,
(7) A zinc oxide-coated Fe-Ni-based iron-based soft magnetic alloy powder in which a zinc oxide layer is formed on the surface of the Fe-Ni-based iron-based soft-magnetic alloy powder is produced. A mixed soft magnetic powder having high strength, high magnetic flux density and high resistance is sintered at a temperature of 300 to 1000 ° C. after the mixed powder obtained by adding and mixing the glass powder to the magnetic alloy powder is molded. Manufacturing method of binder,
(8) A zinc oxide-coated Fe-Cr-based iron-based soft magnetic alloy powder having a zinc oxide layer formed on the surface of the Fe-Cr-based iron-based soft-magnetic alloy powder is produced. A mixed soft magnetic powder having high strength, high magnetic flux density and high resistance is sintered at a temperature of 300 to 1000 ° C. after the mixed powder obtained by adding and mixing the glass powder to the magnetic alloy powder is molded. Manufacturing method of binder,
(9) A zinc oxide-coated Fe-Si-Al-based soft magnetic alloy powder having a zinc oxide layer formed on the surface of the Fe-Si-Al-based iron-based soft magnetic alloy powder is prepared. -A high strength, high magnetic flux density, and high resistance in which a mixed powder obtained by adding and mixing glass powder to Al-based iron-based soft magnetic alloy powder is compacted and molded, and then sintered at a temperature of 300 to 1000 ° C. A method for producing a composite soft magnetic sintered material having
(10) A zinc oxide-coated Fe-Si-based iron-based soft magnetic alloy powder in which a zinc oxide layer is formed on the surface of the Fe-Si-based iron-based soft-magnetic alloy powder is produced. A mixed soft magnetic powder having high strength, high magnetic flux density and high resistance is sintered at a temperature of 300 to 1000 ° C. after the mixed powder obtained by adding and mixing the glass powder to the magnetic alloy powder is molded. Manufacturing method of binder,
(11) The method according to (4), (5), (6), (7), (8), (9) or (10), wherein the amount of the glass powder added is 0.05 to 10% by mass. A method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance.

この発明の高密度、高強度および高磁束密度を有する複合軟磁性材の組織について説明する。軟磁性金属粒子相は、上記軟磁性金属粉末(鉄粉末、Fe−Al系鉄基軟磁性合金粉末など)と同じ組成を有する相である。粒界相のうち、六方晶構造を有するZnO型相は、一般的には、Zn1+xOで表され、x=0〜0.001の範囲をとる。前記ZnO型相の成分は、Znの他にFe,Al,Ni,Cr,Mn,Si,Li,Na,K,Mg,Ga,Ge,Ag,In,Sn,Sb,Ba,Biのうち少なくとも1種をZnに対して最大5質量%と不可避不純物を含んでいるものもこの発明に含まれ、特に1価のイオンとなり得るLi,Na,Kのうちの少なくとも1種をZnに対して最大5質量%含んだ場合、複合軟磁性材の比抵抗値を上げ、磁気性能を向上させる効果がある。粒界相のうち、立方晶構造を有するFeとZnの混合酸化物相は、γ(Fe、Zn),(Fe、Zn)Fe,(Fe、Zn)Oからなる酸化物の混合相であり、(Fe、Zn)のほかにAl,Ni,Cr,Mn,Si,Li,Na,K,Mg,Ga,Ge,Ag,In,Sn,Sb,Ba,Biのうち少なくとも1種をFe+Znに対して最大20質量%と不可避不純物を含んでいるものもこの発明に含まれる。
前記六方晶構造を有するZnO型相および立方晶構造を有するFeとZnの混合酸化物相は、高密度、高強度および高磁束密度を有する複合軟磁性材を得るには、何れも平均結晶粒径:1〜500nmの微細粒子相からなることが好ましい。平均結晶粒径が1nmよりも小さいと高強度が得られず、500nmよりも大きいと複合軟磁性材中の粒界相が占める割合が多くなり、高磁束密度がられないので好ましくない。粒界相における六方晶構造を有するZnO型相および立方晶構造を有するFeとZnの混合酸化物相の平均結晶粒径のより好ましい範囲は1〜200nmであり、さらに好ましくは1〜80nmが良い。
The structure of the composite soft magnetic material having high density, high strength and high magnetic flux density of the present invention will be described. The soft magnetic metal particle phase is a phase having the same composition as the soft magnetic metal powder (iron powder, Fe-Al-based iron-based soft magnetic alloy powder, etc.). Of the grain boundary phases, the ZnO-type phase having a hexagonal structure is generally represented by Zn1 + xO, and has a range of x = 0 to 0.001. The component of the ZnO type phase is at least one of Fe, Al, Ni, Cr, Mn, Si, Li, Na, K, Mg, Ga, Ge, Ag, In, Sn, Sb, Ba, and Bi in addition to Zn. Also included in the present invention are those containing one kind of unavoidable impurities at a maximum of 5% by mass with respect to Zn, and in particular, at least one of Li, Na, and K, which can be monovalent ions, has a maximum of at least one kind with respect to Zn. When the content is 5% by mass, there is an effect of increasing the specific resistance value of the composite soft magnetic material and improving the magnetic performance. Among the grain boundary phases, the mixed oxide phase of Fe and Zn having a cubic structure is an oxidation composed of γ (Fe, Zn) 2 O 3 , (Fe, Zn) Fe 2 O 4 , and (Fe, Zn) O. And a mixed phase of Al, Ni, Cr, Mn, Si, Li, Na, K, Mg, Ga, Ge, Ag, In, Sn, Sb, Ba, and Bi in addition to (Fe, Zn). The present invention also includes those containing at least one of unavoidable impurities at a maximum of 20% by mass with respect to Fe + Zn.
The ZnO-type phase having a hexagonal structure and the mixed oxide phase of Fe and Zn having a cubic structure all have an average crystal grain size in order to obtain a composite soft magnetic material having high density, high strength and high magnetic flux density. It is preferable that the fine particles have a diameter of 1 to 500 nm. If the average crystal grain size is smaller than 1 nm, high strength cannot be obtained. A more preferred range of the average crystal grain size of the ZnO type phase having a hexagonal structure and the mixed oxide phase of Fe and Zn having a cubic structure in the grain boundary phase is 1 to 200 nm, and further preferably 1 to 80 nm. .

次に、この発明の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法について説明する。
この発明の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法において使用する酸化亜鉛被覆軟磁性金属粉末を作製するための軟磁性金属粉末は、平均粒径:5〜150μmの範囲内にある軟磁性金属粉末を使用することが好ましい。その理由は、平均粒径が小さすぎると、粉末の圧縮性が低下し、軟磁性金属粉末の体積割合が低くなるために飽和磁束密度の値が低下するので好ましくなく、一方、平均粒径が150μmより大きすぎると、軟磁性金属粉末内部の渦電流が増大して高周波における透磁率が低下するので好ましくないことによるものである。
この平均粒径:5〜150μmの範囲内にある軟磁性金属粉末に、Zn粉末:0.02〜10質量%(好ましくは0.1〜5質量%)を添加して混合粉末を作製し、この混合粉末を真空または非酸化性ガスの減圧雰囲気中で温度:350〜400℃に保持しながら撹拌すると、金属Znは気化して蒸発し、気化したZnは軟磁性金属粉末の表面に付着して金属Zn層または/および合金Γ相(Fe4Zn9,Fe3Zn10またはFeの1部をAl,Ni,Cr,Siで置換した同相)を主体とする合金層であるZn合金層が形成され、Zn合金層被覆軟磁性金属粉末が得られる。このとき使用される亜鉛粉末は粒径が300μm以下であることが好ましい。
なお、亜鉛よりも蒸発し難い金属M(Si,P,S,K,Ca,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Sr,Y,Zr,Nb,Mo、Pd,Ta,W,Au)を不純物として10質量%以下含まれるような低純度の亜鉛粉末または亜鉛合金粉末を使用することができる。これは、加熱・攪拌中にZnが先に気化して軟磁性金属粉末の表面にZn蒸着膜を形成し、低純度の亜鉛粉末または亜鉛合金粉末に含まれるM金属の蒸発は微量であるところから軟磁性金属粉末の表面のZn蒸着膜に含まれるM金属量は極めて微量であり、無視できる程度であるからである。
また、比較的低融点の金属Me(Li,Mg,Al,Ga,Ge,Ag,In,Sn,Sb,Ba,Bi)粉末をZn粉末と共に軟磁性金属粉末と混合あるいはZn−Me合金粉末と軟磁性金属粉末と混合して加熱・撹拌すると、軟磁性金属粉末の表面にZnとMeの合金あるいはZn合金蒸着膜が形成される。
このようにして作製したZn合金層被覆軟磁性金属粉末を撹拌しながら炭酸ガスなどの酸化雰囲気中、温度:300〜1000℃で加熱処理すると、Zn合金層が酸化されて軟磁性金属粉末の表面に酸化亜鉛膜が形成され酸化亜鉛被覆軟磁性金属粉末が得られる。
Next, a method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance according to the present invention will be described.
The soft magnetic metal powder for producing the zinc oxide-coated soft magnetic metal powder used in the method for producing a composite soft magnetic sintered material having a high strength, a high magnetic flux density and a high resistance according to the present invention has an average particle size of 5 to 5. It is preferable to use a soft magnetic metal powder in the range of 150 μm. The reason is that if the average particle size is too small, the compressibility of the powder decreases, and the volume ratio of the soft magnetic metal powder decreases, so that the value of the saturation magnetic flux density decreases. If it is larger than 150 μm, the eddy current inside the soft magnetic metal powder increases and the magnetic permeability at high frequencies decreases, which is not preferable.
A mixed powder is prepared by adding 0.02 to 10% by mass (preferably 0.1 to 5% by mass) of Zn powder to a soft magnetic metal powder having an average particle size of 5 to 150 μm, When the mixed powder is stirred in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas while maintaining the temperature at 350 to 400 ° C., the metal Zn is vaporized and evaporated, and the vaporized Zn adheres to the surface of the soft magnetic metal powder. A Zn alloy layer, which is an alloy layer mainly composed of a metal Zn layer and / or an alloy Γ phase (a phase in which part of Fe 4 Zn 9 , Fe 3 Zn 10 or Fe is replaced by Al, Ni, Cr, Si) As a result, a Zn alloy layer-coated soft magnetic metal powder is obtained. The zinc powder used at this time preferably has a particle size of 300 μm or less.
Metals M (Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Mo, Pd, Ta , W, Au) as impurities, low-purity zinc powder or zinc alloy powder containing 10% by mass or less can be used. This is because Zn evaporates first during heating and stirring to form a Zn deposited film on the surface of the soft magnetic metal powder, and the evaporation of M metal contained in low-purity zinc powder or zinc alloy powder is very small. This is because the amount of M metal contained in the Zn deposited film on the surface of the soft magnetic metal powder is extremely small and negligible.
In addition, a metal Me (Li, Mg, Al, Ga, Ge, Ag, In, Sn, Sb, Ba, Bi) powder having a relatively low melting point is mixed with a soft magnetic metal powder together with a Zn powder or with a Zn-Me alloy powder. When mixed with the soft magnetic metal powder and heated and stirred, an alloy of Zn and Me or a Zn alloy deposited film is formed on the surface of the soft magnetic metal powder.
When the Zn alloy layer-coated soft magnetic metal powder thus produced is heated in an oxidizing atmosphere such as carbon dioxide gas at a temperature of 300 to 1000 ° C. while stirring, the Zn alloy layer is oxidized and the surface of the soft magnetic metal powder is oxidized. A zinc oxide film is formed on the substrate to obtain a zinc oxide-coated soft magnetic metal powder.

この酸化亜鉛被覆軟磁性金属粉末をガラス粉末と混合して混合粉末を作製し、この混合粉末を焼結すると、酸化亜鉛膜とガラスとは密着性が良いところから、酸化亜鉛被覆軟磁性金属粉末をガラスで強固に接合し、高強度でかつ比抵抗の大きな複合軟磁性焼結材が得られる。また、この複合軟磁性焼結材は添加するガラス粉末の量が0.05〜10質量%(一層好ましくは、0.05〜5質量%)であって、比較的少ない量であるから高い磁束密度を維持することができる。 This zinc oxide-coated soft magnetic metal powder is mixed with glass powder to produce a mixed powder, and when this mixed powder is sintered, the zinc oxide film and the glass have good adhesion, so the zinc oxide-coated soft magnetic metal powder Is strongly bonded with glass to obtain a composite soft magnetic sintered material having high strength and high specific resistance. Further, in this composite soft magnetic sintered material, the amount of glass powder to be added is 0.05 to 10% by mass (more preferably, 0.05 to 5% by mass), and since the amount is relatively small, high magnetic flux is obtained. Density can be maintained.

この発明の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法において酸化亜鉛被覆軟磁性金属粉末に添加するガラス粉末は、SiO2−B23−Al23系ガラス、SiO2−BaO−Al23系ガラス、SiO2−BaO−B23系ガラス、SiO2−BaO−Li23系ガラス、SiO2−B23−CaO系ガラス、SiO2−MgO−Al23系ガラス、B23−Li23系ガラスなどのセラミック低温焼結用に使用されるガラス粉末であってもよいが、その他、PbO−B23系ガラス、PbO−B23−ZnO系ガラス、Bi23−B23系ガラス、Li2O−ZnO系ガラス、SiO2−B23−PbO系ガラス、Al23−B23−PbO系ガラス、SnO−P25系ガラス、ZnO−P25系ガラス、CuO−P25系ガラスなどのリン酸系ガラスなどで軟化温度が500℃以下の低温軟化温度を有するガラス粉末であることが一層好ましい。そして、これらガラス粉末の平均粒径は、高軟化点を有するガラス粉末ほど微細であることが好ましく、0.03〜20μmの範囲内にあることが好ましい。 In the method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance according to the present invention, the glass powder added to the zinc oxide-coated soft magnetic metal powder is SiO 2 —B 2 O 3 —Al 2 O 3 Glass, SiO 2 —BaO—Al 2 O 3 glass, SiO 2 —BaO—B 2 O 3 glass, SiO 2 —BaO—Li 2 O 3 glass, SiO 2 —B 2 O 3 —CaO glass , SiO 2 -MgO-Al 2 O 3 based glass, B 2 O 3 -Li may be a glass powder used for the ceramic low-temperature sintering, such as 2 O 3 based glass, but other, PbO-B 2 O 3 based glass, PbO-B 2 O 3 -ZnO based glass, Bi 2 O 3 -B 2 O 3 based glass, Li 2 O-ZnO-based glass, SiO 2 -B 2 O 3 -PbO type glass, Al 2 O 3 -B 2 O 3 -PbO based glass, SnO-P 2 O 5 based glass It is more preferable ZnO-P 2 O 5 based glass, softening temperature, etc. with a phosphate-based glass, such as CuO-P 2 O 5 based glass is a glass powder having a low softening temperature below 500 ℃. The average particle size of these glass powders is preferably finer as the glass powder has a higher softening point, and is preferably in the range of 0.03 to 20 μm.

この発明の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法にいて、酸化亜鉛被覆軟磁性金属粉末とガラス粉末からなる混合粉末を焼結する温度は、300〜1000℃(一層好ましくは400〜800℃)の範囲内であることが好ましい。その理由は、焼結温度が300℃未満ではガラス粉末が溶融せず、したがって、酸化亜鉛膜とガラスとの接合が十分行われないので得られた複合軟磁性焼結材の強度が不足するので好ましくなく、一方、1000℃を越えた温度で焼結すると比抵抗の低下が起こるので好ましくないからである。この酸化亜鉛被覆軟磁性金属粉末とガラス粉末からなる混合粉末を焼結する雰囲気は、大気、水素、不活性ガス、窒素ガス、炭酸ガスまたは真空の内のいずれでも良いが、不活性ガスまたは窒素ガス雰囲気が最も好ましい。 In the method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance according to the present invention, the temperature at which the mixed powder composed of the zinc oxide-coated soft magnetic metal powder and the glass powder is sintered is 300 to 1000. C. (more preferably 400 to 800 C.). The reason is that if the sintering temperature is lower than 300 ° C., the glass powder does not melt, and therefore the bonding between the zinc oxide film and the glass is not sufficiently performed, so that the strength of the obtained composite soft magnetic sintered material is insufficient. On the other hand, on the other hand, sintering at a temperature exceeding 1000 ° C. is not preferable because the specific resistance decreases. The atmosphere for sintering the mixed powder comprising the zinc oxide-coated soft magnetic metal powder and the glass powder may be any of air, hydrogen, inert gas, nitrogen gas, carbon dioxide gas, or vacuum. A gas atmosphere is most preferred.

この発明によると、簡単な方法により高強度および高抵抗を有し、さらに高磁束密度の複合軟磁性焼結材を提供することができ、電気および電子産業において優れた効果をもたらすものである。   According to the present invention, it is possible to provide a composite soft magnetic sintered material having a high strength and a high resistance and a high magnetic flux density by a simple method, which brings an excellent effect in the electric and electronic industries.

実施例1〜10および比較例1〜4
原料粉末として、平均粒径:70μmを有する純鉄粉末を用意した。この純鉄粉末に対して純亜鉛粉末を1質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:370℃に3時間加熱することにより亜鉛を気化させ、この亜鉛蒸気中に純鉄粉末を曝すことで表面にZn層が形成されたZn被覆純鉄粉末を作製し、このZn被覆純鉄粉末を炭酸ガス中、800℃で加熱することによりZn蒸着膜を酸化して酸化亜鉛被覆純鉄粉末を作製した。
一方、B23:10.1質量%、BaO:2.9質量%、ZnO:1.0質量%、SiO2:2.3質量%、Al23:3.0質量%を含有し、残部がPbOからなる低融点ガラスを用意し、この低融点ガラスをボールミルで微粉砕することにより平均粒径:1μmの低融点ガラス粉末を作製した。
前記酸化亜鉛被覆純鉄粉末に前記低融点ガラス粉末を表1に示される割合で配合し混合して混合粉末を作製し、この混合粉末を金型に入れ、圧力:980MPaでプレス成形して外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体をArガス雰囲気中、表1に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表1に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表1に示した。
また、焼結体の組織を透過電子顕微鏡で観察し、軟磁性金属粒子相(純鉄相)を包囲する本発明の粒界相の有無、並びに六方晶のZnO型相および立方晶のFeとZnの混合酸化物相の平均粒径を測定し、その結果を表1に示した。
さらに、実施例1で作製した複合軟磁性焼結材の組織を透過電子顕微鏡により観察して得られた模式図を図1に示した。図1に示されるように、αFe結晶粒からなる軟磁性金属粒子相1とこの軟磁性金属粒子相1を包囲する粒界相4からなり、前記粒界相4は六方晶構造を有するZnO型相3、立方晶構造を有するFeとZnの混合酸化物相2およびガラス相5とからなり、前記六方晶構造を有するZnO型相3は前記軟磁性金属粒子相1に接して主として分散しており、前記立方晶構造を有するFeとZnの混合酸化物相2は前記六方晶構造を有するZnO型相3に接して分散しており、前記ガラス相5は前記立方晶構造を有するFeとZnの混合酸化物相2に接して挟まれて粒界相中心部に分散している組織を有し、前記六方晶構造を有するZnO型相3およびFeとZnの混合酸化物相2は何れも平均粒径:10nmの微細粒子相からなることが分かる。
Examples 1 to 10 and Comparative Examples 1 to 4
Pure iron powder having an average particle size of 70 μm was prepared as a raw material powder. 1% by mass of pure zinc powder was added to and mixed with the pure iron powder to prepare a mixed powder, and the mixed powder was charged into a cylindrical board in an electric furnace, and 1 × while rotating the cylindrical board. Zinc is vaporized by heating at 370 ° C. for 3 hours in a vacuum atmosphere of 10 −5 torr, and the pure iron powder is exposed to the zinc vapor to form a Zn-coated pure iron powder having a Zn layer formed on the surface. This Zn-coated pure iron powder was heated at 800 ° C. in carbon dioxide gas to oxidize the Zn-deposited film to produce a zinc oxide-coated pure iron powder.
On the other hand, B 2 O 3 : 10.1% by mass, BaO: 2.9% by mass, ZnO: 1.0% by mass, SiO 2 : 2.3% by mass, Al 2 O 3 : 3.0% by mass. Then, a low-melting glass having a balance of PbO was prepared, and the low-melting glass was finely pulverized with a ball mill to produce a low-melting glass powder having an average particle diameter of 1 μm.
The low melting point glass powder is mixed with the zinc oxide-coated pure iron powder at a ratio shown in Table 1 to prepare a mixed powder, and the mixed powder is put into a mold, and press-molded at a pressure of 980 MPa to form an outer layer. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained ring-shaped green compact was sintered in an Ar gas atmosphere at a temperature shown in Table 1 to form a ring. A composite soft magnetic sintered material made of a sintered body was produced. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 1. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 1.
Further, the structure of the sintered body was observed with a transmission electron microscope, and the presence or absence of the grain boundary phase of the present invention surrounding the soft magnetic metal particle phase (pure iron phase), and the hexagonal ZnO type phase and cubic Fe The average particle size of the mixed oxide phase of Zn was measured, and the results are shown in Table 1.
Further, FIG. 1 shows a schematic diagram obtained by observing the structure of the composite soft magnetic sintered material produced in Example 1 with a transmission electron microscope. As shown in FIG. 1, a soft magnetic metal particle phase 1 composed of αFe crystal grains and a grain boundary phase 4 surrounding the soft magnetic metal particle phase 1, wherein the grain boundary phase 4 is a ZnO type having a hexagonal structure A phase 3, a mixed oxide phase 2 of Fe and Zn having a cubic structure and a glass phase 5, and the ZnO type phase 3 having a hexagonal structure is mainly dispersed in contact with the soft magnetic metal particle phase 1. The mixed oxide phase 2 of Fe and Zn having the cubic structure is dispersed in contact with the ZnO type phase 3 having the hexagonal structure, and the glass phase 5 is formed of Fe and Zn having the cubic structure. And a ZnO-type phase 3 having a hexagonal structure and a mixed oxide phase 2 of Fe and Zn having a structure sandwiched between and in contact with the mixed oxide phase 2 of It can be seen that an average particle diameter is composed of a fine particle phase of 10 nm.

従来例1
実施例1〜10および比較例1〜4で用意した純鉄粉末および低融点ガラスを表1に示される割合に配合し混合して混合粉末を作製し、この混合粉末を表1に示される温度で焼結することにより実施例1〜10および比較例1〜4と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表1に示した。さらに複合軟磁性焼結材に巻き線を施し、このリング焼結体に巻き線を施し、BHトレーサで磁束密度を測定し、その結果を表1に示した。
Conventional example 1
The pure iron powder and low melting point glass prepared in Examples 1 to 10 and Comparative Examples 1 to 4 were mixed and mixed in proportions shown in Table 1 to prepare a mixed powder, and the mixed powder was subjected to a temperature shown in Table 1. In the same manner as in Examples 1 to 10 and Comparative Examples 1 to 4, a composite soft magnetic sintered material composed of a ring sintered body was obtained. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 1. Further, the composite soft magnetic sintered material was wound, the ring sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 1.

Figure 2004253787
Figure 2004253787

表1に示される結果から、実施例1〜10で作製した複合軟磁性焼結材は、本発明の粒界相を有すると共に従来例1により製造した複合軟磁性焼結材と比べて抗折強度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例1〜4で作製した複合軟磁性焼結材は抗折強度、比抵抗、磁束密度のうちいずれかが好ましくないことが分かる。   From the results shown in Table 1, the composite soft magnetic sintered materials produced in Examples 1 to 10 have the grain boundary phase of the present invention and are more deflected than the composite soft magnetic sintered material produced in Conventional Example 1. It can be seen that the material exhibits excellent properties in strength, specific resistance and magnetic flux density. However, it can be seen that any of the composite soft magnetic sintered materials produced in Comparative Examples 1 to 4 is not preferable in any of the bending strength, the specific resistance, and the magnetic flux density.

実施例11〜20および比較例5〜8
原料粉末として、平均粒径:70μmを有し、その組成がAl:5質量%、残部:FeからなるアトマイズFe−Al系鉄基軟磁性合金粉末を用意した。
このFe−Al鉄基軟磁性合金粉末に対してZn−4質量%Al合金粉末を0.1質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:400℃に2時間加熱することにより亜鉛合金を気化させ、この亜鉛合金蒸気中にFe−Al系軟磁性合金粉末を曝すことでその表面にZn合金層を有するZn合金被覆Fe−Al系軟磁性合金粉末を作製した。
このZn合金層被覆Fe−Al系軟磁性合金粉末を炭酸ガス中、800℃で加熱することにより亜鉛合金層を酸化して酸化亜鉛層を形成し、酸化亜鉛被覆Fe−Al系軟磁性合金粉末を作製した。この酸化亜鉛被覆Fe−Al系軟磁性合金粉末にP25:50質量%、ZnO:30質量%、SnO:20質量%からなる平均粒径:1μmの低融点ガラス粉末を表2に示される量だけ添加し混合して混合粉末を作製し、この混合粉末を金型に入れ、圧力:980MPaでプレス成形して外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表2に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表2に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサで磁束密度を測定し、その結果を表2に示した。
Examples 11 to 20 and Comparative Examples 5 to 8
As the raw material powder, an atomized Fe-Al-based iron-based soft magnetic alloy powder having an average particle size of 70 µm, the composition of which was Al: 5% by mass, and the balance: Fe was prepared.
0.1 mass% of Zn-4 mass% Al alloy powder is added to and mixed with the Fe-Al iron-based soft magnetic alloy powder to prepare a mixed powder, and the mixed powder is applied to a cylindrical board in an electric furnace. The zinc alloy is charged and heated to 400 ° C. for 2 hours in a vacuum atmosphere of 1 × 10 −5 torr while rotating the cylindrical board to vaporize the zinc alloy. By exposing the magnetic alloy powder, a Zn alloy-coated Fe—Al soft magnetic alloy powder having a Zn alloy layer on its surface was produced.
This Zn alloy layer-coated Fe—Al soft magnetic alloy powder is heated at 800 ° C. in carbon dioxide gas to oxidize the zinc alloy layer to form a zinc oxide layer, and the zinc oxide coated Fe—Al soft magnetic alloy powder Was prepared. Table 2 shows a low-melting glass powder having an average particle diameter of 1 μm composed of 50% by mass of P 2 O 5 , 30% by mass of ZnO, and 20% by mass of SnO in the zinc oxide-coated Fe—Al soft magnetic alloy powder. A mixed powder is prepared by adding and mixing the mixed powder in an amount as required, and the mixed powder is placed in a mold and press-molded at a pressure of 980 MPa to form a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. Then, the obtained ring-shaped green compact was sintered at a temperature shown in Table 2 in an inert gas atmosphere to produce a composite soft magnetic sintered material comprising a ring-shaped sintered body. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 2. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 2.

従来例2
実施例11〜20および比較例5〜8で用意したアトマイズFe−Al系鉄基軟磁性合金粉末および低融点ガラス粉末を表2に示される割合に配合し混合して混合粉末を作製し、この混合粉末を表2に示される温度で焼結することにより実施例11〜20および比較例5〜8と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表2に示した。さらに複合軟磁性焼結材に巻き線を施し、このリング焼結体に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表2に示した。
Conventional example 2
The atomized Fe-Al-based iron-based soft magnetic alloy powder and the low melting point glass powder prepared in Examples 11 to 20 and Comparative Examples 5 to 8 were blended and mixed in proportions shown in Table 2 to prepare a mixed powder. The mixed powder was sintered at the temperature shown in Table 2 to obtain a composite soft magnetic sintered material composed of a ring sintered body in the same manner as in Examples 11 to 20 and Comparative Examples 5 to 8. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 2. Further, the composite soft magnetic sintered material was wound, the ring sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 2.

Figure 2004253787
Figure 2004253787

表2に示される結果から、実施例11〜20で作製した複合軟磁性焼結材は、従来例2で作製した複合軟磁性焼結材と比べて抗折強度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例5〜8で作製した複合軟磁性焼結材は抗折強度、比抵抗および磁束密度の少なくともいずれか一つが劣るので好ましくないことが分かる。   From the results shown in Table 2, the composite soft magnetic sintered materials produced in Examples 11 to 20 are superior in the transverse rupture strength, the specific resistance and the magnetic flux density as compared with the composite soft magnetic sintered material produced in Conventional Example 2. It can be seen that the characteristics are shown. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 5 to 8 are not preferable because at least one of bending strength, specific resistance and magnetic flux density is inferior.

実施例21〜30および比較例9〜12
原料粉末として、平均粒径:90μmを有し、その組成がNi:20質量%、残部:FeからなるアトマイズFe−Ni系鉄基軟磁性合金粉末を用意した。
このFe−Ni鉄基軟磁性合金粉末に対して純亜鉛粉末を5質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:400℃に2時間加熱することにより亜鉛金属を気化させ、この亜鉛蒸気中にFe−Ni系軟磁性合金粉末を曝すことでその表面にZn層を被覆したZn被覆Fe−Ni系軟磁性合金粉末を作製した。このZn被覆Fe−Ni系軟磁性合金粉末を炭酸ガス中、750℃で加熱することにより亜鉛成分層を酸化して酸化亜鉛層を形成し、酸化亜鉛被覆Fe−Ni系軟磁性合金粉末を作製した。
この酸化亜鉛被覆Fe−Ni系軟磁性合金粉末にP25:40質量%、PbO:20質量%、ZnO:40質量%からなる平均粒径:1.5μmの低融点ガラス粉末を表3に示される量だけ添加し混合して混合粉末を作製し、この混合粉末を金型に入れ、圧力:980MPaでプレス成形して外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表3に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表3に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサで磁束密度を測定し、その結果を表3に示した。
Examples 21 to 30 and Comparative Examples 9 to 12
As the raw material powder, an atomized Fe-Ni-based iron-based soft magnetic alloy powder having an average particle size of 90 µm, the composition of which was Ni: 20% by mass, and the balance: Fe was prepared.
Pure zinc powder was added to the Fe-Ni iron-based soft magnetic alloy powder in an amount of 5% by mass and mixed to prepare a mixed powder. The mixed powder was charged into a cylindrical board in an electric furnace. Is heated in a vacuum atmosphere of 1 × 10 −5 torr at a temperature of 400 ° C. for 2 hours to vaporize zinc metal, and by exposing the Fe—Ni soft magnetic alloy powder to the zinc vapor, A Zn-coated Fe-Ni soft magnetic alloy powder having a surface coated with a Zn layer was produced. This Zn-coated Fe-Ni soft magnetic alloy powder is heated at 750 ° C in carbon dioxide gas to oxidize the zinc component layer to form a zinc oxide layer, thereby producing a zinc oxide-coated Fe-Ni soft magnetic alloy powder. did.
A low-melting glass powder having an average particle size of 1.5 μm, comprising P 2 O 5 : 40% by mass, PbO: 20% by mass and ZnO: 40% by mass, was added to the zinc oxide-coated Fe—Ni soft magnetic alloy powder in Table 3. A mixed powder is prepared by adding and mixing in the amount indicated in (1) above, and the mixed powder is placed in a mold and press-molded at a pressure of 980 MPa to form a ring-shaped pressure having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. The powder was molded, and the obtained ring-shaped green compact was sintered in an inert gas atmosphere at a temperature shown in Table 3 to produce a composite soft magnetic sintered material composed of a ring-shaped sintered body. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 3. Further, the composite soft magnetic sintered material was wound and the magnetic flux density was measured with a BH tracer. The results are shown in Table 3.

従来例3
実施例21〜30および比較例9〜12で用意したアトマイズFe−Ni系鉄基軟磁性合金粉末におよび低融点ガラス粉末を表3に示される割合に配合し混合して混合粉末を作製し、この混合粉末を表3に示される温度で焼結することにより実施例21〜30および比較例9〜12と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表3に示した。さらに複合軟磁性焼結材に巻き線を施し、このリング焼結体に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表3に示した。
Conventional example 3
Atomized Fe—Ni-based iron-based soft magnetic alloy powders prepared in Examples 21 to 30 and Comparative Examples 9 to 12 and a low melting glass powder were blended in a ratio shown in Table 3 and mixed to prepare a mixed powder. This mixed powder was sintered at the temperature shown in Table 3 to obtain a composite soft magnetic sintered material composed of a ring sintered body in the same manner as in Examples 21 to 30 and Comparative Examples 9 to 12. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 3. Further, the composite soft magnetic sintered material was wound, the ring sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 3.

Figure 2004253787
Figure 2004253787

表3に示される結果から、実施例21〜30で作製した複合軟磁性焼結材は、従来例3で作製した複合軟磁性焼結材と比べて抗折強度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例9〜12で作製した複合軟磁性焼結材は抗折強度、比抵抗および磁束密度の少なくともいずれか一つが劣るので好ましくないことが分かる。   From the results shown in Table 3, the composite soft magnetic sintered materials manufactured in Examples 21 to 30 are superior in the transverse rupture strength, the specific resistance, and the magnetic flux density as compared with the composite soft magnetic sintered material manufactured in Conventional Example 3. It can be seen that the characteristics are shown. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 9 to 12 are not preferable because at least one of the bending strength, the specific resistance and the magnetic flux density is inferior.

実施例31〜40および比較例13〜16
原料粉末として、平均粒径:70μmを有し、その組成がCr:10質量%、残部:FeからなるアトマイズFe−Cr系鉄基軟磁性合金粉末を用意した。
このFe−Cr鉄基軟磁性合金粉末に対して純亜鉛粉末を0.3質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:350℃に2時間加熱することにより亜鉛金属を気化させ、この亜鉛蒸気中にFe−Cr系軟磁性合金粉末を曝すことでその表面にZn層を被覆したZn被覆Fe−Cr系軟磁性合金粉末を作製した。このZn被覆Fe−Cr系軟磁性合金粉末を炭酸ガス中、750℃で加熱することにより亜鉛層を酸化して酸化亜鉛層を形成し、酸化亜鉛被覆Fe−Cr系軟磁性合金粉末を作製した。
この酸化亜鉛被覆Fe−Cr系軟磁性合金粉末に実施例11〜20および比較例5〜8で用意した低融点ガラス粉末を表4に示される量だけ添加し混合して混合粉末を作製し、この混合粉末を金型に入れ、圧力:980MPaでプレス成形して外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表4に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表4に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサで磁束密度を測定し、その結果を表4に示した。
Examples 31 to 40 and Comparative Examples 13 to 16
As the raw material powder, an atomized Fe—Cr-based soft magnetic alloy powder having an average particle diameter of 70 μm, a composition of which was composed of 10% by mass of Cr and the balance of Fe was prepared.
0.3 mass% of pure zinc powder was added to and mixed with the Fe-Cr iron-based soft magnetic alloy powder to prepare a mixed powder, and the mixed powder was charged into a cylindrical board in an electric furnace, The zinc metal is vaporized by heating the substrate at a temperature of 350 ° C. for 2 hours in a vacuum atmosphere of 1 × 10 −5 torr while rotating the board, thereby exposing the Fe—Cr soft magnetic alloy powder to the zinc vapor. Thus, a Zn-coated Fe-Cr-based soft magnetic alloy powder whose surface was coated with a Zn layer was prepared. This Zn-coated Fe-Cr soft magnetic alloy powder was heated at 750 ° C in carbon dioxide gas to oxidize the zinc layer to form a zinc oxide layer, thereby producing a zinc oxide-coated Fe-Cr soft magnetic alloy powder. .
A low-melting glass powder prepared in Examples 11 to 20 and Comparative Examples 5 to 8 was added to the zinc oxide-coated Fe-Cr soft magnetic alloy powder in an amount shown in Table 4 and mixed to prepare a mixed powder. This mixed powder was placed in a mold and press-molded at a pressure of 980 MPa to form a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. By sintering at a temperature shown in Table 4 in an active gas atmosphere, a composite soft magnetic sintered material composed of a ring-shaped sintered body was produced. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 4. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 4.

従来例4
実施例31〜40および比較例13〜16で用意したアトマイズFe−Cr系鉄基軟磁性合金粉末に実施例11〜20および比較例5〜8で用意した低融点ガラス粉末を表4に示される割合に配合し混合して混合粉末を作製し、この混合粉末を表4に示される温度で焼結することにより実施例31〜40および比較例13〜16と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表4に示した。さらに複合軟磁性焼結材に巻き線を施し、このリング焼結体に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表4に示した。
Conventional example 4
Table 4 shows the low melting point glass powders prepared in Examples 11 to 20 and Comparative Examples 5 to 8 for the atomized Fe-Cr based iron-based soft magnetic alloy powders prepared in Examples 31 to 40 and Comparative Examples 13 to 16. A mixed powder is prepared by mixing and mixing in a ratio, and this mixed powder is sintered at a temperature shown in Table 4 to form a ring sintered body in the same manner as in Examples 31 to 40 and Comparative Examples 13 to 16. A composite soft magnetic sintered material was obtained. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 4. Further, the composite soft magnetic sintered material was wound, the ring sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 4.

Figure 2004253787
Figure 2004253787

表4に示される結果から、実施例31〜40で作製した複合軟磁性焼結材は、従来例4で作製した複合軟磁性焼結材と比べて抗折強度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例13〜16で作製した複合軟磁性焼結材は抗折強度、比抵抗および磁束密度の少なくともいずれか一つが劣るので好ましくないことが分かる。   From the results shown in Table 4, the composite soft magnetic sintered materials produced in Examples 31 to 40 are more excellent in bending strength, specific resistance and magnetic flux density than the composite soft magnetic sintered material produced in Conventional Example 4. It can be seen that the characteristics are shown. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 13 to 16 are not preferable because at least one of the bending strength, the specific resistance and the magnetic flux density is inferior.

実施例41〜50および比較例17〜20
原料粉末として、平均粒径:70μmを有し、その組成がSi:3%、Al:3質量%、残部:FeからなるアトマイズFe−Si−Al系鉄基軟磁性合金粉末を用意した。このFe−Si−Al鉄基軟磁性合金粉末に対してZn−4質量%Al合金粉末を0.8質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:400℃に2時間加熱することにより亜鉛合金を気化させ、この亜鉛合金蒸気中にFe−Si−Al系軟磁性合金粉末を曝すことでその表面にZn合金層を形成したZn合金被覆被覆Fe−Si−Al系軟磁性合金粉末を作製した。
このZn合金被覆Fe−Si−Al系軟磁性合金粉末を炭酸ガス中、800℃で加熱することにより亜鉛合金層を酸化して酸化亜鉛層を形成し、酸化亜鉛被覆Fe−Si−Al系軟磁性合金粉末を作製した。
得られた酸化亜鉛被覆Fe−Si−Al系軟磁性合金粉末に実施例21〜30および比較例9〜12で用意した低融点ガラス粉末を表5に示される量だけ添加し混合して混合粉末を作製し、この混合粉末を金型に入れ、圧力:980MPaでプレス成形して外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表5に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表5に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサで磁束密度を測定し、その結果を表5に示した。
Examples 41 to 50 and Comparative Examples 17 to 20
As the raw material powder, an atomized Fe-Si-Al-based iron-based soft magnetic alloy powder having an average particle diameter of 70 µm, a composition of which is composed of 3% by mass of Si, 3% by mass of Al and the balance being Fe was prepared. 0.8 mass% of Zn-4 mass% Al alloy powder is added to and mixed with the Fe-Si-Al iron-based soft magnetic alloy powder to prepare a mixed powder, and the mixed powder is formed into a cylindrical shape in an electric furnace. The zinc alloy was charged into a board and heated at a temperature of 400 ° C. for 2 hours in a vacuum atmosphere of 1 × 10 −5 torr while rotating the cylindrical board to vaporize the zinc alloy. A Zn-alloy-coated Fe-Si-Al-based soft magnetic alloy powder having a Zn alloy layer formed on its surface by exposing the -Al-based soft magnetic alloy powder was produced.
This Zn alloy-coated Fe-Si-Al soft magnetic alloy powder is heated at 800 ° C. in carbon dioxide gas to oxidize the zinc alloy layer to form a zinc oxide layer. A magnetic alloy powder was produced.
The low-melting glass powders prepared in Examples 21 to 30 and Comparative Examples 9 to 12 were added to the obtained zinc oxide-coated Fe-Si-Al soft magnetic alloy powder in an amount shown in Table 5 and mixed to obtain a mixed powder. The mixed powder was put into a mold, and press-molded at a pressure of 980 MPa to form a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. The powder was sintered at a temperature shown in Table 5 in an inert gas atmosphere to produce a composite soft magnetic sintered material comprising a ring-shaped sintered body. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 5. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 5.

従来例5
実施例41〜50および比較例17〜20で用意したアトマイズFe−Si−Al系鉄基軟磁性合金粉末に実施例21〜30および比較例9〜12で用意した低融点ガラス粉末を表5に示される割合に配合し混合して混合粉末を作製し、この混合粉末を表5に示される温度で焼結することにより実施例41〜50および比較例17〜20と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表5に示した。さらに複合軟磁性焼結材に巻き線を施し、このリング焼結体に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表5に示した。
Conventional example 5
Table 5 shows the low melting point glass powder prepared in Examples 21 to 30 and Comparative Examples 9 to 12 for the atomized Fe-Si-Al based iron-based soft magnetic alloy powder prepared in Examples 41 to 50 and Comparative Examples 17 to 20. A mixed powder was prepared by mixing and mixing at the indicated ratios, and the mixed powder was sintered at the temperature shown in Table 5 to obtain a ring sintered body in the same manner as in Examples 41 to 50 and Comparative Examples 17 to 20. A composite soft magnetic sintered material was obtained. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 5. Further, the composite soft magnetic sintered material was wound, the ring sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 5.

Figure 2004253787
Figure 2004253787

表5に示される結果から、実施例41〜50で作製した複合軟磁性焼結材は、従来例5で作製した複合軟磁性焼結材と比べて抗折強度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例17〜20で作製した複合軟磁性焼結材は抗折強度、比抵抗および磁束密度の少なくともいずれか一つが劣るので好ましくないことが分かる。   From the results shown in Table 5, the composite soft magnetic sintered materials produced in Examples 41 to 50 are superior in the transverse rupture strength, the specific resistance and the magnetic flux density as compared with the composite soft magnetic sintered material produced in Conventional Example 5. It can be seen that the characteristics are shown. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 17 to 20 are not preferable because at least one of the bending strength, the specific resistance and the magnetic flux density is inferior.

実施例51〜60および比較例21〜24
原料粉末として、平均粒径:70μmを有し、その組成がSi:3質量%、残部:FeからなるアトマイズFe−Si系鉄基軟磁性合金粉末を用意した。このFe−Si鉄基軟磁性合金粉末に対して純Zn粉末を0.8質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:400℃に2時間加熱することにより亜鉛金属を気化させ、この亜鉛蒸気中にFe−Si系軟磁性合金粉末を曝すことでその表面にZn層を形成したZn被覆被覆Fe−Si系軟磁性合金粉末を作製した。
このZn被覆Fe−Si系軟磁性合金粉末を炭酸ガス中、800℃で加熱することによりZn層を酸化して酸化亜鉛層を形成し、酸化亜鉛被覆Fe−Si系軟磁性合金粉末を作製した。
得られた酸化亜鉛被覆Fe−Si系軟磁性合金粉末に実施例11〜20および比較例5〜8で用意した低融点ガラス粉末を表6に示される量だけ添加し混合して混合粉末を作製し、この混合粉末を金型に入れ、圧力:980MPaでプレス成形して外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表6に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表6に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサで磁束密度を測定し、その結果を表6に示した。
Examples 51 to 60 and Comparative Examples 21 to 24
As the raw material powder, an atomized Fe-Si-based iron-based soft magnetic alloy powder having an average particle diameter of 70 µm, the composition of which is Si: 3% by mass, and the balance: Fe was prepared. 0.8 mass% of pure Zn powder is added to and mixed with the Fe-Si iron-based soft magnetic alloy powder to prepare a mixed powder, and the mixed powder is charged into a cylindrical board in an electric furnace, and The zinc metal is vaporized by heating the substrate at a temperature of 400 ° C. for 2 hours in a vacuum atmosphere of 1 × 10 -5 torr while rotating the board, exposing the Fe—Si soft magnetic alloy powder to the zinc vapor. Thus, a Zn-coated Fe-Si-based soft magnetic alloy powder having a Zn layer formed on the surface thereof was produced.
This Zn-coated Fe-Si soft magnetic alloy powder was heated at 800 ° C in carbon dioxide gas to oxidize the Zn layer to form a zinc oxide layer, thereby producing a zinc oxide-coated Fe-Si soft magnetic alloy powder. .
The low melting point glass powder prepared in Examples 11 to 20 and Comparative Examples 5 to 8 was added to the obtained zinc oxide-coated Fe-Si soft magnetic alloy powder in an amount shown in Table 6 and mixed to prepare a mixed powder. The mixed powder was put into a mold and press-molded at a pressure of 980 MPa to form a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. Was sintered in an inert gas atmosphere at a temperature shown in Table 6 to produce a composite soft magnetic sintered material comprising a ring-shaped sintered body. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 6. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 6.

従来例6
実施例51〜60および比較例21〜24で用意したアトマイズFe−Si系鉄基軟磁性合金粉末に実施例11〜20および比較例5〜8で用意した低融点ガラス粉末を表6に示される割合に配合し混合して混合粉末を作製し、この混合粉末を表6に示される温度で焼結することにより実施例51〜60および比較例21〜24と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の抗折強度および比抵抗を測定してその結果を表6に示した。さらに複合軟磁性焼結材に巻き線を施し、このリング焼結体に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表6に示した。
Conventional example 6
The low melting point glass powder prepared in Examples 11 to 20 and Comparative Examples 5 to 8 is shown in Table 6 to the atomized Fe-Si based iron-based soft magnetic alloy powder prepared in Examples 51 to 60 and Comparative Examples 21 to 24. A mixed powder was prepared by mixing and mixing in a ratio, and the mixed powder was sintered at the temperature shown in Table 6 to obtain a ring sintered body in the same manner as in Examples 51 to 60 and Comparative Examples 21 to 24. A composite soft magnetic sintered material was obtained. The bending strength and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 6. Furthermore, the composite soft magnetic sintered material was wound, the ring sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 6.

Figure 2004253787
Figure 2004253787

表6に示される結果から、実施例51〜60で作製した複合軟磁性焼結材は、従来例6で作製した複合軟磁性焼結材と比べて抗折強度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例21〜24で作製した複合軟磁性焼結材は抗折強度、比抵抗および磁束密度の少なくともいずれか一つが劣るので好ましくないことが分かる。   From the results shown in Table 6, the composite soft magnetic sintered materials produced in Examples 51 to 60 are superior in the transverse rupture strength, the specific resistance and the magnetic flux density as compared with the composite soft magnetic sintered material produced in Conventional Example 6. It can be seen that the characteristics are shown. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 21 to 24 are not preferable because at least one of the bending strength, the specific resistance and the magnetic flux density is inferior.

この発明の複合軟磁性焼結材の組織を透過電子顕微鏡で観察した組織の模式図である。FIG. 2 is a schematic view of a structure of the composite soft magnetic sintered material of the present invention observed by a transmission electron microscope.

符号の説明Explanation of reference numerals

1 軟磁性金属粒子相
2 FeとZnの混合酸化物相
3 ZnO型相
4 粒界相
5 ガラス相
DESCRIPTION OF SYMBOLS 1 Soft magnetic metal particle phase 2 Mixed oxide phase of Fe and Zn 3 ZnO type phase 4 Grain boundary phase 5 Glass phase

Claims (11)

軟磁性金属粒子相とこの軟磁性金属粒子相を包囲する粒界相からなり、前記粒界相は、六方晶構造を有するZnO型相、立方晶構造を有するFeとZnの混合酸化物相およびガラス相とからなり、前記六方晶構造を有するZnO型相は前記軟磁性金属粒子相に接して分散しており、前記立方晶構造を有するFeとZnの混合酸化物相は前記ZnO型相に接して分散しており、前記ガラス相は前記立方晶構造を有するFeとZnの混合酸化物相に接して挟まれて分散している組織を有することを特徴とする高密度、高強度および高磁束密度を有する複合軟磁性焼結材。 A soft magnetic metal particle phase and a grain boundary phase surrounding the soft magnetic metal particle phase, wherein the grain boundary phase is a ZnO type phase having a hexagonal structure, a mixed oxide phase of Fe and Zn having a cubic structure, and The ZnO-type phase having a hexagonal structure, which is composed of a glass phase, is dispersed in contact with the soft magnetic metal particle phase, and the mixed oxide phase of Fe and Zn having the cubic structure has the ZnO-type phase. High density, high strength and high density characterized in that the glass phase has a structure in which the glass phase is sandwiched and dispersed in contact with the mixed oxide phase of Fe and Zn having the cubic structure. Composite soft magnetic sintered material with magnetic flux density. 前記六方晶構造を有するZnO型相および立方晶構造を有するFeとZnの混合酸化物相は、何れも平均粒径:1〜500nmの微細粒子相からなる組織を有することを特徴とする請求項1記載の高密度、高強度および高磁束密度を有する複合軟磁性焼結材。 The ZnO-type phase having a hexagonal structure and the mixed oxide phase of Fe and Zn having a cubic structure each have a structure composed of a fine particle phase having an average particle diameter of 1 to 500 nm. 2. A composite soft magnetic sintered material having high density, high strength and high magnetic flux density according to 1. 前記軟磁性金属粒子相は、鉄、Fe−Al系鉄基軟磁性合金、Fe−Ni系鉄基軟磁性合金、Fe−Cr系鉄基軟磁性合金、Fe−Si−Al系鉄基軟磁性合金およびFe−Si系鉄基軟磁性合金の内のいずれかの粒子相であることを特徴とする請求項1または2記載の高密度、高強度および高磁束密度を有する複合軟磁性焼結材。 The soft magnetic metal particle phase is iron, Fe-Al-based soft magnetic alloy, Fe-Ni-based soft magnetic alloy, Fe-Cr-based soft magnetic alloy, Fe-Si-Al-based soft magnetic alloy 3. The composite soft magnetic sintered material having a high density, a high strength and a high magnetic flux density according to claim 1 or 2, wherein the composite soft magnetic material has a particle phase of any one of an alloy and an Fe-Si-based iron-based soft magnetic alloy. . 軟磁性金属粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆軟磁性金属粉末を作製し、この酸化亜鉛被覆軟磁性金属粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated soft magnetic metal powder having a zinc oxide layer formed on the surface of the soft magnetic metal powder is prepared, and a mixed powder obtained by adding and mixing glass powder to the zinc oxide-coated soft magnetic metal powder is pressed, A method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance, characterized by sintering at a temperature of 300 to 1000 ° C. after molding. 鉄粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆鉄粉末を作製し、この酸化亜鉛被覆鉄粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated iron powder having a zinc oxide layer formed on the surface of the iron powder is prepared, and a mixed powder obtained by adding and mixing glass powder to the zinc oxide-coated iron powder is compacted and molded. A method for producing a composite soft magnetic sintered material having high strength, high magnetic flux density and high resistance, characterized by sintering at 300 to 1000 ° C. Fe−Al系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Al系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Al系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated Fe-Al-based iron-based soft magnetic alloy powder having a zinc oxide layer formed on the surface of an Fe-Al-based iron-based soft-magnetic alloy powder is produced, and the zinc oxide-coated Fe-Al-based iron-based soft magnetic alloy powder is produced. A mixed soft material having high strength, high magnetic flux density and high resistance, characterized in that a mixed powder obtained by adding and mixing glass powder into a powder is compacted and molded, and then sintered at a temperature of 300 to 1000 ° C. Manufacturing method of magnetic sintered material. Fe−Ni系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Ni系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Ni系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated Fe-Ni-based iron-based soft magnetic alloy powder in which a zinc oxide layer is formed on the surface of an Fe-Ni-based iron-based soft-magnetic alloy powder is produced. A mixed soft material having high strength, high magnetic flux density and high resistance, characterized in that a mixed powder obtained by adding and mixing glass powder into a powder is compacted and molded, and then sintered at a temperature of 300 to 1000 ° C. Manufacturing method of magnetic sintered material. Fe−Cr系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Cr系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Cr系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated Fe-Cr-based iron-based soft magnetic alloy powder in which a zinc oxide layer is formed on the surface of an Fe-Cr-based iron-based soft-magnetic alloy powder is produced. A mixed soft material having high strength, high magnetic flux density and high resistance, characterized in that a mixed powder obtained by adding and mixing glass powder into a powder is compacted and molded, and then sintered at a temperature of 300 to 1000 ° C. Manufacturing method of magnetic sintered material. Fe−Si−Al系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Si−Al系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Si−Al系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated Fe-Si-Al-based soft magnetic alloy powder having a zinc oxide layer formed on the surface of the Fe-Si-Al-based soft magnetic alloy powder is produced, and the zinc oxide-coated Fe-Si-Al-based soft magnetic alloy powder is produced. A high-strength, high magnetic flux density, and high-density magnetic powder characterized by sintering a mixed powder obtained by adding and mixing glass powder to an iron-based soft magnetic alloy powder, and then sintering at a temperature of 300 to 1000 ° C. A method for producing a composite soft magnetic sintered material having high resistance. Fe−Si系鉄基軟磁性合金粉末の表面に酸化亜鉛層を形成した酸化亜鉛被覆Fe−Si系鉄基軟磁性合金粉末を作製し、この酸化亜鉛被覆Fe−Si系鉄基軟磁性合金粉末にガラス粉末を添加し混合して得られた混合粉末を圧粉、成形した後、温度:300〜1000℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。 A zinc oxide-coated Fe-Si-based iron-based soft magnetic alloy powder having a zinc oxide layer formed on the surface of an Fe-Si-based iron-based soft-magnetic alloy powder is produced, and the zinc oxide-coated Fe-Si-based iron-based soft magnetic alloy powder is prepared. A mixed soft material having high strength, high magnetic flux density and high resistance, characterized in that a mixed powder obtained by adding and mixing glass powder into a powder is compacted and molded, and then sintered at a temperature of 300 to 1000 ° C. Manufacturing method of magnetic sintered material. 前記ガラス粉末の添加量は、0.1〜10質量%であることを特徴とする請求項4、5、6、7、8、9または10記載の高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法。
The high strength, high magnetic flux density and high resistance according to claim 4, 5, 6, 7, 8, 9 or 10, wherein the amount of the glass powder added is 0.1 to 10% by mass. A method for producing a composite soft magnetic sintered material.
JP2004015071A 2003-01-30 2004-01-23 Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same Withdrawn JP2004253787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015071A JP2004253787A (en) 2003-01-30 2004-01-23 Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003022340 2003-01-30
JP2004015071A JP2004253787A (en) 2003-01-30 2004-01-23 Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2004253787A true JP2004253787A (en) 2004-09-09

Family

ID=33032208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015071A Withdrawn JP2004253787A (en) 2003-01-30 2004-01-23 Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2004253787A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226960A (en) * 2007-03-09 2008-09-25 Toko Inc Method for manufacturing electronic component
WO2009060895A1 (en) 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
US20090174512A1 (en) * 2005-01-25 2009-07-09 Mitsubishi Materials Pmg Corporation IRON POWDER COATED WITH Mg-CONTAINING OXIDE FILM
AT511919A1 (en) * 2011-09-01 2013-03-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING AN SINTER COMPONENT
WO2013121901A1 (en) * 2012-02-17 2013-08-22 Tdk株式会社 Soft magnetic powder core
JP2015028985A (en) * 2013-07-30 2015-02-12 Tdk株式会社 Soft magnetic material composition, method for manufacturing the same, magnetic core, and coil type electronic component
KR20150030735A (en) * 2012-07-20 2015-03-20 가부시키가이샤 고베 세이코쇼 Powder for powder magnetic core, and powder magnetic core
JP2015103770A (en) * 2013-11-28 2015-06-04 株式会社豊田中央研究所 Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
WO2016039267A1 (en) * 2014-09-08 2016-03-17 トヨタ自動車株式会社 Dust core, powder for magnetic cores, method for producing dust core, and method for producing powder for magnetic cores
JPWO2014024976A1 (en) * 2012-08-10 2016-07-25 株式会社村田製作所 Magnetic composition and coil component
US20180005738A1 (en) * 2015-03-20 2018-01-04 Murata Manufacturing Co., Ltd. Metal magnetic material and electronic component
US10210987B2 (en) * 2014-07-22 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material, coil component using same, and composite magnetic material manufacturing method
US10535454B2 (en) 2015-10-14 2020-01-14 Toyota Jidosha Kabushiki Kaisha Compressed powder core, powders for compressed power core, and method for producing compressed powder core

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269481B2 (en) 2005-01-25 2016-02-23 Diamet Corporation Iron powder coated with Mg-containing oxide film
US20090174512A1 (en) * 2005-01-25 2009-07-09 Mitsubishi Materials Pmg Corporation IRON POWDER COATED WITH Mg-CONTAINING OXIDE FILM
EP2248617A2 (en) 2005-01-25 2010-11-10 Diamet Corporation Iron powder coated with Mg-containing oxide film
US20120138844A1 (en) * 2005-01-25 2012-06-07 Diamet Corporation IRON POWDER COATED WITH Mg-CONTAINING OXIDE FILM
EP2502689A2 (en) 2005-01-25 2012-09-26 Diamet Corporation Iron powder coated with Mg-containing oxide film
US8481178B2 (en) 2005-01-25 2013-07-09 Diamet Corporation Iron powder coated with Mg-containing oxide film
JP2008226960A (en) * 2007-03-09 2008-09-25 Toko Inc Method for manufacturing electronic component
WO2009060895A1 (en) 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
AT511919A1 (en) * 2011-09-01 2013-03-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING AN SINTER COMPONENT
AT511919B1 (en) * 2011-09-01 2013-09-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING AN SINTER COMPONENT
WO2013121901A1 (en) * 2012-02-17 2013-08-22 Tdk株式会社 Soft magnetic powder core
CN104115242B (en) * 2012-02-17 2017-05-24 Tdk株式会社 Soft magnetic powder core
JPWO2013121901A1 (en) * 2012-02-17 2015-05-11 Tdk株式会社 Soft magnetic powder magnetic core
KR20150030735A (en) * 2012-07-20 2015-03-20 가부시키가이샤 고베 세이코쇼 Powder for powder magnetic core, and powder magnetic core
KR101672658B1 (en) 2012-07-20 2016-11-03 가부시키가이샤 고베 세이코쇼 Powder for powder magnetic core, and powder magnetic core
JPWO2014024976A1 (en) * 2012-08-10 2016-07-25 株式会社村田製作所 Magnetic composition and coil component
KR101607758B1 (en) * 2013-07-30 2016-03-30 티디케이가부시기가이샤 Soft magnetic material composition and manufacturing method thereof, magnetic core, and, coil type electronic component
JP2015028985A (en) * 2013-07-30 2015-02-12 Tdk株式会社 Soft magnetic material composition, method for manufacturing the same, magnetic core, and coil type electronic component
TWI578339B (en) * 2013-07-30 2017-04-11 Tdk Corp Soft magnetic composition, method of manufacturing the same, magnetic core, and coil type electronic component
JP2015103770A (en) * 2013-11-28 2015-06-04 株式会社豊田中央研究所 Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
US10210987B2 (en) * 2014-07-22 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material, coil component using same, and composite magnetic material manufacturing method
US10497500B2 (en) 2014-09-08 2019-12-03 Toyota Jidosha Kabuhiki Kaisha Powder magnetic core, powder for magnetic cores, and methods of manufacturing them
CN106471588A (en) * 2014-09-08 2017-03-01 丰田自动车株式会社 Dust core, magnetic core powder and their manufacture method
CN106471588B (en) * 2014-09-08 2019-05-10 丰田自动车株式会社 Dust core, magnetic core powder and their manufacturing method
WO2016039267A1 (en) * 2014-09-08 2016-03-17 トヨタ自動車株式会社 Dust core, powder for magnetic cores, method for producing dust core, and method for producing powder for magnetic cores
US20180005738A1 (en) * 2015-03-20 2018-01-04 Murata Manufacturing Co., Ltd. Metal magnetic material and electronic component
US11964325B2 (en) * 2015-03-20 2024-04-23 Murata Manufacturing Co., Ltd. Metal magnetic material and electronic component
US10535454B2 (en) 2015-10-14 2020-01-14 Toyota Jidosha Kabushiki Kaisha Compressed powder core, powders for compressed power core, and method for producing compressed powder core

Similar Documents

Publication Publication Date Title
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
EP3567611A2 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2004253787A (en) Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same
JP2009130286A (en) Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2010238914A (en) Method of producing high strength low loss composite soft magnetic material, and high strength low loss composite soft magnetic material
JP4534523B2 (en) Method for producing composite sintered magnetic material
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2020053437A (en) Rare earth magnet and manufacturing method therefor
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JP2018198319A (en) Manufacturing method of powder magnetic core
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP4613586B2 (en) Method for producing composite sintered magnetic material
JP2005332930A (en) Manufacturing method of composite soft magnetic sintered material having high density, high strength, high specific resistance, and high magnetic flux density
JP2004221549A (en) Manufacturing method of composite soft magnetic sintered material with high density, high flux density, and high-resistance
JP2004200676A (en) Complex soft magnetic sintered material having high density, strength, and magnetic flux density, and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403