JP2004253278A - Conductive particulate and conductive connection structure - Google Patents

Conductive particulate and conductive connection structure Download PDF

Info

Publication number
JP2004253278A
JP2004253278A JP2003043114A JP2003043114A JP2004253278A JP 2004253278 A JP2004253278 A JP 2004253278A JP 2003043114 A JP2003043114 A JP 2003043114A JP 2003043114 A JP2003043114 A JP 2003043114A JP 2004253278 A JP2004253278 A JP 2004253278A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
layer
resin
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043114A
Other languages
Japanese (ja)
Inventor
Masami Okuda
正己 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003043114A priority Critical patent/JP2004253278A/en
Publication of JP2004253278A publication Critical patent/JP2004253278A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive particulates and a conductive connection structural body with high connection reliability wherein stress generated at a connection part between electrodes of an electric circuit due to a change in temperature or the like is moderated. <P>SOLUTION: The conductive particulate is formed such that, as for the surface of a substrate particulate 4 composed of resin, an outermost layer is covered by one or more metallic layers which is a solder layer 7. The conductive particulates in which numerous resin particulates 8 with smaller particulate diameters than the substrate particulate are adhered to the solder layer, and preferably the conductive particulates in which the surface of the resin particulate is covered by one or more metal layers, more preferably the conductive particulates in which the surface of the resin particulate is covered by one or more metal layers of which the outermost layer is the solder layer, and the conductive connection structural body connected by the conductive particulates, are provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気回路の2つ以上の電極を接続するのに好適に使用され、接続信頼性を向上することができる導電性微粒子及びそれを用いてなる導電接続構造体に関する。
【0002】
【従来の技術】
従来、電気回路の電極の接続として例えば、半導体パッケージとこれを搭載する配線基板の電極間等の接続には、BGA(ボールグリッドアレイ)と呼ばれるハンダを球状にした、いわゆるハンダボールで接続する方法が開発された。しかしながら、ハンダボールによる接続では、温度変化による半導体パッケージと配線基板間の線膨張係数の違いにより、ハンダボール部に応力が発生し、ハンダボールに亀裂が入り導通不良を起こすという問題があった。
【0003】
この応力を緩和し接続信頼性を向上するため、最外層がハンダ層で内部が樹脂からなる構造の導電性微粒子が提案されている(例えば、特許文献1参照。)。
しかしながら、この構造の導電性微粒子でも接続信頼性が十分でない場合があった。
【0004】
【特許文献1】
特開平5−36306号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、温度変化等により電気回路の電極間の接続部に発生する応力を緩和し、高い接続信頼性を持つ導電性微粒子及び導電接続構造体を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の発明は、樹脂からなる基材微粒子の表面が最外層はハンダ層である1層以上の金属層に覆われてなる導電性微粒子であって、前記ハンダ層に前記基材微粒子の粒径より小さい多数の樹脂微小粒子が付着されてなる導電性微粒子を提供する。
【0007】
また、請求項2記載の発明は、さらに、樹脂微小粒子の表面が1層以上の金属層に覆われてなる請求項1記載の導電性微粒子を提供する。
【0008】
また、請求項3記載の発明は、さらに、樹脂微小粒子の表面が最外層はハンダ層である1層以上の金属層に覆われてなる請求項1記載の導電性微粒子を提供する。
【0009】
また、請求項4記載の発明は、請求項1〜3のいずれか1項に記載の導電性微粒子により接続されてなる導電接続構造体を提供する。
【0010】
以下、本発明の詳細を説明する。
本発明の導電性微粒子は、樹脂からなる基材微粒子の表面が最外層はハンダ層である1層以上の金属層に覆われてなるものである。
上記基材微粒子を構成する樹脂としては特に限定されず、例えば、ジビニルベンゼン重合体、ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体等のジビニルベンゼン系重合体;フェノール樹脂、アミノ樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又は非架橋型合成樹脂;有機−無機ハイブリッド重合体等が挙げられ、なかでも、ジビニルベンゼン系重合体が好ましい。
これらは単独で用いられてもよく、2種類以上が併用されてもよい。
【0011】
本発明の導電性微粒子の金属層は、最外層がハンダ層である。ハンダ層は、リフローにより電極間の接合を行うためのもので、膜厚は、基材微粒子の粒径の0.1〜10%が好ましい。0.1%未満であると、電極間の接合が不完全となり、10%を超えると、他の端子とショートする恐れがある。なお、リフローとはハンダを溶融するまで加熱し、次いで冷却固化させる一連の工程を意味する。
【0012】
本発明の導電性微粒子の表面に金属層を覆う方法としては特に限定されず、例えば、無電解メッキによる方法、金属微粉を単独又はバインダーに混ぜ合わせて得られるペーストを基材微粒子にコーティングする方法;真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着方法等が挙げられる。
【0013】
本発明の導電性微粒子の粒径としては特に限定されないが、1〜1000μmであることが好ましい。1μm未満であると、金属層を形成する際に凝集しやすく、単粒子としにくくなることがあり、1000μmを超えると、金属層がひび割れを起こして、基材微粒子から剥離し易くなることがある。
【0014】
本発明の導電性微粒子は、前記ハンダ層に前記基材微粒子の粒径より小さい多数の樹脂微小粒子が付着されてなるものである。
上記樹脂微小粒子を構成する樹脂としては特に限定されず、例えば、ジビニルベンゼン重合体、ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体、フェノール樹脂、アミノ樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又は非架橋型合成樹脂;有機−無機ハイブリッド重合体等が挙げられる。
これらは単独で用いられてもよく、2種類以上が併用されてもよい。
【0015】
本発明における樹脂微小粒子の粒径は、前記基材微粒子の粒径より小さいことが必要であり、基材微粒子の粒径の0.1〜30%であることが好ましく、1〜10%であることがより好ましい。0.1%未満であると、応力緩和効果が得られないことがあり、30%を越えると、周囲の電極とショートすることがある。
【0016】
本発明における樹脂微小粒子を基材微粒子のハンダ層に付着させる方法としては特に限定されず、例えば、ハンダ層にフラックスを塗布後、樹脂微小粒子の入った容器に入れ振り混ぜ付着させる方法、ハンダ層にフラックスを噴霧した後、樹脂微小粒子を散布し付着させる方法、樹脂微小粒子をフラックスに分散しハンダ層に塗布する方法等が挙げられる。なお、フラックスとは一般に、ハンダ付けする部材表面の酸化膜を除去しハンダのぬれを良好にするために用いられる組成物をいい、樹脂微小粒子を付着させるのに利用することができる。
【0017】
本発明における樹脂微小粒子は、導電性微粒子のリフローの際ハンダ内への分散性が良くなるために、表面が1層以上の金属層に覆われていることが好ましい。
上記金属層を構成する金属としては特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素、錫−鉛合金(ハンダ)、錫−銅合金、錫−銀合金等が挙げられ、なかでも、ニッケル、銅、金、ハンダ、錫−銅合金、錫−銀合金が好ましい。
また、最外層は、導電性微粒子のリフローの際ハンダ内への分散性がさらに良くなるために、ハンダ層であることが好ましい。
【0018】
上記樹脂微小粒子の表面を金属層で覆う方法としては特に限定されず、例えば、無電解メッキによる方法、金属微粉を単独又はバインダーに混ぜ合わせて得られるペーストを樹脂微小粒子にコーティングする方法;真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着方法等が挙げられる。
【0019】
本発明の導電性微粒子は、例えば、半導体チップの電極と配線基板の電極や半導体パッケージの電極と配線基板の電極等の、電気配線基板や各種電気部品の電極間の接合に広く用いられ、これらが電気的に接続されて、本発明の導電接続構造体として供される。本発明の導電性微粒子により接続されてなる導電接続構造体もまた、本発明の1つである。
【0020】
本発明の導電接続構造体は、例えば、基板上に形成された電極の上に本発明の導電性微粒子を置き、加熱溶融することで電極上に固定し、その後、もう一方の基板を電極が対向するように置き加熱溶融することによって両基板が接合されてなるものである。
【0021】
(作用)
このように、本発明の導電性微粒子は、樹脂からなる基材微粒子の表面に最外層がハンダ層である1層以上の金属層を形成した導電性微粒子最外層に粒径がより小さな、樹脂からなる微粒子(樹脂微小粒子)を多数付着させることにより、上記導電性微粒子を用いて例えば、半導体パッケージと配線基板間を接続する際に、溶融したハンダの内部にも樹脂微小粒子が分散し、温度変化等で発生する応力を緩和する効果が得られ、接続信頼性が向上すると考えられる。
【0022】
さらに、樹脂微小粒子の表面が1層以上の金属層で覆われたものを用いることによって、ハンダ溶融時にハンダ内への分散性が向上し、また、上記金属層の最外層をハンダ層とすることでハンダ溶融時のハンダ内への分散性はさらに良くなると考えられる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1に示した導電性微粒子においては、基材微粒子4の表面は、最外層がハンダ層7でありその内側に銅層6、更にその内側にニッケル層5が設けられてなる三層構成の金属層によって覆われており、ハンダ層7には、基材微粒子4より粒径の小さい樹脂微小粒子8が多数付着されて構成されている。
【0024】
また、図2に示した導電性微粒子は、樹脂微小粒子8の替わりに、表面が金属層に覆われている樹脂微小粒子9が用いられている点を除いて、図1の導電性微粒子と同様の構成となされている。図3は表面が金属層に覆われている樹脂微小粒子9の拡大図であり、本形態では、樹脂微小粒子8の表面が、最外層がハンダ層12であり、その内側に銅層11、更にその内側にニッケル層10が設けられてなる三層構成の金属層によって覆われている。
なお、この金属層は必ずしも三層構成とする必要はなく、ニッケル層10及び銅層11の二層構成でもよく、他の組み合わせの二層構成でもよく、また、ハンダ層等の単層からなるものであってもよい。
【0025】
また、図4は半導体パッケージと配線基板間を本発明の導電性微粒子で接続した模式的断面図であり、半導体パッケージ1と配線基板2とが、電極端子3、3を介して、基材微粒子4の表面が、5、6及び7の三層構成からなる金属層に覆われてなる導電性微粒子によって接合されており、金属層、特にハンダ層には樹脂微小粒子8が分散している状態が明示されている。
【0026】
【実施例】
以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。
【0027】
(実施例1)
ジビニルベンゼンとスチレンとを共重合させた粒径760μmの樹脂基材微粒子の表面に無電解ニッケルメッキを行い、厚みが0.3μmのニッケル層を作製した。さらにニッケル層の表面に銅メッキ、ハンダメッキをそれぞれ行い、6μmの銅層、14μmのハンダ層を作製し、粒径800μmの最外層がハンダ層である導電性微粒子を得た。
【0028】
一方、上記導電性微粒子に付着させる樹脂微小粒子として、ジビニルベンゼンとテトラメチロールメタンテトラアクリレートとを共重合させた粒径30μmの樹脂微小粒子を作製した。
次に、粒径800μmの導電性微粒子にフラックスを塗布した後、粒径30μmの樹脂微小粒子の入った容器に入れ振り混ぜて粒径800μmの導電性微粒子の周囲に樹脂微小粒子を付着させた。
なお、樹脂微小粒子を付着させた導電性微粒子の断面は上述の如く図1に模式的に示す通りであった。
【0029】
上記のようにして作製した導電性微粒子をφ640μmの電極端子を81個持つ試験用基板に搭載し、リフローにより接合した。さらに各電極端子に対応する位置に電極端子を持つ配線基板に試験用基板を搭載し、リフローにより接合した。81個の電極端子はデージーチェーン(電気的に1つながりとなる接続)になっており1個所でも導通不良が起これば検出できるように構成されている。
上記の試験用基板20枚で−25〜+125℃(30分1サイクル)の温度サイクル試験を行った結果、1500サイクルまで導通不良の発生はなかった。
【0030】
(実施例2)
実施例1の樹脂微小粒子の替わりに、表面をニッケル層0.3μm、及び銅層2μmで覆った樹脂微小粒子を用いた以外は実施例1と同様にして導電性微粒子を作製した。
上記導電性微粒子を用いて実施例1と同様にして試験用基板を20枚作製し、温度サイクル試験を行った結果、1500サイクルまで導通不良の発生はなかった。
【0031】
(実施例3)
実施例1の樹脂微小粒子の替わりに、表面をニッケル層0.3μm、銅層2μm並びに、錫63%及び鉛37%からなるハンダ層の三層構成の金属層で覆った樹脂微小粒子を用いた以外は、実施例1と同様にして導電性微粒子を作製した。
なお、表面が三層構成の金属層に覆われている樹脂微小粒子の断面は上述の如く図3に模式的に示す通りであった。
上記導電性微粒子を用いて実施例1と同様にして試験用基板を20枚作製し、温度サイクル試験を行った結果、1500サイクルまで導通不良の発生はなかった。
【0032】
(比較例1)
通常のハンダボール(ボール全てが錫63%及び鉛37%で構成)を用いて実施例1と同様にして試験用基板を20枚作製し、温度サイクル試験を行った結果、1000サイクルまでに全ての基板で導通不良が発生した。
【0033】
(比較例2)
実施例1で作製した粒径800μmの導電性微粒子(表面に樹脂微小粒子を付着させないもの)を用いて実施例1と同様にして試験用基板を20枚作製し、温度サイクル試験を行った結果、1500サイクルで試験用基板5枚で導通不良が発生した。
【0034】
以上のように、実施例では全て1500サイクルまで導通不良の発生はなく、良好であった。
【0035】
【発明の効果】
本発明の導電性微粒子は、上述の構成からなるので、温度変化等により電気回路の電極間の接続部に発生する応力を緩和し、高い接続信頼性を持つ導電接続構造体を提供することができる。
また、本発明の導電接続構造体は、本発明の導電性微粒子を用いてなるので、温度変化等により電気回路の電極間の接続部に発生する応力を緩和し、高い接続信頼性を持つ。
【図面の簡単な説明】
【図1】本発明の導電性微粒子の一実施例で、樹脂微小粒子を付着させた導電性微粒子の断面の模式図。
【図2】本発明の導電性微粒子の他の実施例で、表面が金属層により覆われている樹脂微小粒子を付着させた導電性微粒子の断面の模式図。
【図3】表面が三層構成の金属層で覆われている樹脂微小粒子の断面の模式図。
【図4】半導体パッケージと配線基板間を本発明の導電性微粒子で接続した断面の模式図。
【符号の説明】
1 半導体パッケージ
2 配線基板
3 電極端子
4 基材微粒子
5 基材微粒子表面を覆っているニッケル層
6 ニッケル層表面を覆っている銅層
7 銅層表面を覆っているハンダ層
8 樹脂微小粒子
9 表面が金属層に覆われている樹脂微小粒子
10 樹脂微小粒子表面を覆っているニッケル層
11 ニッケル層表面を覆っている銅層
12 銅層表面を覆っているハンダ層
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to conductive fine particles which are suitably used for connecting two or more electrodes of an electric circuit and can improve connection reliability, and a conductive connection structure using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of connecting electrodes of an electric circuit, for example, a method of connecting between a semiconductor package and an electrode of a wiring board on which the semiconductor package is mounted by a so-called solder ball in which a solder called a BGA (ball grid array) is made spherical. Was developed. However, in connection using solder balls, there has been a problem in that stress is generated in the solder balls due to a difference in linear expansion coefficient between the semiconductor package and the wiring board due to a change in temperature, and the solder balls are cracked to cause conduction failure.
[0003]
In order to alleviate this stress and improve connection reliability, conductive fine particles having a structure in which the outermost layer is a solder layer and the inside is made of a resin have been proposed (for example, see Patent Document 1).
However, the connection reliability may not be sufficient even with the conductive fine particles having this structure.
[0004]
[Patent Document 1]
JP-A-5-36306
[Problems to be solved by the invention]
In view of the above situation, an object of the present invention is to provide a conductive fine particle and a conductive connection structure which relieve a stress generated at a connection portion between electrodes of an electric circuit due to a temperature change or the like and have high connection reliability. I do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a conductive fine particle in which the surface of a base fine particle made of a resin is covered with one or more metal layers whose outermost layer is a solder layer, The present invention provides conductive fine particles in which a number of resin fine particles smaller than the particle diameter of the base fine particles are attached to a solder layer.
[0007]
Further, the invention according to claim 2 further provides the conductive fine particles according to claim 1, wherein the surface of the resin fine particles is covered with one or more metal layers.
[0008]
The invention according to claim 3 further provides the conductive fine particles according to claim 1, wherein the surface of the resin fine particles is covered with at least one metal layer whose outermost layer is a solder layer.
[0009]
According to a fourth aspect of the present invention, there is provided a conductive connection structure connected by the conductive fine particles according to any one of the first to third aspects.
[0010]
Hereinafter, details of the present invention will be described.
The conductive fine particles of the present invention are those in which the surface of the base fine particles made of resin is covered with one or more metal layers whose outermost layer is a solder layer.
The resin constituting the base fine particles is not particularly limited, for example, divinylbenzene polymers, divinylbenzene-based polymers such as divinylbenzene-styrene copolymer, divinylbenzene-acrylate copolymer; phenolic resin, Amino resins, acrylic resins, polyester resins, urea resins, melamine resins, alkyd resins, polyimide resins, urethane resins, crosslinked or non-crosslinked synthetic resins such as epoxy resins; organic-inorganic hybrid polymers and the like, among which And a divinylbenzene polymer.
These may be used alone or in combination of two or more.
[0011]
The outermost layer of the metal layer of the conductive fine particles of the present invention is a solder layer. The solder layer is for joining the electrodes by reflow, and the thickness is preferably 0.1 to 10% of the particle diameter of the base fine particles. If it is less than 0.1%, the bonding between the electrodes is incomplete, and if it exceeds 10%, there is a risk of short-circuiting with other terminals. Note that reflow means a series of steps of heating the solder until it is melted, and then cooling and solidifying the solder.
[0012]
The method for covering the metal layer on the surface of the conductive fine particles of the present invention is not particularly limited. For example, a method by electroless plating, a method of coating a base fine particle with a paste obtained by mixing metal fine powder alone or in a binder. Physical vapor deposition methods such as vacuum deposition, ion plating, and ion sputtering.
[0013]
The particle size of the conductive fine particles of the present invention is not particularly limited, but is preferably 1 to 1000 μm. When the thickness is less than 1 μm, the metal layer is likely to be agglomerated when forming the metal layer, and may not be easily formed into a single particle. .
[0014]
The conductive fine particles of the present invention are obtained by adhering a large number of resin fine particles smaller than the particle diameter of the base fine particles to the solder layer.
The resin constituting the resin fine particles is not particularly limited, for example, divinylbenzene polymer, divinylbenzene-styrene copolymer, divinylbenzene-acrylate copolymer, phenol resin, amino resin, acrylic resin, polyester Crosslinkable or non-crosslinkable synthetic resins such as resins, urea resins, melamine resins, alkyd resins, polyimide resins, urethane resins, and epoxy resins; and organic-inorganic hybrid polymers.
These may be used alone or in combination of two or more.
[0015]
The particle size of the resin fine particles in the present invention needs to be smaller than the particle size of the base fine particles, and is preferably 0.1 to 30% of the particle size of the base fine particles, preferably 1 to 10%. More preferably, there is. If it is less than 0.1%, a stress relaxation effect may not be obtained, and if it exceeds 30%, a short circuit may occur with surrounding electrodes.
[0016]
The method for adhering the resin microparticles to the solder layer of the base microparticles in the present invention is not particularly limited. For example, a method of applying a flux to the solder layer, placing the flux in a container containing the resin microparticles, shaking and adhering, After the flux is sprayed on the layer, a method of spraying and adhering the resin fine particles, a method of dispersing the resin fine particles in the flux and applying it to the solder layer, and the like can be mentioned. The flux generally refers to a composition used for removing an oxide film on the surface of a member to be soldered and improving the wetting of the solder, and can be used for attaching resin fine particles.
[0017]
It is preferable that the surface of the resin fine particles in the present invention is covered with one or more metal layers in order to improve the dispersibility of the conductive fine particles in the solder during reflow.
The metal constituting the metal layer is not particularly limited, for example, gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, Cadmium, silicon, a tin-lead alloy (solder), a tin-copper alloy, a tin-silver alloy, and the like are mentioned, and among them, nickel, copper, gold, solder, a tin-copper alloy, and a tin-silver alloy are preferable.
Further, the outermost layer is preferably a solder layer in order to further improve the dispersibility of the conductive fine particles in the solder during reflow.
[0018]
The method for covering the surface of the resin fine particles with a metal layer is not particularly limited, and examples thereof include a method by electroless plating, and a method of coating a resin fine particle with a paste obtained by mixing metal fine powder alone or in a binder; vacuum Physical vapor deposition methods such as vapor deposition, ion plating, and ion sputtering are exemplified.
[0019]
The conductive fine particles of the present invention are widely used for bonding between electrodes of electric wiring boards and various electric components, for example, electrodes of semiconductor chips and electrodes of wiring boards and electrodes of semiconductor packages and electrodes of wiring boards. Are electrically connected to provide a conductive connection structure of the present invention. A conductive connection structure connected by the conductive fine particles of the present invention is also one of the present invention.
[0020]
The conductive connection structure of the present invention is, for example, placing the conductive fine particles of the present invention on an electrode formed on a substrate, fixing the conductive fine particles on the electrode by heating and melting, and thereafter, the electrode is connected to the other substrate. The two substrates are joined by placing them facing each other and melting them by heating.
[0021]
(Action)
As described above, the conductive fine particles of the present invention have a smaller particle diameter than the conductive fine particle outermost layer in which one or more metal layers in which the outermost layer is a solder layer are formed on the surface of the base fine particles made of resin. By attaching a large number of fine particles (resin fine particles) made of, for example, when connecting the semiconductor package and the wiring board using the conductive fine particles, the resin fine particles are dispersed inside the molten solder, It is considered that the effect of alleviating the stress generated by a temperature change or the like is obtained, and the connection reliability is improved.
[0022]
Furthermore, by using a resin fine particle whose surface is covered with one or more metal layers, dispersibility in the solder at the time of solder melting is improved, and the outermost layer of the metal layer is used as a solder layer. It is considered that the dispersibility in the solder during the melting of the solder is further improved.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the conductive fine particle shown in FIG. 1, the surface of the base fine particle 4 has a three-layer structure in which the outermost layer is a solder layer 7, a copper layer 6 is provided inside the solder layer 7, and a nickel layer 5 is provided further inside. The resin layer is covered with a metal layer, and the solder layer 7 is formed by adhering a large number of resin fine particles 8 having a smaller particle diameter than the base fine particles 4.
[0024]
The conductive fine particles shown in FIG. 2 are the same as the conductive fine particles shown in FIG. 1 except that resin fine particles 9 whose surface is covered with a metal layer are used instead of the resin fine particles 8. It has the same configuration. FIG. 3 is an enlarged view of the resin microparticles 9 whose surface is covered with a metal layer. In the present embodiment, the surface of the resin microparticles 8 has a solder layer 12 as an outermost layer, and a copper layer 11 inside thereof. It is further covered with a three-layered metal layer having a nickel layer 10 provided inside.
The metal layer does not necessarily have to have a three-layer structure, but may have a two-layer structure of the nickel layer 10 and the copper layer 11 or a two-layer structure of another combination, or may have a single layer such as a solder layer. It may be something.
[0025]
FIG. 4 is a schematic cross-sectional view in which the semiconductor package and the wiring board are connected with the conductive fine particles of the present invention. The surface of No. 4 is joined by conductive fine particles covered with a metal layer having a three-layer structure of 5, 6 and 7, and the resin fine particles 8 are dispersed in the metal layer, especially in the solder layer. Is specified.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Note that the present invention is not limited to the following examples.
[0027]
(Example 1)
Electroless nickel plating was performed on the surface of a resin base fine particle having a particle diameter of 760 μm obtained by copolymerizing divinylbenzene and styrene, thereby producing a nickel layer having a thickness of 0.3 μm. Further, copper plating and solder plating were performed on the surface of the nickel layer to prepare a 6 μm copper layer and a 14 μm solder layer, and conductive fine particles having an outermost layer having a particle diameter of 800 μm were obtained.
[0028]
On the other hand, as resin fine particles to be attached to the conductive fine particles, resin fine particles having a particle diameter of 30 μm obtained by copolymerizing divinylbenzene and tetramethylolmethanetetraacrylate were prepared.
Next, after applying a flux to the conductive fine particles having a particle diameter of 800 μm, the mixture was placed in a container containing resin fine particles having a particle diameter of 30 μm and shaken to adhere the resin fine particles around the conductive fine particles having a particle diameter of 800 μm. .
The cross section of the conductive fine particles to which the resin fine particles were adhered was as schematically shown in FIG. 1 as described above.
[0029]
The conductive fine particles produced as described above were mounted on a test substrate having 81 φ640 μm electrode terminals, and joined by reflow. Further, the test substrate was mounted on a wiring substrate having electrode terminals at positions corresponding to the respective electrode terminals, and joined by reflow. The 81 electrode terminals are daisy-chained (connections that make one electrical connection), and are configured to be able to detect if a conduction failure occurs even at one location.
As a result of performing a temperature cycle test at −25 to + 125 ° C. (1 cycle for 30 minutes) on the 20 test substrates, no conduction failure occurred up to 1500 cycles.
[0030]
(Example 2)
Conductive fine particles were produced in the same manner as in Example 1 except that resin fine particles having a surface covered with a nickel layer of 0.3 μm and a copper layer of 2 μm were used instead of the resin fine particles of Example 1.
Using the above conductive fine particles, 20 test substrates were prepared in the same manner as in Example 1, and a temperature cycle test was performed. As a result, no conduction failure occurred up to 1500 cycles.
[0031]
(Example 3)
Instead of the resin microparticles of Example 1, resin microparticles whose surfaces are covered with a three-layer metal layer of a nickel layer 0.3 μm, a copper layer 2 μm, and a solder layer composed of 63% tin and 37% lead are used. Except for this, conductive fine particles were produced in the same manner as in Example 1.
The cross section of the resin fine particles whose surface is covered with the three-layered metal layer was as schematically shown in FIG. 3 as described above.
Using the above conductive fine particles, 20 test substrates were prepared in the same manner as in Example 1, and a temperature cycle test was performed. As a result, no conduction failure occurred up to 1500 cycles.
[0032]
(Comparative Example 1)
Using a normal solder ball (all balls are composed of 63% tin and 37% lead), 20 test substrates were prepared in the same manner as in Example 1, and a temperature cycle test was performed. A conduction failure occurred on the substrate.
[0033]
(Comparative Example 2)
20 test substrates were prepared in the same manner as in Example 1 by using the conductive fine particles having a particle diameter of 800 μm (without resin fine particles adhered to the surface) prepared in Example 1, and a temperature cycle test was performed. In 1,500 cycles, conduction failure occurred on five test substrates.
[0034]
As described above, in all of the examples, the conduction failure did not occur up to 1500 cycles and was good.
[0035]
【The invention's effect】
Since the conductive fine particles of the present invention have the above-described configuration, it is possible to provide a conductive connection structure having high connection reliability by relieving stress generated in a connection portion between electrodes of an electric circuit due to a temperature change or the like. it can.
In addition, since the conductive connection structure of the present invention uses the conductive fine particles of the present invention, the stress generated at the connection between the electrodes of the electric circuit due to a temperature change or the like is reduced, and the connection reliability is high.
[Brief description of the drawings]
FIG. 1 is a schematic view of a cross section of conductive fine particles having resin fine particles adhered thereto in one embodiment of the conductive fine particles of the present invention.
FIG. 2 is a schematic diagram of a cross section of a conductive fine particle to which resin fine particles whose surface is covered with a metal layer are adhered in another embodiment of the conductive fine particle of the present invention.
FIG. 3 is a schematic diagram of a cross section of a resin fine particle whose surface is covered with a three-layer metal layer.
FIG. 4 is a schematic diagram of a cross section in which a semiconductor package and a wiring board are connected with the conductive fine particles of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor package 2 Wiring board 3 Electrode terminal 4 Base particle 5 Nickel layer covering base particle surface 6 Copper layer covering nickel layer surface 7 Solder layer covering copper layer surface 8 Resin fine particle 9 Surface Resin microparticles covered with a metal layer 10 Nickel layer covering the surface of resin microparticles 11 Copper layer covering the nickel layer surface 12 Solder layer covering the copper layer surface

Claims (4)

樹脂からなる基材微粒子の表面が最外層はハンダ層である1層以上の金属層に覆われてなる導電性微粒子であって、前記ハンダ層に前記基材微粒子の粒径より小さい多数の樹脂微小粒子が付着されてなることを特徴とする導電性微粒子。The outermost layer of the base fine particles made of resin is conductive fine particles covered with one or more metal layers that are solder layers, and the solder layer has a large number of resin particles smaller than the particle size of the base fine particles. Conductive fine particles to which fine particles are attached. 樹脂微小粒子の表面が1層以上の金属層に覆われてなることを特徴とする請求項1記載の導電性微粒子。2. The conductive fine particles according to claim 1, wherein the surface of the resin fine particles is covered with one or more metal layers. 樹脂微小粒子の表面が最外層はハンダ層である1層以上の金属層に覆われてなることを特徴とする請求項1記載の導電性微粒子。The conductive fine particles according to claim 1, wherein the surface of the resin fine particles is covered with at least one metal layer whose outermost layer is a solder layer. 請求項1〜3のいずれか1項に記載の導電性微粒子により接続されてなることを特徴とする導電接続構造体。A conductive connection structure which is connected by the conductive fine particles according to claim 1.
JP2003043114A 2003-02-20 2003-02-20 Conductive particulate and conductive connection structure Pending JP2004253278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043114A JP2004253278A (en) 2003-02-20 2003-02-20 Conductive particulate and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043114A JP2004253278A (en) 2003-02-20 2003-02-20 Conductive particulate and conductive connection structure

Publications (1)

Publication Number Publication Date
JP2004253278A true JP2004253278A (en) 2004-09-09

Family

ID=33026204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043114A Pending JP2004253278A (en) 2003-02-20 2003-02-20 Conductive particulate and conductive connection structure

Country Status (1)

Country Link
JP (1) JP2004253278A (en)

Similar Documents

Publication Publication Date Title
JP2769491B2 (en) Electrical equipment
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
US7902060B2 (en) Attachment using magnetic particle based solder composites
US8939347B2 (en) Magnetic intermetallic compound interconnect
KR101402508B1 (en) Electrically conductive particle, anisotropic conductive connection material, and method for production of electrically conductive particle
JPH09266230A (en) Semiconductor device
CN101090610A (en) Process for producing multilayer board
TW200913095A (en) Integrated circuit packages, methods of forming integrated circuit packages, and methods of assembling integrated circuit packages
JP4661122B2 (en) Component mounting wiring board and mounting method of components on wiring board
TW200808143A (en) PCB electrical connection terminal structure and manufacturing method thereof
JP2008060287A (en) Terminal electrode and electronic part
KR101979078B1 (en) Anisotropic conductive film using solder coated metal conducting particles
JP2004273401A (en) Electrode connecting member, circuit module using it and manufacturing method therefor
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
US9847308B2 (en) Magnetic intermetallic compound interconnect
JP5560713B2 (en) Electronic component mounting method, etc.
CN212954989U (en) Conductive adhesive
TW201225209A (en) Semiconductor device and method of confining conductive bump material with solder mask patch
JP2004253278A (en) Conductive particulate and conductive connection structure
TW200929479A (en) Packaging substrate and method for menufacturing the same
JP2003068145A (en) Conductive fine particle and conductive connection structure
JPH09306231A (en) Conductive particulate and substrate
JPH10209591A (en) Wiring board
JP2004260094A (en) Conductive fine particle and conductive connection structure
JP2005317270A (en) Conductive fine particulate and conductive connection structure