JP2004253745A - Method of producing pastel led - Google Patents

Method of producing pastel led Download PDF

Info

Publication number
JP2004253745A
JP2004253745A JP2003045209A JP2003045209A JP2004253745A JP 2004253745 A JP2004253745 A JP 2004253745A JP 2003045209 A JP2003045209 A JP 2003045209A JP 2003045209 A JP2003045209 A JP 2003045209A JP 2004253745 A JP2004253745 A JP 2004253745A
Authority
JP
Japan
Prior art keywords
chromaticity
wavelength
pastel
blue led
led element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045209A
Other languages
Japanese (ja)
Other versions
JP4592052B2 (en
Inventor
Koichi Fukazawa
孝一 深澤
Kosuke Tsuchiya
康介 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2003045209A priority Critical patent/JP4592052B2/en
Publication of JP2004253745A publication Critical patent/JP2004253745A/en
Application granted granted Critical
Publication of JP4592052B2 publication Critical patent/JP4592052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To improve such a problem that redundant blue LED elements are generated by restricting the wavelength of the blue LED element that is used to obtain the luminescence of desired intermediate colors in a pastel LED using one blue LED element to cause luminescence in intermediate colors by chromaticity correction. <P>SOLUTION: In a method of producing a pastel LED 20 having a blue LED element 5 and a coating resin member 7 that coats the blue LED element and contains a phosphor 8 and a coloring agent 9, the blue LED element 5 is classified into a plurality of ranks according to its luminescence wavelength, and the phosphor 8 and the coloring agent 9 are included in the coating resin member 7 by respectively different compounding conditions correspondingly to the rank of the wavelength. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は白色発光又は中間色の発光を目的としたパステルLEDの作成方法(製造方法)に関する。
【0002】
【従来の技術】
近年、ブック型のワードプロセッサやコンピュータ、又は携帯電話機、携帯TVのような小型、薄型の情報機器の表示装置として、薄型でしかも見易い照明機構を有する液晶等の表示装置が用いられている。かかる表示装置の照明手段としては発光源と光路変換部材を有する面状光源(バックライトユニット、フロントライトユニット等)が従来より知られている。このような面状光源に使用する前記発光源としては、蛍光ランプ、発光ダイオードが従来、使用されてきた。この中で近年は更なる小型化、薄型化と長寿命化を目的として、発光源として発光ダイオード(以下LEDという。)を用いたものが多く使用されるようになってきている。
【0003】
かかる面状光源により表示装置のパネル等に対し白色もしくは中間色の照明をしようとするときは、LEDの場合は、R,G,Bの3種類のLEDを同時点灯、又は時分割点灯して白色又は中間色の光を合成することが一般的であった。ところが、更に最近は、単独で白色または中間色の発光をするこれに近い光を発光するパステルLEDが開発され、利用できるようになってきた。このようなパステルLEDを用いることにより、小型で簡単な構成で白色照明または中間色の照明を目的とする液晶表示用バックライトまたは液晶表示用フロントライトを形成することが可能となった。
【0004】
かかるパステルLEDとして、例えば、図12に示すようなパステルLEDが従来より知られている(例えば特許文献1参照)。
【0005】
【特許文献1】
特開2002−111073号公報(図1)
【0006】
図12において、120はパステルLEDである。101はガラス繊維入りのエポキシ樹脂よりなる略矩形状の基板であり、102、103はそれぞれ前記基板101にパターン形成されたカソード用電極およびアノード用電極である。105は青色光を発光する青色LED素子である。前記基板101の上面略中央部において、カソード用電極102の上に青色LED素子105が載置され、接着剤104によって、カソード用電極102を介して素子基板101に固定されている。青色LED素子105は前記ボンデイングワイヤ118、119によって前記基板101に設けられたカソード用電極102及びアノード用電極103に電気的に接続される。青色LED素子105は前記ボンデイングワイヤ118、119とともに、蛍光粒子108および色素粒子109をエポキシ樹脂等の樹脂基材110内に混入させてなる被覆樹脂部材107で覆われて基板101面に封止保護される。このようにして構成された被覆樹脂部材107は、前記カソード電極102及びアノード電極103のスルーホール部123を残して、基板101の上面に直方体形状に形成される。
【0007】
図12に示すパステルLED120において、青色LED素子105に電流が流れると、青色発光し、この青色発光が青色LED素子105の上方、側方等周囲に青色光として出射する。出射した青色光は、樹脂基材110に混入、分散されている蛍光粒子108を励起することで、波長変換された広波長の黄色光が樹脂基材110内で色々な方向に発光する。また同時に、前記黄色光および青色光が樹脂基材110内に混入、分散された色素粒子109を透過する際に、この黄色光及び青色光の波長の一部を色素粒子109が吸収することにより、色素粒子の色フィルタ特性に応じて多様な中間色(白色を含む。)の光が得られる。この中間色光は樹脂基材110中に含有させる色素粒子109の原料である染料の種類や混入量によってすべての中間色をカバーすることができる。また、青色LED素子105に流す電流を制御することにより、中間色調の輝度を制御することができる。このように、図12に示すような1個の発光素子(105)を用いて、その被覆樹脂部材中に蛍光粒子および色素粒子を混入させてなる従来のパステルLEDは、小型で構造が簡単でありながら、白色を含むほとんどすべての中間色の発光を可能とし、輝度の調整も容易であるという利点を有する。
【0008】
【発明が解決しようとする課題】
しかしながら、所望の中間色を目的として上記のパステルLED(120)を実際に作成しようとするときは、従来は、パステルLEDの発光色のばらつきを押さえるために、使用する青色LED素子(105)の波長を限定していた。すなわち、従来はパステルLEDの発光色を所望の色度範囲とするため、使用する青色LED素子の波長が標準的な波長範囲に入っていることを前提として、これあわせて樹脂基材110中に含有させる蛍光粒子108と色素粒子109の条件を設定していた。特に、色素粒子109の原料である染料の種類や混入量を設定して、平均的な波長の青色LED素子の色度が最終的に所望の中間色の色度となるように、色素粒子の色フィルタ特性を設定していた。ところが、実際に入手できる青色LED素子の波長はその製造条件の不可避な変動によりばらつき、平均値から大きくずれるものが少なくない。具体的には、青色LED素子の標準的(又は平均的)な波長は略470nmであるが、これを目標として製造される青色LED素子の波長は略455nm〜485nmの範囲にばらついてしまう。そして、波長に対応して青色LED素子の発光の色度もずれて行く。このため、従来のように蛍光粒子108の混入量や、色素粒子109の原料である染料の種類や混入量を画一的な条件で設定した場合には、青色LED素子の波長によっては、これを使用した場合、パステルLEDの発光色を所望の色度範囲に入れることができなくなる。このため、従来は使用する青色LED素子の波長を限定していた。
【0009】
この様子を具体例を挙げて説明する。今、実際に製造され波長のばらつきのある青色LED素子を、波長によりランク分けし、平均値に近い標準的なTYP波長ランク(465nm〜475nm)のものと、TYP波長ランクよりも波長の短い短波長ランク(455nm〜465nm)のものと、TYP波長ランクよりも波長の長い長波長ランク(475nm〜485nm)のものとに分類して考える。この場合、TYP波長ランクのものの代表的な波長として略470nmの波長の青色LED素子に着目すると、この発光の色度は図13に示すCIE色度図の色度点ctで現される。短波長ランクのものの代表的な波長として略460nmの波長の青色LED素子に着目すると、この発光の色度は図13のCIE色度図の色度点csで現される。長波長ランクのものの代表的な波長として略480nmの波長の青色LED素子に着目すると、この発光の色度は図13のCIE色度図の色度点clで現される。(このように、単色光に近い青色の領域においては、波長の増加とともに色度点は単色光軌跡STに略沿った形で左上方に移動するが、この移動量は無視できない大きさとなる。)ここで従来は、まず、波長が略470nmで発光の色度点ctで現される青色LED素子のみに着目し、この色度点ctが最終的にパステルLEDにおいて所望の中間色の色度g0の発光となるように色度補正をするように、樹脂基材110中に含有させる蛍光粒子108と色素粒子109の条件を設定していた。そして実験等により、一旦、この条件が設定されると、波長のばらつきにかかわらず、すべての青色LED素子に対し、画一的にこの条件により作成した被覆樹脂部材107を被覆してパステルLEDを作成していた。
【0010】
この画一的条件によりパステルLEDの作成をした場合、図13の矢印ytに示すように、略470nmの波長の青色LED素子については当初の色度ctから色度g0に色度補正される。そして、前記のTYP波長ランク(465nm〜475nm)にあるものの色度はctの近傍にあるため、この画一的条件により、g0の近傍の所望の色度領域G内に入るように色度補正される。しかし、このTYP波長ランク(465nm〜475nm)から外れたものの色度点は例えばcs、clのようにctから離れているので、この画一的条件によりパステルLEDの作成をした場合には、cs(波長460nm)の場合は矢印ysに示す色度補正がされ、cl(波長460nm)の場合は矢印Ylに示す色度補正がされ、いずれも色度補正の結果は前記の所望の色度領域Gからはずれてしまう。すなわち、TYP波長ランク(465nm〜475nm)以外の波長のものを使用した場合には、所望の中間色の領域にパステルLEDの作成をすることができなかった。このため、従来は青色LED素子の波長を前記のTYP波長ランク(465nm〜475nm)のものに限定して使用し、これに入らないものは余りの素子となり、無駄となっていた。なお、上記のように、画一的条件によりパステルLEDの作成を行うことは、製造の手間を省くため、当業者が通常は当然行うことであるが、これによる問題点およびその対策については、従来は何ら開示されていなかった(例えば、特許文献1参照。)。
【0011】
そこで本発明は上に述べた従来のパステルLEDの作成上の問題点、すなわち、青色LED素子を使用して所望の中間色のパステルLEDを作成しようとすると、上記のように青色LED素子の発光波長を制限する必要があるところ、実際に製造される青色LED素子の波長はばらつきが大きいため、利用できない余剰の素子を発生し無駄となるという問題を解決することを課題とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するためにその第1の手段として本発明は、青色LED素子と、該青色LED素子を被覆する被覆樹脂部材を有し、該被覆樹脂部材が蛍光体および着色剤を含有するパステルLEDの作成方法において、前記青色LED素子を波長に応じて複数のランクに分類し、その波長のランクに対応してそれぞれ異なる配合条件により前記蛍光体および着色剤を前記被覆樹脂部材に含有させることにより、前記波長のランクに関係なく、所望の色度又はこれに近い色度に補正されたLEDを作成することを特徴とする。ここで、蛍光体とは、例えばイットリウム・アルミニウム・ガーネット(YAG)等の蛍光物質よりなる蛍光粒子であり、着色剤とは例えば、染料又は顔料よりなる色素粒子である。
【0013】
上記の課題を解決するためにその第2の手段として本発明は、前記第1の手段において、多数の前記青色LED素子の波長を測定し、複数の波長のランクに分類する工程と、波長分類のランクに対応した配合条件により、前記蛍光体および着色剤を配合して前記被覆樹脂の材料を作成する工程と、波長分類のランクに対応した配合条件の前記被覆樹脂の材料により、青色LED素子を被覆する工程とを有することを特徴とする。
【0014】
上記の課題を解決するためにその第3の手段として本発明は、前記第1の手段または第2の手段において、前記被覆樹脂の材料として、蛍光体のみを含有した第1の被覆樹脂材料と、着色剤のみを含有した第2の被覆樹脂材料とを作成し、前記青色LED素子を前記第1の被覆樹脂材料により被覆した後に、前記第2の被覆樹脂材料により被覆することを特徴とする。
【0015】
上記の課題を解決するためにその第4の手段として本発明は、前記第1の手段乃至第3の手段のいずれかにおいて、前記青色LED素子の波長分類のランクは例えば略455nm〜465nmの第1のランク、略465nm〜475nmの第2のランク、および略475nm〜485nmの第3のランクに分類されてなることを特徴とする。
【0016】
上記の課題を解決するためにその第5の手段として本発明は、青色LED素子と、該青色LED素子を被覆する被覆樹脂部材を有し、該被覆樹脂部材が蛍光体および着色剤を含有するパステルLEDにおいて、前記青色LED素子を波長のランクに対応して、それぞれ異なる配合条件により前記被覆樹脂部材前記蛍光体および着色剤を前記被覆樹脂部材に含有させることにより、青色LED素子の波長のランクに関係なく、所望の色度又はこれに近い色度に色度補正されてなることを特徴とする。
【0017】
【発明の実施の形態】
以下に、図面に基づいて本発明の第1実施形態につき図面を用いて説明する。図1は本第1実施形態に係るパステルLEDの全体の構成を示し、図2はその要部を示す拡大図である。図1において20は表面実装型のパステルLEDである。1はガラス繊維入りのエポキシ樹脂よりなる矩形状の基板であり、2、3はそれぞれ前記基板1にパターン形成されたカソード用電極およびアノード用電極である。5は青色光を発光する青色LED素子である。パステルLED20を作成するには、前記基板1の上面略中央部において、カソード用電極2の上に青色LED素子5を載置し、接着剤4によって、カソード用電極2を介して基板1に固定する。ここで、この青色LED素子5は図2に示すように、サファイアガラスからなる素子基板13の上面にn型半導体14とp型半導体15を拡散成長させた構造をなす。前記n型半導体14及びp型半導体15はそれぞれ、n型電極16およびp型電極17を備える。青色LED素子5上記のようにして基板1に固定した後に、青色LED素子5の前記n型電極16およびp型電極17をそれぞれボンデイングワイヤ18、19によって記基板1に設けられたカソード用電極2及びアノード用電極3に接続する。
【0018】
次に、このようにして実装された青色LED素子5の上を蛍光粒子8および色素粒子9をエポキシ樹脂あるいはシリコン樹脂よりなる樹脂基材10内に混入、分散させてなる被覆樹脂部材7で覆い、青色LED素子5をボンデイングワイヤ18、19とともに被覆、保護する。このようにして構成された被覆樹脂部材7は、前記カソード用電極2及びアノード用電極3のスルーホール部23を残して基板1の上面に直方体形状に形成される。なお、上記したパステルLED20の構成(及びその作成の基本的な手順)はすでに説明した従来のパステルLEDの場合と同様である。
【0019】
ここで、前記の色素粒子9として用いられる染料は、例えば、フタロシアニン系化合物、アントラキノン系化合物、アゾ系化合物、キノフタレン系化合物の4種類であり、これら4種類をベースとして適量に混合し、青、緑、黄、橙、赤、紫の6色を予め作る。本第1実施形態においては、このようにして予め作られた6色を更に混色させることで所望の色度の透過特性を出すようにしている。なお、色素粒子9としては上記のような染料に限られることなく、顔料を利用することも可能である。
【0020】
パステルLED20において、青色LED素子5に電流が流れると、図2に示すように、n型半導体14とp型半導体15の境界面で青色発光し、この青色発光が青色LED素子5の上方、側方に向けて出射する。ここで、出射した青色光sは、樹脂基材10に混入、分散されている蛍光粒子8を励起することで、波長変換された広波長の黄色光s1が樹脂基材10内で色々な方向に発光する。また同時に、前記黄色光s1および青色光sが樹脂基材10内に混入、分散された色素粒子9を透過する際に、この黄色光s1及び青色光sの波長の一部を色素粒子9が吸収することにより、色素粒子9の色度(透過波長特性)に応じて多様な中間色(白色を含む。)光s2が得られる。この中間色光s2は樹脂基材10中に含有させる色素粒子9の原料である染料の種類や混入量によってすべての中間色をカバーすることができる。また、青色LED素子5に流す電流を制御することにより、中間色調の輝度を制御することができる。前記の表面実装型のパステルLED20は、図3に示すように、前記前記カソード用電極2及びアノード用電極3の下面側をマザーボード27のプリント配線28、29に半田31で固定することによって表面実装を実現するものである。なお、上記の青色光を色度補正して中間色の発光を得る基本原理そのものは、すでに説明した従来のパステルLEDと同様である。
【0021】
以下に、本第1実施形態に係るパステルLEDの作成方法に関し、従来と異なる点を取り上げて詳細に説明する。▲1▼先ず、発光波長が略455nm〜485nmの範囲で分布する一群の青色LED素子5を対象として、波長分類により短波長ランク(455nm〜465nm)、TYP波長ランク(標準波長ランク)(465nm〜475nm)、長波長ランク(475nm〜485nm)の3種類の波長ランクに分類する。▲2▼次に、分類された波長ランクに対応して、(イ)短波長ランク(455nm〜465nm)のものに対しては樹脂配合条件Aにより、蛍光粒子8と色素粒子9を配合して被覆樹脂部材7を形成し、(ロ)TYP波長ランク(465nm〜475nm)のものに対しては樹脂配合条件Bにより、蛍光粒子8と色素粒子9を配合して被覆樹脂部材7を形成し、(ハ)長波長ランク(475nm〜485nm)のものに対しては樹脂配合条件Cにより、蛍光粒子8と色素粒子9を配合して被覆樹脂部材7を形成する。▲3▼この方法により、上記の3種類の波長ランクのすべてのものに対し所望の色度範囲に色度補正されたパステルLED20を作成することが可能となる。
【0022】
図4は青色LED素子5の色度および色度補正されたパステルLED20の色度を示すCIE色度図である。図4において、cs、ct、clはそれぞれ前記の短波長ランク、TYP波長ランク、長波長ランクの青色LED素子5の代表的な色度を示す色度点である。すなわち、cs、ct、clはそれぞれ波長が略460nm、470nm、480nmの青色LED素子5の発光の色度の座標である。すでに、従来例で説明したように、波長の変化に伴い発光の色度を示す色度点も移動する。g0はLED20の目標色度であり、g0を囲むGは目標色度領域である。ここでGは中間色であるGREENの領域である。ここで、前記の樹脂配合条件Aとはcsの色度の青色LED素子5(波長略460nm)を用いた場合に、作成されたパステルLED20の色度がg0となるような、蛍光粒子8と色素粒子9の配合の条件を言う。樹脂配合条件Bとはctの色度の青色LED素子5(波長略470nm)を用いた場合に、作成されたパステルLED20の色度がg0となるような蛍光粒子8と色素粒子9の配合の条件を言う。樹脂配合条件Cとはclの色度の青色LED素子5(波長略480nm)を用いた場合に、作成されたパステルLED20の色度がg0となるような、蛍光粒子8と色素粒子9の配合の条件を言う。図4の矢印Ys、Yt、Ylはそれぞれ樹脂配合条件A、B、Cに対応した色度補正の状態を示すものであり、当初cs、ct、clにあった色度がそれぞれYs、Yt、Ylに示す色度補正により、最終的にはg0の色度に補正される。
【0023】
次に、上記の樹脂配合条件A、BおよびCにつき順次、具体例を挙げて説明をして行く。先ず、樹脂配合条件Aについて述べる。波長が600nmの青色LED素子5の発光の色度を示す色度点csの座標は図2に示すように、略
x=0.14 y=0.05 でありR、G、Bの比率は
R:G:B=0.14:0.05:0.81 である。(これは図5(a)のスペクトルHsに示される。)
今、青色光を吸収し、黄色光を励起する蛍光粒子8として、その励起光がB成分をほとんど含まず、R成分とG成分を等分に含む配合条件のイットリウム・アルミニウム・ガーネット(YAG)を選択する。そして、青色LED素子5の発光のB成分を50%だけ吸収するように蛍光粒子8の混合量を設定しておくと、B成分が50%だけ減少し、その分が25%ずつ振り分けられてR、Gの成分の増加に寄与する。よって蛍光粒子8のみの効果により、発光のR、G、Bの比率は(図5(a)のスペクトルHS2に示すように)

Figure 2004253745
となる。(このスペクトルは図5(a)のスペクトルHS2に示される。) これは図6の色度図に示す色度点cs2の色度に相当する。
【0024】
ここで、色素粒子9のR、G、Bに対する透過率r、g、bの比率を(図5(b)のスペクトルFsに示すように) 略 r:g:b=0.49:1:0.45 となるように色素粒子9の原料である染料の種類や混入量を予め調整しておくと、この色素粒子の色フィルター作用により発光の最終的なR、G、Bの比率は
Figure 2004253745
となる。(これは、図5(a)のスペクトルHb0に相応する。)この最終的に色度補正された発光の色度の座標は略
x=0.28 y=0.42 となり、図4及び図6の色度図に示す所望の色度点g0と一致する。この結果、図4及び図6の矢印Ysに示すように最初csにあった色度が最終的b0に達する。以上は樹脂配合条件Aの一例である。次に、波長が460nm以外の短波長ランク(455nm〜465nm)の青色LED素子の発光の色度点はcsの近傍にあるため、これらを使用して、同様の樹脂配合条件AによりパステルLED20を作成した場合には、その色度は図6の点線の矢印に示すように、g0の近傍である所望の色度領域G内に入るように補正される。
【0025】
以下に、TYP波長ランク(465nm〜475nm)の青色LED素子5に対する樹脂配合条件Bにつき、具体例を挙げて説明する。すでに述べたように、図4及び図7の色度図に示すctは
TYP波長ランクのものの代表的な(波長略470nm)色度点であり、その座標は略
x=0.12 y=0.1 でありR、G、Bの比率は
R:G:B=0.12:0.1:0.78 である。今、蛍光粒子8として、すでに述べた樹脂配合条件Aの場合と同様の配合条件のものを選択する。そして、青色LED素子5の発光のB成分を50%だけ吸収するように蛍光粒子8の混合量を設定しておくと、B成分が50%だけ減少し、その分が25%ずつ振り分けられてR、Gの成分の増加に寄与する。よって蛍光粒子8のみの効果により、発光のR、G、Bの比率は
Figure 2004253745
となる。これは図7の色度図に示す色度点ct2の色度に相当する。
【0026】
ここで、色素粒子9の色素粒子9のR、G、Bに対する透過率r、g、bの比率を 略
r:g:b=0.62:1:0.54 となるように色素粒子9の原料である染料の種類や混入量を予め調整しておくと、この色素粒子の色フィルター作用により発光の最終的なR、G、Bの比率は
Figure 2004253745
となり、この最終的に色度補正された発光の色度の座標は略
x=0.28 y=0.42 となり、所望の色度点g0と一致する。この結果、図4及び図7の色度図の矢印Ytに示すように当初ctにあった色度は最終的にg0の色度に補正されることとなる。この例のように、結果として矢印Ytで示される色度補正(ctの色度を所望の色度(b0)にする補正)を生み出す蛍光体8及び着色剤9の配合条件が樹脂配合条件Bとなる。ここでTYP波長ランク(465nm〜475nm)の青色LED素子5の色度点は図7のct(波長略470nm)を中心としてその近傍にあると考えられる。よって、これらに対し図7のYtで示した補正作用を有する樹脂配合条件Bを適用すれば、補正後のパステルLED20の色度は図7の点線の矢印で示すように目標値g0を中心とした範囲にばらつくが、許容色度範囲Gの範囲に入ることになる。
【0027】
以下に、長波長ランク(475nm〜485nm)の青色LED素子5に対する樹脂配合条件Cにつき、その一例を挙げて説明する。すでに述べたように、図4及び図8に示すcl(波長略280nm)は長波長ランクのものの代表的な色度点であり、その座標は略
x=0.11 y=0.175 でありR、G、Bの比率は
R:G:B=0.11:0.175:0.715 である。今、蛍光粒子8として、すでに述べた樹脂配合条件Aの場合と同様の成分のものを選択する。そして、青色LED素子の発光のB成分を50%だけ吸収するように蛍光粒子8の混合量を設定しておくと、その分が25%ずつ振り分けられてR、Gの成分の増加に寄与するする。よって、蛍光体8のみの効果により、発光のR、G、Bの比率は
Figure 2004253745
となる。これは図8の色度図に示す色度点cl2の色度に相当する。
【0028】
ここで、着色剤9の色フィルタの特性のR、G、Bに対する透過率r、g、bの比率を略
r:g:b=0.82:1:0.71
となるように色素粒子9の原料である染料の種類や混入量を予め調整しておくと、この色フィルター作用により発光の最終的なR、G、Bの比率は
Figure 2004253745
となり、この最終的に色度補正された発光の色度の座標は略
x=0.28 y=0.42 となり、所望の色度点g0と一致する。この結果、図4及び図8の矢印Ylに示すように最初cl点にあった色度が色度補正により最終的にg0の補正される。この例のように、結果として矢印Ylで示される色度補正(長波長の色度clを所望の色度b0にする補正)を生み出す蛍光体8及び色素粒子9の配合条件が樹脂配合条件Cとなる。ここで長波長ランク(475nm〜485nm)の青色LED素子5の色度点は図4のcl(波長略480nm)を中心としてその近傍に分散していると考えられる。よって、これらに対し図2のYlで示し補正作用を有する樹脂配合条件Cを適用すれば、補正後のパステルLED20の色度は図8の点線の矢印で示すように、許容色度範囲Gの範囲に入ることになる。
【0029】
このようにして、本第1実施形態においては、青色LED素子5の波長のランクに対応した適切な樹脂配合条件により中間色を目的としたパステルLEDの作成が行われるので、全ての波長範囲の青色LED素子5がこの目的に使用できる。すなわち、従来の方法では、所定の波長範囲に入らない青色LED素子5は所望の色度範囲に入るパステルLEDに使用することができず、余剰の素子とされていたが、本第1実施形態においては、従来これら余剰の素子とされていたものも、利用できるようになる。なお、上記した樹脂配合条件A、B、Cに関する計算は便宜上、第1段階においては蛍光粒子8のみが存在するとして補正後の色度を計算し、第2段階においては色素粒子9のみが存在するものとして補正後の色度を計算している。実際には、色度補正は蛍光粒子8及び色素粒子9が混在した中で同時的に行われ、蛍光体8及び着色剤9の効果は相互に複雑に影響を及ぼしながら色度補正が行われるので、実際の色度補正の結果は上記の計算とかならずしも一致しない。但し、色度補正の傾向を示すガイドラインにはなる。実際には、この計算をガイドラインとして、実験を重ねることにより、蛍光体8および着色剤9の条件を修正することにより、所望の色度点g0への色度補正が達成され、実際の樹脂配合条件A、B、Cが決められるる。なお、上記した各波長ランクの波長の数値はあくまでも一例であって、本発明はこれはこれらの数値にのみ限定されるものではない。
【0030】
次に、図10は図1、図2に示すパステルLED20の変形例であるパステルLED30を示す図である。この変形例では、基板1上のカソード用電極と青色LED素子5を接着固定する接着剤4の中にも蛍光粒子8を分散させて、青色LED素子5の下方側での発光を有効に波長変換することで、より明るい中間色光を得るようにしたものである。なお、他の構成については図1に示すパステルLED20と同様である。本変形例に係るパステルLED30の作成方法についても、上記したパステルLED20と同様に、青色LED素子5の波長分類に対応した樹脂配合条件を適用することにより、基本的には同様の原理により、すべての波長の青色LED素子5を使用して、所望の中間色の色度領域で発光するパステルLED30を作成することができ、余剰となる青色LED素子5を無くすことができる。
【0031】
以下に、図面に基づいて本発明の第2実施形態につき図面を用いて説明する。図11は本第2実施形態に係るパステルLED40の構成を示す断面図である。図11に示すように、このパステルLED30の被覆樹脂部材7は樹脂基材10に蛍光粒子8を分散してなる第1被覆樹脂部材7aと、樹脂基材10に色素粒子9を分散してなる第2被覆樹脂部材7bとよりなる。なお、他の構成については図1に示すパステルLED20と同様である。
本第2実施形態に係るパステルLED40の作成方法についても、上記したパステルLED20と同様に、青色LED素子5の波長分類に対応した樹脂配合条件を適用することにより、基本的には同様の原理により、すべての波長の青色LED素子5を使用して、所望の中間色の色度領域で発光するパステルLED40を作成することができ、余剰となる青色LED素子5を無くすことができる。この場合、樹脂配合条件は前記第1被覆樹脂部材7aにおける蛍光粒子8の配合条件及び第2被覆樹脂部材7bにおける色素粒子9の配合条件を総合して決まるのであるが、これらの配合は分離して別々に行われるので、管理がしやすく、総合的な樹脂配合条件をばらつきなく実現する上で、図1に示す第1実施形態の場合よりも、更に有利となる。
【0032】
なお、本第2実施形態のパステルLED40の場合は実際に、青色LED素子5の発光に対して、先ず第1被覆樹脂部材7aにおいて、蛍光粒子8のみによる第1の補正が行われ、次に第2被覆樹脂部材7bにおいて色素粒子9のみの作用により第2の補正が行われると考えてよい。よって、図1に示す第1実施形態のパステルLED20のように、蛍光粒子8と色素粒子9が互いに混じりあっている場合と比較すると、本第2実施形態の場合は、蛍光粒子8の作用と色素粒子9の作用を分離できる。このため、すでに述べた色度補正の計算が実際に適用しやすく、青色LED素子5の各波長ランクに対応して上記の樹脂配合条件(A、B、C)を実現するための蛍光体8と着色剤9の条件を実際に設定することも容易となる。
【0033】
これまで述べてきた実施形態においては、パステルLEDの目標とする色度領域は図4等に示すG領域でありこれはGREENの領域であった。しかし、本発明はこれに限らず、必用に応じて、基本的には同様の原理により、図9の色度図に示すように、青色LED素子の波長を限定することなく、短波長、TYP波長、長波長の青色LED素子を使用して、B、P、V、Y、Oにそれぞれ示すBLUE、PINK、VIOLET、YELLOW、ORANGEの領域又はWに示す白色の領域等の広い中間色の領域において、所望の色度範囲のLEDを作成することができる。
【0034】
なお、これまで述べてきた実施形態においては、被覆樹脂部材7に蛍光粒子8及び色素粒子9を含有する場合につき述べてきたが、本発明はこれに限らず、被覆樹脂部材に蛍光粒子以外の蛍光体及び色素粒子以外の染色体を含有する場合についても広く成立つものである。
【0035】
【発明の効果】
以上に述べたように本発明によれば、1個の青色LED素子とこれを被覆し蛍光粒子等の蛍光体及び色素粒子等の染色体を含有する被覆樹脂部材とを有するパステルLEDにおいて、青色LED素子の発光波長のばらつきにかかわらず、全ての波長範囲の青色LED素子を白色又は中間色のパステルLED用として使用でき、無駄をなくすことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るパステルLEDの構成を示す図である。
【図2】図1に示すパステルLEDの要部を示す拡大図である。
【図3】図1に示すパステルLEDの表面実装の方法を示す図である。
【図4】図1に示すパステルLEDの発光の色度を示す色度図である。
【図5】図1に示すパステルLEDの発光のスペクトル等を示す図である。
【図6】図1に示すパステルLEDにおいて、青色LED素子の発光波長が短波長の場合の色度補正の方法を示す色度図である。
【図7】図1に示すパステルLEDにおいて、青色LED素子の発光波長が標準的波長の場合の色度補正の方法を示す色度図である。
【図8】図1に示すパステルLEDにおいて、青色LED素子の発光波長が長波長の場合の色度補正の方法を示す色度図である。
【図9】本発明に係るパステルLEDの発光の中間色の色度領域を例示する色度図である。
【図10】図1、図2に示すパステルLEDの変形例の構成を示す図である。
【図11】本発明の第2実施形態に係るパステルLEDの構成を示す図である。
【図12】従来のパステルLEDの構成を示す図である。
【図13】図12に示すパステルLEDの発光の色度を示す色度図である。
【符号の説明】
1 基板
2 カソード用電極
3 アノード用電極
4 接着剤
5 青色LED素子
7 被覆樹脂部材
8 蛍光粒子
9 色素粒子
10 樹脂基材
13 素子基板
14 n型半導体
15 p型半導体
16 n型電極
17 p型電極
18、19 ボンデイングワイヤ
20、30、40 パステルLED
23 スルーホール部
27 マザーボード
28、29 プリント配線
31 半田[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing (manufacturing) a pastel LED for emitting white light or intermediate color light.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a display device such as a liquid crystal display device having a thin and easy-to-see illumination mechanism has been used as a display device of a small and thin information device such as a book-type word processor or a computer, or a mobile phone or a portable TV. As a lighting unit of such a display device, a planar light source (a backlight unit, a front light unit, or the like) having a light emitting source and an optical path changing member has been conventionally known. Conventionally, fluorescent lamps and light-emitting diodes have been used as the light-emitting sources used for such planar light sources. Among them, in recent years, for the purpose of further miniaturization, thinning and longer life, those using a light emitting diode (hereinafter, referred to as LED) as a light emitting source have been increasingly used.
[0003]
When it is intended to illuminate a panel or the like of a display device with white or intermediate color using such a planar light source, in the case of an LED, three types of LEDs of R, G, and B are simultaneously lit or time-division lit to produce a white color Or, it has been common to synthesize light of a neutral color. However, more recently, a pastel LED that emits light of a color similar to the above, which emits white or intermediate color light, has been developed and can be used. By using such a pastel LED, it is possible to form a liquid crystal display backlight or a liquid crystal display front light for white illumination or intermediate color illumination with a small and simple configuration.
[0004]
As such a pastel LED, for example, a pastel LED as shown in FIG. 12 has been conventionally known (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-2002-11073 (FIG. 1)
[0006]
In FIG. 12, reference numeral 120 denotes a pastel LED. Reference numeral 101 denotes a substantially rectangular substrate made of an epoxy resin containing glass fiber. Reference numerals 102 and 103 denote a cathode electrode and an anode electrode, respectively, which are patterned on the substrate 101. Reference numeral 105 denotes a blue LED element that emits blue light. A blue LED element 105 is mounted on the cathode electrode 102 at a substantially central portion of the upper surface of the substrate 101, and is fixed to the element substrate 101 via the cathode electrode 102 by an adhesive 104. The blue LED element 105 is electrically connected to the cathode electrode 102 and the anode electrode 103 provided on the substrate 101 by the bonding wires 118 and 119. The blue LED element 105 is covered with the bonding wires 118 and 119 together with the coating resin member 107 formed by mixing the fluorescent particles 108 and the pigment particles 109 into a resin base material 110 such as an epoxy resin, and is sealed and protected on the surface of the substrate 101. Is done. The coating resin member 107 thus configured is formed in a rectangular parallelepiped shape on the upper surface of the substrate 101 except for the through-hole portions 123 of the cathode electrode 102 and the anode electrode 103.
[0007]
In the pastel LED 120 shown in FIG. 12, when a current flows through the blue LED element 105, the blue LED element emits blue light, and this blue light is emitted as blue light above, beside, and around the blue LED element 105. The emitted blue light excites the fluorescent particles 108 mixed and dispersed in the resin substrate 110, so that the wavelength-converted wide-wavelength yellow light is emitted in the resin substrate 110 in various directions. At the same time, when the yellow light and the blue light are mixed into the resin substrate 110 and pass through the dispersed pigment particles 109, the pigment particles 109 absorb a part of the wavelengths of the yellow light and the blue light. Thus, light of various intermediate colors (including white) is obtained according to the color filter characteristics of the pigment particles. This intermediate color light can cover all intermediate colors depending on the type and amount of the dye that is the raw material of the pigment particles 109 contained in the resin substrate 110. Further, by controlling the current flowing through the blue LED element 105, it is possible to control the luminance of the intermediate tone. As described above, the conventional pastel LED using one light emitting element (105) as shown in FIG. 12 and mixing the fluorescent particles and the dye particles in the coating resin member is small in size and simple in structure. In spite of this, there is an advantage that it is possible to emit light of almost all intermediate colors including white, and it is easy to adjust luminance.
[0008]
[Problems to be solved by the invention]
However, when actually trying to produce the pastel LED (120) for a desired intermediate color, conventionally, the wavelength of the blue LED element (105) to be used is used in order to suppress the variation in the emission color of the pastel LED. Was limited. That is, conventionally, in order to set the emission color of the pastel LED to a desired chromaticity range, it is assumed that the wavelength of the blue LED element to be used is within a standard wavelength range. The conditions of the fluorescent particles 108 and the dye particles 109 to be contained are set. In particular, the type and amount of the dye that is the raw material of the pigment particles 109 are set, and the color of the pigment particles is adjusted so that the chromaticity of the blue LED element having an average wavelength finally becomes the desired intermediate color chromaticity. The filter characteristics were set. However, the wavelength of a blue LED element that can be actually obtained varies due to inevitable fluctuations in its manufacturing conditions, and there are many cases where the wavelength deviates significantly from the average value. Specifically, the standard (or average) wavelength of the blue LED element is about 470 nm, but the wavelength of the blue LED element manufactured with this as a target varies in the range of about 455 nm to 485 nm. Then, the chromaticity of light emission of the blue LED element also shifts according to the wavelength. For this reason, when the mixing amount of the fluorescent particles 108 and the type and mixing amount of the dye as a raw material of the dye particles 109 are set under uniform conditions as in the related art, depending on the wavelength of the blue LED element, In the case where is used, the emission color of the pastel LED cannot be within the desired chromaticity range. For this reason, conventionally, the wavelength of the blue LED element used was limited.
[0009]
This situation will be described with a specific example. Now, blue LED elements that are actually manufactured and vary in wavelength are ranked according to wavelength, and those having a standard TYP wavelength rank (465 nm to 475 nm) close to the average value and a short WB having a shorter wavelength than the TYP wavelength rank. The wavelength rank (455 nm to 465 nm) and the long wavelength rank (475 nm to 485 nm) having a longer wavelength than the TYP wavelength rank are considered. In this case, when attention is paid to a blue LED element having a wavelength of about 470 nm as a typical wavelength of the TYP wavelength rank, the chromaticity of this light emission is represented by a chromaticity point ct in the CIE chromaticity diagram shown in FIG. Focusing on a blue LED element having a wavelength of about 460 nm as a typical wavelength of the short wavelength rank, the chromaticity of this light emission is represented by a chromaticity point cs in the CIE chromaticity diagram of FIG. Focusing on a blue LED element having a wavelength of about 480 nm as a typical wavelength of the long wavelength rank, the chromaticity of this light emission is represented by a chromaticity point cl in the CIE chromaticity diagram of FIG. (Thus, in the blue region near monochromatic light, the chromaticity point moves to the upper left along the monochromatic light trajectory ST as the wavelength increases, but the amount of movement is not negligible. Here, heretofore, conventionally, only the blue LED element having a wavelength of about 470 nm and represented by the chromaticity point ct of light emission is focused on, and the chromaticity point ct finally becomes the chromaticity g0 of the desired intermediate color in the pastel LED. The conditions of the fluorescent particles 108 and the pigment particles 109 to be contained in the resin base material 110 are set so that the chromaticity is corrected so as to emit light. Once this condition is set by an experiment or the like, regardless of the wavelength variation, all the blue LED elements are uniformly covered with the coating resin member 107 created under this condition to form a pastel LED. Had been created.
[0010]
When a pastel LED is produced under the uniform conditions, as shown by an arrow yt in FIG. 13, the chromaticity of the blue LED element having a wavelength of about 470 nm is corrected from the initial chromaticity ct to the chromaticity g0. Since the chromaticity of the TYP wavelength rank (465 nm to 475 nm) is in the vicinity of ct, the chromaticity is corrected so as to be within the desired chromaticity region G in the vicinity of g0 by this uniform condition. Is done. However, since the chromaticity points of the wavelengths deviating from the TYP wavelength rank (465 nm to 475 nm) are apart from ct, for example, cs and cl, when a pastel LED is produced under this uniform condition, cs In the case of (wavelength 460 nm), the chromaticity correction indicated by the arrow ys is performed, and in the case of cl (wavelength 460 nm), the chromaticity correction indicated by the arrow Yl is performed. I'm off G. That is, when wavelengths other than the TYP wavelength rank (465 nm to 475 nm) were used, pastel LEDs could not be formed in a desired intermediate color region. For this reason, conventionally, the wavelength of the blue LED element is limited to the above-mentioned TYP wavelength rank (465 nm to 475 nm) and used, and those which do not fall within this range become excessive elements and are wasted. It should be noted that, as described above, it is a matter of course that a person skilled in the art usually creates a pastel LED under uniform conditions, in order to reduce the time and effort of manufacturing, but the problems and countermeasures thereby are described below. Conventionally, it was not disclosed at all (for example, see Patent Document 1).
[0011]
Accordingly, the present invention has been made to solve the above-described problems in the conventional pastel LED, that is, when an attempt is made to produce a pastel LED of a desired intermediate color using a blue LED element, the emission wavelength of the blue LED element is as described above. It is an object of the present invention to solve the problem that the wavelength of an actually manufactured blue LED element has a large variation, so that a surplus element that cannot be used is generated and wasted.
[0012]
[Means for Solving the Problems]
As a first means for solving the above-mentioned problems, the present invention has a blue LED element and a coating resin member for coating the blue LED element, and the coating resin member contains a phosphor and a colorant. In the method of producing a pastel LED, the blue LED elements are classified into a plurality of ranks according to wavelengths, and the phosphor and the colorant are contained in the coating resin member under different mixing conditions according to the ranks of the wavelengths. Thus, an LED corrected to a desired chromaticity or a chromaticity close to the desired chromaticity is created irrespective of the wavelength rank. Here, the phosphor is a fluorescent particle made of a fluorescent substance such as yttrium aluminum garnet (YAG), and the colorant is a dye particle made of a dye or pigment, for example.
[0013]
In order to solve the above-mentioned problem, the present invention provides, as a second means, a method of measuring the wavelengths of a large number of the blue LED elements in the first means and classifying the blue LED elements into ranks of a plurality of wavelengths. A step of blending the phosphor and the colorant to form a material for the coating resin according to the blending conditions corresponding to the rank of the blue LED element; And a step of coating
[0014]
In order to solve the above-mentioned problems, the present invention as a third means, according to the first means or the second means, comprises, as a material of the coating resin, a first coating resin material containing only a phosphor. A second coating resin material containing only a coloring agent, and after coating the blue LED element with the first coating resin material, coating the blue LED element with the second coating resin material. .
[0015]
In order to solve the above problem, the present invention as a fourth means, according to any one of the first to third means, has a wavelength classification rank of the blue LED element of, for example, about 455 nm to 465 nm. It is characterized by being classified into a rank of 1, a second rank of about 465 nm to 475 nm, and a third rank of about 475 nm to 485 nm.
[0016]
As a fifth means for solving the above problems, the present invention has a blue LED element and a coating resin member covering the blue LED element, and the coating resin member contains a phosphor and a colorant. In the pastel LED, the blue LED element has a wavelength rank corresponding to the wavelength rank of the blue LED element by incorporating the phosphor and the colorant into the coating resin member under different blending conditions according to different blending conditions. , The chromaticity is corrected to a desired chromaticity or a chromaticity close to the desired chromaticity.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of the pastel LED according to the first embodiment, and FIG. 2 is an enlarged view showing a main part thereof. In FIG. 1, reference numeral 20 denotes a surface-mount type pastel LED. Reference numeral 1 denotes a rectangular substrate made of an epoxy resin containing glass fiber, and reference numerals 2 and 3 denote a cathode electrode and an anode electrode which are patterned on the substrate 1, respectively. Reference numeral 5 denotes a blue LED element that emits blue light. In order to produce the pastel LED 20, the blue LED element 5 is placed on the cathode electrode 2 at the approximate center of the upper surface of the substrate 1 and fixed to the substrate 1 via the cathode electrode 2 by the adhesive 4. I do. Here, as shown in FIG. 2, the blue LED element 5 has a structure in which an n-type semiconductor 14 and a p-type semiconductor 15 are grown on the upper surface of an element substrate 13 made of sapphire glass. The n-type semiconductor 14 and the p-type semiconductor 15 include an n-type electrode 16 and a p-type electrode 17, respectively. After fixing the blue LED element 5 to the substrate 1 as described above, the n-type electrode 16 and the p-type electrode 17 of the blue LED element 5 are connected to the cathode electrode 2 provided on the substrate 1 by bonding wires 18 and 19, respectively. And the anode electrode 3.
[0018]
Next, the blue LED element 5 thus mounted is covered with a covering resin member 7 in which the fluorescent particles 8 and the pigment particles 9 are mixed and dispersed in a resin base material 10 made of epoxy resin or silicon resin. The blue LED element 5 is covered and protected together with the bonding wires 18 and 19. The coating resin member 7 thus configured is formed in a rectangular parallelepiped shape on the upper surface of the substrate 1 except for the through-hole portions 23 of the cathode electrode 2 and the anode electrode 3. The configuration of the pastel LED 20 described above (and the basic procedure for producing the same) is the same as that of the conventional pastel LED described above.
[0019]
Here, the dyes used as the pigment particles 9 include, for example, four types of phthalocyanine-based compounds, anthraquinone-based compounds, azo-based compounds, and quinophthalene-based compounds. Green, yellow, orange, red and purple are made in advance. In the first embodiment, the transmission characteristics of a desired chromaticity are obtained by further mixing the six colors prepared in advance in this way. The pigment particles 9 are not limited to the above-described dyes, and pigments can be used.
[0020]
In the pastel LED 20, when a current flows through the blue LED element 5, blue light is emitted at the boundary between the n-type semiconductor 14 and the p-type semiconductor 15, as shown in FIG. The light is emitted toward Here, the emitted blue light s excites the fluorescent particles 8 mixed and dispersed in the resin substrate 10, so that the wavelength-converted wide-wavelength yellow light s1 is emitted in various directions in the resin substrate 10. Emit light. At the same time, when the yellow light s1 and the blue light s pass through the pigment particles 9 mixed and dispersed in the resin base material 10, the pigment particles 9 cause a part of the wavelength of the yellow light s1 and the blue light s to pass through. By absorbing, various intermediate color (including white) light s2 can be obtained according to the chromaticity (transmission wavelength characteristic) of the pigment particles 9. This intermediate color light s2 can cover all intermediate colors depending on the type and amount of the dye, which is the raw material of the pigment particles 9 contained in the resin base material 10. In addition, by controlling the current flowing through the blue LED element 5, it is possible to control the luminance of the intermediate tone. As shown in FIG. 3, the surface mount type pastel LED 20 is surface mounted by fixing the lower surfaces of the cathode electrode 2 and the anode electrode 3 to printed wirings 28 and 29 of a mother board 27 with solder 31. Is realized. Note that the basic principle of obtaining the emission of the intermediate color by correcting the chromaticity of the blue light is the same as that of the above-described conventional pastel LED.
[0021]
Hereinafter, the method of manufacturing the pastel LED according to the first embodiment will be described in detail by focusing on differences from the related art. {Circle around (1)} First, for a group of blue LED elements 5 whose emission wavelengths are distributed in a range of approximately 455 nm to 485 nm, a short wavelength rank (455 nm to 465 nm) and a TYP wavelength rank (standard wavelength rank) (465 nm to 475 nm) and a long wavelength rank (475 nm to 485 nm). {Circle around (2)} According to the classified wavelength ranks, (a) for the short wavelength rank (455 nm to 465 nm), the fluorescent particles 8 and the pigment particles 9 are blended under the resin blending condition A. The coating resin member 7 is formed, and for the TYP wavelength rank (465 nm to 475 nm), the fluorescent particles 8 and the pigment particles 9 are mixed under the resin mixing condition B to form the coating resin member 7. (C) For those having a long wavelength rank (475 nm to 485 nm), the resin particles 7 are mixed with the fluorescent particles 8 and the pigment particles 9 under the resin mixing condition C to form the coating resin member 7. {Circle around (3)} By this method, it becomes possible to create the pastel LED 20 in which the chromaticity is corrected to the desired chromaticity range for all of the above three wavelength ranks.
[0022]
FIG. 4 is a CIE chromaticity diagram showing the chromaticity of the blue LED element 5 and the chromaticity of the pastel LED 20 whose chromaticity has been corrected. In FIG. 4, cs, ct, and cl are chromaticity points indicating the representative chromaticity of the blue LED element 5 of the short wavelength rank, the TYP wavelength rank, and the long wavelength rank, respectively. That is, cs, ct, and cl are the coordinates of the chromaticity of light emission of the blue LED element 5 having wavelengths of approximately 460 nm, 470 nm, and 480 nm, respectively. As described in the conventional example, the chromaticity point indicating the chromaticity of light emission also moves with the change of the wavelength. g0 is a target chromaticity of the LED 20, and G surrounding g0 is a target chromaticity region. Here, G is an area of GREEN which is an intermediate color. Here, the resin blending condition A is defined as the fluorescent particles 8 having a chromaticity of cs and a chromaticity of the prepared pastel LED 20 of g0 when the blue LED element 5 (wavelength approximately 460 nm) is used. This refers to the conditions for blending the pigment particles 9. The resin blending condition B is the blending of the fluorescent particles 8 and the pigment particles 9 so that the chromaticity of the pastel LED 20 is g0 when the blue LED element 5 (wavelength approximately 470 nm) having a chromaticity of ct is used. Say the condition. The resin blending condition C is a blend of the fluorescent particles 8 and the pigment particles 9 such that the chromaticity of the pastel LED 20 is g0 when the blue LED element 5 having a chromaticity of cl (wavelength: about 480 nm) is used. Say the condition. Arrows Ys, Yt, and Yl in FIG. 4 indicate states of chromaticity correction corresponding to the resin blending conditions A, B, and C, respectively. By the chromaticity correction shown by Y1, the chromaticity is finally corrected to g0.
[0023]
Next, the resin mixing conditions A, B, and C will be sequentially described with reference to specific examples. First, the resin mixing condition A will be described. The coordinates of the chromaticity point cs indicating the chromaticity of light emission of the blue LED element 5 having a wavelength of 600 nm are substantially as shown in FIG.
x = 0.14 y = 0.05 and the ratio of R, G, B is
R: G: B = 0.14: 0.05: 0.81. (This is shown in the spectrum Hs of FIG. 5A.)
Now, as fluorescent particles 8 that absorb blue light and excite yellow light, yttrium aluminum garnet (YAG) having a compounding condition in which the excitation light hardly contains a B component and contains an R component and a G component equally. Select When the mixing amount of the fluorescent particles 8 is set so as to absorb 50% of the B component of the light emitted from the blue LED element 5, the B component is reduced by 50%, and the B component is sorted by 25%. It contributes to increase of R and G components. Therefore, due to the effect of the fluorescent particles 8 alone, the ratio of R, G, and B of light emission (as shown in the spectrum HS2 of FIG. 5A).
Figure 2004253745
It becomes. (This spectrum is shown as spectrum HS2 in FIG. 5A.) This corresponds to the chromaticity of chromaticity point cs2 shown in the chromaticity diagram of FIG.
[0024]
Here, the ratio of the transmittances r, g, and b to the R, G, and B of the pigment particles 9 is approximately r: g: b = 0.49: 1 (as shown in the spectrum Fs of FIG. 5B). If the kind and the amount of the dye as the raw material of the pigment particles 9 are adjusted in advance so as to be 0.45, the final ratio of R, G, and B of the light emission becomes due to the color filter action of the pigment particles.
Figure 2004253745
It becomes. (This corresponds to the spectrum Hb0 in FIG. 5 (a).) The coordinates of the chromaticity of this finally chromatically corrected light emission are substantially the same.
x = 0.28 y = 0.42, which coincides with the desired chromaticity point g0 shown in the chromaticity diagrams of FIGS. As a result, the chromaticity initially at cs reaches the final b0 as shown by the arrow Ys in FIGS. The above is an example of the resin mixing condition A. Next, since the chromaticity point of light emission of a blue LED element having a short wavelength rank (455 nm to 465 nm) other than 460 nm is near cs, the pastel LED 20 is used under the same resin mixing condition A by using these. When created, the chromaticity is corrected so as to fall within the desired chromaticity region G near g0, as indicated by the dotted arrow in FIG.
[0025]
Hereinafter, the resin blending condition B for the blue LED element 5 of the TYP wavelength rank (465 nm to 475 nm) will be described with a specific example. As described above, ct shown in the chromaticity diagrams of FIGS. 4 and 7 is
This is a typical chromaticity point of a TYP wavelength rank (wavelength approximately 470 nm), and its coordinates are approximately
x = 0.12 y = 0.1 and the ratio of R, G, B is
R: G: B = 0.12: 0.1: 0.78. Now, as the fluorescent particles 8, those having the same compounding conditions as in the case of the resin compounding condition A described above are selected. When the mixing amount of the fluorescent particles 8 is set so as to absorb 50% of the B component of the light emitted from the blue LED element 5, the B component is reduced by 50%, and the B component is sorted by 25%. It contributes to increase of R and G components. Therefore, due to the effect of the fluorescent particles 8 alone, the ratio of R, G, and B of light emission becomes
Figure 2004253745
It becomes. This corresponds to the chromaticity of the chromaticity point ct2 shown in the chromaticity diagram of FIG.
[0026]
Here, the ratios of the transmittances r, g, and b of the dye particles 9 with respect to R, G, and B of the dye particles 9 are substantially described.
If the kind and amount of the dye, which is the raw material of the pigment particles 9, are adjusted in advance so that r: g: b = 0.62: 1: 0.54, the emission of light by the color filter action of the pigment particles 9 is achieved. The final ratio of R, G, B is
Figure 2004253745
The final chromaticity corrected chromaticity coordinates of the emission are approximately
x = 0.28 y = 0.42, which coincides with the desired chromaticity point g0. As a result, the chromaticity which was initially at ct as shown by the arrow Yt in the chromaticity diagrams of FIGS. 4 and 7 is finally corrected to the chromaticity of g0. As in this example, the compounding condition of the phosphor 8 and the colorant 9 that results in the chromaticity correction (correction that makes the chromaticity of ct the desired chromaticity (b0)) indicated by the arrow Yt is the resin compounding condition B. It becomes. Here, it is considered that the chromaticity point of the blue LED element 5 of the TYP wavelength rank (465 nm to 475 nm) is near ct (wavelength approximately 470 nm) in FIG. Therefore, if the resin compounding condition B having the correcting action indicated by Yt in FIG. 7 is applied to these, the chromaticity of the corrected pastel LED 20 is centered on the target value g0 as shown by the dotted arrow in FIG. However, it falls within the allowable chromaticity range G.
[0027]
Hereinafter, the resin mixing condition C for the blue LED element 5 having the long wavelength rank (475 nm to 485 nm) will be described with reference to an example. As described above, cl (wavelength approximately 280 nm) shown in FIGS. 4 and 8 is a representative chromaticity point of a long wavelength rank, and its coordinates are approximately.
x = 0.11 y = 0.175 and the ratio of R, G, B is
R: G: B = 0.11: 0.175: 0.715. Now, as the fluorescent particles 8, those having the same components as in the case of the resin mixing condition A described above are selected. If the mixing amount of the fluorescent particles 8 is set so as to absorb 50% of the B component of the light emitted from the blue LED element, the amount is distributed by 25%, thereby contributing to the increase of the R and G components. I do. Therefore, due to the effect of the phosphor 8 alone, the ratio of R, G, and B of light emission becomes
Figure 2004253745
It becomes. This corresponds to the chromaticity of the chromaticity point cl2 shown in the chromaticity diagram of FIG.
[0028]
Here, the ratio of the transmittances r, g, and b of the characteristics of the color filter of the colorant 9 to R, G, and B is substantially equal.
r: g: b = 0.82: 1: 0.71
If the kind and amount of the dye, which is the raw material of the pigment particles 9, are adjusted in advance so that the final ratio of R, G, and B of light emission is obtained by this color filter action.
Figure 2004253745
The final chromaticity corrected chromaticity coordinates of the emission are approximately
x = 0.28 y = 0.42, which coincides with the desired chromaticity point g0. As a result, the chromaticity initially at the cl point is finally corrected to g0 by the chromaticity correction as indicated by the arrow Yl in FIGS. 4 and 8. As in this example, the blending conditions of the phosphor 8 and the pigment particles 9 that result in chromaticity correction (correction of the chromaticity cl of long wavelength to a desired chromaticity b0) indicated by the arrow Yl are the resin blending conditions C It becomes. Here, it is considered that the chromaticity points of the blue LED element 5 of the long wavelength rank (475 nm to 485 nm) are dispersed around cl (wavelength approximately 480 nm) in FIG. Therefore, if the resin blending condition C having the correcting action indicated by Y1 in FIG. 2 is applied to these, the chromaticity of the corrected pastel LED 20 is within the allowable chromaticity range G as shown by the dotted arrow in FIG. Will be in the range.
[0029]
In this manner, in the first embodiment, the pastel LED for the intermediate color is produced under the appropriate resin compounding conditions corresponding to the rank of the wavelength of the blue LED element 5, so that the pastel LED in the entire wavelength range is produced. LED elements 5 can be used for this purpose. That is, in the conventional method, the blue LED element 5 that does not fall within the predetermined wavelength range cannot be used for a pastel LED that falls within the desired chromaticity range, and is a surplus element. In this case, those elements that have been conventionally used as surplus elements can be used. For the sake of convenience, the above calculation regarding the resin blending conditions A, B, and C is performed on the assumption that only the fluorescent particles 8 are present in the first stage, and the corrected chromaticity is calculated. In the second stage, only the dye particles 9 are present. Then, the corrected chromaticity is calculated. Actually, the chromaticity correction is performed simultaneously in a state where the fluorescent particles 8 and the pigment particles 9 are mixed, and the chromaticity correction is performed while the effects of the phosphor 8 and the colorant 9 affect each other in a complicated manner. Therefore, the result of the actual chromaticity correction does not always match the above calculation. However, it becomes a guideline indicating the tendency of chromaticity correction. In practice, the chromaticity correction to the desired chromaticity point g0 is achieved by modifying the conditions of the phosphor 8 and the colorant 9 by repeating experiments using this calculation as a guideline, and real resin mixing Conditions A, B, and C are determined. Note that the numerical values of the wavelengths of the respective wavelength ranks described above are merely examples, and the present invention is not limited to these numerical values.
[0030]
Next, FIG. 10 is a diagram showing a pastel LED 30 which is a modification of the pastel LED 20 shown in FIG. 1 and FIG. In this modification, fluorescent particles 8 are dispersed also in an adhesive 4 for bonding and fixing the cathode electrode and the blue LED element 5 on the substrate 1 so that light emission below the blue LED element 5 can be effectively performed. By converting, a brighter intermediate color light is obtained. The other configuration is the same as that of the pastel LED 20 shown in FIG. As for the method of producing the pastel LED 30 according to the present modification, similarly to the pastel LED 20 described above, by applying the resin blending conditions corresponding to the wavelength classification of the blue LED element 5, basically all of the methods are based on the same principle. The pastel LED 30 that emits light in the chromaticity region of a desired intermediate color can be created by using the blue LED element 5 having the wavelength of, and the excess blue LED element 5 can be eliminated.
[0031]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a cross-sectional view illustrating a configuration of the pastel LED 40 according to the second embodiment. As shown in FIG. 11, the coating resin member 7 of the pastel LED 30 has a first coating resin member 7 a formed by dispersing fluorescent particles 8 in a resin base material 10 and a pigment particle 9 dispersed in a resin base material 10. It is composed of the second covering resin member 7b. The other configuration is the same as that of the pastel LED 20 shown in FIG.
As for the method of manufacturing the pastel LED 40 according to the second embodiment, similarly to the above-described pastel LED 20, by applying the resin compounding conditions corresponding to the wavelength classification of the blue LED element 5, basically the same principle is used. By using the blue LED elements 5 of all wavelengths, the pastel LED 40 that emits light in the chromaticity region of a desired intermediate color can be created, and the excess blue LED element 5 can be eliminated. In this case, the resin mixing condition is determined by combining the mixing condition of the fluorescent particles 8 in the first coating resin member 7a and the mixing condition of the pigment particles 9 in the second coating resin member 7b. In this case, it is easier to manage, and it is more advantageous than the case of the first embodiment shown in FIG.
[0032]
In the case of the pastel LED 40 of the second embodiment, the first correction is actually performed only on the fluorescent particles 8 in the first covering resin member 7a with respect to the emission of the blue LED element 5, and then, It may be considered that the second correction is performed by the action of only the pigment particles 9 in the second coating resin member 7b. Therefore, compared to the case where the fluorescent particles 8 and the pigment particles 9 are mixed with each other as in the pastel LED 20 of the first embodiment shown in FIG. The function of the pigment particles 9 can be separated. For this reason, the calculation of the chromaticity correction described above is actually easy to apply, and the phosphor 8 for realizing the above-described resin blending conditions (A, B, C) corresponding to each wavelength rank of the blue LED element 5. It is also easy to actually set the conditions for the colorant 9 and the colorant 9.
[0033]
In the embodiments described so far, the target chromaticity region of the pastel LED is the G region shown in FIG. 4 and the like, which is the GREEN region. However, the present invention is not limited to this. If necessary, the wavelength of the blue LED element can be shortened and the TYP Using a blue LED element of a wavelength and a long wavelength, in a wide intermediate color area such as a BLUE, PINK, VIOLET, YELLOW, ORANGE area shown in B, P, V, Y, and O or a white area shown in W, respectively. Thus, an LED having a desired chromaticity range can be created.
[0034]
In the embodiments described above, the case where the coating resin member 7 contains the fluorescent particles 8 and the dye particles 9 has been described. However, the present invention is not limited to this, and the coating resin member may be made of a material other than the fluorescent particles. The present invention is also widely applicable to cases containing chromosomes other than phosphors and pigment particles.
[0035]
【The invention's effect】
As described above, according to the present invention, a pastel LED having one blue LED element and a coated resin member containing the chromosome such as a fluorescent substance such as a fluorescent particle and a pigment particle by coating the blue LED element is a blue LED. Irrespective of the variation in the emission wavelength of the element, the blue LED element in the entire wavelength range can be used for white or neutral pastel LED, and waste can be eliminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a pastel LED according to a first embodiment of the present invention.
FIG. 2 is an enlarged view showing a main part of the pastel LED shown in FIG.
FIG. 3 is a view showing a method of surface mounting the pastel LED shown in FIG. 1;
FIG. 4 is a chromaticity diagram showing chromaticity of light emission of the pastel LED shown in FIG.
FIG. 5 is a diagram showing a light emission spectrum and the like of the pastel LED shown in FIG. 1;
FIG. 6 is a chromaticity diagram showing a chromaticity correction method when the emission wavelength of the blue LED element is short in the pastel LED shown in FIG. 1;
FIG. 7 is a chromaticity diagram showing a chromaticity correction method when the emission wavelength of the blue LED element is a standard wavelength in the pastel LED shown in FIG. 1;
FIG. 8 is a chromaticity diagram showing a chromaticity correction method when the emission wavelength of the blue LED element is a long wavelength in the pastel LED shown in FIG. 1;
FIG. 9 is a chromaticity diagram illustrating a chromaticity region of an intermediate color of light emission of the pastel LED according to the present invention.
FIG. 10 is a diagram showing a configuration of a modified example of the pastel LED shown in FIGS. 1 and 2;
FIG. 11 is a diagram illustrating a configuration of a pastel LED according to a second embodiment of the present invention.
FIG. 12 is a diagram showing a configuration of a conventional pastel LED.
13 is a chromaticity diagram showing chromaticity of light emission of the pastel LED shown in FIG.
[Explanation of symbols]
1 substrate
2 Cathode electrode
3 Anode electrode
4 adhesive
5 Blue LED element
7 Coated resin member
8 Fluorescent particles
9 Dye particles
10 Resin base material
13 Element substrate
14 n-type semiconductor
15 p-type semiconductor
16 n-type electrode
17 p-type electrode
18, 19 Bonding wire
20, 30, 40 pastel LED
23 Through hole
27 Motherboard
28, 29 Printed wiring
31 Solder

Claims (5)

青色LED素子と、該青色LED素子を被覆する被覆樹脂部材を有し、該被覆樹脂部材が蛍光体および着色剤を含有するパステルLEDの作成方法において、前記青色LED素子を波長に応じて複数のランクに分類し、その波長のランクに対応してそれぞれ異なる配合条件により前記蛍光体および着色剤を前記被覆樹脂部材に含有させることにより、前記波長のランクに関係なく、所望の色度又はこれに近い色度に補正されたLEDを作成することを特徴とするパステルLEDの作成方法。A method of producing a pastel LED having a blue LED element and a coating resin member for coating the blue LED element, wherein the coating resin member contains a phosphor and a colorant; Classified into ranks, by including the phosphor and the colorant in the coating resin member under different blending conditions corresponding to the wavelength ranks, regardless of the wavelength ranks, the desired chromaticity or A method for producing a pastel LED, comprising producing an LED corrected to a near chromaticity. 多数の前記青色LED素子の波長を測定し、複数の波長のランクに分類する工程と、波長分類のランクに対応した配合条件により、前記蛍光体および着色剤を配合して前記被覆樹脂の材料を作成する工程と、波長分類のランクに対応した配合条件の前記被覆樹脂の材料により、青色LED素子を被覆する工程とを有することを特徴とする請求項1に記載のパステルLEDの作成方法。Measuring the wavelengths of a large number of the blue LED elements and classifying them into ranks of a plurality of wavelengths, according to the blending conditions corresponding to the ranks of the wavelength classifications, blending the phosphor and colorant to form a material for the coating resin. The method for producing a pastel LED according to claim 1, further comprising: a step of producing; and a step of covering a blue LED element with a material of the covering resin having a composition condition corresponding to a rank of a wavelength classification. 前記被覆樹脂の材料として、蛍光体のみを含有した第1の被覆樹脂材料と、着色剤のみを含有した第2の被覆樹脂材料とを作成し、前記青色LED素子を前記第1の被覆樹脂材料により被覆した後に、前記第2の被覆樹脂材料により被覆することを特徴とする請求項1又は請求項2に記載のパステルLEDの作成方法。As a material of the coating resin, a first coating resin material containing only a phosphor and a second coating resin material containing only a coloring agent are prepared, and the blue LED element is formed by the first coating resin material. 3. The method for producing a pastel LED according to claim 1, wherein after covering with the second covering resin material, the pastel LED is covered with the second covering resin material. 4. 前記青色LED素子の波長分類のランクは例えば略455nm〜465nmの第1のランク、略465nm〜475nmの第2のランク、および略475nm〜485nmの第3のランクに分類されてなることを特徴とする請求項1乃至請求項3のいずれかに記載のパステルLEDの作成方法。The wavelength classification rank of the blue LED element is, for example, classified into a first rank of about 455 nm to 465 nm, a second rank of about 465 nm to 475 nm, and a third rank of about 475 nm to 485 nm. The method for producing a pastel LED according to claim 1. 青色LED素子と、該青色LED素子を被覆する被覆樹脂部材を有し、該被覆樹脂部材が蛍光体および着色剤を含有するパステルLEDにおいて、前記青色LED素子を波長のランクに対応して、それぞれ異なる配合条件により前記被覆樹脂部材前記蛍光体および着色剤を前記被覆樹脂部材に含有させることにより、青色LED素子の波長のランクに関係なく、所望の色度又はこれに近い色度に色度補正されてなることを特徴とするパステルLED。A blue LED element, having a coating resin member that covers the blue LED element, in a pastel LED in which the coating resin member contains a phosphor and a colorant, the blue LED element corresponds to a wavelength rank, By including the coating resin member with the phosphor and the colorant under different mixing conditions, the chromaticity is corrected to a desired chromaticity or a chromaticity close to the desired chromaticity regardless of the wavelength rank of the blue LED element. A pastel LED characterized by being made.
JP2003045209A 2003-02-24 2003-02-24 Method for producing pastel LED Expired - Lifetime JP4592052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045209A JP4592052B2 (en) 2003-02-24 2003-02-24 Method for producing pastel LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045209A JP4592052B2 (en) 2003-02-24 2003-02-24 Method for producing pastel LED

Publications (2)

Publication Number Publication Date
JP2004253745A true JP2004253745A (en) 2004-09-09
JP4592052B2 JP4592052B2 (en) 2010-12-01

Family

ID=33027637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045209A Expired - Lifetime JP4592052B2 (en) 2003-02-24 2003-02-24 Method for producing pastel LED

Country Status (1)

Country Link
JP (1) JP4592052B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004775A1 (en) * 2005-07-04 2007-01-11 Seoul Semiconductor Co., Ltd. Light emitting diode and method of fabricating the same
JP2007129107A (en) * 2005-11-04 2007-05-24 Citizen Electronics Co Ltd Light-emitting diode and method for correcting chromaticity of the light-emitting diode
JP2007273887A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Illumination apparatus, and manufacturing method thereof
WO2010058961A3 (en) * 2008-11-21 2010-08-12 Lg Innotek Co., Ltd Light emitting apparatus and display apparatus using the same
KR20110056441A (en) * 2009-11-19 2011-05-30 엘지디스플레이 주식회사 Light emitting device and back light unit using the same
JP2011171557A (en) * 2010-02-19 2011-09-01 Toshiba Corp Light emitting device, method of manufacturing the same, and light emitting device manufacturing apparatus
US8038497B2 (en) * 2008-05-05 2011-10-18 Cree, Inc. Methods of fabricating light emitting devices by selective deposition of light conversion materials based on measured emission characteristics
JP2012009632A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting element package and light-emitting element package group with light-emitting element package
WO2012032691A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Led package manufacturing system
WO2012032693A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Resin applying device of led package manufacturing system
WO2012032694A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Resin application device in led package manufacturing system
WO2012032692A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Led-package manufacturing system
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
WO2012144337A1 (en) * 2011-04-20 2012-10-26 シャープ株式会社 Method for manufacturing light source and light source
WO2013038611A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 System and method for manufacturing light emitting element, and system and method for manufacturing light emitting element package
JP2016171255A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Light emission device and luminaire using the same
JP2022502834A (en) * 2018-11-14 2022-01-11 ジーエルビーテック カンパニー リミテッド White light source and luminaire limiting wavelengths below 450 nm

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004775A1 (en) * 2005-07-04 2007-01-11 Seoul Semiconductor Co., Ltd. Light emitting diode and method of fabricating the same
JP2008544568A (en) * 2005-07-04 2008-12-04 ソウル セミコンダクター カンパニー リミテッド Light emitting diode and manufacturing method thereof
US8809892B2 (en) 2005-07-04 2014-08-19 Seoul Semiconductor Co., Ltd. Light emitting diode and method of fabricating the same
US8058662B2 (en) 2005-07-04 2011-11-15 Seoul Semiconductor Co., Ltd. Light emitting diode and method of fabricating the same
JP2007129107A (en) * 2005-11-04 2007-05-24 Citizen Electronics Co Ltd Light-emitting diode and method for correcting chromaticity of the light-emitting diode
JP2007273887A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Illumination apparatus, and manufacturing method thereof
US8038497B2 (en) * 2008-05-05 2011-10-18 Cree, Inc. Methods of fabricating light emitting devices by selective deposition of light conversion materials based on measured emission characteristics
WO2010058961A3 (en) * 2008-11-21 2010-08-12 Lg Innotek Co., Ltd Light emitting apparatus and display apparatus using the same
KR101081246B1 (en) 2008-11-21 2011-11-08 엘지이노텍 주식회사 Light emitting apparatus and fabrication method thereof
CN102007612A (en) * 2008-11-21 2011-04-06 Lg伊诺特有限公司 Light emitting apparatus and display apparatus using the same
US8913213B2 (en) 2008-11-21 2014-12-16 Lg Innotek Co., Ltd. Light emitting apparatus and display apparatus using the same
KR20110056441A (en) * 2009-11-19 2011-05-30 엘지디스플레이 주식회사 Light emitting device and back light unit using the same
KR101630327B1 (en) * 2009-11-19 2016-06-15 엘지디스플레이 주식회사 Light emitting device and back light unit using the same
JP2011171557A (en) * 2010-02-19 2011-09-01 Toshiba Corp Light emitting device, method of manufacturing the same, and light emitting device manufacturing apparatus
JP2012009632A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting element package and light-emitting element package group with light-emitting element package
WO2012032693A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Resin applying device of led package manufacturing system
WO2012032692A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Led-package manufacturing system
WO2012032691A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Led package manufacturing system
JP2012059916A (en) * 2010-09-09 2012-03-22 Panasonic Corp Led package manufacturing system
JP2012059917A (en) * 2010-09-09 2012-03-22 Panasonic Corp Resin coating apparatus in led package manufacturing system
JP2012059918A (en) * 2010-09-09 2012-03-22 Panasonic Corp Resin coating apparatus in led package manufacturing system
US9324906B2 (en) 2010-09-09 2016-04-26 Panasonic Intellectual Property Management Co., Ltd. LED package manufacturing system
WO2012032694A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Resin application device in led package manufacturing system
JP2012059915A (en) * 2010-09-09 2012-03-22 Panasonic Corp Led package manufacturing system
JP2012227397A (en) * 2011-04-20 2012-11-15 Sharp Corp Light source manufacturing method and light source
WO2012144337A1 (en) * 2011-04-20 2012-10-26 シャープ株式会社 Method for manufacturing light source and light source
WO2013038611A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 System and method for manufacturing light emitting element, and system and method for manufacturing light emitting element package
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
JP2016171255A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Light emission device and luminaire using the same
JP2022502834A (en) * 2018-11-14 2022-01-11 ジーエルビーテック カンパニー リミテッド White light source and luminaire limiting wavelengths below 450 nm
JP7166438B2 (en) 2018-11-14 2022-11-07 ジーエルビーテック カンパニー リミテッド White light source and illuminator limiting wavelengths below 450 nm
US11569420B2 (en) 2018-11-14 2023-01-31 Glbtech Co., Ltd. White light source and illumination apparatus for lighting in lithography process

Also Published As

Publication number Publication date
JP4592052B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4592052B2 (en) Method for producing pastel LED
TWI455374B (en) White light emitting diode module
TWI237400B (en) Method for manufacturing a light emitting device
EP2068377B1 (en) Semiconductor light emitting device, backlight comprising the semiconductor light emitting device, and display device
CN100411202C (en) White light emitting diode
KR100946015B1 (en) White led device and light source module for lcd backlight using the same
JP5099418B2 (en) Lighting device
US6909234B2 (en) Package structure of a composite LED
US6922024B2 (en) LED lamp
JP2006173622A (en) Light-emitting diode flash module having improved light-emitting spectrum
US20080315217A1 (en) Semiconductor Light Source and Method of Producing Light of a Desired Color Point
JP2012004519A (en) Light emitting device and illumination device
JP2002111073A (en) Light-emitting diode
JP2008187195A (en) White led and white light source module using the same
JP5443959B2 (en) Lighting device
US20050127833A1 (en) White light LED and method to adjust the color output of same
US20110291123A1 (en) Method for producing a plurality of led illumination devices and a plurality of led chipsets for illumination devices, and led illumintation device
JPWO2010090289A1 (en) LED light emitting device
JP2008235458A (en) White light emitting device, backlight using same device, display using same device, and illuminating apparatus using same device
JP2015043469A (en) Light-emitting device
KR100649704B1 (en) Light emitting diode package and method for manufacturing the same
KR101195430B1 (en) White light emitting device and white light source module using the same
JP2004335579A (en) Light emitting device
JP3209193U (en) Optical semiconductor device
CN103728772A (en) Light-emitting diode encapsulation driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090519

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term