JP2004251101A - Bag body for forming civil-engineering structure and civil-engineering structure using it and slope stabilizing construction method - Google Patents

Bag body for forming civil-engineering structure and civil-engineering structure using it and slope stabilizing construction method Download PDF

Info

Publication number
JP2004251101A
JP2004251101A JP2003206869A JP2003206869A JP2004251101A JP 2004251101 A JP2004251101 A JP 2004251101A JP 2003206869 A JP2003206869 A JP 2003206869A JP 2003206869 A JP2003206869 A JP 2003206869A JP 2004251101 A JP2004251101 A JP 2004251101A
Authority
JP
Japan
Prior art keywords
tubular woven
woven fabric
engineering structure
civil engineering
woven fabrics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003206869A
Other languages
Japanese (ja)
Other versions
JP4115900B2 (en
Inventor
Kenichi Shibata
健一 柴田
和孝 ▲から▼▲さき▼
Kazutaka Karasaki
Kiyomi Tsuji
清美 辻
Junichi Goto
順一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashimori Industry Co Ltd
Original Assignee
Ashimori Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashimori Industry Co Ltd filed Critical Ashimori Industry Co Ltd
Priority to JP2003206869A priority Critical patent/JP4115900B2/en
Publication of JP2004251101A publication Critical patent/JP2004251101A/en
Application granted granted Critical
Publication of JP4115900B2 publication Critical patent/JP4115900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bag body for a pressure-receiving plate, which does not depend upon the locational conditions of a construction site because of a light weight and excellent handling properties, for example, the bag body is built even when the locational conditions of the construction site are inferior and heavy machinery cannot be used in a mountainous section or the like, and used properly for a stabilizing construction method for a slope such as a cut. <P>SOLUTION: Slits 11 at two places are formed at approximately the center of a cylindrical woven fabric 1A in a length approximately coinciding with the woven width of the cylindrical woven fabric 1B, the woven fabric 1B is inserted into the slits 11 and sections near to the edges of the slits 11 of the woven fabric 1A and the surface of the woven fabric 1B abutted against the slits 11 are joined by a sewing or the like. A plurality of holes 12 communicating with the inside of the woven fabric 1A from the inside of the woven fabric 1B are formed to the woven fabric 1B positioned in the woven fabric 1A while a filler port 13 for a fluid material is formed to the woven fabric 1B. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法に関し、特に、切り土等の斜面の安定化工法等の土木工法に広くかつ好適に用いることができる土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法に関するものである。
【0002】
【従来の技術】
例えば、山間部に道路や宅地等を造成する場合、山肌を削ること、すなわち、切り土を行うことがあるが、このように切り土を行った斜面は、それまであった土の重さがなくなるので膨らもうとするため、不安定となる。
【0003】
このような切り土を行った斜面の安定化を図るため、従来より、PC鋼材等の高強度の鋼材からなるグランドアンカーを地盤中に打設し、グランドアンカーの両端部を地盤中と地表面とにそれぞれ定着することにより地盤の緩みを防止するアンカー工法が用いられている。
【0004】
このアンカー工法では、グランドアンカーを、地表面、すなわち、切り土を行った斜面へ定着させるために、斜面上に反力構造物を設けるようにしている。
そして、反力構造物には、図13に示すような、斜面からグランドアンカーGを介して受圧板Cが受ける力の大きさに応じて、通常、数トン〜数十トン程度の重量で、十字形や矩形の全体形状を有し、グランドアンカーGの挿通孔C1及び固定部C2を形成した、プレキャストコンクリート製の受圧板Cが汎用されている(例えば、特開平6−299558公報参照)。
【0005】
【特許文献1】
特開平6−299558号公報
【0006】
【発明が解決しようとする課題】
ところで、図13に示すようなプレキャストコンクリート製の受圧板Cは、斜面上に単に設置するだけで反力構造物としての機能を奏するため、施工期間を大幅に短縮でき、また、斜面からグランドアンカーGを介して受圧板Cが受ける力の大きさに応じた受圧板Cの重量の大小の選択を容易に行うことができる等の利点を有している。
しかしながら、その反面、プレキャストコンクリート製の受圧板Cは、重量が大きく、取扱性が悪いため、山間部等で施工現場の立地条件が悪く重機が使用できない場合等には、施工が不可能になったり、施工コストが上昇する等の問題があった。
【0007】
本発明は、上記従来のプレキャストコンクリート製の受圧板Cの有する問題点に鑑み、軽量で、取扱性がよく、このため、施工現場の立地条件に左右されず、例えば、山間部等で施工現場の立地条件が悪く重機が使用できない場合等でも施工可能で、切り土等の斜面の安定化工法等の土木工法に広くかつ好適に用いることができる土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の土木構造物形成用袋体は、筒状織布に他の筒状織布の織幅に略一致する長さで2箇所の切れ目を入れ、該切れ目に他の筒状織布を挿入して、筒状織布の前記切れ目の縁近傍と該切れ目に当接する他の筒状織布の表面を接合させ、筒状織布の内部に位置する他の筒状織布に、他の筒状織布の内部から筒状織布の内部に通じる孔を形成するとともに、他の筒状織布に流動性材料の注入口を設けたことを特徴とする。
【0009】
この場合、土木構造物形成用袋体は、希望する土木構造物の形状に応じて、2本の筒状織布を略十字形状に接合するようにしたり、4本の筒状織布を接合してなり、2本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記2本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成するようにしたり、さらに、複数本の筒状織布を接合してなり、複数本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記複数本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成することができる。
【0010】
また、上記土木構造物形成用袋体を用いる本発明の土木構造物は、上記土木構造物形成用袋体を構成している複数の筒状織布の中に、順に流動性材料を注入して構築したことを特徴とする。
そして、土木構造物形成用袋体の交差部にアンカー定着具を設け、筒状織布の内部に充填して、筒状織布及びアンカー定着具を一体化するようにしたり、さらに、土木構造物形成用袋体の筒状織布の内部、長手方向に補強材を配して、該補強材と筒状織布の端部を固定し、筒状織布の内部に流動性材料を充填して、筒状織布、補強材及びアンカー定着具を一体化するようにすることができる。
【0011】
また、上記土木構造物形成用袋体を用いる本発明の斜面安定化工法は、上記土木構造物形成用袋体の筒状織布を、斜面に縦横方向になるように設置したり、斜面に斜めに設置し、筒状織布の内部に流動性材料を充填することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法の実施の形態を図面に基づいて説明する。
【0013】
[実施例1]
図1〜図7に、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法の実施例1を示す。
この実施例は、地盤の緩みを防止するアンカー工法に用いられる受圧板に本発明を適用したもので、土木構造物形成用袋体を、一方の筒状織布(以下、本明細書において、「筒状織布1A」という。)の略中央に他方の筒状織布(以下、本明細書において、「筒状織布1B」という。)の織幅に略一致する長さで2箇所の切れ目11を入れ、この切れ目11に筒状織布1Bを挿入して、筒状織布1Aに筒状織布1Bを貫通させ、筒状織布1Aの切れ目11の縁近傍とこの切れ目11に当接する筒状織布1Bの表面を接着剤、熱融着、縫合等することにより接合させ、筒状織布1Aの内部に位置する筒状織布1Bに、筒状織布1Bの内部から筒状織布1Aの内部に通じる複数個の孔12を形成し、筒状織布1Bに流動性材料としてのモルタル等の流動性固化材の注入口13を設けて構成するようにしている。
【0014】
この場合において、筒状織布1A、1Bは、特に限定されるものではないが、例えば、直径400mm程度の一定の直径を有する透水性を有する筒状の織物であって、円周方向の糸はスパイラル状に連続して織り込まれている。
そして、筒状織布1A、1Bの経糸及び緯糸は、耐候性を有する繊維、例えば、ポリエステル繊維からなり、太さは1000d/2本、密度は経20本/インチ、緯20本/インチで、織組織は平織りとしている。具体的には、環状織機で織られたもので、緯糸が筒状織布の前記スパイラル状の糸を構成する。
なお、筒状織布1A、1Bの経糸及び/又は緯糸に、高強度繊維やワイヤ等の引張強度の大きい線材を織り込むことにより、筒状織布1A、1Bの強度を向上することができる。
【0015】
また、図1及び図2に示すように、筒状織布1Aの中央部には対向する位置に2箇所、長さ600mmの切れ目11が設けられており、筒状織布1Bがそこを貫通するように組み立てられるようにしている。
【0016】
筒状織布1Aの切れ目11の縁近傍とこの切れ目11に当接する筒状織布1Bの表面の接合は、接着剤11aによるもので、モルタル等の流動性固化材の充填時に、接合部が剥離しやすい筒状織布1Aの切れ目両端部のみ、筒状織布1A、1Bを一体に縫合11bするようにする。
接着剤は、一般的な低融点のナイロンやウレタン等のホットメルト系接着剤を使用する。
なお、筒状織布1Aの切れ目11の縁近傍とこの切れ目11に当接する筒状織布1Bの表面の接合方法は、これに限定されず、例えば、図3に示す変形例のように、筒状織布1Aの切れ目11に当接する筒状織布1Bを、切れ目11との当接位置で少しつまんで短く折り返すことにより2重にだぶらせ、この状態で、筒状織布1A、1Bを一体に1周又はそれ以上縫製11cするようにすることもでき、これにより、筒状織布1A、1Bの接合部における変形の自由度を大きくし、接合部が剥離することを防止することができる。
【0017】
筒状織布1Bの内部から筒状織布1Aの内部に通じる複数個の孔12は、図1に示すように、筒状織布1A内部に面した筒状織布1Bの側面に、本実施例においては、4箇所設けられ、寸法は直径30mmに設定している。
【0018】
筒状織布1Bに設けた流動性固化材の注入口13には、必要に応じて、逆止弁14を装着することができる。
【0019】
そして、この土木構造物形成用袋体は、両方の筒状織布1A、1Bの内部、長手方向に1本又は複数本の補強材としての異形棒鋼2を配して(補強材の本数と配設位置は、受圧板の荷重設計によるが、2本以上が適当で、配設位置は筒状織布1A、1Bが膨らんだ状態でその断面の中心位置より若干下が適当である。なお、本実施例においては、各2本配設するようにしている。)、この補強材2と筒状織布1A、1Bの端部を固定するようにしている。
また、両方の筒状織布1A、1Bの交差部には、筒状織布1A、1Bに固定するようにして、図5に示すアンカー定着具3を設けるようにする。
そして、筒状織布1Bに設けた流動性固化材の注入口13から両方の筒状織布1A、1Bの内部に流動性固化材8を充填して、両方の筒状織布1A、1B、補強材2及びアンカー定着具3を一体化するようにしている。
なお、この場合、筒状織布1Aの内部、長手方向に配する補強材2は、筒状織布1Bに形成した、筒状織布1Bの内部から筒状織布1Aの内部に通じる孔12を貫通するようにして配設するようにする。
【0020】
筒状織布1A、1Bの内部、長手方向に配する補強材2は、筒状織布1A、1Bより若干長く形成した異径棒鋼で構成し、端部にねじ加工を施すようにする。そして、端部をねじ加工した棒鋼を、図1及び図4に示すような2枚の金属板41、42(金属板42の片面には内側に雌ねじ加工が施されている。)及びリング43からなる端末金具4と、ナット21(又は図1に示すように、端末金具4の金属板41Xに植設した雌ねじ部材41b)を用いて固定するようにしている。
なお、本実施例においては、補強材2として、異径棒鋼を用いるようにしているが、このほか、通常の丸棒鋼やH型鋼等の形鋼等、任意の断面形状のものを用いることができ、さらには、材質も鋼材製のもののほか、FRP製のもの等を用いることができる。
【0021】
そして、端末金具4には、筒状織布1A、1Bの端部を、端末金具4の2枚の金属板41、42の間にリング43を介して挟持し、ボルト44を金属板42に形成したねじ孔42aに螺合して締め付けることにより、取り付けるようにしている。
この端末金具4の構造により、土木構造物形成用袋体を斜面に設置して筒状織布1A、1Bの内部に流動性固化材を充填する際、筒状織布1A、1Bに張力をかけることができる。
さらに、片端のねじにナットを固定(溶接、ダブルナット等)した補強材2を用いれば、金属板42に雌ねじ加工が施されているため、解除する方向にナットを回せば、筒状織布1A、1Bをより強固に展張することができる。
これらによって、筒状織布1A、1Bがだぶつかず、形状を保持しながら流動性固化材を充填することができる。
【0022】
アンカー定着具3は、図5に示すように、2枚のフランジ31、32とリング33を両端部に有する筒状金具からなる。
そして、このアンカー定着具3を、筒状織布1A、1Bの交差部の上下両面に形成した装着孔15に挿入し、筒状織布1A、1Bの装着孔15の周縁を、アンカー定着具3のフランジ32上にリング33を介して挟持し、フランジ31に形成したねじ孔31aにボルトを螺合してリング33を締め付けることにより、取り付けるようにしている。
アンカー定着具3の高さは、両端の筒状織布1A、1Bを挟み込むフランジ32、32間の距離が、筒状織布1A、1Bの直径に略等しいかそれよりも若干小さい寸法となるように設定する。
【0023】
次に、この土木構造物形成用袋体を用いる斜面安定化工法について、図6及び図7を用いて説明する。
まず、筒状織布1Aの内部、長手方向に配する補強材2は、筒状織布1Bに形成した、筒状織布1Bの内部から筒状織布1Aの内部に通じる孔12を貫通するようにして配設し、両端を、筒状織布1Aの端部とともに、端末金具4によって固定する。
筒状織布1Aに補強材2が挿入され、筒状織布1Bの流動性固化材の注入口13に逆止弁14が装着された状態で、筒状織布1Bを筒状織布1Aに巻き付けるようにしてコンパクトな状態でその他の金具類等とともに工場から施工現場に出荷される(図7(b))。
【0024】
そして、施工現場では、土木構造物形成用袋体を、筒状織布1Bの両端の端末金具4の金属板41に設けられたリング41aを利用してクレーン等を用いて吊り上げ(図7(c))、筒状織布1A、1Bを斜面に縦横方向に、すなわち、筒状織布1Aを斜面の等高線方向に、筒状織布1Bを筒状織布1Aと直交する方向になるように設置し(この場合、流動性固化材の注入口13が斜面の上方に位置するように設置する。)、端末金具4の金属板41に設けられたリング41aを利用して筒状織布1Aをアンカー5により斜面に仮固定する(図6(a))。
なお、本実施例においては、筒状織布1A、1Bを斜面に縦横方向に設置するようにしたが、これに限定されず、例えば、図12に示すように、複数本の筒状織布1Fを略格子状に接合する構造とした場合等には、各筒状織布1Fを斜面に斜め方向に、すなわち、筒状織布1A、1Bを斜面の等高線に対して、略45゜の角度をなす方向に設置するようにすることもできる。
筒状織布1Bの内部に配する補強材2は、施工現場で挿入され、両端を、筒状織布1Bの端部とともに、端末金具4によって固定する。
この場合、筒状織布1Bの内部は、単に筒状の空洞があるだけなので補強材2を容易に挿入できる。
そして、筒状織布1Bの端末金具4の金属板41に設けられたリング41aを利用して筒状織布1Bをアンカー5により斜面に仮固定する(図6(b))。
【0025】
なお、予め工場で筒状織布1Bの内部に配する補強材2を組み込み、両端を、筒状織布1Bの端部とともに、端末金具4によって固定することもできる。
この場合も、略十字形状の土木構造物形成用袋体を筒状織布1Aと筒状織布1Bの交差角が小さくなるように折り畳むことにより、コンパクトな状態で工場から施工現場に出荷することができる。
【0026】
次に、アンカー定着具3を、筒状織布1A、1Bの交差部の上下両面に形成した装着孔15に挿入、取り付ける。
なお、予め工場でアンカー定着具3を取り付けることもできる。
アンカー定着具3には、PC鋼材等の高強度の鋼材からなるグランドアンカー6を地盤中に打設し、グランドアンカー6の下端部を地盤中に定着する(図6(c))。
【0027】
この状態で、流動性固化材ポンプ71を介して流動性固化材プラント7に接続したホース72を流動性固化材の注入口13に接続し、流動性固化材の注入口13から流動性固化材を注入することにより、両方の筒状織布1A、1Bの内部に流動性固化材を充填する(図6(b)、図7(a))。
この場合、流動性固化材の注入口13から注入された流動性固化材8は、筒状織布1Bの下方から次第に充填され、筒状織布1A、1Bの交差部を超えた時点で、筒状織布1Bの内部から筒状織布1Aの内部に通じる孔12を通して筒状織布1Aにも充填され始める。
このため、交差部では筒状織布1Aが十分膨らんだ状態が保たれつつ筒状織布1Bに流動性固化材8が充填されていき、最終的に筒状織布1Bに流動性固化材8が完全に充填されれば、流動性固化材の注入口13から注入ホースを取り除いて注入作業を完了する。なお、流動性固化材の注入口13に逆止弁14を装着することにより、流動性固化材の流出事故を防止することができる。
【0028】
筒状織布1A、1Bに充填する流動性固化材には、例えば、一般的なポルトランドセメントを用いた通常のモルタルを使用し、最終的な注入圧をやや高めにして筒状織布1A、1Bの織目を通して脱水させ、内部の流動性固化材8をち密にして早期に硬化させ、ブリージング等による硬化後の体積減少がないようにする。なお、注入圧は、0.3MPa程度が適当である。
硬化後の体積減少がない特殊モルタルを使用した場合は、脱水の必要がなく、注入圧はやや低くても構わないが、斜面に設置されているため、ある程度の圧力をかけないと斜面の等高線方向(水平方向)の筒状織布1Aの断面が流動性固化材の自重で歪な形にとどまってしまうことがある。略円形にするためには、0.1MPa程度の注入圧が必要である。
また、ここでは、流動性固化材8として、モルタルを例に挙げて説明したが、流動性固化材8としては、このほか、セメントペーストやコンクリート等のセメント系固化材や樹脂系硬化材等の耐候性を有する固化材を用いることができる。
【0029】
筒状織布1A、1Bの表面に、耐候性を付与するための塩化ビニル樹脂、アスファルト等の表面処理が施されている場合は、織目から脱水できないので、硬化後の体積減少がない特殊流動性固化材を使用する。
なお、耐候性を付与するための筒状織布1A、1Bの表面処理は、筒状織布1A、1Bに充填した流動性固化材8が硬化した後に施すことができる。
【0030】
このほか、筒状織布1A、1Bの表面に、難燃処理等を施すことができる。
【0031】
最後に仮アンカー5を除去し、流動性固化材8が完全に硬化した時点でグランドアンカー6の両端部を地盤中とアンカー定着具3とにそれぞれ定着して施工を完了する(図6(d))。
なお、筒状織布1A、1Bの端末金具4は、そのままにしておいてもよいが、流動性固化材8が硬化した後撤去して再利用することもできる。この場合、端部からはみ出た補強材2は必要に応じて切断して除去する。
【0032】
[実施例2]
上記実施例1と同じ筒状織布1A、1Bを用い、両端部を斜めに切断する。
斜めに切断した端部を、実施例1と同様、端末金具4で補強材2と一体に固定する。
筒状織布1A、1B共に、斜めに切断した長い面が下面側(地山側)になるようにする。
そして、筒状織布1A、1Bの上面側と補強材2の端末金具4間の距離とを略同じに設定すると、筒状織布1A、1Bの下面側の長さが上面側より長くなるため、たるんだ状態になる。
受圧板が設置される斜面は、表面状態が平滑であるとは限らず、かなり凸凹した状態であることも多く不陸があるため、受圧板と斜面間に空隙が生じ、グランドアンカー6の反力構造体として斜面に均等な荷重がかからず、また、受圧板自体も不均等な荷重を受けるため強度が弱くなる。
筒状織布1A、1Bの下面にたるんだ部分があると、筒状織布1A、1Bの両端末はアンカー5で斜面に仮固定されており、アンカー定着具3にはグランドアンカー6が打ち込まれているので、流動性固化材が注入されることで筒状織布1A、1Bの下面は斜面の凹凸に沿って膨らむことができ、不陸調整を自動的に行うことができる。
なお、その他の構成は、実施例1と同じである。
【0033】
[実施例3]
図8に示すように、筒状織布1A、1Bに、直径が長手方向に亘って変化した織物を用い、それ以外は実施例1と同じである。
筒状織布1A、1Bの直径は、特に限定されるものではないが、例えば、中央部が直径600mmのストレート部(長さ600mm)から、両側にテーパー状に直径が変化し(長さ1800mm)、両端は直径400mmとなった後、再度ストレート部(長さ200mm)が形成されるように設定されている。
筒状織布1A、1Bの組み立て、接合、筒状織布1B内部から筒状織布1A内部に通じる孔12、流動性固化材の注入口13、補強材2、アンカー定着具3、端末金具4、受圧板の施工は、実施例1と同じで、アンカー定着具3の高さも、実施例1と同じく、両端の筒状織布1A、1Bを挟み込むフランジ32、32間の距離が、筒状織布1A、1Bの直径に略等しいかそれよりも若干小さい寸法となるように設定する。
流動性固化材の注入後の受圧板の形状は、中央が幅・高さとも大きく、十字の端部側へいくに従いテーパー状に小さくなる。テーパー形状は受圧板の設計手法により曲げモーメントの分布に応じて設定されている。
テーパーを有した筒状織布1A、1Bで土木構造物形成用袋体を形成し受圧板として施工した場合、斜面に置かれた状態で、筒状織布1A、1Bの両端の端末金具4及び補強材2が自重で筒状織布1A、1Bの断面中心より下方に下がる。
したがって、筒状織布1A、1Bの下面側は筒状織布1A、1Bが長手方向にたるんだ状態となる。このたるみは実施例2と同じく不陸調整に用いることができる。
なお、その他の構成は、実施例1と同じである。
【0034】
[実施例4]
上記実施例1と同じ筒状織布1A、1Bを用い、組み立て等も同様に行うが、図9に示すように、筒状織布1Aと筒状織布1Bの接合を下記の手順で行う。
長さ200mmの短尺筒状織布1Cを用意し、長手方向の中央まで表裏が逆になるように折り返して当て布1C’を作成する。
筒状織布1Aの切れ目に、当て布1C’を挿入し、当て布1C’の一方の縁(外周側)を筒状織布1Aの切れ目11の縁近傍と一体に縫合し、もう一方の縁(内周側)を切れ目11に当接する筒状織布1Bの表面と一体に縫合する。
このようにして、長手方向の中央で折り返した当て布1C’を介して筒状織布1A、1Bを接合することで、流動性固化材を注入することによって筒状織布1A、1Bが膨らんだとき、当て布1C’が緩衝作用をもたらし、接合部が一層破れにくくなる。
なお、その他の構成は、実施例1と同じである。
【0035】
[実施例5]
上記実施例1と同じ筒状織布1A、1Bを用い、組み立て、接合等も同様に行うが、図10に示すように、筒状織布1A、1Bの下面に重なるようにして筒状織布1C、1Dからなる略十字形状の袋体を配設する。
なお、筒状織布1C、1Dを配設することに代えて、筒状織布1A、1Bの下面部を流動性固化材の注入空間を備えた2層構造とすることもできる。
この筒状織布1C、1Dには補強材を挿入せず、端末金具を用いず単に縫合によって閉じるだけでありそれ以外は筒状織布1A、1Bと同じ構成である。
筒状織布1C、1Dの十字の中央部は、アンカー定着具3により、筒状織布1A、1Bの下面側の取り付けとともに一体に固定されている。
そして、筒状織布1A、1Bへの流動性固化材の注入後に、筒状織布1C、1Dの適宜箇所に形成した流動性固化材の注入口(図示省略)から筒状織布1C、1D内に流動性固化材を注入する。筒状織布1C、1Dへの流動性固化材の注入は、袋体に圧力がほとんど加わらない状態で行い、筒状織布1C、1Dの織布表面は、筒状織布1A、1Bの形状及び地山の凹凸に沿って広がるようにする。
このようにして、地山に不陸が大きく存在する場合でも、筒状織布1C、1Dによる不陸調整機能で受圧板と地山の間隙を埋めることができる。また、筒状織布1A、1Bは、断面が略円形に膨らむため、実施例2や実施例3のように下面にたるみを取っていないと地山に接する部分が少なくなるが、筒状織布1C、1Dにより筒状織布1C、1Dの下面と地山の隙間自体も埋めることができる。このようにして、受圧板と地山の荷重伝達が円滑に行われる構造となる。
なお、その他の構成は、実施例1と同じである。
そして、この実施例のものは、切り土を施さない法面でも設置、施工を行うことができる。
【0036】
次に、上記実施例の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法の作用について説明する。
上記土木構造物形成用袋体によれば、筒状織布1Aに筒状織布1Bを貫通し、織布表面同士を接合させ、筒状織布1Bに筒状織布1Aの内部に通じる孔12を設け、筒状織布1Bには流動性固化材の注入口13を設けるようにしているため、流動性固化材の注入口13から注入された流動性固化材8は、交差部において筒状織布1Bを十分膨らませてから筒状織布1Aに注入される。先に筒状織布1Aに流動性固化材が注入されてしまうと筒状織布1Bが交差部で膨らみきれなくなるが、この交差部の構造であれば交差部内部の筒状織布1Bが膨らみきらない状態が発生せず、円滑な流動性固化材の注入と安定した筒状織布1A、1Bの膨らみが実現する。
これにより、硬化した後の流動性固化材8の表面を、筒状織布1A、1Bの連続した繊維で補強し、交差部においては2重に補強することになる。その結果、流動性固化材の注入時の布型枠として良好な機能が得られるだけでなく、一般に表面クラックや欠けが発生しやすい構造物表面の強化にも有効に機能する。
【0037】
また、受圧板の施工場所へ、袋の状態でコンパクトにたためて持ち込め、プレキャストコンクリート製の受圧板と比べてはるかに軽量であるため、部材の運搬等の問題から現場立地条件が悪い場合でも、施工が容易になる。
【0038】
筒状織布1A、1Bの内部に補強材2を配して端部で一体に固定し、筒状織布1A、1Bの貫通する箇所にアンカー定着具3を設け、内部が流動性固化材8で充填されて一体に成形された受圧板は、全体が一体に成形された構造物となり、グランドアンカー6の斜面への定着のための反力構造物として有効に機能する。
筒状織布1Aと筒状織布1Bの表面の接合が接着剤等によるもので、筒状織布1Aの切れ目11の両端部のみ筒状織布1A、1Bを一体に縫合してあると、流動性固化材の注入時に多少注入圧を高くして筒状織布1Aの膨らみにより切れ目11が大きくなっても、筒状織布1Bは縫合部により引っ張られ、その間に隙間ができることがなく、流動性固化材の漏れが発生しない。
【0039】
長手方向の中央で表裏が逆となるように折り返した当て布1C’を介して筒状織布1A、1Bを接合することで、流動性固化材を注入することによって筒状織布1A、1Bが膨らんだとき、当て布1C’が緩衝作用をもたらし、筒状織布1A、1Bの互いの膨らみによる動きが接合部において直接相互に影響せず、接合部が一層破れにくくなって流動性固化材の漏れがより発生しにくくなる。
【0040】
補強材2は、端部がねじ加工されて端末金具4に固定され、筒状織布1A、1B端部も端末金具4によって挟持されるようにして取り付けられているので、袋体が膨らんだ状態において、補強材は予め設計された適当な本数が適当な位置に配置されることになる。また、端末金具4は流動性固化材8の硬化後撤去することができ、再利用することも可能である。
また、補強材2に異形棒鋼を用いることにより、流動性固化材8との付着、一体性を向上することができる。
【0041】
筒状織布1A、1Bの交差部は、流動性固化材の注入により筒状織布の他の部分より大きく膨らみ、このまま流動性固化材が固化すると、交差部の周囲において筒状織布に括れができてしまい、構造物として応力が集中しやすい形状となってしまう。アンカー定着具3の高さが、筒状織布1A、1Bの直径に略等しいかそれよりもやや小さい寸法となっていると、アンカー定着具3がその膨らみを抑え、十字の表面の形状を滑らかなものとなり、応力集中問題が生じない。
【0042】
筒状織布1A、1Bが、長手方向に直径の変化した織物であり、中央部の径が大きく両端部に向かってテーパー状に小さくなっている場合は、略十字形状の受圧板に加わる曲げモーメントの分布に応じて受圧板の剛性を設計することができ、経済的である。
【0043】
筒状織布1A、1Bの下面にたるみを設けてある場合は、流動性固化材の注入により不陸調整が自動で行われ、多少の凹凸がある地山に対しても受圧板下面が沿った状態で形成される。
【0044】
また、筒状織布1A、1Bの下面に重なるようにして筒状織布1C、1Dからなる略十字形状の袋体を設け、不陸調整用の袋とすると、地山の凹凸が大きい場合でも筒状織布1C、1Dの下面が地山の凹凸に密着し、1A、1Bの筒状織布に高い注入圧で流動性固化材を注入しても、筒状織布1C、1Dの上面が筒状織布1A、1Bに密着して、受圧板と地山の荷重伝達を円滑にする。
【0045】
ここまで、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた受圧板及び斜面安定化工法を、地盤の緩みを防止するアンカー工法に用いられる受圧板に適用した複数の実施例に基づいて説明したが、本発明の適用対象は、受圧板に限定されるものでなく、各種土木構造物に、広く適用することができる。
【0046】
具体的には、この土木構造物形成用袋体を受圧板として用いる場合には、上記のとおり、2本の筒状織布1A、1Bを略十字形状に接合する構造とするが、このほか、図11に示すように、上部構造物Sの沈下防止や地震時における地盤の液状化防止を目的とする地盤安定化工法の基礎部材(地上に設置されるもののほか、海中に設置されるものも含む。)として用いる場合には、4本の筒状織布1Eを略井桁状に接合する構造としたり、また、図12に示すように、処分場の軟弱地盤の補強工法、法面安定化工法、藻(海草)場造成工法(藻場造成シート押さえ用ジャケット)等の広い範囲に適用される土木構造物(地上に設置されるもののほか、海中に設置されるものも含む。)として用いる場合には、複数本の筒状織布1Fを略格子状に接合した構造とする等、形成しようとする土木構造物に応じて、任意の形状に組み合わせて用いることができる。
そして、図11に示すように、4本の筒状織布1Eを略井桁状に接合する構造の場合には、流動性材料の注入口13を備える筒状織布1E1が、2本の筒状織布1E2を貫通するように組み立て、さらに2本の筒状織布1E2が1E1と同じ方向に配した別の筒状織布1E3に貫通する形状に組み立てる。そして、筒状織布1E1、1E2にはそれぞれ筒状織布1E2、1E3に通じる孔12を設けておく。この構造によると、流動性材料の注入口13から注入された流動性材料は、筒状織布1E1の中に充填された後、孔12を通じて筒状織布1E2の中に充填され、最後に筒状織布1E3の中に充填されるので、交差部において筒状織布1E1と1E2の間及び筒状織布1E2と1E3の間に流動性材料が充填されることがなく、すべての交差部を十分に膨張させることができる。
また、図12に示すように、複数本の筒状織布1Fを略格子状に接合する構造の場合には、筒状織布1F1に設けた流動性材料の注入口13から注入した流動性材料を、筒状織布1F1の内部から筒状織布1E2の内部に通じる孔を通して複数本の筒状織布1F2に充填し、さらに、筒状織布1F2の内部から筒状織布1F3の内部に通じる孔を通して複数本の筒状織布1F3に充填するようにする。
さらに、土木構造物形成用袋体を藻場造成シート押さえ用ジャケットとして用いる場合には、土木構造物形成用袋体を生分解性繊維で織成された筒状織布で構成するとともに、筒状織布に充填する流動性材料としてスラリー状の砂や汚泥等を用いることにより、藻場が完成した後に、筒状織布が自然分解して現場に残らないようにすることもできる。
【0047】
以上、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた受圧板及び斜面安定化工法について、複数の実施例に基づいて説明したが、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた受圧板及び斜面安定化工法の構成は、上記実施例に記載したものに限定されるものではなく、上記各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
【0048】
【発明の効果】
本発明の土木構造物形成用袋体は、コンパクトにたたんで施工現場に持ち込むことができ、プレキャストコンクリート製の受圧板等の従来の土木構造物形成用部材と比べてはるかに軽量で、取扱性がよく、このため、施工現場の立地条件に左右されず、例えば、山間部等で施工現場の立地条件が悪く重機が使用できない場合等でも施工可能で、切り土等の斜面の安定化工法等の土木工法に広くかつ好適に用いることができる。
また、流動性材料を他の筒状織布に形成した孔を介して、当該他の筒状織布に接合した別の筒状織布の中に円滑に充填することができ、安定した形状で筒状織布が膨らむので、応力集中の起こらない土木構造物が得られ、筒状織布に充填した流動性材料が硬化した後は筒状織布による構造物表面の補強機能を併せ奏することができる。
【0049】
この場合、土木構造物形成用袋体は、希望する土木構造物の形状に応じて、2本の筒状織布を略十字形状に接合するようにしたり、4本の筒状織布を接合してなり、2本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記2本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成するようにしたり、さらに、複数本の筒状織布を接合してなり、複数本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記複数本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成することができ、これにより、本発明の土木構造物形成用袋体を、受圧板を始めとする各種土木構造物の形成に、広く適用することができる。
【0050】
また、この土木構造物形成用袋体を用いた土木構造物は、筒状織布に充填した流動性材料が硬化した後は、筒状織布及びアンカー定着具、さらには補強材が一体化し、他の筒状織布の内部から当該他の筒状織布に接合した別の筒状織布の内部に通じる孔を介して、固化した流動性固化材が連続した構造物になることとも相俟って、設計上も適切な形状及び強度を有する構造物となり、グランドアンカーの斜面への定着のための反力構造物として有効に機能し、長年の使用に亘って構造物表面のクラック等による欠けの発生を防止することができる。
【0051】
また、この土木構造物形成用袋体を用いた斜面安定化工法は、筒状織布を斜面に縦横方向になるように設置したり、斜め方向に設置することにより、筒状織布の内部に流動性材料を極めて円滑に充填することができ、斜面安定化の機能を安定して得ることができる。
【図面の簡単な説明】
【図1】本発明を受圧板に適用した実施例1を示す分解図である。
【図2】同交差部の説明図である。
【図3】同交差部の変形例の説明図で、(a)は交差部の組み立て工程の説明図、(b)は交差部の断面図である。
【図4】同受圧板の部分説明図で、(a)は交差部の内部説明図、(b)は端部説明図、(c)は交差部の縦断面説明図である。
【図5】同アンカー定着具の説明図で、(a)は外観斜視図、(b)は部分断面図である。
【図6】本発明の斜面安定化工法の施工工程の説明図である。
【図7】本発明の斜面安定化工法の施工工程の説明図である。
【図8】本発明を受圧板に適用した実施例3の説明図で、(a)は土木構造物形成用袋体の外観斜視図、(b)は正面断面図、(c)は側面断面図、(d)は平面図である。
【図9】本発明を受圧板に適用した実施例4の交差部の組み立て工程の説明図である。
【図10】本発明を受圧板に適用した実施例5の正面断面図である。
【図11】4本の筒状織布を略井桁状に接合した実施例を示す説明図である。
【図12】複数本の筒状織布を略格子状に接合した実施例を示す説明図である。
【図13】従来のアンカー工法の例を示す説明図である。
【符号の説明】
1A 筒状織布
1B 筒状織布
1C 筒状織布
1D 筒状織布
1E 筒状織布
1F 筒状織布
11 切れ目
12 孔
13 注入口
14 逆止弁
15 アンカー定着具の装着孔
2 補強材(異形棒鋼)
3 アンカー定着具
4 端末金具
5 端末金具
6 グランドアンカー
7 流動性固化材プラント
71 流動性固化材ポンプ
72 ホース
8 流動性固化材(モルタル)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a civil engineering structure forming bag, and a civil engineering structure and a slope stabilization method using the civil engineering structure forming bag, and particularly to a civil engineering method such as a stabilization method for slopes such as cut soil. The present invention also relates to a civil engineering structure forming bag which can be suitably used, a civil engineering structure using the civil engineering structure forming bag, and a slope stabilization method.
[0002]
[Prior art]
For example, when constructing a road or a residential area in a mountainous area, the mountain surface may be cut, that is, cut may be performed. It becomes unstable because it tries to expand because it disappears.
[0003]
Conventionally, ground anchors made of high-strength steel such as PC steel have been cast into the ground to stabilize the slopes that have undergone such cuts, and both ends of the ground anchors have been grounded into the ground and the ground surface. An anchor method is used to prevent loosening of the ground by fixing each of them.
[0004]
In this anchor method, a reaction force structure is provided on the slope in order to fix the ground anchor to the ground surface, that is, the cut slope.
The reaction force structure usually has a weight of about several tons to several tens tons depending on the magnitude of the force received by the pressure receiving plate C from the slope via the ground anchor G as shown in FIG. A pressure-receiving plate C made of precast concrete, which has an overall shape of a cross or a rectangle and has an insertion hole C1 and a fixing portion C2 of a ground anchor G, is widely used (for example, see Japanese Patent Application Laid-Open No. 6-299558).
[0005]
[Patent Document 1]
JP-A-6-299558
[0006]
[Problems to be solved by the invention]
By the way, the pressure receiving plate C made of precast concrete as shown in FIG. 13 functions as a reaction force structure simply by being installed on the slope, so that the construction period can be greatly shortened, and the ground anchor can be installed from the slope. There is an advantage that the magnitude of the weight of the pressure receiving plate C can be easily selected according to the magnitude of the force received by the pressure receiving plate C via G.
However, on the other hand, the pressure receiving plate C made of precast concrete has a large weight and is difficult to handle. Therefore, when the location of the construction site is poor in mountainous areas and heavy equipment cannot be used, construction becomes impossible. And increased construction costs.
[0007]
The present invention is light in weight and has good handleability in view of the above-mentioned problems of the conventional pressure-receiving plate C made of precast concrete, and is therefore not affected by the location conditions of the construction site. A bag for forming a civil engineering structure which can be constructed even when heavy equipment cannot be used due to poor location conditions, and which can be widely and suitably used for civil engineering methods such as stabilization of slopes such as cut soil, and this civil engineering structure An object of the present invention is to provide a civil engineering structure and a slope stabilization method using a forming bag.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the civil engineering structure forming bag of the present invention is provided with two cuts in the tubular woven fabric at a length substantially corresponding to the weaving width of another tubular woven fabric, Inserting another tubular woven fabric, joining the vicinity of the edge of the cut of the tubular woven fabric and the surface of another tubular woven fabric abutting on the cut, and joining another tubular woven fabric located inside the tubular woven fabric In the tubular woven fabric, a hole communicating from the inside of the other tubular woven fabric to the inside of the tubular woven fabric is formed, and an injection port of a flowable material is provided in the other tubular woven fabric. .
[0009]
In this case, the civil engineering structure forming bag is configured to join two tubular woven fabrics into a substantially cross shape or to join four tubular woven fabrics according to a desired shape of the civil engineering structure. The other tubular woven fabric provided with the inlet and penetrating the two tubular woven fabrics, and the other provided with the inlet and pierced through the two tubular woven fabrics It may be composed of a tubular woven fabric and another tubular woven fabric arranged substantially in parallel, or may be formed by joining a plurality of tubular woven fabrics and penetrating the plurality of tubular woven fabrics. Another tubular woven fabric provided with the inlet, and another tube penetrated by the plurality of tubular woven fabrics, and arranged substantially parallel to the other tubular woven fabric provided with the inlet. Woven fabric.
[0010]
In the civil engineering structure of the present invention using the civil engineering structure forming bag, the fluid material is sequentially injected into a plurality of tubular woven fabrics constituting the civil engineering structure forming bag. It is characterized by having been constructed.
An anchor fixing device is provided at the intersection of the civil engineering structure forming bag, and is filled into the tubular woven fabric to integrate the tubular woven fabric and the anchor fixing device. Inside the tubular woven fabric of the object forming bag, a reinforcing material is arranged in the longitudinal direction, the reinforcing material and the end of the tubular woven fabric are fixed, and the inside of the tubular woven fabric is filled with a flowable material. Thus, the tubular woven fabric, the reinforcing material, and the anchor fixing device can be integrated.
[0011]
Further, the slope stabilization method of the present invention using the civil engineering structure forming bag body, the tubular woven fabric of the civil engineering structure forming bag body is installed on the slope so as to be vertically and horizontally, or on the slope. It is installed diagonally, and the inside of the tubular woven fabric is filled with a fluid material.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a civil engineering structure forming bag, a civil engineering structure using the civil engineering structure forming bag, and a slope stabilization method of the present invention will be described with reference to the drawings.
[0013]
[Example 1]
FIGS. 1 to 7 show a civil engineering structure forming bag of the present invention, a civil engineering structure using the civil engineering structure forming bag, and a slope stabilization method according to a first embodiment.
In this embodiment, the present invention is applied to a pressure receiving plate used in an anchor method for preventing loosening of the ground, and a civil engineering structure forming bag is formed by using one tubular woven fabric (hereinafter, referred to in the present specification, At approximately the center of the “cylindrical woven fabric 1A”, two locations with a length substantially corresponding to the weaving width of the other tubular woven fabric (hereinafter, referred to as “cylindrical woven fabric 1B” in this specification) The tubular woven fabric 1B is inserted into the cut 11 and the tubular woven fabric 1B is penetrated through the tubular woven fabric 1A, and the vicinity of the edge of the cut 11 of the tubular woven fabric 1A and the cut 11 The surface of the tubular woven fabric 1B that comes into contact with the inside of the tubular woven fabric 1B is bonded to the tubular woven fabric 1B located inside the tubular woven fabric 1A by an adhesive, heat fusion, sewing, or the like. A plurality of holes 12 communicating with the inside of the tubular woven fabric 1A are formed in the tubular woven fabric 1B. It is to be constructed by providing the inlet 13 of the fluidity solidifying material.
[0014]
In this case, the tubular woven fabrics 1A and 1B are not particularly limited. For example, the tubular woven fabrics 1A and 1B are water-permeable tubular woven fabrics having a constant diameter of about 400 mm, and have a circumferential yarn. Is continuously woven in a spiral shape.
The warp and weft of the tubular woven fabrics 1A and 1B are made of a fiber having weather resistance, for example, polyester fiber, and have a thickness of 1000d / 2, a density of 20 warp / inch, and a weft of 20 / inch. The weave is plain weave. Specifically, the yarn is woven by an annular loom, and the weft constitutes the spiral yarn of the tubular woven fabric.
The strength of the tubular woven fabrics 1A and 1B can be improved by weaving wires having high tensile strength such as high-strength fibers and wires into the warp and / or weft of the tubular woven fabrics 1A and 1B.
[0015]
Also, as shown in FIGS. 1 and 2, two cuts 11 having a length of 600 mm are provided at opposite positions in the center of the tubular woven fabric 1A, through which the tubular woven fabric 1B passes. So that they can be assembled.
[0016]
The joining of the vicinity of the edge of the cut 11 of the tubular woven fabric 1A and the surface of the tubular woven fabric 1B that comes into contact with the cut 11 is performed by an adhesive 11a. The tubular woven fabrics 1A and 1B are integrally sewn 11b only at both ends of the cuts of the tubular woven fabric 1A which is easily peeled.
As the adhesive, a general hot-melt adhesive such as nylon or urethane having a low melting point is used.
In addition, the joining method of the vicinity of the edge of the cut 11 of the tubular woven fabric 1A and the surface of the tubular woven fabric 1B abutting on the cut 11 is not limited to this, and for example, as in a modified example shown in FIG. The tubular woven fabric 1B contacting the cut 11 of the tubular woven fabric 1A is slightly doubled by being pinched and shortly folded at the contact position with the cut 11, and in this state, the tubular woven fabric 1A, 1B may be integrally sewn one or more times, thereby increasing the degree of freedom of deformation at the joints of the tubular woven fabrics 1A and 1B and preventing the joints from peeling. be able to.
[0017]
As shown in FIG. 1, a plurality of holes 12 communicating from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A are provided on the side faces of the tubular woven fabric 1B facing the inside of the tubular woven fabric 1A. In the embodiment, four points are provided and the size is set to a diameter of 30 mm.
[0018]
A check valve 14 can be attached to the injection port 13 of the fluidized solidifying material provided in the tubular woven fabric 1B, if necessary.
[0019]
The civil engineering structure forming bag is provided with one or a plurality of deformed steel bars 2 as reinforcing materials in the longitudinal direction in both tubular woven fabrics 1A and 1B (the number of reinforcing materials and The disposition position depends on the load design of the pressure receiving plate, but two or more are appropriate. The disposition position is appropriately slightly below the center position of the cross section of the tubular woven fabrics 1A and 1B in a swelled state. In this embodiment, two of each are arranged.), And the reinforcing member 2 and the ends of the tubular woven fabrics 1A and 1B are fixed.
At the intersection of both tubular woven fabrics 1A and 1B, anchor fixing device 3 shown in FIG. 5 is provided so as to be fixed to tubular woven fabrics 1A and 1B.
Then, the fluid solidifying material 8 is filled into the inside of both the tubular woven fabrics 1A and 1B from the inlet 13 for the fluid solidifying material provided in the tubular woven fabric 1B, and both the tubular woven fabrics 1A and 1B are filled. , The reinforcing member 2 and the anchor fixing device 3 are integrated.
In this case, inside the tubular woven fabric 1A, the reinforcing material 2 disposed in the longitudinal direction is a hole formed in the tubular woven fabric 1B and communicating from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A. 12 so as to pass therethrough.
[0020]
The reinforcing material 2 disposed inside the tubular woven fabrics 1A and 1B in the longitudinal direction is made of a different-diameter steel bar formed to be slightly longer than the tubular woven fabrics 1A and 1B, and the ends are subjected to threading. Then, the bar steel whose end is threaded is formed from two metal plates 41 and 42 (one side of the metal plate 42 is internally threaded on one side) and a ring 43 as shown in FIGS. 1 and 4. And a nut 21 (or a female screw member 41b planted on a metal plate 41X of the terminal fitting 4 as shown in FIG. 1).
In this embodiment, as the reinforcing member 2, different-diameter steel bars are used. In addition, a steel bar having an arbitrary cross-sectional shape such as a normal round steel bar or a shaped steel such as an H-shaped steel may be used. The material may be made of steel, FRP, or the like.
[0021]
The ends of the tubular woven fabrics 1 </ b> A and 1 </ b> B are sandwiched between the two metal plates 41 and 42 of the terminal fitting 4 via a ring 43, and the bolts 44 are attached to the metal plates 42. Attachment is made by screwing into the formed screw hole 42a and tightening.
With the structure of this terminal fitting 4, when the bag for civil engineering structure formation is installed on the slope and the inside of the tubular woven fabrics 1A and 1B is filled with the flowable solidifying material, tension is applied to the tubular woven fabrics 1A and 1B. You can call.
Furthermore, if the reinforcing member 2 in which a nut is fixed to one end of the screw (welding, double nut, etc.) is used, since the female screw is applied to the metal plate 42, if the nut is turned in the releasing direction, a cylindrical woven fabric is formed. 1A and 1B can be expanded more firmly.
As a result, the tubular woven fabrics 1A and 1B can be filled with the flowable solidifying material while keeping the shape without sticking.
[0022]
As shown in FIG. 5, the anchor fixing device 3 is composed of a cylindrical metal fitting having two flanges 31, 32 and a ring 33 at both ends.
Then, the anchor fixing device 3 is inserted into the mounting holes 15 formed on the upper and lower surfaces of the intersection of the tubular woven fabrics 1A and 1B, and the periphery of the mounting holes 15 of the tubular woven fabrics 1A and 1B is fixed to the anchor fixing device. 3 is clamped on the flange 32 via a ring 33, and a bolt is screwed into a screw hole 31 a formed in the flange 31, and the ring 33 is tightened to be attached.
The height of the anchor fixing device 3 is such that the distance between the flanges 32 sandwiching the tubular woven fabrics 1A, 1B at both ends is approximately equal to or slightly smaller than the diameter of the tubular woven fabrics 1A, 1B. Set as follows.
[0023]
Next, a slope stabilization method using the civil engineering structure forming bag will be described with reference to FIGS. 6 and 7.
First, the reinforcing material 2 arranged in the longitudinal direction inside the tubular woven fabric 1A penetrates a hole 12 formed in the tubular woven fabric 1B and communicating from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A. Then, both ends are fixed together with the end of the tubular woven fabric 1A by the terminal fitting 4.
In a state where the reinforcing material 2 is inserted into the tubular woven fabric 1A and the check valve 14 is attached to the inlet 13 of the fluidized solidifying material of the tubular woven fabric 1B, the tubular woven fabric 1B is replaced with the tubular woven fabric 1A. And is shipped from the factory to the construction site together with other fittings and the like in a compact state (FIG. 7B).
[0024]
Then, at the construction site, the civil engineering structure forming bag is lifted using a crane or the like using the ring 41a provided on the metal plate 41 of the terminal fitting 4 at both ends of the tubular woven fabric 1B (FIG. 7 ( c)) The tubular woven fabrics 1A and 1B are inclined in the vertical and horizontal directions, that is, the tubular woven fabric 1A is in the contour direction of the inclined surface, and the tubular woven fabric 1B is in a direction orthogonal to the tubular woven fabric 1A. (In this case, the liquid solidifying material is set so that the inlet 13 is located above the slope). The tubular woven fabric is formed using the ring 41 a provided on the metal plate 41 of the terminal fitting 4. 1A is temporarily fixed to the slope by the anchor 5 (FIG. 6A).
In the present embodiment, the tubular woven fabrics 1A and 1B are installed on the slope in the vertical and horizontal directions. However, the present invention is not limited to this. For example, as shown in FIG. In the case where the first woven fabric 1F is joined in a substantially lattice shape, the respective tubular woven fabrics 1F are inclined obliquely to the slopes, that is, the tubular woven fabrics 1A and 1B are approximately 45 ° away from the contours of the slopes. It can also be arranged in an angled direction.
The reinforcing material 2 disposed inside the tubular woven fabric 1B is inserted at the construction site, and both ends are fixed together with the end of the tubular woven fabric 1B by the terminal fitting 4.
In this case, since the inside of the tubular woven fabric 1B merely has a tubular cavity, the reinforcing member 2 can be easily inserted.
Then, the tubular woven fabric 1B is temporarily fixed to the slope by the anchor 5 using the ring 41a provided on the metal plate 41 of the terminal fitting 4 of the tubular woven fabric 1B (FIG. 6B).
[0025]
It is also possible to incorporate a reinforcing material 2 disposed inside the tubular woven fabric 1B in advance at the factory, and fix both ends together with the end of the tubular woven fabric 1B with the terminal fitting 4.
Also in this case, the substantially cruciform shaped civil engineering structure forming bag is folded so that the crossing angle between the tubular woven fabric 1A and the tubular woven fabric 1B is reduced, so that the factory is shipped from the factory to the construction site in a compact state. be able to.
[0026]
Next, the anchor fixing device 3 is inserted and attached to the mounting holes 15 formed on both upper and lower surfaces of the intersection of the tubular woven fabrics 1A and 1B.
Note that the anchor fixing device 3 can be attached in advance at a factory.
A ground anchor 6 made of a high-strength steel material such as a PC steel material is cast into the ground on the anchor fixing device 3, and the lower end of the ground anchor 6 is fixed in the ground (FIG. 6C).
[0027]
In this state, a hose 72 connected to the fluidized solid material plant 7 via the fluidized solidified material pump 7 is connected to the fluidized solidified material inlet 13, and the fluidized solidified material is injected from the fluidized solidified material inlet 13. To fill the inside of both the tubular woven fabrics 1A and 1B with the flowable solidifying material (FIGS. 6 (b) and 7 (a)).
In this case, the flowable solidifying material 8 injected from the injection port 13 of the flowable solidification material is gradually filled from below the tubular woven fabric 1B, and at the time when the fluidized solidification material 8 crosses the intersection of the tubular woven fabrics 1A and 1B, The filling of the tubular woven fabric 1A also starts through the holes 12 leading from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A.
Therefore, at the intersection, the tubular woven fabric 1B is filled with the fluidized solidifying material 8 while the tubular woven fabric 1A is kept in a sufficiently expanded state, and finally, the fluidized solidified material is added to the tubular woven fabric 1B. When 8 is completely filled, the injection hose is removed from the injection port 13 of the fluidized solidifying material, and the injection operation is completed. By mounting the check valve 14 at the inlet 13 of the flowable solidifying material, it is possible to prevent the flowable solidification material from flowing out.
[0028]
As the fluidized solidifying material to be filled into the tubular woven fabrics 1A and 1B, for example, ordinary mortar using general Portland cement is used, and the final injection pressure is slightly increased to make the tubular woven fabric 1A, Dewatering is performed through the texture of 1B, and the fluidized solidified material 8 inside is densified and cured early so that the volume after curing due to breathing or the like does not decrease. The injection pressure is suitably about 0.3 MPa.
If special mortar with no volume decrease after curing is used, there is no need for dehydration and the injection pressure may be slightly lower, but since it is installed on a slope, the contour of the slope must be applied to some extent without applying some pressure. The cross section of the tubular woven fabric 1A in the direction (horizontal direction) may remain in a distorted shape due to the weight of the fluidized solidifying material. In order to obtain a substantially circular shape, an injection pressure of about 0.1 MPa is required.
Further, here, the mortar has been described as an example of the fluidized solidifying material 8, but other examples of the fluidized solidifying material 8 include cement-based solidified materials such as cement paste and concrete, and resin-based hardened materials. A solidifying material having weather resistance can be used.
[0029]
When the surface of the tubular woven fabrics 1A and 1B has been subjected to a surface treatment such as vinyl chloride resin or asphalt for imparting weather resistance, it cannot be dewatered from the weave, so there is no volume loss after curing. Use a flowable solidifier.
The surface treatment of the tubular woven fabrics 1A and 1B for imparting weather resistance can be performed after the fluidized solidifying material 8 filled in the tubular woven fabrics 1A and 1B is cured.
[0030]
In addition, the surfaces of the tubular woven fabrics 1A and 1B can be subjected to a flame retardant treatment or the like.
[0031]
Finally, the temporary anchor 5 is removed, and when the fluidized solidifying material 8 is completely hardened, both ends of the ground anchor 6 are fixed to the ground and the anchor fixing device 3, respectively, to complete the construction (FIG. 6 (d)). )).
Note that the terminal fittings 4 of the tubular woven fabrics 1A and 1B may be left as they are, but may be removed after the fluidized solidifying material 8 is hardened and reused. In this case, the reinforcing material 2 protruding from the end is cut and removed as necessary.
[0032]
[Example 2]
Using the same tubular woven fabrics 1A and 1B as in Example 1, both ends are cut obliquely.
The obliquely cut end is fixed integrally with the reinforcing member 2 with the terminal fitting 4 as in the first embodiment.
In both the tubular woven fabrics 1A and 1B, the long surface cut obliquely is on the lower surface side (ground side).
When the distance between the upper surfaces of the tubular woven fabrics 1A and 1B and the terminal fittings 4 of the reinforcing member 2 is set to be substantially the same, the length of the lower surfaces of the tubular woven fabrics 1A and 1B becomes longer than the upper surface. Therefore, it is in a sagging state.
The slope on which the pressure plate is installed is not always smooth, and the surface is not always smooth. Therefore, a gap is formed between the pressure plate and the slope. As a force structure, an even load is not applied to the slope, and the pressure receiving plate itself also receives an uneven load, so that the strength is weakened.
If there is a sagging portion on the lower surfaces of the tubular woven fabrics 1A and 1B, both ends of the tubular woven fabrics 1A and 1B are temporarily fixed to the slope by the anchors 5, and the ground anchor 6 is driven into the anchor fixing device 3. Since the flowable solidifying material is injected, the lower surfaces of the tubular woven fabrics 1A and 1B can swell along the irregularities of the slopes, and the unevenness can be automatically adjusted.
Other configurations are the same as those of the first embodiment.
[0033]
[Example 3]
As shown in FIG. 8, the tubular woven fabrics 1A and 1B are the same as those in the first embodiment except that the woven fabrics have diameters changed in the longitudinal direction.
Although the diameter of the tubular woven fabrics 1A and 1B is not particularly limited, for example, the diameter changes in a tapered shape on both sides from a straight portion (length 600 mm) with a diameter of 600 mm at the center (length 1800 mm). ), Both ends are set to have a diameter of 400 mm, and then a straight portion (length 200 mm) is formed again.
Assembling and joining the tubular woven fabrics 1A and 1B, holes 12 communicating from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A, an inlet 13 for a fluidized solidifying material, a reinforcing material 2, an anchor fixing device 3, and terminal fittings 4. The construction of the pressure receiving plate is the same as that of the first embodiment. The height of the anchor fixing device 3 is the same as that of the first embodiment, and the distance between the flanges 32 sandwiching the tubular woven fabrics 1A and 1B at both ends is the same as that of the first embodiment. The dimensions are set to be substantially equal to or slightly smaller than the diameter of the woven fabrics 1A and 1B.
The shape of the pressure receiving plate after the injection of the fluidized solidifying material is large in width and height at the center, and becomes smaller in a tapered shape toward the end of the cross. The tapered shape is set according to the distribution of the bending moment by the design method of the pressure receiving plate.
When a civil engineering structure forming bag is formed of tapered tubular woven fabrics 1A and 1B and constructed as a pressure receiving plate, terminal fittings 4 at both ends of tubular woven fabrics 1A and 1B are placed on a slope. And the reinforcing member 2 is lowered by its own weight below the center of the cross section of the tubular woven fabrics 1A and 1B.
Accordingly, the lower surfaces of the tubular woven fabrics 1A and 1B are in a state in which the tubular woven fabrics 1A and 1B are slackened in the longitudinal direction. This slack can be used for unevenness adjustment as in the second embodiment.
Other configurations are the same as those of the first embodiment.
[0034]
[Example 4]
Using the same tubular woven fabrics 1A and 1B as in the first embodiment, assembling is performed in the same manner, but as shown in FIG. 9, joining of the tubular woven fabric 1A and the tubular woven fabric 1B is performed in the following procedure. .
A short tubular woven fabric 1C having a length of 200 mm is prepared, and folded back so that the front and back are reversed up to the center in the longitudinal direction to form a backing cloth 1C '.
The patch cloth 1C 'is inserted into the cut of the tubular woven cloth 1A, and one edge (outer peripheral side) of the patch cloth 1C' is integrally sewn with the vicinity of the edge of the cut 11 of the tubular woven cloth 1A, and the other is sewn. The edge (inner peripheral side) is sewn integrally with the surface of the tubular woven fabric 1B that comes into contact with the cut 11.
In this way, by joining the tubular woven fabrics 1A and 1B via the backing 1C 'folded back at the center in the longitudinal direction, the tubular woven fabrics 1A and 1B are expanded by injecting the fluidized solidifying material. At this time, the patch cloth 1C 'provides a buffering action, and the joint is more difficult to be broken.
Other configurations are the same as those of the first embodiment.
[0035]
[Example 5]
Using the same tubular woven fabrics 1A and 1B as in Example 1, assembling and joining are performed in the same manner, but as shown in FIG. 10, the tubular woven fabrics are overlapped on the lower surfaces of the tubular woven fabrics 1A and 1B. A substantially cross-shaped bag made of cloths 1C and 1D is provided.
Instead of disposing the tubular woven fabrics 1C and 1D, the lower surfaces of the tubular woven fabrics 1A and 1B may have a two-layer structure including a space for injecting a fluidized solidifying material.
No reinforcing material is inserted into the tubular woven fabrics 1C and 1D, and the woven fabrics are simply closed by suturing without using terminal fittings. The other configuration is the same as that of the tubular woven fabrics 1A and 1B.
The central portions of the crosses of the tubular woven fabrics 1C and 1D are integrally fixed by the anchor fixing device 3 together with the attachment of the lower surfaces of the tubular woven fabrics 1A and 1B.
Then, after injecting the fluidized solidifying material into the tubular woven fabrics 1A and 1B, the tubular woven fabric 1C is formed through an inlet (not shown) of the fluidized solidified material formed at an appropriate position in the tubular woven fabrics 1C and 1D. Inject the flowable solidifying material into 1D. Injection of the fluidized solidifying material into the tubular woven fabrics 1C and 1D is performed in a state where almost no pressure is applied to the bag body, and the woven fabric surfaces of the tubular woven fabrics 1C and 1D correspond to the tubular woven fabrics 1A and 1B. Spread along the shape and unevenness of the ground.
In this way, even if there is a large unevenness in the ground, the gap between the pressure receiving plate and the ground can be filled by the unevenness adjusting function of the tubular woven fabrics 1C and 1D. Further, since the cross-section of the tubular woven fabrics 1A and 1B swells in a substantially circular shape, the portions in contact with the ground are reduced if the lower surface is not slack as in the second and third embodiments. The gaps between the lower surfaces of the tubular woven fabrics 1C and 1D and the ground itself can be filled with the cloths 1C and 1D. In this manner, a structure in which the load is smoothly transmitted between the pressure receiving plate and the ground is obtained.
Other configurations are the same as those of the first embodiment.
In this embodiment, installation and construction can be performed even on a slope without cutting.
[0036]
Next, the operation of the civil engineering structure forming bag of the above embodiment, the civil engineering structure using the civil engineering structure forming bag and the slope stabilization method will be described.
According to the bag for forming a civil engineering structure, the tubular woven fabric 1A penetrates the tubular woven fabric 1B, the woven fabric surfaces are joined to each other, and the tubular woven fabric 1B communicates with the inside of the tubular woven fabric 1A. Since the holes 12 are provided and the injection port 13 of the flowable solidifying material is provided in the tubular woven fabric 1B, the flowable solidification material 8 injected from the injection port 13 of the flowable solidification material is formed at the intersection. After the tubular woven fabric 1B is sufficiently expanded, it is poured into the tubular woven fabric 1A. If the flowable solidifying material is first injected into the tubular woven fabric 1A, the tubular woven fabric 1B cannot be fully expanded at the intersection, but with this intersection structure, the tubular woven fabric 1B inside the intersection is A state in which no swelling is generated does not occur, and smooth injection of the fluidized solidifying material and stable swelling of the tubular woven fabrics 1A and 1B are realized.
As a result, the surface of the fluidized solidified material 8 after hardening is reinforced by continuous fibers of the tubular woven fabrics 1A and 1B, and double reinforced at intersections. As a result, not only can a good function be obtained as a cloth mold frame at the time of injecting the flowable solidifying material, but also it can effectively function to strengthen the surface of a structure in which surface cracks and cracks are generally likely to occur.
[0037]
In addition, even if the site location conditions are poor due to problems such as transportation of members, because it is much lighter than the pressure receiving plate made of precast concrete, it can be brought into the construction place of the pressure receiving plate in a compact state in a bag state and it is much lighter than the pressure receiving plate made of precast concrete. Construction becomes easy.
[0038]
The reinforcing material 2 is disposed inside the tubular woven fabrics 1A and 1B and fixed integrally at the ends, and the anchor fixing device 3 is provided at a portion where the tubular woven fabrics 1A and 1B penetrate, and the inside is made of a fluid solidifying material. The pressure receiving plate filled with 8 and integrally formed is a structure integrally formed as a whole, and effectively functions as a reaction force structure for fixing the ground anchor 6 to the slope.
When the surfaces of the tubular woven fabric 1A and the tubular woven fabric 1B are joined with an adhesive or the like, and the tubular woven fabrics 1A and 1B are integrally sewn only at both ends of the cut 11 of the tubular woven fabric 1A. Even when the injection pressure is slightly increased during the injection of the fluidized solidifying material and the cut 11 becomes large due to the bulging of the tubular woven fabric 1A, the tubular woven fabric 1B is pulled by the stitching portion and there is no gap between them. No leakage of the fluidized solidifying material occurs.
[0039]
By joining the tubular woven fabrics 1A and 1B via the backing cloth 1C 'which is turned upside down at the center in the longitudinal direction, the tubular woven fabrics 1A and 1B are injected by injecting a fluidized solidifying material. Swells, the backing cloth 1C 'provides a buffering action, and the movement of the tubular woven fabrics 1A, 1B due to the swelling does not directly affect each other at the joint, so that the joint is less likely to be torn and the fluidized solidified Material leakage is less likely to occur.
[0040]
Since the reinforcing member 2 is screwed at the end and fixed to the terminal fitting 4, and the tubular woven fabrics 1 </ b> A and 1 </ b> B are also attached so as to be clamped by the terminal fitting 4, the bag bulges. In this state, an appropriate number of reinforcements designed in advance are arranged at appropriate positions. In addition, the terminal fitting 4 can be removed after the flowable solidifying material 8 has been hardened, and can be reused.
In addition, by using a deformed steel bar as the reinforcing material 2, the adhesion to the fluidized solidifying material 8 and the integrity can be improved.
[0041]
The intersection of the tubular woven fabrics 1A and 1B bulges more than the other part of the tubular woven fabric due to the injection of the fluidized solidifying material, and when the fluidized solidified material is solidified as it is, the tubular woven fabric is formed around the intersection. The constriction is formed, and the structure has a shape in which stress is easily concentrated. If the height of the anchor fixing device 3 is substantially equal to or slightly smaller than the diameter of the tubular woven fabrics 1A and 1B, the anchor fixing device 3 suppresses the bulging and reduces the shape of the surface of the cross. It becomes smooth and no stress concentration problem occurs.
[0042]
In the case where the tubular woven fabrics 1A and 1B are woven fabrics having diameters changed in the longitudinal direction, and the diameter of the central portion is large and tapered toward both ends, the bending applied to the substantially cross-shaped pressure receiving plate The rigidity of the pressure receiving plate can be designed according to the moment distribution, which is economical.
[0043]
When the lower surface of the tubular woven fabrics 1A and 1B is provided with a slack, the unevenness is automatically adjusted by injecting the fluidized solidifying material. It is formed in the state where it was.
[0044]
In addition, if a substantially cruciform bag made of the tubular woven fabrics 1C and 1D is provided so as to overlap the lower surfaces of the tubular woven fabrics 1A and 1B, and the bag is used for unevenness adjustment, the unevenness of the ground is large. However, even if the lower surfaces of the tubular woven fabrics 1C and 1D are closely adhered to the unevenness of the ground and the fluid solidifying material is injected into the tubular woven fabrics 1A and 1B with a high injection pressure, the lower surface of the tubular woven fabrics 1C and 1D can be obtained. The upper surface is in close contact with the tubular woven fabrics 1A and 1B, so that load transfer between the pressure receiving plate and the ground is smooth.
[0045]
Up to now, the civil engineering structure forming bag of the present invention and the pressure receiving plate and slope stabilization method using the civil engineering structure forming bag have been applied to the pressure receiving plate used in the anchoring method for preventing the ground from loosening. Although the description has been given based on a plurality of embodiments, the application object of the present invention is not limited to the pressure receiving plate, but can be widely applied to various civil engineering structures.
[0046]
Specifically, when the civil engineering structure forming bag is used as a pressure receiving plate, as described above, the two tubular woven fabrics 1A and 1B are joined in a substantially cross shape. As shown in FIG. 11, foundation members of the ground stabilization method for preventing subsidence of the upper structure S and preventing liquefaction of the ground during an earthquake (besides those installed on the ground and those installed under the sea ), Four tubular woven fabrics 1E may be joined in a substantially cross-girder shape, or as shown in FIG. Civil engineering structures, seaweed (seagrass) ground construction methods (seaweed bed creation sheet holding jacket) and other civil engineering structures (including those installed on the ground as well as those installed in the sea) applicable to a wide range of areas When used, a plurality of tubular woven fabrics 1F are substantially lattice-shaped. Etc. to a joining structure in accordance with the civil structures to be formed, it can be used in any combination of shapes.
Then, as shown in FIG. 11, in the case of a structure in which the four tubular woven fabrics 1E are joined in a substantially cross-girder shape, the tubular woven fabric 1E1 provided with the inlet 13 for the fluid material is formed of two tubular woven fabrics 1E. Assembled so as to penetrate the woven fabric 1E2, and further assembled into a shape in which two tubular woven fabrics 1E2 penetrate another tubular woven fabric 1E3 arranged in the same direction as 1E1. The tubular woven fabrics 1E1 and 1E2 are provided with holes 12 communicating with the tubular woven fabrics 1E2 and 1E3, respectively. According to this structure, the flowable material injected from the injection port 13 of the flowable material is filled into the cylindrical woven fabric 1E2 through the holes 12, and then filled into the cylindrical woven fabric 1E2. Since the inside of the tubular woven fabric 1E3 is filled, no fluid material is filled between the tubular woven fabrics 1E1 and 1E2 and between the tubular woven fabrics 1E2 and 1E3 at the intersections, and all the intersections are formed. The part can be expanded sufficiently.
Also, as shown in FIG. 12, in the case of a structure in which a plurality of tubular woven fabrics 1F are joined in a substantially lattice shape, the fluidity injected from the fluid material injection port 13 provided in the tubular woven fabric 1F1 is used. The material is filled into the plurality of tubular woven fabrics 1F2 through holes communicating from the inside of the tubular woven fabric 1F1 to the inside of the tubular woven fabric 1E2. A plurality of tubular woven fabrics 1F3 are filled through holes communicating therewith.
Furthermore, when the civil engineering structure forming bag is used as a seaweed bed creation sheet holding jacket, the civil engineering structure forming bag is formed of a tubular woven fabric woven of biodegradable fibers, By using slurry-like sand or sludge as the fluid material to be filled in the woven fabric, the tubular woven fabric can be prevented from spontaneously decomposing and remaining at the site after the seaweed bed is completed.
[0047]
As described above, the civil engineering structure-forming bag of the present invention, and the pressure receiving plate and the slope stabilization method using the civil engineering structure-forming bag have been described based on the plurality of embodiments. The configurations of the forming bag and the pressure receiving plate and the slope stabilization method using the civil engineering structure forming bag are not limited to those described in the above-described embodiments, but are described in the above-described respective embodiments. The configuration can be appropriately changed within a range not departing from the gist, for example, by appropriately combining.
[0048]
【The invention's effect】
INDUSTRIAL APPLICABILITY The civil engineering structure forming bag of the present invention can be folded into a compact form and brought to a construction site, and is much lighter than conventional civil engineering structure forming members such as a pressure-receiving plate made of precast concrete, and can be handled more easily. Therefore, it is not affected by the location conditions of the construction site.For example, it can be constructed even when heavy construction equipment cannot be used due to poor construction site conditions in mountainous areas, etc. Can be widely and suitably used in civil engineering methods such as
In addition, the fluid material can be smoothly filled into another tubular woven fabric bonded to the other tubular woven fabric through the holes formed in the other tubular woven fabric, and the stable shape can be obtained. As the tubular woven fabric swells, a civil structure without stress concentration is obtained, and after the fluid material filled in the tubular woven fabric is hardened, the tubular woven fabric also has the function of reinforcing the surface of the structure. be able to.
[0049]
In this case, the civil engineering structure forming bag is configured to join two tubular woven fabrics into a substantially cross shape or to join four tubular woven fabrics according to a desired shape of the civil engineering structure. The other tubular woven fabric provided with the inlet and penetrating the two tubular woven fabrics, and the other provided with the inlet and pierced through the two tubular woven fabrics It may be composed of a tubular woven fabric and another tubular woven fabric arranged substantially in parallel, or may be formed by joining a plurality of tubular woven fabrics and penetrating the plurality of tubular woven fabrics. Another tubular woven fabric provided with the inlet, and another tube penetrated by the plurality of tubular woven fabrics, and arranged substantially parallel to the other tubular woven fabric provided with the inlet. And thereby, the civil engineering structure forming bag of the present invention can be widely applied to the formation of various civil engineering structures including pressure receiving plates. .
[0050]
Further, in the civil engineering structure using the civil engineering structure forming bag, after the fluid material filled in the cylindrical woven fabric is cured, the cylindrical woven fabric, the anchor fixing device, and the reinforcing material are integrated. It is also possible that the solidified fluidized solidified material becomes a continuous structure through a hole communicating from the inside of the other tubular woven fabric to the inside of another tubular woven fabric joined to the other tubular woven fabric. Together with this, the structure has an appropriate shape and strength in terms of design, effectively functions as a reaction force structure for fixing the ground anchor to the slope, and cracks on the structure surface over many years of use. This can prevent the occurrence of chipping due to, for example,
[0051]
In addition, the slope stabilization method using the civil engineering structure forming bag body is such that the tubular woven fabric is installed on the slope so as to be vertically and horizontally, or by being installed diagonally, so that the inside of the tubular woven fabric is formed. Can be extremely smoothly filled with the fluid material, and the function of stabilizing the slope can be stably obtained.
[Brief description of the drawings]
FIG. 1 is an exploded view showing a first embodiment in which the present invention is applied to a pressure receiving plate.
FIG. 2 is an explanatory diagram of the intersection.
3A and 3B are explanatory views of a modification of the intersection, in which FIG. 3A is an explanatory view of an assembly process of the intersection, and FIG. 3B is a cross-sectional view of the intersection.
FIGS. 4A and 4B are partial explanatory views of the pressure receiving plate, wherein FIG. 4A is an internal explanatory view of an intersection, FIG. 4B is an end explanatory view, and FIG.
5A and 5B are explanatory views of the anchor fixing device, wherein FIG. 5A is an external perspective view, and FIG. 5B is a partial cross-sectional view.
FIG. 6 is an explanatory view of a construction process of the slope stabilization method of the present invention.
FIG. 7 is an explanatory view of a construction step of the slope stabilization method of the present invention.
8A and 8B are explanatory diagrams of a third embodiment in which the present invention is applied to a pressure receiving plate, wherein FIG. 8A is an external perspective view of a civil engineering structure forming bag, FIG. 8B is a front sectional view, and FIG. FIG. 3D is a plan view.
FIG. 9 is an explanatory view of a process of assembling an intersection according to a fourth embodiment in which the present invention is applied to a pressure receiving plate.
FIG. 10 is a front sectional view of a fifth embodiment in which the present invention is applied to a pressure receiving plate.
FIG. 11 is an explanatory view showing an embodiment in which four tubular woven fabrics are joined in a substantially cross-girder shape.
FIG. 12 is an explanatory view showing an embodiment in which a plurality of tubular woven fabrics are joined in a substantially lattice shape.
FIG. 13 is an explanatory view showing an example of a conventional anchor method.
[Explanation of symbols]
1A tubular woven fabric
1B tubular woven fabric
1C tubular woven fabric
1D tubular woven fabric
1E tubular woven fabric
1F tubular woven fabric
11 cut
12 holes
13 Inlet
14 Check valve
15 Anchor fixing device mounting holes
2 Reinforcing material (deformed bar)
3 anchor anchor
4 Terminal fittings
5 Terminal fittings
6 ground anchor
7 Fluidized solidification plant
71 Fluidizing solidification material pump
72 hose
8 Fluidity solidifying material (mortar)

Claims (9)

筒状織布に他の筒状織布の織幅に略一致する長さで2箇所の切れ目を入れ、該切れ目に他の筒状織布を挿入して、筒状織布の前記切れ目の縁近傍と該切れ目に当接する他の筒状織布の表面を接合させ、筒状織布の内部に位置する他の筒状織布に、他の筒状織布の内部から筒状織布の内部に通じる孔を形成するとともに、他の筒状織布に流動性材料の注入口を設けたことを特徴とする土木構造物形成用袋体。Two cuts are made in the tubular woven fabric at a length substantially corresponding to the weaving width of the other tubular woven fabric, and another tubular woven fabric is inserted into the cut, and the cut of the tubular woven fabric is cut. The surface of the other tubular woven fabric that is in contact with the vicinity of the edge and the cut is joined, and the other tubular woven fabric located inside the tubular woven fabric is joined to the other tubular woven fabric from the inside of the other tubular woven fabric. A hole for forming a civil engineering structure, characterized in that a hole communicating with the inside of the tubular structure is formed and an inlet for a flowable material is provided in another tubular woven fabric. 2本の筒状織布を略十字形状に接合してなることを特徴とする請求項1記載の土木構造物形成用袋体。The civil engineering structure forming bag according to claim 1, wherein the two tubular woven fabrics are joined in a substantially cross shape. 4本の筒状織布を接合してなり、2本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記2本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とからなることを特徴とする請求項1記載の土木構造物形成用袋体。Four tubular woven fabrics are joined, penetrating through two tubular woven fabrics, another tubular woven fabric provided with the inlet, and pierced through the two tubular woven fabrics, 2. The civil engineering structure forming bag according to claim 1, comprising another tubular woven fabric provided with the injection port and another tubular woven fabric arranged substantially in parallel. 複数本の筒状織布を接合してなり、複数本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記複数本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とからなることを特徴とする請求項1記載の土木構造物形成用袋体。It is formed by joining a plurality of tubular woven fabrics, penetrates the plurality of tubular woven fabrics, and another tubular woven fabric provided with the injection port, and is pierced by the plurality of tubular woven fabrics, 2. The civil engineering structure forming bag according to claim 1, comprising another tubular woven fabric provided with the injection port and another tubular woven fabric arranged substantially in parallel. 請求項1、2、3又は4記載の土木構造物形成用袋体を構成している複数の筒状織布の中に、順に流動性材料を注入して構築したことを特徴とする土木構造物。A civil engineering structure comprising a plurality of tubular woven fabrics constituting the civil engineering structure forming bag according to claim 1, wherein a fluid material is injected into the plurality of tubular woven fabrics in order. object. 土木構造物形成用袋体の交差部にアンカー定着具を設け、筒状織布の内部に充填して、筒状織布及びアンカー定着具を一体化するようにしたことを特徴とする請求項5記載の土木構造物。An anchor fixing device is provided at an intersection of the civil engineering structure forming bag body, and the inside of the tubular woven fabric is filled to integrate the tubular woven fabric and the anchor fixing device. 5. The civil engineering structure according to 5. 土木構造物形成用袋体を構成する筒状織布の内部、長手方向に補強材を配して、該補強材と筒状織布の端部を固定し、筒状織布の内部に流動性材料を充填して、筒状織布、補強材及びアンカー定着具を一体化するようにしたことを特徴とする請求項5又は6記載の土木構造物。Inside the tubular woven fabric forming the civil engineering structure forming bag, a reinforcing material is disposed in the longitudinal direction, the reinforcing material and the end of the tubular woven fabric are fixed, and the inside of the tubular woven fabric flows. The civil engineering structure according to claim 5 or 6, wherein a tubular material, a reinforcing material, and an anchor fixing device are integrated by filling a conductive material. 請求項1、2、3又は4記載の土木構造物形成用袋体を構成する筒状織布を、斜面に縦横方向に設置し、筒状織布の内部に流動性材料を充填することを特徴とする斜面安定化工法。A tubular woven fabric constituting the civil engineering structure-forming bag according to claim 1, 2, 3, or 4, is installed in a vertical and horizontal direction on a slope, and the inside of the tubular woven fabric is filled with a fluid material. Features slope stabilization method. 請求項1、2、3又は4記載の土木構造物形成用袋体の筒状織布を、斜面に斜め方向に設置し、筒状織布の内部に流動性材料を充填することを特徴とする斜面安定化工法。The cylindrical woven fabric of the civil engineering structure forming bag according to claim 1, 2, 3, or 4, is installed obliquely on a slope, and the inside of the cylindrical woven fabric is filled with a fluid material. Slope stabilization method.
JP2003206869A 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag Expired - Fee Related JP4115900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206869A JP4115900B2 (en) 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002374072 2002-12-25
JP2003206869A JP4115900B2 (en) 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag

Publications (2)

Publication Number Publication Date
JP2004251101A true JP2004251101A (en) 2004-09-09
JP4115900B2 JP4115900B2 (en) 2008-07-09

Family

ID=33031776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206869A Expired - Fee Related JP4115900B2 (en) 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag

Country Status (1)

Country Link
JP (1) JP4115900B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082149A (en) * 2006-08-29 2008-04-10 Ashimori Ind Co Ltd Cylindrical member connecting structure and slope stabilizing construction method using the cylindrical member
JP2009030396A (en) * 2007-07-30 2009-02-12 Ashimori Ind Co Ltd Connection structure of cylindrical member
JP2009030395A (en) * 2007-07-30 2009-02-12 Kajima Corp Surface layer treatment bag body of weak ground
JP2009270365A (en) * 2008-05-08 2009-11-19 Ashimori Ind Co Ltd Injection opening implement of bag body and its mounting method to bag body
JP2021008815A (en) * 2020-10-21 2021-01-28 日本植生株式会社 Surface failure prevention method of slope
JP2021021323A (en) * 2020-10-21 2021-02-18 日本植生株式会社 Surface failure prevention method of slope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082149A (en) * 2006-08-29 2008-04-10 Ashimori Ind Co Ltd Cylindrical member connecting structure and slope stabilizing construction method using the cylindrical member
JP2009030396A (en) * 2007-07-30 2009-02-12 Ashimori Ind Co Ltd Connection structure of cylindrical member
JP2009030395A (en) * 2007-07-30 2009-02-12 Kajima Corp Surface layer treatment bag body of weak ground
JP2009270365A (en) * 2008-05-08 2009-11-19 Ashimori Ind Co Ltd Injection opening implement of bag body and its mounting method to bag body
JP2021008815A (en) * 2020-10-21 2021-01-28 日本植生株式会社 Surface failure prevention method of slope
JP2021021323A (en) * 2020-10-21 2021-02-18 日本植生株式会社 Surface failure prevention method of slope
JP7084648B2 (en) 2020-10-21 2022-06-15 日本植生株式会社 Slope surface collapse prevention method
JP7084647B2 (en) 2020-10-21 2022-06-15 日本植生株式会社 Slope surface collapse prevention method

Also Published As

Publication number Publication date
JP4115900B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US5531547A (en) Reinforced earth construction
JP4965922B2 (en) Embankment reinforcement structure and embankment body
JP4850276B2 (en) Fixing structure of reinforced earth structure and embankment reinforcement
US20030235472A1 (en) Packing apparatus for pressure type soil-nailing and soil-nailing construction method using the packing apparatus
JP5023219B2 (en) Precast temporary structure and construction method thereof
JPS6114322A (en) Method for decorating and supporting natural or artificial inclined surface
JP2007277880A (en) Fill structure and its construction method
JP2004251101A (en) Bag body for forming civil-engineering structure and civil-engineering structure using it and slope stabilizing construction method
JP4307967B2 (en) Surface treatment method for soft ground
JP2002242186A (en) Bank structure constructing method
KR100467170B1 (en) reinforced earth retaining wall construction method
JPH10183624A (en) Reinforcing fill-up wall employing retaining wall block
US20100215441A1 (en) Reinforced Mass of Material and Method of Forming
KR100781492B1 (en) Structure of retaining wall, and construction methods for the same
KR102138839B1 (en) Cast-in-place concrete blocks using large scales and revetment methods using them
JP4636478B2 (en) Liquefaction prevention structure
JP4115922B2 (en) Civil engineering structure forming bag and civil engineering structure using this civil engineering structure forming bag
JP3818939B2 (en) Reinforced soil structure, embankment reinforcement and reinforced soil block
KR101757975B1 (en) Anchor having a fixing device at a side of pressure plate to depress the land slope and method of installing the same
JP2003027462A (en) Construction method of underground continuous wall, and construction method of underground structure
JP4951254B2 (en) Leg frame structure and method for constructing the frame structure
JP4551985B2 (en) Quay structure and method for forming the same
JPH093882A (en) Foundation pile
JP4568891B2 (en) Reinforced soil structure
JPS61216914A (en) Method of fitting steel tubular pile with diagonal member or beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees