JP2004251172A - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
JP2004251172A
JP2004251172A JP2003041326A JP2003041326A JP2004251172A JP 2004251172 A JP2004251172 A JP 2004251172A JP 2003041326 A JP2003041326 A JP 2003041326A JP 2003041326 A JP2003041326 A JP 2003041326A JP 2004251172 A JP2004251172 A JP 2004251172A
Authority
JP
Japan
Prior art keywords
temperature
nox catalyst
poisoning
poisoning recovery
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041326A
Other languages
English (en)
Other versions
JP4385617B2 (ja
Inventor
Daisuke Shibata
大介 柴田
Hisashi Oki
久 大木
Masaaki Yamaguchi
正晃 山口
Masaaki Kobayashi
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003041326A priority Critical patent/JP4385617B2/ja
Publication of JP2004251172A publication Critical patent/JP2004251172A/ja
Application granted granted Critical
Publication of JP4385617B2 publication Critical patent/JP4385617B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】内燃機関の排気浄化システムにおいて、S被毒回復の途中で処理が中断された場合に、その後のS被毒回復処理において還元剤の消費量を抑制しつつ速やかにS被毒を回復させる技術を提供する。
【解決手段】NOx触媒と、還元剤供給手段と、NOx触媒の昇温手段と、S被毒回復手段と、を備えた内燃機関の排気浄化システムであって、S被毒の回復途中で処理が中断された後にS被毒の回復を再度行う場合には、S被毒回復開始時の目標となるNOx触媒の温度及びNOx触媒に導入される還元剤濃度若しくは酸素濃度を、処理が中断された前回のS被毒回復の処理の履歴から決定する。
【選択図】図3

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化システムに関する。
【0002】
【従来の技術】
吸蔵還元型NOx触媒を内燃機関の排気系に配置し、還元雰囲気のときに排気中の窒素酸化物(NOx)を吸蔵(吸着、吸収でも良い。)し、酸化雰囲気となったときは吸蔵還元型NOx触媒に吸蔵されていたNOxを還元して排気中のNOxを浄化する技術が知られている。また、同じメカニズムで吸蔵された硫黄成分による被毒を回復する技術が知られている。
【0003】
一方、排気中に含まれる浮遊粒子状物質である煤に代表されるパティキュレートマター(Particulate Matter:以下特に断らない限り「PM」という。)が大気中に放出されないように、ディーゼルエンジンの排気系にPMの捕獲を行うパティキュレートフィルタ(以下、単に「フィルタ」とする)を設ける技術が知られている。
【0004】
しかし、フィルタに捕獲されたPMが該フィルタに堆積しフィルタの目詰まりを発生させることがある。この目詰まりが発生すると、フィルタ上流の排気の圧力が上昇し内燃機関の出力低下やフィルタの毀損を誘発する虞がある。このようなときには、フィルタ上に堆積したPMを酸化せしめることにより該PMを除去することができる。このようにフィルタに堆積したPMを除去することをフィルタの再生という。
【0005】
このS被毒の回復を行う技術、若しくはフィルタの再生を行う技術として例えば、硫黄成分の吸蔵量を推定し、この量が所定量に達したときに、NOx触媒にて燃料を酸化させて該触媒の温度を上昇させ、S被毒を回復する技術(例えば、特許文献1参照)、バッテリが外された後に再接続された場合には、所定期間経過後にS被毒回復を行う技術(例えば、特許文献2参照)、フィルタの再生中に機関が停止された場合には、再生開始時から機関停止までの時間に応じて次回フィルタ再生の判定値を設ける技術(例えば、特許文献3参照)が知られている。
【0006】
【特許文献1】
特開平8−61052号公報(第6−14頁、図6)
【特許文献2】
特開平11−229848号公報(第3−6頁、図5)
【特許文献3】
特開平5−222917号公報(第3−6頁、図6)
【0007】
【発明が解決しようとする課題】
ところで、NOx触媒を高温にしてS被毒回復を行うと、NOx触媒に堆積しているPMが酸化され、このときに発生する熱でNOx触媒が過熱する虞がある。これを抑制するために、S被毒回復を行う温度よりも低い温度で一旦PMを酸化させ、その後にS被毒回復を行うことがある。
【0008】
この途中で内燃機関が停止され、若しくは内燃機関の運転状態がS被毒回復に適さないものとなると、S被毒回復処理をやり直すことになり、還元剤の消費量が多くなる。
【0009】
本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化システムにおいて、S被毒回復の途中で処理が中断された場合に、その後のS被毒回復処理において還元剤の消費量を抑制しつつ速やかにS被毒を回復させる技術を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を達成するために本発明の内燃機関の排気浄化システムは、以下の手段を採用した。即ち、
酸化雰囲気のときにNOxを吸蔵し還元雰囲気で吸蔵していたNOxを還元するNOx触媒と、
前記NOx触媒へ還元剤を供給する還元剤供給手段と、
前記NOx触媒の温度を上昇させる昇温手段と、
前記昇温手段によりNOx触媒の温度を上昇させつつ前記還元剤供給手段から還元剤を供給して前記NOx触媒のS被毒を回復させるS被毒回復手段と、
を備えた内燃機関の排気浄化システムであって、
前記S被毒回復手段は、前記NOx触媒の温度と、前記NOx触媒に導入される排気中の還元剤濃度若しくは酸素濃度と、の関係から決定づけられる複数の条件を個別に成立させてS被毒を回復させ、S被毒の回復途中で処理が中断された後にS被毒の回復を再度行う場合には、S被毒回復開始時の目標となるNOx触媒の温度及び前記NOx触媒に導入される還元剤濃度若しくは酸素濃度を、処理が中断された前回のS被毒回復の処理の履歴から決定することを特徴とする。
【0011】
本発明の最大の特徴は、S被毒回復中、若しくは、それ以前の吸蔵還元型NOx触媒の昇温中において、S被毒回復処理が中断された後に、S被毒回復を再開する場合には、前回中断されるまでのS被毒回復処理状態により、今回の処理条件を決定することにある。
【0012】
このように構成された内燃機関の排気浄化システムでは、吸蔵還元型NOx触媒に燃料中の硫黄分が燃焼して生成される硫黄酸化物(SOx)がNOxと同じメカニズムで吸蔵(吸収、吸着、付着でも良い。)される。このように、吸蔵された硫黄成分は、NOxに比して安定していて吸蔵還元型NOx触媒内に残留してしまう。
【0013】
そして、吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量が増加すると、それに応じてNOxの吸蔵に関与することができる触媒の量が減少するため、吸蔵還元型NOx触媒のNOx吸蔵能力が低下する。これをS被毒といい、NOx浄化率が低下するため、適宜の時期にS被毒から回復させるS被毒回復処理を施す必要がある。このS被毒回復処理は、NOx触媒を高温(例えば600乃至690℃程度)にしつつ還元雰囲気の排気をNOx触媒に流通させて行われている。
【0014】
ここで、NOx触媒に粒子状物質が堆積していると、S被毒回復処理中に粒子状物質が酸化され、熱が発生する。これにより、NOx触媒の熱劣化が進行する虞がある。そのため、先ず、昇温手段は前記NOx触媒の温度を該NOx触媒に付着した粒子状物質の除去に必要な温度とし、該粒子状物質の除去を行う。その後に、S被毒の回復に必要となる温度までNOx触媒を昇温させる。このように段階的な昇温を行った後にS被毒の回復が行われる。
【0015】
また、NOx触媒を高温状態にすれば、該NOx触媒に蓄積した硫黄成分を放出させることができる。ところが、還元剤濃度を高い状態にし、また前記NOx触媒の温度を十分に高くしなければ、前記NOx触媒と強固に結合した硫黄成分を脱離させ、該NOx触媒の機能を十分に回復させることはできない。その一方、前記NOx触媒を高温状態にすると、熱劣化により該NOx触媒の寿命を短くしてしまう傾向がある。
【0016】
同構成によれば、前記NOx触媒に導入される還元剤濃度若しくは酸素濃度との関係から決定づけられる複数の条件が個別に成立することによって、前記NOx触媒に蓄積した、例えば蓄積部位や、蓄積状態の異なる各種の硫黄成分の中で、前記NOx触媒から放出されるために適した条件(NOx触媒の温度や還元剤濃度若しくは酸素濃度)となったものが、前記NOx触媒から主に放出されることになる。よって、前記NOx触媒から放出されるのに高温条件を要する一部の硫黄成分の為に、必要以上の還元成分を消費することがなくなり、また、前記NOx触媒が必要以上に長い期間高温条件下に晒され、該NOx触媒の耐久性が低下することもなくなる。
【0017】
さらに、前記NOx触媒に蓄積した硫黄成分が分散して放出されるようになる。このため、多量の硫黄成分が一度に放出されることがなく、硫黄成分特有の臭気も発生しにくくなる。
【0018】
ところで、S被毒回復処理中に、内燃機関がNOx触媒の昇温若しくはS被毒回復に適さない運転状態となり、NOx触媒の昇温若しくはS被毒の回復が中断されることがある。しかし、その直後にS被毒回復に適した運転状態となった場合には、粒子状物質の除去や硫黄成分の放出がある程度なされた状態からS被毒回復処理が開始されることとなる。従って、中断前の処理状態を考慮して、昇温を開始若しくはS被毒の回復を再開させれば、昇温や硫黄成分の放出に費やされる時間を短縮させることができ、その分、還元剤の消費量を減少させることが可能となる。
【0019】
本発明においては、前記S被毒回復手段は、異なる状態で蓄積された硫黄成分を段階的に放出すべく、各段階で少なくとも一の成分が主として放出されるように前記NOx触媒を段階的に温度上昇させ、S被毒回復の途中で処理が中断された後にS被毒回復を再開する場合には、処理が中断されたときの前記NOx触媒の温度を目標として再開することができる。
【0020】
ここで、「異なる状態で蓄積された硫黄成分」とは、「NOx触媒の異なる部位に蓄積された硫黄成分」や、「当該触媒との結合状態を含め、物理的・化学的に異なる蓄積状態で蓄積されている硫黄成分」等の意味を含む。
【0021】
このように構成された内燃機関の排気浄化システムでは、異なる状態で蓄積された硫黄成分によるS被毒の回復が段階的に行われる。これは、異なる状態で蓄積された硫黄成分は、放出可能な温度、還元剤濃度若しくは酸素濃度が夫々異なり、段階的に回復処理を行うことにより、臭気の発生を抑制することができるからである。そして、S被毒の回復処理が途中で中断された後に再開される場合には、S被毒回復手段は、中断前のS被毒の回復処理の条件を次回S被毒回復時に適用する。
【0022】
このようにして、S被毒の回復処理が途中で中断された後では、途中からS被毒回復処理を開始することが可能となる。
【0023】
本発明においては、前記NOx触媒は、パティキュレートフィルタに担持され、前記S被毒回復手段は、異なる状態で堆積した粒子状物質を段階的に酸化すべく、各段階で少なくとも一の成分が主として酸化されるように前記NOx触媒を段階的に温度上昇させ、S被毒回復の途中で処理が中断された後にS被毒回復を再開する場合には、処理が中断されたときの前記NOx触媒の温度を目標として再開することができる。
【0024】
ここで、「異なる状態で堆積した粒子状物質」とは、「NOx触媒の異なる部位に堆積した粒子状物質」や、「SOFや煤等の異なる種類が堆積した粒子状物質」等の意味を含む。
【0025】
このように構成された内燃機関の排気浄化システムでは、異なる状態で堆積した粒子状物質を除去する処理が個別に行われる。即ち、NOx触媒に堆積する粒子状物質には、煤(SOOT)等の不溶成分と、未燃炭化水素(HC)等の可溶な有機的留分(Soluble Organic Function:以下、SOFとする)と、が含まれている。これらの成分は夫々酸化除去が可能な温度が異なっている。そして、S被毒回復時にNOx触媒を高温状態にすると、これら粒子状物質が酸化され熱が発生する。この熱により、NOx触媒の温度は更に上昇し、熱劣化が進行してしまう。
【0026】
その点、本発明では、硫黄成分を放出させるための高温状態とする前に、その温度よりも低い粒子状物質の酸化除去可能な温度で粒子状物質を酸化除去させる。そして、粒子状物質の酸化除去が完了してから硫黄成分を放出可能な温度とすることにより、NOx触媒の過熱を抑制し、熱劣化の進行を抑制することが可能となる。
【0027】
そして、S被毒の回復処理が途中で中断された後に再開される場合には、S被毒回復手段は、中断前の粒子状物質の処理から次回S被毒回復を開始する。
【0028】
このようにして、S被毒の回復処理が途中で中断された後では、途中からS被毒回復処理を開始することが可能となる。
【0029】
本発明においては、前記S被毒回復手段は、S被毒の回復処理が中断された期間が所定期間以上となった場合には、S被毒の回復処理を再開するときに前記NOx触媒の目標となる温度を低下させることができる。
【0030】
段階的な昇温を行っている途中で、アイドル状態となると、その後の昇温が困難となる一方で、排気中の粒子状物質がNOx触媒に堆積することがある。また、硫黄成分が再度吸蔵されてしまうこともある。このような状態で、昇温を再開すると、NOx触媒に堆積した粒子状物質が酸化されNOx触媒が過熱する虞があり、また、硫黄成分による臭気が発生する虞がある。そこで、目標となる温度まで昇温させることができない状態が所定期間続いた場合には、昇温再開時の目標温度を低下させることにより、NOx触媒の過熱及び臭気の発生を抑制することが可能となる。
【0031】
尚、「所定期間」とは、前記したような粒子状物質の堆積や、硫黄成分の吸蔵が起こり得る期間である。
【0032】
また、前記所定期間は、複数存在し、中断期間が長いほど目標温度が低くなるように設定しても良い。
【0033】
本発明においては、S被毒の回復処理が中断された期間の内燃機関の運転状態に基づいて前記NOx触媒の目標となる温度を設定することができる。
【0034】
段階的な昇温を行っている途中で、S被毒回復に適さない運転状態となった場合には昇温が中断される。その間にNOx触媒に粒子状物質が堆積することがあり、この堆積量は機関運転状態によって異なる。また、その間に硫黄成分が吸蔵されることがあり、この吸蔵量は機関運転状態によって異なる。また、運転状態が異なるとNOx触媒の温度低下の度合いも異なる。そこで、S被毒回復若しくはNOx触媒の昇温が途中で中断された後に、再開する場合には、そのときの運転状態に基づいて昇温再開時の目標温度を決定する。これにより、NOx触媒の過熱及び臭気の発生を抑制することが可能となる。
【0035】
本発明においては、前記S被毒回復の中断は、内燃機関の停止により発生しても良い。
【0036】
内燃機関が停止された場合には、硫黄成分の放出及びNOx触媒の昇温は中断される。そして、機関停止中にはNOx触媒に硫黄成分が吸蔵されることはなく、また、粒子状物質が堆積することもない。従って、S被毒回復の途中で内燃機関が停止され、その後に内燃機関が始動された場合には、内燃機関の停止前のS被毒回復状態に基づいて、S被毒回復再開時の処理条件を決定する。これにより、還元剤の消費量を低減させることが可能となり、還元剤に燃料が使用されている場合には、燃費を向上させることが可能となる。
【0037】
【発明の実施の形態】
<第1の実施の形態>
以下、本発明に係る内燃機関の排気浄化システムの具体的な実施態様について図面に基づいて説明する。ここでは、本発明に係る内燃機関の排気浄化システムを車両駆動用のディーゼル機関に適用した場合を例に挙げて説明する。
【0038】
図1は、本実施の形態に係る排気浄化システムを適用するエンジン1とその吸排気系の概略構成を示す図である。
【0039】
図1に示すエンジン1は、4つの気筒2を有する水冷式の4サイクル・ディーゼル機関である。
【0040】
エンジン1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレール)4と接続されている。
【0041】
前記コモンレール4は、燃料供給管5を介して燃料ポンプ6と連通している。この燃料ポンプ6は、エンジン1の出力軸(クランクシャフト)の回転トルクを駆動源として作動するポンプであり、該燃料ポンプ6の入力軸に取り付けられたポンププーリ6aがエンジン1の出力軸(クランクシャフト)に取り付けられたクランクプーリ1aとベルト7を介して連結されている。
【0042】
このように構成された燃料噴射系では、クランクシャフトの回転トルクが燃料ポンプ6の入力軸へ伝達されると、燃料ポンプ6は、クランクシャフトから該燃料ポンプ6の入力軸へ伝達された回転トルクに応じた圧力で燃料を吐出する。
【0043】
前記燃料ポンプ6から吐出された燃料は、燃料供給管5を介してコモンレール4へ供給され、コモンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴射弁3へ分配される。そして、燃料噴射弁3に駆動電流が印加されると、燃料噴射弁3が開弁し、その結果、燃料噴射弁3から気筒2内へ燃料が噴射される。
【0044】
次に、エンジン1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と吸気ポート(図示省略)を介して連通している。
【0045】
前記吸気枝管8は吸気管9に接続されている。吸気管9には、該吸気管9内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ11が取り付けられている。
【0046】
前記吸気管9における吸気枝管8の直上流に位置する部位には、該吸気管9内を流通する吸気の流量を調節する吸気絞り弁13が設けられている。この吸気絞り弁13には、ステップモータ等で構成されて該吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。
【0047】
前記エアフローメータ11と前記吸気絞り弁13との間に位置する吸気管9には、排気のエネルギを駆動源として作動する遠心過給機(ターボチャージャ)15のコンプレッサハウジング15aが設けられている。
【0048】
このように構成された吸気系では、吸気は、吸気管9を介してコンプレッサハウジング15aに流入する。
【0049】
コンプレッサハウジング15aに流入した吸気は、該コンプレッサハウジング15aに内装されたコンプレッサホイールの回転によって圧縮される。前記コンプレッサハウジング15a内で圧縮された吸気は、必要に応じて吸気絞り弁13によって流量を調節されて吸気枝管8に流入する。吸気枝管8に流入した吸気は、各枝管を介して各気筒2の燃焼室へ分配され、各気筒2の燃料噴射弁3から噴射された燃料を着火源として燃焼される。
【0050】
一方、エンジン1には、排気枝管18が接続され、排気枝管18の各枝管が排気ポート1bを介して各気筒2の燃焼室と連通している。
【0051】
前記排気枝管18は、前記遠心過給機15のタービンハウジング15bと接続されている。前記タービンハウジング15bは、排気管19と接続され、この排気管19は、下流にて大気へと通じている。
【0052】
前記排気管19の途中には、排気中に含まれる浮遊粒子状物質である煤に代表されるパティキュレートマター(Particulate Matter:以下、「PM」という。)を捕獲するためのパティキュレートフィルタ(以下、単にフィルタという。)20が設けられている。このフィルタ20には、吸蔵還元型NOx触媒(以下、単にNOx触媒とする。)が担持されている。
【0053】
フィルタ20は、例えばコージェライトのような多孔質材料から形成され、例えば、アルミナを担体とし、その担体上に、カリウム(K)、ナトリウム(Na)、リチウム(Li)、もしくはセシウム(Cs)等のアルカリ金属と、バリウム(Ba)もしくはカルシウム(Ca)等のアルカリ土類と、ランタン(La)もしくはイットリウム(Y)等の希土類とから選択された少なくとも1つと、白金(Pt)等の貴金属とを担持して構成されている。尚、本実施の形態では、アルミナからなる担体上にバリウム(Ba)と白金(Pt)とを担持し、更に酸素貯蔵(Oストレージ)能のある例えばセリア(CeO)等の遷移金属が添加されている。
【0054】
このフィルタ20に担持されたNOx触媒は、該フィルタ20に流入する排気の酸素濃度が高いときは排気中の窒素酸化物(NOx)を吸蔵(吸収、吸着、付着でも良い。)し、一方、該フィルタ20に流入する排気の酸素濃度が低下したときは吸蔵していたNOxを放出する。その際、排気中に炭化水素(HC)や一酸化炭素(CO)等の還元成分が存在していれば、放出されたNOxが還元される。また、セリア(CeO)等の遷移金属は、排気の特性に応じて酸素を一時的に保持し、活性化酸素として放出する能力を有する。
【0055】
フィルタ20より上流の排気管19には、該排気管19内を流通する排気の温度に対応した電気信号を出力する排気温度センサ24が取り付けられている。また、フィルタ20より下流の排気管19には、該排気管19内を流通する排気中のNOx濃度に対応した電気信号を出力するNOxセンサ22及び空燃比に対応した電気信号を出力する空燃比センサ23が取り付けられている。
【0056】
このように構成された排気系では、エンジン1の各気筒2で燃焼された混合気(既燃ガス)が排気ポート1bを介して排気枝管18へ排出され、次いで排気枝管18から遠心過給機15のタービンハウジング15bへ流入する。タービンハウジング15bに流入した排気は、該排気が持つエネルギを利用してタービンハウジング15b内に回転自在に支持されたタービンホイールを回転させる。その際、タービンホイールの回転トルクは、前述したコンプレッサハウジング15aのコンプレッサホイールへ伝達される。
【0057】
前記タービンハウジング15bから排出された排気は、排気管19を介してフィルタ20へ流入し、排気中のNOxが吸蔵され、PMが捕獲される。その後、排気は排気管19を流通して大気中へと放出される。
【0058】
ところで、エンジン1が希薄燃焼運転されている場合は、エンジン1から排出される排気の空燃比がリーンとなり排気中の酸素濃度が高くなるため、排気中に含まれるNOxがNOx触媒に吸蔵されることになるが、エンジン1の希薄燃焼運転が長期間継続されると、NOx触媒のNOx吸蔵能力が飽和し、排気中のNOxがNOx触媒にて吸蔵されずに大気中へ放出されてしまう。
【0059】
ここで、「排気の空燃比がリーン」である状態とは、例えば理論空燃比の混合気を燃焼して得られる排気中の成分比(酸化成分と還元成分の比)よりも、酸化成分が多い(濃い)状態に相当する。換言すると、吸気系へ排気が還流されたり、還元成分が直接排気系に供給されたりといった外乱がない場合、機関燃焼に供される混合気の空燃比が、概ね「14.6」(理論空燃比)よりも大きい(リーン寄りである)ときの排気の状態を意味する。一方、「排気の空燃比がリッチ」である状態とは、同じく吸気系へ排気が還流されたり、還元成分が直接排気系に供給されたりといった外乱がない場合、機関燃焼に供される混合気の空燃比が、概ね「14.6」(理論空燃比)よりも小さい(リッチ寄りである)ときの排気の状態を意味する。
【0060】
特に、エンジン1のようなディーゼル機関では、大部分の運転領域においてリーン空燃比の混合気が燃焼され、それに応じて大部分の運転領域において排気の空燃比がリーン空燃比となるため、NOx触媒のNOx吸蔵能力が飽和し易い。
【0061】
従って、エンジン1が希薄燃焼運転されている場合は、NOx触媒のNOx吸蔵能力が飽和する前にNOx触媒に流入する排気中の酸素濃度を低下させるとともに還元剤の濃度を高め、NOx触媒に吸蔵されたNOxを還元させる必要がある。
【0062】
このように酸素濃度を低下させる方法としては、排気中への燃料添加や、再循環するEGRガス量を増大させて煤の発生量が増加して最大となった後に、更にEGRガス量を増大させる低温燃焼(特許第3116876号)、機関出力のための燃料を噴射させる主噴射の後の膨張行程若しくは排気行程中に再度燃料を噴射させる副噴射等の方法が考えられる。例えば、排気中の燃料添加では、フィルタ20より上流の排気管19を流通する排気中に還元剤たる燃料(軽油)を添加する還元剤供給機構を備え、この還元剤供給機構から排気中へ燃料を添加することにより、フィルタ20に流入する排気の酸素濃度を低下させるとともに還元剤の濃度を高めることができる。
【0063】
還元剤供給機構は、図1に示されるように、その噴孔が排気枝管18内に臨むように取り付けられ、後述するECU35からの信号により開弁して燃料を噴射する還元剤噴射弁28と、前述した燃料ポンプ6から吐出された燃料を前記還元剤噴射弁28へ導く還元剤供給路29と、を備えている。
【0064】
このような還元剤供給機構では、燃料ポンプ6から吐出された高圧の燃料が還元剤供給路29を介して還元剤噴射弁28へ印加される。そして、ECU35からの信号により該還元剤噴射弁28が開弁して排気枝管18内へ還元剤としての燃料が噴射される。
【0065】
還元剤噴射弁28から排気枝管18内へ噴射された還元剤は、排気枝管18の上流から流れてきた排気の酸素濃度を低下させると共に、フィルタ20に到達し、フィルタ20に吸蔵されていたNOxを還元することになる。
【0066】
その後、ECU35からの信号により還元剤噴射弁28が閉弁し、排気枝管18内への還元剤の添加が停止される。
【0067】
また、エンジン1には、クランクシャフトの回転位置に対応した電気信号を出力するクランクポジションセンサ33が設けられている。
【0068】
以上述べたように構成されたエンジン1には、該エンジン1を制御するための電子制御ユニット(ECU:Electronic Control Unit)35が併設されている。このECU35は、エンジン1の運転条件や運転者の要求に応じてエンジン1の運転状態を制御するユニットである。
【0069】
ECU35には、各種センサが電気配線を介して接続され、上記した各種センサの出力信号の他、運転者がアクセルを踏み込んだ量に応じた電気信号を出力するアクセル開度センサ36の出力信号が入力されるようになっている。
【0070】
一方、ECU35には、燃料噴射弁3、吸気絞り用アクチュエータ14、還元剤噴射弁28等が電気配線を介して接続され、上記した各部をECU35により制御することが可能になっている。
【0071】
例えば、NOx浄化制御では、ECU35は、フィルタ20に流入する排気中の酸素濃度を比較的に短い周期でスパイク的(短時間)に低くする、所謂リッチスパイク制御を実行する。
【0072】
リッチスパイク制御では、ECU35は、所定の周期毎にリッチスパイク制御実行条件が成立しているか否かを判別する。このリッチスパイク制御実行条件としては、例えば、フィルタ20が活性状態にある、排気温度センサ24の出力信号値(排気温度)が所定の上限値以下である、S被毒回復制御が実行されていない、等の条件を例示することができる。
【0073】
上記したようなリッチスパイク制御実行条件が成立していると判定された場合は、ECU35は、還元剤噴射弁28からスパイク的に還元剤たる燃料を噴射させるべく当該還元剤噴射弁28を制御することにより、フィルタ20に流入する排気の空燃比を一時的に所定の目標リッチ空燃比とする。
【0074】
具体的には、ECU35は、記憶されている機関回転数、アクセル開度センサ36の出力信号(アクセル開度)、エアフローメータ11の出力信号値(吸入空気量)、空燃比センサ23の出力信号、燃料噴射量等を読み出す。
【0075】
ECU35は、前記した機関回転数とアクセル開度と吸入空気量と燃料噴射量とをパラメータとして還元剤添加量制御マップへアクセスし、排気の空燃比を予め設定された目標空燃比とする上で必要となる還元剤の添加量(目標添加量)を算出する。
【0076】
続いて、ECU35は、前記目標添加量をパラメータとして還元剤噴射弁制御マップへアクセスし、還元剤噴射弁28から目標添加量の還元剤を噴射させる上で必要となる還元剤噴射弁28の開弁時間(目標開弁時間)を算出する。
【0077】
還元剤噴射弁28の目標開弁時間が算出されると、ECU35は、還元剤噴射弁28を開弁させる。
【0078】
ECU35は、還元剤噴射弁28を開弁させた時点から前記目標開弁時間が経過すると、還元剤噴射弁28を閉弁させる。
【0079】
このように還元剤噴射弁28が目標開弁時間だけ開弁されると、目標添加量の燃料が還元剤噴射弁28から排気枝管18内へ噴射されることになる。そして、還元剤噴射弁28から噴射された還元剤は、排気枝管18の上流から流れてきた排気と混ざり合って目標空燃比の混合気を形成してフィルタ20に流入する。
【0080】
この結果、フィルタ20に流入する排気の空燃比は、比較的に短い周期で酸素濃度が変化することになり、以て、フィルタ20がNOxの吸蔵と還元とを交互に短周期的に繰り返すことになる。
【0081】
このように、フィルタ20に流入する排気の空燃比をスパイク的に目標リッチ空燃比とし、吸蔵還元型NOx触媒に吸蔵されたNOxを還元することが可能となる。
【0082】
次に、S被毒回復制御では、ECU35は、NOx触媒の硫黄成分による被毒から回復させるべくS被毒回復処理を行う。
【0083】
ここで、エンジン1の燃料には硫黄(S)が含まれている場合があり、そのような燃料がエンジン1で燃焼されると、二酸化硫黄(SO)や三酸化硫黄(SO)などの硫黄酸化物(SOx)が生成される。
【0084】
SOxは、排気とともにフィルタ20に流入し、NOxと同様のメカニズムによってNOx触媒に吸蔵される。
【0085】
具体的には、フィルタ20に流入する排気の酸素濃度が高いときには、流入排気ガス中の二酸化硫黄(SO)や三酸化硫黄(SO)等の硫黄成分が白金(Pt)の表面上で酸化され、硫酸イオン(SO 2−)の形でフィルタ20に吸蔵される。更に、フィルタ20に吸蔵された硫酸イオン(SO 2−)は、酸化バリウム(BaO)と結合して硫酸塩(BaSO)を形成する。
【0086】
ところで、硫酸塩(BaSO)は、硝酸バリウム(Ba(NO)に比して安定していて分解し難く、フィルタ20に流入する排気の酸素濃度が低くなっても分解されずにフィルタ20内に残留してしまう。
【0087】
フィルタ20における硫酸塩(BaSO)の量が増加すると、それに応じてNOxの吸蔵に関与することができる酸化バリウム(BaO)の量が減少するため、フィルタ20のNOx吸蔵能力が低下する、いわゆるS被毒が発生する。
【0088】
NOx触媒のS被毒を回復する方法としては、フィルタ20の雰囲気温度をおよそ600乃至690℃の高温域まで昇温させるとともに、フィルタ20に流入する排気の酸素濃度を低くすることにより、フィルタ20に吸蔵されている硫酸バリウム(BaSO)をSO やSO に熱分解し、次いでSO やSO を排気中の炭化水素(HC)や一酸化炭素(CO)と反応させて気体状のSO に還元する方法を例示することができる。
【0089】
ECU35は、例えば、還元剤噴射弁28から排気中へ燃料を添加させることにより、それらの未燃燃料成分をフィルタ20において酸化させ、酸化の際に発生する熱によってフィルタ20の床温を高めるようにする。同時に、各気筒の膨張行程若しくは排気行程時に燃料噴射弁3から副次的に燃料を噴射させても良い。このように膨張行程若しくは排気行程で燃料を噴射させるのは、主噴射による燃料噴射量を増量すると機関出力が上昇して運転状態が悪化する虞があるためである。この副噴射により噴射された燃料は、気筒2内で燃焼し、気筒2内のガス温度を上昇させる。温度が上昇したガスは排気となってフィルタ20に到達し、該フィルタ20の雰囲気温度を上昇させることができる。また、副噴射を行う時期によっては、副噴射された燃料が燃焼しないこともある。しかし、副噴射によって気筒2内に供給される燃料は、主噴射による燃焼ガス中で軽質なHCに改質され、排気系に排出される。すなわち、還元剤として機能する軽質なHCが、副噴射を通じて排気系に添加され、排気中の還元成分濃度を高めることとなる。排気系に添加された還元成分は、NOx触媒において、該NOx触媒から放出されるNOxや、排気中に含まれるその他の酸化成分と反応する。このとき発生する反応熱により、フィルタ20の床温が上昇される。
【0090】
上記したような燃料添加によりフィルタ20の床温が600℃乃至690℃程度の高温域まで上昇する。その後も、引き続きフィルタ20に流入する排気の酸素濃度を低下させるべくECU35は還元剤噴射弁28から燃料を噴射させる。
【0091】
このようにS被毒回復処理が実行されると、フィルタ20の床温が高い状況下で、フィルタ20に流入する排気の酸素濃度が低くなるため、フィルタ20に吸蔵されている硫酸バリウム(BaSO)がSO やSO に熱分解され、それらSO やSO が排気中の炭化水素(HC)や一酸化炭素(CO)と反応して還元され、以てフィルタ20のS被毒が回復されることになる。
【0092】
尚、本実施の形態では、S被毒回復処理には前記リッチスパイクを行い排気の酸素濃度を低下させている。
【0093】
ここで、フィルタ20に捕獲されるPMには、煤(SOOT)等の不溶成分と未燃炭化水素(HC)等の可溶な有機的留分(Soluble Organic Function:以下、SOFとする)とが含まれている。これらの成分は夫々酸化させるために必要となる温度が異なる。そして、SOFはSOOTよりも低い温度で酸化除去することが可能である。また、これらPMを酸化除去可能な温度は、S被毒を回復させるときに必要となる温度よりも低い。従って、S被毒回復を行うためにフィルタ20をS被毒の回復に必要となる温度まで上昇させると、フィルタ20に堆積したPMが酸化される。そのときに発生する熱によりフィルタ20が過熱して、熱劣化を進行させることがある。
【0094】
そこで、本実施の形態では、S被毒回復を行う前のフィルタ20の昇温段階では、PMの酸化熱によるフィルタ20の過熱を抑制するため、段階的な昇温を行うこととしている。即ち、昇温段階では、先ず、SOFを酸化可能な温度までフィルタ20の温度を上昇させる。SOFが酸化された後、SOOTを酸化可能な温度まで更に上昇させる。そして、SOOTが酸化された後に硫黄成分の放出に必要となる温度までフィルタ20を昇温させてS被毒の回復を行う。このように、段階的にフィルタ20の温度を上昇させることにより、PMが酸化される際に発生する熱によるフィルタ20の過熱を抑制することができる。
【0095】
フィルタ20の段階的な昇温は、還元剤噴射弁28からの間欠的な燃料噴射により、排気中の還元剤濃度(HC濃度)を次第に高くして行われる。
【0096】
尚、燃料添加を通じて排気の中のHC濃度やフィルタ20の温度を所望の値に収束させるためには、例えば還元剤噴射弁28を駆動するための指令信号の波形を調整すればよい。
【0097】
例えば図2は、還元剤噴射弁28に送られるECU35の指令信号の波形と、その波形に対応する空燃比の変化とを同一時間軸上に示すタイムチャート図である。還元剤噴射弁28は、同図2(a)に示す指令信号がオン(「ON」)の状態となっているときに開弁し、所定圧力の燃料を排気ポート1b若しくは排気枝管18に添加供給する。燃料添加が行われることにより、フィルタ20に流入する排気中のHC濃度が高くなる(リッチスパイクが形成される)ようになる。ここで、添加期間(図2(a))を長くするほどHC濃度の変化量(図2(b))は大きくなり、総添加期間(図2(a))を長くするほど(添加回数を多くするほど)リッチスパイクの形成期間(図2(b))も長くなる。また、添加インターバル(図2(a))を短くするほど、排気中のHC濃度が高くなりフィルタ温度の上昇量は大きくなる。一方、燃料添加の休止期間(図2(a))の長さは、HC濃度(図2(b))が低くなる期間(連続的に形成されるリッチスパイクの間において酸化雰囲気が継続する期間)の長さに対応する。この休止期間の長さにより、フィルタ20の床温を調整することができる。即ち、休止期間を長くするほど、フィルタ20の温度は低くなる。
【0098】
これらの条件は、エンジン回転数(クランクポジションセンサ33の出力信号)及び負荷(アクセル開度センサ36の出力信号、若しくは、燃料噴射弁3からの燃料噴射量)との関係を予め実験等により求めてマップ化しておき、このマップへ目標温度と、エンジン回転数及び負荷とを代入して求めることができる。
【0099】
ここで、図3は、S被毒回復中処理中のフィルタの目標床温及び実際の床温の時間推移を示したタイムチャート図である。
【0100】
フィルタ20の昇温の途中でエンジン1が停止された場合や、S被毒回復に適さない機関運転状態となった場合には、S被毒回復処理やそれに伴うフィルタ20の昇温処理は中断される。そして、従来では、エンジン1が始動され、若しくはS被毒回復に適した機関運転状態となった場合に、フィルタ20に堆積したSOFを酸化させるための温度上昇を再度行っていた。しかし、前回のフィルタ20の昇温により、SOFやSOOTが酸化除去されている場合には、これらを酸化させるための段階的な温度上昇を行わなくともフィルタ20が過熱することはない。
【0101】
また、再度SOFを酸化させるための温度上昇から開始すると、S被毒回復が完了するまでに時間を要し、再度のエンジン停止等により硫黄成分を放出させる機会を逃す虞がある。また、還元剤を多く必要とするので、本実施の形態のように還元剤に燃料を用いている場合には、燃費の悪化を誘発させる。
【0102】
そこで、本実施の形態では、フィルタ20の昇温段階を含むS被毒回復処理時に該S被毒回復処理が中断された場合であって、その後に、S被毒回復処理が行われる場合には、前回のフィルタ20の昇温結果を考慮して、今回目標となる温度を設定する。尚、図3では、本実施の形態による目標床温を点線で示している。
【0103】
即ち、前回、S回復処理時にSOFの酸化が完了する前に昇温が中断された場合には、今回、SOFを酸化可能な温度にフィルタ20の昇温目標温度を設定する。前回、SOFの酸化が完了後、SOOTの酸化途中で中断された場合には、今回、SOOTを酸化可能な温度に目標温度を設定する。そして、前回、SOOTの酸化が完了後、S被毒回復中で中断された場合には、今回、硫黄成分の放出に必要となる温度に目標温度を設定する。
【0104】
このように、S被毒回復時に、前回のフィルタ20の昇温結果に基づいた目標温度を設定して、今回のフィルタ20の昇温を行うことにより、S被毒回復処理にかかる時間を短縮することが可能となり、燃費の悪化を抑制することが可能となる。また、S被毒回復処理に要する時間の短縮が可能となるので、S被毒回復処理が速やかに完了し、S被毒回復の中断される回数を減少させることが可能となる。従って、S被毒による大気中へのNOxの放出を抑制することが可能となる。
【0105】
尚、エンジン1の運転状態がS被毒回復処理に適さないものとなりS被毒回復処理が中断され、S被毒回復処理が再開されるまでの期間が長い場合や、アイドル状態のように目標温度までフィルタ20を昇温できない期間(S被毒回復処理が中断された期間)が長い場合には、その間、フィルタ20にPMが堆積してしまう。従って、フィルタ20の過熱を抑制するためには、再度段階的な昇温が必要となる。
【0106】
そこで、本実施の形態では、このような運転状態が所定期間継続した場合には、再度SOFを酸化させるために必要となる温度を目標温度としてフィルタ20の昇温を行う。これにより、フィルタ20の過熱を抑制することが可能となる。判定条件となる所定期間は、予め実験等により求めておく。尚、エンジン1の停止によりフィルタ20の昇温が停止された場合には、フィルタ20にPMは堆積しないため、前回昇温中断時の到達温度を目標温度に設定すれば良い。また、前記所定期間は、複数存在し、昇温処理の中断期間が長いほど目標温度が低くなるように設定しても良い。
【0107】
次に、フィルタ20の床温を目標温度まで上昇させることができない場合の昇温処理のフローについて説明する。
【0108】
図4は、S被毒回復中処理中であって、フィルタ20の床温を目標温度まで上昇させることができない場合のフィルタの目標床温及び実際の床温の時間推移を示したタイムチャート図である。
【0109】
また、図5は、フィルタ20の床温を目標温度まで上昇させることができない場合の昇温処理のフローを指し示したフローチャート図である。
【0110】
ステップS101では、S被毒回復条件が成立しているか否か判定する。条件としては、エンジン1がS被毒回復に適した運転状態であるか、NOx触媒に吸蔵された硫黄成分が所定量を超えたか等を例示することができる。NOx触媒に吸蔵された硫黄成分量は、燃料消費量やNOxセンサ22からの出力信号、車両走行距離等により求めることができる。ここで、燃料中の硫黄成分によりフィルタ20が被毒するので、燃料の消費量を積算してECU35に記憶させ、この燃料の消費量によりNOx触媒に吸蔵された硫黄成分量を得ても良い。また、S被毒が進行すると吸蔵還元型NOx触媒のNOxの吸蔵量が減少し、フィルタ20下流に流通するNOxの量が増大する。従って、フィルタ20の下流にNOxセンサ22を設け、この出力信号に基づいてNOx触媒に吸蔵された硫黄成分量を得ても良い。更に、車両走行距離に応じてNOx触媒に吸蔵された硫黄成分量が増加するとして、該車両走行距離に基づいて硫黄成分量を得ても良い。
【0111】
ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合にはステップS106へ進む。
【0112】
ステップS102では、フィルタ20の目標温度と床温との差が所定温度以上であるか否か判定する。フィルタ20の温度が目標温度よりも所定温度以上低い場合には、PMが新たに堆積する虞がある。ここで、所定温度とは、フィルタ20に新たにPMが堆積する虞のある温度差であり、予め実験等により求めておく。
【0113】
ステップS102で肯定判定がなされた場合にはステップS103へ進み、一方、否定判定がなされた場合にはステップS106へ進む。
【0114】
ステップS103では、フィルタ20の床温が目標よりも所定温度以上低い状態が継続した時間を示す昇温未達時間をカウントアップする。
【0115】
ステップS104では、昇温未達時間が所定時間よりも長いか否か判定される。この所定時間は、昇温未達時間が継続した場合にPMが堆積する虞のある時間として、予め実験等により求めておく。
【0116】
ステップS104で肯定判定がなされた場合にはステップS105へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
【0117】
ステップS105では、段階昇温をリセットする。即ち、一番低い温度であるSOFの酸化可能温度にフィルタ20の昇温目標温度が設定される。
【0118】
その後、本ルーチンを終了する。
【0119】
ステップS106では、PMが酸化可能であるとして、昇温未達時間をリセットする。
【0120】
その後、本ルーチンを終了する。
【0121】
このようにして、フィルタ20の昇温中に目標温度まで上昇しない状態が継続した場合には、目標温度を一番低い温度に設定し直して、再度段階昇温処理を行う。これにより、目標温度まで上昇しない状態のときにフィルタ20に堆積したPMの酸化熱によるフィルタ20の過熱を抑制することが可能となる。
【0122】
また、本実施の形態においては、フィルタ20の昇温中に目標温度まで上昇しない状態が継続した場合には、この間の機関運転状態に基づいて目標床温を設定し直しても良い。即ち、目標温度までフィルタ床温が上昇しない状態での機関運転中にフィルタ20に堆積するPMの量やその成分は、そのときの機関運転状態により異なる。そこで、SOF及びSOOTの発生する運転状態を、例えば、機関回転数と負荷との関係から予め実験等により求め、これをマップ化しておく。そして、フィルタ20の床温が目標温度まで上昇しない状態が継続した期間中、SOF及びSOOTの発生量を積算し、該フィルタ20に堆積したSOF及びSOOTの量を求める。そして、SOF若しくはSOOTが所定量以上堆積した場合には、それらを酸化可能な温度となるようにフィルタの目標床温を再設定する。
【0123】
このようにして、目標温度に達しないときに堆積したPMの酸化によるフィルタ20の熱劣化の進行を抑制することが可能となる。
【0124】
尚、本実施の形態においては、S被毒回復に伴うPMの酸化除去について説明したが、単に、フィルタに堆積したPMの除去を行う場合であっても適用することができる。
【0125】
以上説明したように、本実施の形態によれば、S被毒回復処理の中断前のフィルタ20の温度に基づいて、同処理再開時の昇温目標温度を設定することができる。これにより、S被毒回復時の燃費の悪化を抑制することが可能となる。また、S被毒を速やかに回復させ、大気中へのNOxの放出を抑制することが可能となる。
<第2の実施の形態>
本実施の形態では、第1の実施の形態と比較して、吸蔵還元型NOx触媒からの硫黄成分の放出を段階的に行う点で相違する。尚、本実施の形態においては、適用対象となるエンジンやその他ハードウェアの基本構成については、第1の実施の形態と共通なので説明を割愛する。
【0126】
ここで、S被毒回復制御を行うと、短期間に比較的高い濃度の硫黄成分が大気中へ放出されることがある。その中には、臭気を発する硫化水素(HS)等が含まれている。この臭気を抑制するために、還元剤濃度を低くして、少しずつ硫黄成分を放出させることも考えられる。しかし、フィルタ20が長期間高温状態となるので熱劣化が進行する虞がある。
【0127】
一方、NOx触媒には、幾つかの異なる状態で硫黄成分が吸蔵・吸着・付着されている。即ち、NOx触媒との結合状態が、物理的・化学的に異なる状態で蓄積されている。更に、硫黄成分はNOx触媒の異なる部位に蓄積されている。そして、これらの硫黄成分が放出される温度及び還元剤濃度若しくは酸素濃度は、その結合状態や蓄積部位によって異なる。
【0128】
ここで、NOx触媒に蓄積された硫黄成分は、還元剤濃度が高くなるほど、また、温度が高くなるほど放出されやすくなる。しかし、還元剤濃度が低い場合(更には、酸化雰囲気である場合)、また、NOx触媒の温度が低い場合であっても、NOx触媒の特定部位に蓄積されている硫黄成分、或いは特定の形態でNOx触媒に結合されている硫黄成分は、放出させることが可能である。
【0129】
そこで、本実施の形態では、結合状態の異なる硫黄成分を段階的な昇温及び段階的な還元剤濃度の上昇により順次放出させてS被毒回復を行う。このようにすることで、臭気の発生を抑制し、NOx触媒の熱劣化の進行を抑制することが可能となる。
【0130】
尚、本実施の形態では、NOx触媒に蓄積する硫黄成分を、蓄積部位や蓄積状態の異なる3種の硫黄成分として分別し、各種の硫黄成分を放出させる処理を段階的に行う。
【0131】
図6は、S被毒回復制御を行った場合に観測されるNOxの浄化効率(図6(a))及び硫黄成分の放出量(図6(b))の推移を同一時間軸上に示すタイムチャートであって、同一の運転条件で同一期間エンジン1を運転した後、3つの異なる条件を設定してS被毒回復制御を行った結果である。なお、同各図中において、符号A/Fminは各回のリッチスパイクによって達する空燃比A/Fの最低値に相当し、符号TCATmaxはS被毒回復制御によって達するフィルタ床温TCATの最高値に相当する。
【0132】
先ず図6(a)に示すように、空燃比の最低値A/Fminが最も低く(リッチ雰囲気に相当し)、フィルタ床温の最高値TCATmaxが最も高い条件Aでは、S被毒回復制御の実行に伴って速やかにNOx浄化効率が回復する。これに対し、条件Aに比べると空燃比の最低値A/Fminが高く(理論空燃比近傍の雰囲気に相当し)、フィルタ床温の最高値TCATmaxが低い条件Bでは、NOx浄化効率の回復量(度合い)が小さい。
【0133】
さらに、条件Bよりも空燃比の最低値A/Fminが高く(弱リーン雰囲気に相当し)、フィルタ床温の最高値TCATmaxが低い条件Cでは、制御の実行に伴うNOx浄化効率の回復はほとんどみられない。
【0134】
一方、図6(b)に示すように、硫黄成分の放出量は、条件A、条件B,条件Cの順で、各々に対応する放出量は減少するものの、NOx浄化率の回復がほとんどみられない条件CでS被毒回復制御を行った場合にも、当該制御の実行に伴い所定量の硫黄成分が放出されている。なお、条件Aで被毒回復制御を行った結果放出された硫黄成分の全量は、当該制御を開始する際、NOx触媒に蓄積していた硫黄成分の全量に略等しい。
【0135】
この実験結果から考察されるように、NOx触媒に蓄積した硫黄成分を放出させる上で最適な条件Aの下、S被毒回復制御を行ってほとんどの硫黄成分を放出させることができるものの、これとは異なる特定条件(条件B、条件C)の下でS被毒回復制御を行った場合であっても、NOx触媒に蓄積した硫黄成分のうち、少なくとも一部を放出させることはできる。また、NOx浄化率の回復といった面からは何ら効果を認識することができない条件Cの下でS被毒回復制御を行う場合であっても、当該制御の実行に伴い所定量の硫黄成分が放出される。
【0136】
ところで、上記条件A,B,Cの何れを成立させる場合にも、空燃比A/Fを低下させ(リッチ寄りに移行させ)、フィルタ床温TCATを上昇させるために所定量の添加燃料が必要となり、また、フィルタ床温TCATを高温状態に移行させることである程度はNOx触媒の熱劣化が進行する。そして、添加燃料の消費量が最も多く、また、NOx触媒への影響(劣化の進行度合い)が最も大きくなるのは条件Aを成立させる場合である。逆に、消費する添加燃料の量が最も少なく、また、NOx触媒の劣化が最小限に抑えられるのは、条件Cを成立させる場合である。
【0137】
そこで、本実施の形態にかかるエンジン1の排気浄化システムは、硫黄成分の放出に関わるNOx触媒の上記特性に適合した制御構造を構築することにより、燃料(還元剤)消費量の節減と、NOx触媒の熱劣化の防止・抑制とを併せ図ることのできる効率的なS被毒回復制御を実施し、NOx触媒の機能を最適な状態に管理する。
【0138】
本実施の形態において、エンジン1の排気浄化システムは、フィルタ床温TCAT、及び排気の空燃比A/Fの調整を通じ、NOx触媒に蓄積した硫黄成分を放出させる。その際、条件設定の異なる複数の処理を連続的に行うことにより、NOx触媒の異なる部位に蓄積している硫黄成分、或いはNOx触媒に異なる状態で蓄積している硫黄成分を、微量ずつ徐々に放出させる。
【0139】
具体的には、NOx触媒に所定量の硫黄成分が蓄積したものと認識した場合に、ECU35は、先ず、第1のS放出処理を通じて条件C(例えば空燃比A/F=16程度、フィルタ床温TCAT=620℃程度)を成立させ、硫黄成分SX1を主に放出させる。そして、当該条件Cを所定期間保持した後、続けて第2のS放出処理を行うことにより、条件B(例えば空燃比A/F=14.6程度、フィルタ床温TCAT=660℃程度)を成立させ、硫黄成分SX2を主に放出させる。そして、当該条件Bを所定期間保持した後、第3のS放出処理を通じて条件A(例えば空燃比A/F=13程度、フィルタ床温TCAT=690℃程度)を成立させ、当該条件Aを所定期間保持し、硫黄成分SX3を主に放出させる。ECU35は、このような一連の処理を間欠的に実行する。
【0140】
このような制御手順を繰り返すことにより、本実施の形態にかかる排気浄化システムは、NOx触媒に蓄積した硫黄成分のうち、蓄積部位や蓄積状態の異なる硫黄成分SX1,SX2,SX3を、段階的に放出させ、NOx触媒の機能を最適な状態に管理する。
【0141】
ここで、従来のように、所定期間毎に条件Aを成立させる第3の放出処理のみを行っても、NOx触媒に蓄積した硫黄成分SX1,SX2,SX3を併せて放出させることはできる。
【0142】
しかしながら、そのような方法では、第3のS放出処理を行うことにより、硫黄成分SX1,SX2,SX3が同時に放出されることになるため、NOx触媒下流の排気中における硫黄成分の濃度が過剰に高くなってしまう懸念がある。しかも、硫黄成分SX1,SX2,SX3をNOx触媒から放出・除去するために要する第3のS放出処理の継続期間は、本実施の形態のように硫黄成分SX3のみをNOx触媒から放出・除去するために要する第3のS放出処理の継続期間よりも長くなってしまう。この結果、NOx触媒の熱劣化が進行し、当該触媒の耐久性も低下してしまうことになる。
【0143】
この点、硫黄成分SX1,SX2,SX3を同時に放出させることなく、段階的にNOx触媒から放出させる本実施の形態の排気浄化システムによれば、NOx触媒下流の排気中における硫黄成分の濃度が過剰に高まるといった懸念がなくなる。また、第3のS放出処理を完了するために必要な期間も比較的短くなるため、NOx触媒の劣化の進行が抑制され、当該触媒の耐久性も実質的に向上する。
【0144】
ところで、このような段階的なS被毒回復処理を実施している途中で、エンジン1が停止された場合や、S被毒回復に適さない機関運転状態となった場合には、S被毒回復処理が中断される。そして、エンジン再始動後、若しくは、エンジン1の運転状態がS被毒回復処理に適した状態となった場合に、S被毒回復が再度行われる。その際、本実施の形態では、エンジン1停止前、若しくは、S被毒回復に適さない機関運転状態となる前に行われていたS被毒回復処理の中断時の処理段階からS被毒回復処理を開始する。
【0145】
即ち、前回のS被毒回復処理の中断時に、硫黄成分SX1若しくはSX2が放出されている場合には、これらを放出させるための段階的な処理を行わなくとも臭気が発生することがない。
【0146】
また、硫黄成分SX1若しくはSX2の放出が完了しているにも関わらず、再度硫黄成分SX1を放出させるための処理を行うと、S被毒回復が完了するまでに時間を要する。従って、還元剤を多く必要とするので、本実施の形態のように還元剤に燃料を用いている場合には、燃費の悪化を誘発させる。また、硫黄成分SX3を放出させる機会を逃す虞もある。
【0147】
そこで、本実施の形態では、S被毒回復時にS被毒回復処理が中断された場合であって、その後に、S被毒回復処理を行う場合には、前回の処理段階を考慮して、今回行う処理段階を設定する。
【0148】
即ち、前回、第1のS放出処理が完了する前にS被毒回復処理が中断された場合には、今回、第1のS放出処理から開始する。また、前回、第1のS放出処理が完了後、第2のS放出処理の途中でS被毒回復処理が中断された場合には、今回、第2のS放出処理から開始する。そして、前回、第2のS放出処理が完了後、第3のS放出処理の途中で中断された場合には、今回、第3のS放出処理から開始する。
【0149】
このように、S被毒回復時に、前回の処理段階に基づいた処理を行うことにより、臭気の発生を抑制することができる。また、S被毒回復の時間を短縮することが可能となり、燃費の悪化を抑制することが可能となる。更に、S被毒回復に要する時間の短縮が可能となるので、S被毒回復途中のエンジン停止や運転状態の変化によるS被毒回復処理の中断回数を減少させることが可能となり、S被毒による大気中へのNOxの放出を抑制することが可能となる。
【0150】
尚、本実施の形態においては、エンジン1の運転状態によりS被毒回復処理が中断され、次回行われるまでのエンジン運転期間が長い場合や、アイドル状態のような目標温度まで温度が上昇できない期間が長く続いた場合には、再度第1のS放出処理からのS被毒回復を行う。即ち、その間NOx触媒に硫黄成分が新たに蓄積されるので、臭気が発生する虞がある。そこで、本実施の形態では、このような運転状態が続いた場合には、再度第1のS放出処理からのS被毒回復を行う。これにより、新たに蓄積された硫黄成分による臭気の発生を抑制することが可能となる。また、S被毒回復処理が中断された期間が長いほど目標温度が低くなるように設定しても良い。ここで、エンジン1の停止によりS被毒回復処理が中断された場合には、硫黄成分が蓄積されないため、前回処理段階からS被毒回復処理を行えば良い。
【0151】
また、本実施の形態においては、S被毒回復処理中に目標温度まで上昇しない状態が所定期間継続した場合には、この間の機関運転状態に基づいて目標床温を設定し直しても良い。即ち、目標温度までフィルタ床温が上昇しない状態での機関運転中にNOx触媒に蓄積される硫黄成分の量やその成分は、そのときの機関運転状態により異なる。そこで、硫黄成分SX1若しくはSX2の発生する運転状態を、例えば、機関回転数と負荷との関係から予め実験等により求め、これをマップ化しておく。そして、フィルタ20の床温が目標温度まで上昇しない状態が継続した期間中、硫黄成分SX1若しくはSX2の発生量を積算し、NOx触媒に蓄積された硫黄成分SX1若しくはSX2の量を求める。そして、硫黄成分SX1若しくはSX2が所定量以上堆積した場合には、それらを放出可能な温度となるようにフィルタの目標床温を再設定する。
【0152】
このようにして、目標温度に達しないときに蓄積された硫黄成分の放出による臭気の発生を抑制することが可能となる。
【0153】
尚、本実施の形態における段階的なS被毒回復処理と、第1の実施の形態で説明した段階的な昇温と、を組み合わせて行うこともできる。これにより、臭気の発生と熱劣化の進行とを抑制することが可能となる。
【0154】
以上説明したように、本実施の形態によれば、S被毒回復処理の中断前の処理状態に基づいて、同処理再開時の処理条件を設定することができる。これにより、S被毒回復による燃費の悪化を抑制することが可能となる。また、S被毒を速やかに回復させ、大気中へのNOxの放出を抑制することが可能となる。更に、臭気の発生を抑制することが可能となる。
【0155】
【発明の効果】
本発明に係る内燃機関の排気浄化システムでは、S被毒回復の途中で処理が中断され、さらにその後に同処理を再開する場合には、中断前のNOx触媒の温度に基づいて、再開時の目標温度を設定することができる。これにより、S被毒回復による燃費の悪化を抑制することが可能となる。また、S被毒を速やかに回復させ、大気中へのNOxの放出を抑制することが可能となる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る排気浄化システムを適用するエンジンとその吸排気系の概略構成を示す図である。
【図2】還元剤噴射弁に送られるECUの指令信号の波形と、その波形に対応する空燃比の変化とを同一時間軸上に示すタイムチャート図である。
【図3】S被毒回復中処理中のフィルタの目標床温及び実際の床温の時間推移を示したタイムチャート図である。
【図4】S被毒回復中処理中であって、フィルタの床温を目標温度まで上昇させることができない場合のフィルタの目標床温及び実際の床温の時間推移を示したタイムチャート図である。
【図5】フィルタの床温を目標温度まで上昇させることができない場合の昇温処理のフローを指し示したフローチャート図である。
【図6】S被毒回復制御を行った場合に観測されるNOxの浄化効率(図6(a))及び硫黄成分の放出量(図6(b))の推移を同一時間軸上に示すタイムチャート図である。
【符号の説明】
1 エンジン
1a クランクプーリ
1b 排気ポート
2 気筒
3 燃料噴射弁
4 コモンレール
5 燃料供給管
6 燃料ポンプ
6a ポンププーリ
7 ベルト
8 吸気枝管
9 吸気管
11 エアフローメータ
13 吸気絞り弁
14 吸気絞り用アクチュエータ
15 遠心過給機
15a コンプレッサハウジング
15b タービンハウジング
18 排気枝管
19 排気管
20 パティキュレートフィルタ
22 NOxセンサ
23 空燃比センサ
24 排気温度センサ
28 還元剤噴射弁
29 還元剤供給路
33 クランクポジションセンサ
35 ECU
36 アクセル開度センサ

Claims (6)

  1. 酸化雰囲気のときにNOxを吸蔵し還元雰囲気で吸蔵していたNOxを還元するNOx触媒と、
    前記NOx触媒へ還元剤を供給する還元剤供給手段と、
    前記NOx触媒の温度を上昇させる昇温手段と、
    前記昇温手段によりNOx触媒の温度を上昇させつつ前記還元剤供給手段から還元剤を供給して前記NOx触媒のS被毒を回復させるS被毒回復手段と、
    を備えた内燃機関の排気浄化システムであって、
    前記S被毒回復手段は、前記NOx触媒の温度と、前記NOx触媒に導入される排気中の還元剤濃度若しくは酸素濃度と、の関係から決定づけられる複数の条件を個別に成立させてS被毒を回復させ、S被毒の回復途中で処理が中断された後にS被毒の回復を再度行う場合には、S被毒回復開始時の目標となるNOx触媒の温度及び前記NOx触媒に導入される還元剤濃度若しくは酸素濃度を、処理が中断された前回のS被毒回復の処理の履歴から決定することを特徴とする内燃機関の排気浄化システム。
  2. 前記S被毒回復手段は、異なる状態で蓄積された硫黄成分を段階的に放出すべく、各段階で少なくとも一の成分が主として放出されるように前記NOx触媒を段階的に温度上昇させ、S被毒回復の途中で処理が中断された後にS被毒回復を再開する場合には、処理が中断されたときの前記NOx触媒の温度を目標として再開することを特徴とする請求項1に記載の内燃機関の排気浄化システム。
  3. 前記NOx触媒は、パティキュレートフィルタに担持され、前記S被毒回復手段は、異なる状態で堆積した粒子状物質を段階的に酸化すべく、各段階で少なくとも一の成分が主として酸化されるように前記NOx触媒を段階的に温度上昇させ、S被毒回復の途中で処理が中断された後にS被毒回復を再開する場合には、処理が中断されたときの前記NOx触媒の温度を目標として再開することを特徴とする請求項1または2に記載の内燃機関の排気浄化システム。
  4. 前記S被毒回復手段は、S被毒の回復処理が中断された期間が所定期間以上となった場合には、S被毒の回復処理を再開するときに前記NOx触媒の目標となる温度を低下させることを特徴とする請求項1から3の何れかに記載の内燃機関の排気浄化システム。
  5. S被毒の回復処理が中断された期間の内燃機関の運転状態に基づいて前記NOx触媒の目標となる温度を設定することを特徴とする請求項4に記載の内燃機関の排気浄化システム。
  6. 前記S被毒回復の中断は、内燃機関の停止により発生することを特徴とする請求項1から5の何れかに記載の内燃機関の排気浄化システム。
JP2003041326A 2003-02-19 2003-02-19 内燃機関の排気浄化システム Expired - Lifetime JP4385617B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041326A JP4385617B2 (ja) 2003-02-19 2003-02-19 内燃機関の排気浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041326A JP4385617B2 (ja) 2003-02-19 2003-02-19 内燃機関の排気浄化システム

Publications (2)

Publication Number Publication Date
JP2004251172A true JP2004251172A (ja) 2004-09-09
JP4385617B2 JP4385617B2 (ja) 2009-12-16

Family

ID=33024939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041326A Expired - Lifetime JP4385617B2 (ja) 2003-02-19 2003-02-19 内燃機関の排気浄化システム

Country Status (1)

Country Link
JP (1) JP4385617B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291788A (ja) * 2005-04-08 2006-10-26 Denso Corp 内燃機関の排気浄化装置
JP2008516152A (ja) * 2004-10-12 2008-05-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 二酸化窒素の分解方法
JP2010185345A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp ヒータ制御装置
JP2010261320A (ja) * 2009-04-30 2010-11-18 Toyota Motor Corp 内燃機関の排気浄化装置
KR101535088B1 (ko) * 2012-06-12 2015-07-08 희성촉매 주식회사 고성능 scr 촉매 시스템
JP2015523497A (ja) * 2012-08-01 2015-08-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG 内燃機関における排気ガス処理方法および排気系の装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516152A (ja) * 2004-10-12 2008-05-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 二酸化窒素の分解方法
JP2006291788A (ja) * 2005-04-08 2006-10-26 Denso Corp 内燃機関の排気浄化装置
JP4506539B2 (ja) * 2005-04-08 2010-07-21 株式会社デンソー 内燃機関の排気浄化装置
JP2010185345A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp ヒータ制御装置
JP2010261320A (ja) * 2009-04-30 2010-11-18 Toyota Motor Corp 内燃機関の排気浄化装置
KR101535088B1 (ko) * 2012-06-12 2015-07-08 희성촉매 주식회사 고성능 scr 촉매 시스템
JP2015523497A (ja) * 2012-08-01 2015-08-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG 内燃機関における排気ガス処理方法および排気系の装置
US9388720B2 (en) 2012-08-01 2016-07-12 Daimler Ag Method for treating exhaust gas and arrangement of an exhaust gas system on an internal combustion engine

Also Published As

Publication number Publication date
JP4385617B2 (ja) 2009-12-16

Similar Documents

Publication Publication Date Title
JP3599012B2 (ja) 内燃機関の排気浄化装置
JP3835241B2 (ja) 内燃機関の排気浄化装置
JP4288942B2 (ja) 内燃機関の排気浄化装置
JP3767483B2 (ja) 内燃機関の排気浄化装置
JP2004176663A (ja) 内燃機関の排気浄化装置
JP3757860B2 (ja) 内燃機関の排気浄化装置
JP3972864B2 (ja) 内燃機関の排気浄化システム
JP2003065042A (ja) 内燃機関の排気浄化装置
JP4385617B2 (ja) 内燃機関の排気浄化システム
JP3897621B2 (ja) 内燃機関の排気浄化装置
JP3826824B2 (ja) 内燃機関の排気浄化装置及び触媒機能の管理方法
JP2003020930A (ja) 内燃機関の排気浄化装置
JP2007040222A (ja) 排気浄化装置
JP2019138159A (ja) エンジンの制御装置
JP4193553B2 (ja) 内燃機関の排気浄化装置
JP2004176636A (ja) 内燃機関の排気浄化装置
JP4314835B2 (ja) 内燃機関の排気浄化システム
JP3800065B2 (ja) 内燃機関の排気浄化装置
JP4239443B2 (ja) 内燃機関の制御装置
JP2003097254A (ja) 内燃機関の排気浄化装置
JP4314833B2 (ja) 内燃機関の排気浄化装置
JP4032760B2 (ja) 内燃機関の排気浄化装置
JP3620446B2 (ja) 内燃機関の排気浄化装置
JP2005016387A (ja) 内燃機関の排気浄化方法
JP6508264B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R151 Written notification of patent or utility model registration

Ref document number: 4385617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

EXPY Cancellation because of completion of term