JP2021008815A - Surface failure prevention method of slope - Google Patents

Surface failure prevention method of slope Download PDF

Info

Publication number
JP2021008815A
JP2021008815A JP2020176513A JP2020176513A JP2021008815A JP 2021008815 A JP2021008815 A JP 2021008815A JP 2020176513 A JP2020176513 A JP 2020176513A JP 2020176513 A JP2020176513 A JP 2020176513A JP 2021008815 A JP2021008815 A JP 2021008815A
Authority
JP
Japan
Prior art keywords
cement
tubular body
mat
slope
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020176513A
Other languages
Japanese (ja)
Other versions
JP7084648B2 (en
Inventor
明典 柴田
Akinori Shibata
明典 柴田
大倉 卓雄
Takuo Okura
卓雄 大倉
泰良 藤嶋
Yasuyoshi Fujishima
泰良 藤嶋
和男 鶴田
Kazuo Tsuruta
和男 鶴田
清 須广
Kiyoshi Suma
清 須广
昭浩 松永
Akihiro Matsunaga
昭浩 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshoku Corp
Original Assignee
Nisshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshoku Corp filed Critical Nisshoku Corp
Priority to JP2020176513A priority Critical patent/JP7084648B2/en
Publication of JP2021008815A publication Critical patent/JP2021008815A/en
Application granted granted Critical
Publication of JP7084648B2 publication Critical patent/JP7084648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

To provide a mat for surface failure prevention, a greening structure used also as surface failure prevention and a greening method used also as surface failure prevention which can achieve labor saving for construction while simultaneously achieving greening of a slope and prevention of surface failure.SOLUTION: A mat for surface failure prevention includes a vegetation mat 3 laid down on a ground surface, and a cylindrical body 4 that is arranged on the upper side of the vegetation mat 3, allows water to pass therethrough and is composed of a woven fabric having such a mesh size as not to pass cement particles, in which the cylindrical body 4 has a blocked end and an internal space storing at least cement.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、法面の緑化と表層崩壊の防止とを同時に図ることのできる表層崩壊防止用マット、表層崩壊防止兼用緑化構造体及び表層崩壊防止兼用緑化工法に関する。 The present invention relates to, for example, a surface layer collapse prevention mat, a surface layer collapse prevention combined greening structure, and a surface layer collapse prevention combined greening method capable of simultaneously greening a slope and preventing surface collapse.

従来の法面補強工法として、植生による法面表層(深さが0m〜2mまでの層)の侵食防止を可能とする植生マット工(特許文献1参照)や、法面表層の崩壊防止を可能とする現場吹付法枠工(特許文献2参照)が知られている。 As a conventional slope reinforcement method, it is possible to prevent vegetation from eroding the slope surface layer (layer with a depth of 0 m to 2 m), and to prevent the slope surface layer from collapsing (see Patent Document 1). The on-site spraying method frame construction (see Patent Document 2) is known.

特開2002−121739号公報JP-A-2002-121739 特開2004−197553号公報Japanese Unexamined Patent Publication No. 2004-197553

法面に植生マットを敷設する植生マット工は、比較的簡易に行える点で優れ、風化等による法面表層の侵食防止を目的として多用されている。しかし、表層の侵食にとどまらず崩壊もが懸念されるような安定性の低い法面に、その崩壊防止をも可能とし得る構造物的機能の発揮を本来見込むことのできない植生マットを敷設する植生マット工を適用するのは困難である。 The vegetation mat work, which lays the vegetation mat on the slope, is excellent in that it can be performed relatively easily, and is often used for the purpose of preventing erosion of the slope surface layer due to weathering or the like. However, vegetation is laid on a slope with low stability where not only surface erosion but also collapse is a concern, and vegetation mats that cannot be expected to exert structural functions that can prevent the collapse are laid. It is difficult to apply matting.

一方、法面上に設置した型枠にモルタル・コンクリートを吹き付けて法枠を形成する現場吹付法枠工は、法面表層の崩壊防止を可能とするが、型枠の設置等に手間がかかり、施工が大掛かりになるという問題がある。 On the other hand, on-site spraying formwork, which forms the formwork by spraying mortar and concrete on the formwork installed on the slope, can prevent the surface layer of the slope from collapsing, but it takes time and effort to install the formwork. , There is a problem that the construction becomes large-scale.

本発明は上述の事柄に留意してなされたもので、その目的は、法面の緑化と表層崩壊の防止とを同時に図りつつ、施工の省力化をも達成することのできる表層崩壊防止用マット、表層崩壊防止兼用緑化構造体及び表層崩壊防止兼用緑化工法を提供することにある。 The present invention has been made in consideration of the above-mentioned matters, and an object thereof is a mat for preventing surface collapse, which can achieve labor saving in construction while simultaneously trying to green the slope and prevent surface collapse. It is an object of the present invention to provide a greening structure for preventing surface collapse and a greening method for preventing surface collapse.

上記目的を達成するために、本発明に係る表層崩壊防止用マットは、植生マットの片面に、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成された筒状体を装着してある(請求項1)。 In order to achieve the above object, the surface layer collapse prevention mat according to the present invention is provided with a tubular body made of a woven cloth having a mesh that allows water to pass through and cement particles to pass through on one side of the vegetation mat. (Claim 1).

上記表層崩壊防止用マットにおいて、前記筒状体は、少なくともセメントを流通させるための流路部と、アンカーピンが貫通可能な貫通孔とを有し、前記貫通孔は、前記流路部を避けた位置に設けられていてもよい(請求項2)。 In the surface layer collapse prevention mat, the tubular body has at least a flow path portion for circulating cement and a through hole through which the anchor pin can penetrate, and the through hole avoids the flow path portion. It may be provided at a vertical position (claim 2).

上記目的を達成するために、本発明に係る表層崩壊防止兼用緑化構造体は、地面に敷設された植生マットと、該植生マットの上側に配置され、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成された筒状体とを具備し、前記筒状体は、端部が塞がれ、その内部空間に少なくともセメントが収容されている(請求項3)。 In order to achieve the above object, the surface layer collapse prevention and greening structure according to the present invention is arranged on a vegetation mat laid on the ground and above the vegetation mat, and allows water to pass through and cement particles to pass through. It includes a tubular body made of a woven cloth having a fit, and the tubular body has an end closed and at least cement is housed in the internal space thereof (claim 3).

上記目的を達成するために、本発明に係る表層崩壊防止兼用緑化工法は、地面に敷設された植生マットの上側に配置され、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成された筒状体内に少なくともセメントを収容する(請求項4)。 In order to achieve the above object, the surface layer collapse prevention and greening method according to the present invention is made of a woven fabric which is placed on the upper side of a vegetation mat laid on the ground and has a texture that allows water to pass through and cement particles to pass through. At least cement is contained in the constructed tubular body (claim 4).

本願発明では、法面の緑化と表層崩壊の防止とを同時に図りつつ、施工の省力化をも達成することのできる表層崩壊防止用マット、表層崩壊防止兼用緑化構造体及び表層崩壊防止兼用緑化工法が得られる。 In the present invention, a mat for preventing surface collapse, a greening structure for preventing surface collapse, and a greening method for preventing surface collapse can be achieved while simultaneously greening the slope and preventing surface collapse, and also achieving labor saving in construction. Is obtained.

すなわち、本願の各請求項に係る発明の表層崩壊防止用マット、表層崩壊防止兼用緑化構造体及び表層崩壊防止兼用緑化工法では、植生マットによって法面の緑化機能を発揮し、その内部空間にセメントの入った筒状体によって法面の表層の崩壊防止に必要な構造物機能を発揮する表層崩壊防止兼用緑化構造体が得られる。 That is, in the surface layer collapse prevention mat, the surface layer collapse prevention combined greening structure, and the surface layer collapse prevention combined greening method of the inventions according to the claims of the present application, the vegetation mat exerts a slope greening function, and cement is used in the internal space thereof. A greening structure that also prevents surface collapse can be obtained by the tubular body containing the above, which exerts the structural function necessary for preventing the collapse of the surface layer of the slope.

しかも、従来の現場吹付法枠工では型枠の設置等に多大な労力が掛かるが、そういった型枠の設置等を不要とする上記表層崩壊防止兼用緑化構造体の構築は簡易に行える。 Moreover, although a large amount of labor is required to install the formwork in the conventional on-site spraying method frame work, it is possible to easily construct the above-mentioned surface layer collapse prevention combined greening structure that does not require the installation of such formwork.

請求項2に係る発明の表層崩壊防止用マットでは、例えばこの表層崩壊防止用マットを法面に設置する際に筒状体の貫通孔に対してアンカーピンを打設しておけば、流路部にセメントを充填した際に、流路部がセメントの重みで大きく谷側に弛んでしまうことを防止することができる。 In the surface layer collapse prevention mat of the invention according to claim 2, for example, when the surface layer collapse prevention mat is installed on a slope, if an anchor pin is driven into a through hole of a tubular body, a flow path can be obtained. When the portion is filled with cement, it is possible to prevent the flow path portion from loosening significantly toward the valley side due to the weight of the cement.

また、請求項4に係る発明の表層崩壊防止兼用緑化工法では、セメントと水とを収容した各筒状体から余剰水のみを排出することができるので、セメントの固化後に構築される本構造物の強度低下防止、ひいては高強度化を図ることができるだけでなく、筒状体内に充填(収容)するまでのセメントについては、少なくとも水とセメントを含み水セメント比を高めたセメント流動物の形態をとらせてその流動性を上げ、このセメント流動物を筒状体に充填するスピードを高めれば、施工の短期化をも図ることが可能となる。 Further, in the surface layer collapse prevention and greening method of the invention according to claim 4, since only excess water can be discharged from each tubular body containing cement and water, the structure constructed after the cement is solidified. Not only can the strength of the cement be prevented from decreasing, and the strength of the cement can be increased. If the fluidity is increased and the speed at which the cement fluid is filled into the tubular body is increased, it is possible to shorten the construction time.

本発明の一実施の形態に係る表層崩壊防止兼用緑化工法により構築される表層崩壊防止兼用緑化構造体の構成を概略的に示す斜視図である。It is a perspective view which shows typically the structure of the surface layer collapse prevention combined greening structure constructed by the surface layer collapse prevention combined greening method which concerns on one Embodiment of this invention. 前記表層崩壊防止兼用緑化構造体の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the greening structure which also serves as surface collapse prevention. (A)及び(B)は、本発明の一実施の形態に係る表層崩壊防止用マットの構成を概略的に示す斜視図及び平面図である。(A) and (B) are perspective views and plan views schematically showing the configuration of a surface layer collapse prevention mat according to an embodiment of the present invention. 前記表層崩壊防止兼用緑化工法の変形例を示す説明図である。It is explanatory drawing which shows the modification of the said greening method for preventing surface collapse. 前記表層崩壊防止兼用緑化工法の他の変形例を示す説明図である。It is explanatory drawing which shows the other modification of the said greening method for preventing surface collapse. (A)及び(B)は、前記表層崩壊防止用マットの好適例及び変形例を示す説明図である。(A) and (B) are explanatory views showing a preferable example and a modification of the surface layer collapse prevention mat.

本発明の実施の形態について図面を参照しながら以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る表層崩壊防止用マット(以下、本マットという)1は、図1に示すように、法面N上に表層崩壊防止兼用緑化構造体(以下、本構造体という)2を構築する表層崩壊防止兼用緑化工法(以下、本工法という)に用いられるものであり、図2(A)及び(B)に示すように、植生マット3と、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成され、植生マット3の片面に装着された筒状体4とを具備する。 As shown in FIG. 1, the surface layer collapse prevention mat (hereinafter referred to as the present mat) 1 according to the present embodiment has a surface layer collapse prevention combined greening structure (hereinafter referred to as the present structure) 2 on the slope N. It is used for the surface layer collapse prevention combined greening method (hereinafter referred to as this method) to be constructed, and as shown in FIGS. 2 (A) and 2 (B), the vegetation mat 3 and water are passed through and cement particles are passed through. It is composed of a woven fabric having a mesh that does not allow the vegetation mat 3, and includes a tubular body 4 mounted on one side of the vegetation mat 3.

植生マット3は、ネットの下面に植生シートを重合してなるものであり、例えば平面視において縦2m、横1mの矩形状を呈するように構成されている。 The vegetation mat 3 is formed by superimposing a vegetation sheet on the lower surface of the net, and is configured to have a rectangular shape of, for example, 2 m in length and 1 m in width in a plan view.

ここで、ネットの材質としては、年月の経過とともに土壌化する必要があるときは、天然繊維や生分解性プラスチックの繊維を使用し、表層土の流動や侵食防止効果を半永久的に確保したい場合には、ポリエチレン、ナイロン等の繊維を使用すればよい。 Here, as the material of the net, when it is necessary to turn it into soil over the years, we would like to use natural fibers or biodegradable plastic fibers to semi-permanently secure the flow and erosion prevention effect of the surface soil. In that case, fibers such as polyethylene and nylon may be used.

また、 植生シートは、スフ等の薄綿状シートに、植生種子、肥料、土壌改良材等の植生基材を担持させたものである。薄綿状シートは、シート状の薄綿(綿花を意味しているのではなく、薄い綿状のものを意味している)であることが望ましいが、不織布や紙のようなものであってもよく、この薄綿状シートは植物の通芽や通根を妨げない程度の強度を有するものであり、その平均厚みを0.1〜10mm、望ましくは、0.5〜5mmに設定することで、侵食防止機能を有しながらも植物を地面に根付かせ易くすることができる。 The vegetation sheet is a thin cotton-like sheet such as rayon on which a vegetation base material such as vegetation seeds, fertilizer, and soil conditioner is supported. The thin cotton-like sheet is preferably sheet-like thin cotton (not meaning cotton, but thin cotton-like material), but may be something like non-woven fabric or paper. This thin cotton-like sheet has enough strength not to hinder the sprouting and rooting of plants, and the average thickness thereof is set to 0.1 to 10 mm, preferably 0.5 to 5 mm to prevent erosion. It is possible to make it easier for plants to take root in the ground while having a function.

そして、ネットと植生シートとは積層状態で一体化されて植生マット3を構成するのであり、その一体化は、例えば植生シートの薄綿状シートの繊維をネットに絡み付かせることによって行ってもよいし、ネットと植生シートとを少量の水溶性接着剤で接着することによって行ってもよく、両方の手段を併用するようにしてもよい。薄綿状シートの繊維をネットに絡み付かせる方法としては、ネットと植生シートとを積層した状態でローラ間に通して加圧することにより、薄綿状シートの繊維をネットに絡み付かせる方法や、薄綿状シート側から空気を吹きつけたり、ネット側から空気を吸引したりすることにより、薄綿状シートの繊維をネット側に起毛させてネットに絡みつかせる方法が考えられる。 Then, the net and the vegetation sheet are integrated in a laminated state to form the vegetation mat 3, and the integration may be performed, for example, by entwining the fibers of the thin cotton-like sheet of the vegetation sheet with the net. , The net and the vegetation sheet may be adhered with a small amount of water-soluble adhesive, or both means may be used in combination. As a method of entwining the fibers of the thin cotton-like sheet with the net, a method of entwining the fibers of the thin cotton-like sheet with the net by passing the net and the vegetation sheet between the rollers in a laminated state and applying pressure, or the thin cotton-like sheet side A method is conceivable in which the fibers of the thin cotton-like sheet are raised toward the net side and entangled with the net by blowing air from the net side or sucking air from the net side.

筒状体4は、セメント流動物を流通させるための流路部として、植生マット3の長手方向に延びる縦流路部5と、この縦流路部5に連通する状態でその左右に向かって(あるいは縦流路部5に直交する方向に)延びる横流路部6とを有する。また、筒状体4は、横流路部6の縁から張り出す張出部7を有し、張出部7には、図外のアンカーピンが貫通可能な貫通孔8が設けられている。すなわち、貫通孔8は、平面視において流路部5,6を避けた位置に設けられている。 The tubular body 4 has a vertical flow path portion 5 extending in the longitudinal direction of the vegetation mat 3 and a vertical flow path portion 5 communicating with the vertical flow path portion 5 as a flow path portion for circulating the cement fluid, toward the left and right sides thereof. It has a horizontal flow path portion 6 extending (or in a direction orthogonal to the vertical flow path portion 5). Further, the tubular body 4 has an overhanging portion 7 protruding from the edge of the lateral flow path portion 6, and the overhanging portion 7 is provided with a through hole 8 through which an anchor pin (not shown) can penetrate. That is, the through hole 8 is provided at a position avoiding the flow path portions 5 and 6 in a plan view.

筒状体4を構成する織布には、炭素繊維等、引張強度の強い繊維を使用し、セメント粒径が20μmであるのに対して、概ね0.001μm(1nm)の目合い(セメント粒径の約1/20000の大きさの目合い)を有する織布を用いるのが好ましい。 Fibers with high tensile strength such as carbon fibers are used for the woven fabric constituting the tubular body 4, and while the cement particle size is 20 μm, the mesh size (cement grains) is approximately 0.001 μm (1 nm). It is preferable to use a woven fabric having a mesh size of about 1/20000 of the diameter).

そして、植生マット3の片面に対する筒状体4の装着は、例えば、圧着、縫合、適宜の部材による連結等によって行うことができ、形成後の本マット1は、例えばロール状に梱包された状態で運搬可能である。 The tubular body 4 can be attached to one side of the vegetation mat 3 by, for example, crimping, suturing, connecting with an appropriate member, or the like, and the formed mat 1 is packed in a roll shape, for example. It can be carried at.

次に、本マット1を用いる本工法について説明する。 Next, this construction method using the present mat 1 will be described.

(1)まず、予め表面を整地した法面N上に、複数の本マット1を敷き並べる。 (1) First, a plurality of the mats 1 are laid out on a slope N whose surface has been leveled in advance.

この際、横流路部6が等高線に沿うように各本マット1を配置し、かつ、各本マット1をアンカーピン等の固定部材によって法面Nに固定する。なお、本マット1の法面N上への敷設は、人力若しくはレッカー等の使用により行うことができる。 At this time, each mat 1 is arranged so that the lateral flow path portion 6 follows the contour line, and each mat 1 is fixed to the slope N by a fixing member such as an anchor pin. The mat 1 can be laid on the slope N by human power or by using a tow truck or the like.

(2)続いて、隣り合う本マット1の筒状体4の流路部5,6の端部どうしを連結し、かつ、筒状体4の貫通孔8を貫くように図外のアンカーピンを打設する(図3参照)。 (2) Subsequently, an anchor pin (not shown) is shown so as to connect the ends of the flow paths 5 and 6 of the tubular body 4 of the adjacent mat 1 and to penetrate the through hole 8 of the tubular body 4. (See Fig. 3).

ここで、筒状体4の流路部5,6の端部どうしの連結は、端部の一方を他方に挿入した状態で行うこともできるし、適宜の連結管(例えば、塩化ビニール管)9等を用いて行うこともできるが、何れにしても、後の工程で筒状体4内を流通することになるセメント流動物がその連結部から漏れ出さないようにするのが望ましい。 Here, the ends of the flow paths 5 and 6 of the tubular body 4 can be connected to each other with one of the ends inserted into the other, or an appropriate connecting pipe (for example, a vinyl chloride pipe). 9 or the like can be used, but in any case, it is desirable that the cement fluid that will be circulated in the tubular body 4 in a later step does not leak from the connecting portion.

また、貫通孔8に対するアンカーピンの打設は、後の工程において横流路部6にセメント流動物を充填した際に、横流路部6がセメント流動物の重みで谷側に大きく弛んでしまうことを防止するために行うものであり、この弛みを防止しようとする範囲でアンカーピンの打設を行えばよく、必ずしも全ての貫通孔8にアンカーピンを打設する必要は無い。 Further, in the placement of the anchor pin in the through hole 8, when the lateral flow path portion 6 is filled with the cement fluid in a later step, the lateral flow path portion 6 is largely loosened toward the valley side due to the weight of the cement fluid. It is necessary to drive the anchor pins within the range in which the slack is to be prevented, and it is not always necessary to drive the anchor pins in all the through holes 8.

(3)各本マット1の筒状体4の流路部5,6の端部のうち、他の本マット1の筒状体4に連結されない端部を閉塞し、この際、山側に向かって開口する少なくとも一つの端部は閉塞せずに放置する。 (3) Of the ends of the flow paths 5 and 6 of the tubular body 4 of each mat 1, the ends that are not connected to the tubular body 4 of the other mat 1 are closed, and at this time, the mat faces toward the mountain side. At least one end that opens is left unobstructed.

流路部5,6の端部の閉塞は、例えば適宜の部材や装置を用いた縫合、圧着、緊縛等によって行うことができる。なお、この閉塞は、現場において行ってもよいし、流路部5,6の特定の端部が予め閉塞されている本マット1を必要に応じて配置することにより、現場にて上記閉塞作業を行う手間を省くようにしてもよい。 The ends of the flow path portions 5 and 6 can be closed by, for example, suturing, crimping, or binding using an appropriate member or device. This closing may be performed at the site, or by arranging the mat 1 in which the specific ends of the flow paths 5 and 6 are closed in advance as necessary, the closing operation is performed at the site. You may try to save the trouble of doing.

なお、本実施形態において、端部が閉塞される流路部5,6を有するのは、複数敷き並べられた本マット1のうち、外周部(最外部)に位置する本マット1のみである。 In this embodiment, only the mat 1 located on the outer peripheral portion (outermost) of the plurality of mats 1 having the flow path portions 5 and 6 whose ends are closed is provided. ..

(4)上記(3)において、閉塞せずに放置した流路部5,6の端部から、セメント流動物を流し込み、各筒状体4内に充填する。 (4) In the above (3), the cement fluid is poured from the ends of the flow path portions 5 and 6 left unobstructed and filled into each tubular body 4.

セメント流動物は、法面Nの凹凸に馴染み易い、W/C100%以上、フロー値1000mm程度の極めて流動性に富んだセメントミルク(水とセメント及び必要に応じてセメント混和剤からなるもの)若しくはモルタル(少なくとも水とセメントと細骨材を含むもの)である。そして、本実施形態では、図1に示すように、水とセメントとを混合して生成されたセメント流動物としてのセメントミルクが、圧送用ポンプ(例えば毎分30L以上の吐出能力を有するモルタル圧送用ポンプ)10によりホース11内を圧送され、ホース11の先端のノズル12から筒状体4内に充填される。 The cement fluid is extremely fluid cement milk (consisting of water, cement and, if necessary, a cement admixture) with a W / C of 100% or more and a flow value of about 1000 mm, which easily adapts to the unevenness of the slope N. Mortar (including at least water, cement and fine aggregate). Then, in the present embodiment, as shown in FIG. 1, cement milk as a cement fluid produced by mixing water and cement is pumped by a pump (for example, a mortar pump having a discharge capacity of 30 L or more per minute). The inside of the hose 11 is pumped by the pump) 10, and the inside of the tubular body 4 is filled from the nozzle 12 at the tip of the hose 11.

(5)セメント流動物を収容した各筒状体4から、重力により余剰水がある程度自動的に排出される(筒状体4が目減りする)のを待って、再度、セメント流動物を筒状体4内に充填する、という手順を、各筒状体4が目減りしなくなるまで繰り返す。 (5) Waiting for excess water to be automatically discharged to some extent from each tubular body 4 containing the cement fluid (the tubular body 4 is reduced) due to gravity, the cement fluid is again tubular. The procedure of filling the inside of the body 4 is repeated until each tubular body 4 is not reduced.

すなわち、上述したように、筒状体4は、水を通過させ、セメント粒子を通過させない目合いを有する織布からなるため、セメント流動物を収容した各筒状体4から余剰水は排出されるが、セメント粒子は筒状体4内に残留することになる。 That is, as described above, since the tubular body 4 is made of a woven fabric having a mesh that allows water to pass through and does not allow cement particles to pass through, excess water is discharged from each tubular body 4 containing the cement fluid. However, the cement particles will remain in the tubular body 4.

ここで、セメント成分はPH12.5の強アルカリ性であり、筒状体4から排出された余剰水による植生への影響を抑えるためには、その中和を図るのが好ましく、具体的には、例えば、中和剤をセメント流動物に混合する、筒状体4に担持させる、法面Nに散布する、といった方法をとることができる。 Here, the cement component is strongly alkaline with a pH of 12.5, and in order to suppress the influence of excess water discharged from the tubular body 4 on vegetation, it is preferable to neutralize the cement component. For example, the neutralizing agent can be mixed with the cement fluid, supported on the tubular body 4, or sprayed on the slope N.

(6)各筒状体4の内部空間に収容されたセメント流動物が固化すれば、本構造体2が法面N上に築造された状態となるのであり(図1参照)、これにより、本工法が完了する。 (6) When the cement fluid contained in the internal space of each tubular body 4 solidifies, the structure 2 is in a state of being built on the slope N (see FIG. 1). This method is completed.

本マット1を用いる本工法により構築される本構造体2は、植生マット3によって法面Nの緑化機能を発揮し、その内部空間にセメントの入った(その内部空間にてセメント流動物が固化した)筒状体4によって法面Nの表層の崩壊防止に必要な構造物機能を発揮することになる。 In the structure 2 constructed by this method using the mat 1, the vegetation mat 3 exerts a greening function on the slope N, and cement is contained in the internal space (the cement fluid is solidified in the internal space). The tubular body 4 exerts the structural function necessary for preventing the surface layer of the slope N from collapsing.

また、セメント流動物を収容した各筒状体4から余剰水のみを排出することができる本工法では、セメント流動物の固化後に構築される本構造物2の強度低下防止、ひいては高強度化を図ることができるだけでなく、筒状体4内に充填(収容)するまでのセメント流動物の水セメント比を高くしておいてその流動性を上げ、セメント流動物を筒状体4に充填するスピードを高めれば、施工の短期化をも図ることが可能となる。 Further, in this construction method in which only excess water can be discharged from each tubular body 4 containing the cement fluid, the strength of the structure 2 constructed after the solidification of the cement fluid is prevented from being lowered, and the strength is increased. Not only can it be planned, but the water-cement ratio of the cement fluid until it is filled (accommodated) in the tubular body 4 is increased to increase its fluidity, and the cement fluid is filled in the tubular body 4. If the speed is increased, it will be possible to shorten the construction time.

しかも、従来の現場吹付法枠工では型枠の設置等に多大な労力が掛かるが、本工法では、そういった型枠の設置等は不要であり、本構造体2を簡易に構築することができる。 Moreover, the conventional on-site spraying method frame construction requires a great deal of labor to install the formwork, but this construction method does not require the installation of such formwork, and the structure 2 can be easily constructed. ..

さらに、本工法では、余剰水の排出後に筒状体4内に残留するセメント流動物を、W/Cが50%以下の低水セメント比のものとすることができ、その4週圧縮強度が30N/mm以上を有する(従来の湿式モルタル吹付けでは18N/mm)ようにすれば、これをアンカー工(ロックボルト工あるいはグラウンドアンカー工)における受圧板(受圧盤)としても利用可能となる。そして、このように本工法とアンカー工とを併用する場合には、両者を個別に行うよりも大幅な工期短縮を達成することができる。 Further, in this method, the cement fluid remaining in the tubular body 4 after the surplus water is discharged can be made to have a low water cement ratio of W / C of 50% or less, and the four-week compressive strength is increased. if so (18N / mm 2 in the conventional wet mortar spraying) to 30 N / mm having 2 or more, which can also be used as a pressure receiving plate (pressure receiving plate) in the anchor Engineering (lock bolt Engineering or ground anchor Engineering) and Become. When this method and the anchor method are used together in this way, it is possible to achieve a significant reduction in the construction period as compared with the case where both methods are used individually.

また、一般に、枠が連続的で曲げ剛性が期待できるものについては、法面Nの表層すべりに対し、ある程度の抑制機能があると考えられているが、斯かる観点からすると、本構造体2において筒状体4によって形成される枠は、連続的で曲げ剛性が期待できるものであるため、法面Nの表層すべりの抑制機能をも発揮するということになる。 Further, it is generally considered that a frame having a continuous frame and expected flexural rigidity has a function of suppressing the surface slip of the slope N to some extent, but from such a viewpoint, the present structure 2 Since the frame formed by the tubular body 4 is continuous and can be expected to have flexural rigidity, it also exerts a function of suppressing surface slip on the slope N.

なお、本発明は、上記の実施の形態に何ら局限されず、本発明の要旨を逸脱しない範囲において種々に改変して実施し得ることは勿論である。例えば、以下のような例を挙げることができる。 Needless to say, the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention. For example, the following examples can be given.

本マット1、本構造体2及び本工法は、法面Nに限らず、平地等において使用・施工してもよい。 The mat 1, the structure 2, and the construction method are not limited to the slope N, and may be used and constructed on flat ground or the like.

植生マット3は、ネットの下面に植生シートを重合してなるものに限らず、例えば、ネット状や厚みの薄いシート状をしていてもよい。 The vegetation mat 3 is not limited to a vegetation sheet laminated on the lower surface of the net, and may be in the form of a net or a thin sheet, for example.

筒状体4内に収容するセメント流動物に、減水剤を混和させてあってもよい。また、セメント流動物に、アラミド繊維、ナノセルロール等の混和剤を混入させてもよく、この場合、筒状体4によって形成される本構造体の枠の引張強度は飛躍的に向上する。 A water reducing agent may be mixed with the cement fluid contained in the tubular body 4. Further, an admixture such as aramid fiber or nanocell roll may be mixed in the cement fluid, and in this case, the tensile strength of the frame of the present structure formed by the tubular body 4 is dramatically improved.

筒状体4に設ける縦流路部5、横流路部6の数や配置、太さや間隔(ピッチ)は種々に変更可能であり、これらの要素を変更することにより、表層の侵食防止の度合い(対応深さ)が変わる。また、例えば横流路部6を設けず、筒状体4が縦流路部5のみを有するようにしてもよく、この場合、縦流路部5をジグザグ状等としてもよい。また、筒状体4の形状を適宜に改変すれば、擁壁、土留め堰堤等、多種多様な土木建築分野への利用が容易に可能となる。 The number and arrangement, thickness and spacing (pitch) of the vertical flow path portion 5 and the horizontal flow path portion 6 provided in the tubular body 4 can be changed in various ways, and by changing these elements, the degree of prevention of surface erosion is achieved. (Correspondence depth) changes. Further, for example, the horizontal flow path portion 6 may not be provided and the tubular body 4 may have only the vertical flow path portion 5. In this case, the vertical flow path portion 5 may be in a zigzag shape or the like. Further, if the shape of the tubular body 4 is appropriately modified, it can be easily used in a wide variety of civil engineering and construction fields such as retaining walls and earth retaining dams.

セメント流動物として、少なくとも水とセメントと粗骨材を含むコンクリートを用いても良い。また、上記実施形態では、筒状体4内に収容するセメントに、少なくとも水とセメントを含むセメント流動物の形態をとらせているが、これに限らず、筒状体4内に収容する際のセメントに、例えば乾燥粉末セメント、ドライモルタル(セメントに粒状の砂、バーミキュライト、パーライト(軽石)等の骨材を混合したもの)、粒状セメントといった形態をとらせ、筒状体4内への収容後に筒状体4への散水もしくは降雨等による自然吸水・吸湿によりセメントを硬化させるようにしてもよい。 As the cement fluid, concrete containing at least water, cement and coarse aggregate may be used. Further, in the above embodiment, the cement contained in the tubular body 4 is made to take the form of a cement fluid containing at least water and cement, but the present invention is not limited to this, and when the cement is contained in the tubular body 4. In the form of, for example, dry powder cement, dry mortar (a mixture of granular sand, vermiculite, pearlite (light stone) and other aggregates), and granular cement, the cement is stored in the tubular body 4. Later, the cement may be hardened by natural water absorption / moisture absorption due to watering or rainfall on the tubular body 4.

なお、本工法では、上記工程(4)、(5)において、繰り返しセメント流動物を筒状体4内に充填する作業を行うが、斯かる手間を省くために、例えば、図4に示すように、上記(3)において、閉塞せずに放置した流路部5,6の端部に、不透水性の素材からなり例えば筒状の貯留部13を接続し、この貯留部13を介して筒状体4全体にセメント流動物を行き渡らせた後、貯留部13内にセメント流動物を貯留した状態にし、各筒状体4の目減り(余剰水の排出)に応じて貯留部13から筒状体4にセメント流動物が供給されるようにしてもよく、このようにすれば、セメント流動物の充填作業の回数を少なくし、ひいては一度のみとすることができる。 In this method, in the above steps (4) and (5), the cement fluid is repeatedly filled into the tubular body 4, but in order to save such trouble, for example, as shown in FIG. In (3) above, for example, a tubular storage portion 13 made of an impermeable material is connected to the ends of the flow path portions 5 and 6 left unobstructed, and the storage portion 13 is used. After the cement fluid is distributed throughout the tubular body 4, the cement fluid is stored in the storage unit 13, and the cylinder is discharged from the storage unit 13 according to the reduction (exhaust of excess water) of each tubular body 4. The cement fluid may be supplied to the body 4, and in this way, the number of times of filling the cement fluid can be reduced, and by extension, it can be performed only once.

上記実施の形態では、図3に示すように横流路部6を等高線に沿うように配置するために、図2(A)及び(B)に示す例では、横流路部6を縦流路部5に直交する方向に延ばしてあるが、これに限らず、例えば図5に示すように、横流路部6を等高線に沿う方向(縦流路部5に直交する方向)から角度θだけ谷側に向けて配置することができるようにしてあってもよく、この場合、横流路部6に対するセメント(セメント流動物)の充填をより容易に行える。角度θは、0〜45度付近とするのが好ましい。角度θを0度未満とし、横流路部6を山側に向けて傾斜させると横流路部6に対するセメントの充填が困難となり、角度θを45度より大きくすると、横流路部6の谷側への傾斜が急峻となって、横流路部6によって得られる土砂流亡・小転石の抑止効果や小段効果(周囲からの飛来種子、木の葉や、法面山側からの流亡土砂等を堰き止めることにより、堆積した植生基盤が小段状に形成され、その小段において植物が生長し易くなる効果)が大幅に損なわれるようになるからである。 In the above embodiment, in order to arrange the transverse flow path portion 6 along the contour lines as shown in FIG. 3, in the examples shown in FIGS. 2A and 2B, the transverse flow path portion 6 is arranged in the vertical flow path portion. It is extended in the direction orthogonal to 5, but is not limited to this, and as shown in FIG. 5, for example, the lateral flow path portion 6 is on the valley side by an angle θ from the direction along the contour line (the direction orthogonal to the vertical flow path portion 5). In this case, the lateral flow path portion 6 can be more easily filled with cement (cement fluid). The angle θ is preferably around 0 to 45 degrees. If the angle θ is less than 0 degrees and the lateral flow path portion 6 is tilted toward the mountain side, it becomes difficult to fill the lateral flow path portion 6 with cement. If the angle θ is larger than 45 degrees, the lateral flow path portion 6 is directed to the valley side. The slope becomes steep, and the effect of suppressing sediment runoff and small boulders obtained by the lateral flow path 6 and the small step effect (accumulation by blocking flying seeds from the surroundings, leaves, runoff sediment from the slope mountain side, etc.) This is because the vegetation base is formed in small steps, and the effect of facilitating the growth of plants in the small steps) is significantly impaired.

図1に示す例では、圧送用ポンプ10を用いてセメントミルク(セメント流動物)を筒状体4内に流し込んでいるが、これに限らず、例えば筒状体4の山側でセメントミルク(セメント流動物)を作成し、自重によってセメントミルクを筒状体4内に流し込むようにしてもよい。 In the example shown in FIG. 1, cement milk (cement fluid) is poured into the tubular body 4 by using a pump 10 for pumping, but the present invention is not limited to this, and for example, cement milk (cement) is poured on the mountain side of the tubular body 4. A fluid) may be created and the cement milk may be poured into the tubular body 4 by its own weight.

上記実施の形態における筒状体4を、織布によって一重構造にしてあってもよいが、図6(A)に示すように、二重以上の多重構造(図示例では3重構造)にしてもよく、この場合、内側にある織布14ほどセメント流動物の膨張等に伴って膨らみ、目合いが拡大し易い傾向にあるが、外側にある織布14ほどそういった影響を受け難く、これにより、圧力が分散され、筒状体4の全てで目合いが大きくはならず、より確実に余剰水のみを筒状体4の目合いから抜くことが可能となる。また、法面N等に突起が存在する場合でも、外側にある織布14がその突起によって破損しても内側にある織布14まで破損してしまう可能性は低いため、筒状体4が全体として破損し難いものとなる。なお、図6(A)には、3重に重ねた織布14と、これとは別に3重に重ねた織布14とを表裏に重ね、その重ねた端部どうしを縫合して筒状体4を形成する例を示している。 The tubular body 4 in the above embodiment may have a single structure with a woven fabric, but as shown in FIG. 6A, it has a double or more multiple structure (triple structure in the illustrated example). In this case, the woven fabric 14 on the inner side tends to swell with the expansion of the cement fluid and the texture tends to expand, but the woven fabric 14 on the outer side is less susceptible to such influence. , The pressure is dispersed, the mesh size does not become large in all of the tubular body 4, and only the excess water can be more reliably removed from the mesh size of the tubular body 4. Further, even if there are protrusions on the slope N or the like, even if the outer woven fabric 14 is damaged by the protrusions, it is unlikely that the inner woven fabric 14 will be damaged, so that the tubular body 4 is formed. It will be hard to break as a whole. In addition, in FIG. 6A, a triple-layered woven fabric 14 and another triple-layered woven fabric 14 are stacked on the front and back sides, and the stacked ends are sewn together to form a tubular shape. An example of forming the body 4 is shown.

上記実施の形態における筒状体4内に、PC鋼線等の線状の芯材(図示していない)や網状の芯材15(図6(B)参照)を設けておき、強度向上を図るようにしてもよい。図6(B)には、図6(A)に示す例と同様に3重に重ねた織布14の端部どうしを縫合する際、その間に網状の芯材15を挟む例を示している。 A linear core material (not shown) such as a PC steel wire or a net-like core material 15 (see FIG. 6B) is provided in the tubular body 4 in the above embodiment to improve the strength. You may try to plan. FIG. 6B shows an example in which a net-like core material 15 is sandwiched between the ends of the three-layered woven fabrics 14 when the ends of the woven fabrics 14 are sewn together in the same manner as in the example shown in FIG. ..

セメント流動物にスチールファイバー等の補強材を混合し、硬化後の筒状体4の強度向上効果が得られるようにしてもよい。また、セメント流動物に硬化遅延材を配合し、硬化スピードを下げることにより、硬化後の筒状体4のひび割れ防止効果が得られるようにしてもよい。 A reinforcing material such as steel fiber may be mixed with the cement fluid so that the effect of improving the strength of the tubular body 4 after curing can be obtained. Further, the effect of preventing cracks in the tubular body 4 after curing may be obtained by adding a curing retarding material to the cement fluid to reduce the curing speed.

上記実施の形態では、筒状体4の張出部7に設けられた貫通孔8にアンカーピンを打設するが、この構成に代えて、あるいはこの構成に加えて、張出部7ではなく筒状体4の本体にアンカーピンを打設するようにしてもよい。この場合、セメント流動物の収容後、ある程度余剰水が排出され、セメント流動物が固化しきる前の筒状体4本体に直接アンカーピンを打設するようにすれば、アンカーピンの打設自体はセメント流動物から大きな抵抗を受けることなく簡単に行え、かつ、筒状体4中のセメント流動物が固化した後に筒状体4とアンカーピンは強固に一体化した構造となる。また、このようなアンカーピンの打設を行っても筒状体4からのセメント流動物の漏出を防止可能であることを発明者らは確認している。 In the above embodiment, the anchor pin is driven into the through hole 8 provided in the overhanging portion 7 of the tubular body 4, but instead of or in addition to this configuration, instead of the overhanging portion 7. Anchor pins may be driven into the main body of the tubular body 4. In this case, if surplus water is discharged to some extent after the cement fluid is contained and the anchor pin is directly driven into the main body of the tubular body 4 before the cement fluid is completely solidified, the anchor pin itself can be driven. It can be easily performed without receiving a large resistance from the cement fluid, and the tubular body 4 and the anchor pin are firmly integrated after the cement fluid in the tubular body 4 is solidified. Further, the inventors have confirmed that it is possible to prevent the leakage of the cement fluid from the tubular body 4 even if such an anchor pin is placed.

なお、本明細書で挙げた改変例どうしを適宜組み合わせてもよいことはいうまでもない。 Needless to say, the modifications given in the present specification may be combined as appropriate.

1 表層崩壊防止用マット
2 表層崩壊防止兼用緑化構造体
3 植生マット
4 筒状体
5 縦流路部
6 横流路部
7 張出部
8 貫通孔
9 連結管
10 圧送用ポンプ
11 ホース
12 ノズル
13 貯留部
14 織布
15 網状の芯材
N 法面

1 Surface layer collapse prevention mat 2 Surface layer collapse prevention combined greening structure 3 Vegetation mat 4 Cylindrical body 5 Vertical flow path part 6 Horizontal flow path part 7 Overhanging part 8 Through hole 9 Connecting pipe 10 Pumping pump 11 Hose 12 Nozzle 13 Storage Part 14 Woven cloth 15 Net-like core material N Slope

本発明は、例えば、法面の表層崩壊の防止を図ることのできる法面の表層崩壊防止工法に関する。 The present invention relates to, for example, shallow landslides Prevention construction method of slope as possible prevent the table layer collapse of slope of FIG Rukoto.

従来の法面補強工法として、植生による法面表層(深さが0m〜2mまでの層)の侵食防止を可能とする植生マット工(特許文献1参照)や、法面表層の崩壊防止を可能とする現場吹付法枠工(特許文献2参照)が知られている。 As a conventional slope reinforcement method, it is possible to prevent vegetation from eroding the slope surface layer (layer with a depth of 0 m to 2 m), and to prevent the slope surface layer from collapsing (see Patent Document 1). The on-site spraying method frame construction (see Patent Document 2) is known.

特開2002−121739号公報JP-A-2002-121739 特開2004−197553号公報Japanese Unexamined Patent Publication No. 2004-197553

法面に植生マットを敷設する植生マット工は、比較的簡易に行える点で優れ、風化等による法面表層の侵食防止を目的として多用されている。しかし、表層の侵食にとどまらず崩壊もが懸念されるような安定性の低い法面に、その崩壊防止をも可能とし得る構造物的機能の発揮を本来見込むことのできない植生マットを敷設する植生マット工を適用するのは困難である。 The vegetation mat work, which lays the vegetation mat on the slope, is excellent in that it can be performed relatively easily, and is often used for the purpose of preventing erosion of the slope surface layer due to weathering or the like. However, vegetation is laid on a slope with low stability where not only surface erosion but also collapse is a concern, and vegetation mats that cannot be expected to exert structural functions that can prevent the collapse are laid. It is difficult to apply matting.

一方、法面上に設置した型枠にモルタル・コンクリートを吹き付けて法枠を形成する現場吹付法枠工は、法面表層の崩壊防止を可能とするが、型枠の設置等に手間がかかり、施工が大掛かりになるという問題がある。 On the other hand, on-site spraying formwork, which forms the formwork by spraying mortar and concrete on the formwork installed on the slope, can prevent the surface layer of the slope from collapsing, but it takes time and effort to install the formwork. , There is a problem that the construction becomes large-scale.

本発明は上述の事柄に留意してなされたもので、その目的は、法面の表層崩壊の防止を図りつつ、施工の省力化をも達成することのできる法面の表層崩壊防止工法を提供することにある。 The present invention has been made in mind the above-mentioned matters, and its object is drawing the prevention of Table layer collapse of slope Ritsutsu, surface collapse proof of slopes that can also achieve labor saving construction It is to provide a stop construction method.

上記目的を達成するために、本発明に係る法面の表層崩壊防止工法は、法面に敷設された、余剰水を内から外へ通過させ、セメント粒子を内から外へ通過させない筒状体に、セメント流動物を収容し、前記筒状体に直接アンカーピンを打設する(請求項1)。 To achieve the above object, the surface collapse preventing method of slope according to the present invention is laid on the slope face, excess water is passed from the inside to the outside and have a passed from the inside to the outside of the cement particles cylinder A cement fluid is contained in the body, and an anchor pin is directly driven into the tubular body (claim 1).

上記法面の表層崩壊防止工法において、前記セメント流動物の収容後、前記セメント流動物が固化しきる前の前記筒状体本体に直接アンカーピンを打設してもよい(請求項2)。 In the surface layer collapse prevention method for the slope, the anchor pin may be directly driven into the tubular body body after the cement fluid is contained and before the cement fluid is completely solidified (claim 2).

本願発明では、法面の表層崩壊の防止を図りつつ、施工の省力化をも達成することのできる法面の表層崩壊防止工法が得られる。 In the present invention, figure prevention table layers collapse of slope Ritsutsu, surface collapse prevention construction method of slope which can also achieve the labor-saving construction is obtained.

すなわち、本願の各請求項に係る発明の法面の表層崩壊防止工法では、その内部空間にセメントの入った筒状体によって法面の表層の崩壊防止に必要な構造物機能を発揮する構造体が得られる。 That is, in the surface collapse prevention construction method of slope of the invention according to the claims of the present application, exhibit structural features required to collapse preventing the surface layer of the slope by the cylindrical body containing the cement in the interior space of its structure body is obtained you.

しかも、従来の現場吹付法枠工では型枠の設置等に多大な労力が掛かるが、そういった型枠の設置等を不要とする上記構造体の構築は簡易に行える。 Moreover, in the conventional field spraying method frame factory takes a great deal of effort to the installation of formwork, construction of Ki構concrete body on that does not require the installation of such a mold can be performed easily.

また、請求項に係る発明の法面の表層崩壊防止工法では、セメントと水とを収容した各筒状体から余剰水のみを排出することができるので、セメントの固化後に構築される本構造物の強度低下防止、ひいては高強度化を図ることができるだけでなく、筒状体内に充填(収容)するまでのセメントについては、少なくとも水とセメントを含み水セメント比を高めたセメント流動物の形態をとらせてその流動性を上げ、このセメント流動物を筒状体に充填するスピードを高めれば、施工の短期化をも図ることが可能となる。 Further, in the surface collapse prevention construction method of slope of the invention according to the claims, it is possible to discharge excessive water only from the cylindrical body containing a cement and water, it is built after solidification of the cement Not only can the strength of this structure be prevented from decreasing, and the strength of the structure can be increased, but the cement until it is filled (contained) in the tubular body is a cement fluid that contains at least water and cement and has a higher water-cement ratio. It is possible to shorten the construction time by increasing the fluidity of the cement fluid and increasing the speed of filling the tubular body with the cement fluid.

本発明の一実施の形態に係る法面の表層崩壊防止工法により構築される表層崩壊防止兼用緑化構造体の構成を概略的に示す斜視図である。The structure of the surface layer collapse prevention combined greening structure constructed by shallow landslides Prevention construction method of slope according to an embodiment of the present invention is a perspective view schematically showing. 前記表層崩壊防止兼用緑化構造体の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the greening structure which also serves as surface collapse prevention. (A)及び(B)は、前記法面の表層崩壊防止工法に用いる表層崩壊防止用マットの構成を概略的に示す斜視図及び平面図である。(A) and (B) are perspective views and plan views schematically showing the configuration of the surface layer collapse prevention mat used in the surface layer collapse prevention method for the slope. 前記法面の表層崩壊防止工法の変形例を示す説明図である。It is an explanatory view showing a modification of the surface collapse prevention construction method of the slopes. 前記法面の表層崩壊防止工法の他の変形例を示す説明図である。It is an explanatory diagram showing another modification of the surface collapse prevention construction method of the slopes. (A)及び(B)は、前記表層崩壊防止用マットの好適例及び変形例を示す説明図である。(A) and (B) are explanatory views showing a preferable example and a modification of the surface layer collapse prevention mat.

本発明の実施の形態について図面を参照しながら以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る表層崩壊防止用マット(以下、本マットという)1は、図1に示すように、法面N上に表層崩壊防止兼用緑化構造体(以下、本構造体という)2を構築する表層崩壊防止兼用緑化工法(以下、本工法という)に用いられるものであり、図2(A)及び(B)に示すように、植生マット3と、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成され、植生マット3の片面に装着された筒状体4とを具備する。 As shown in FIG. 1, the surface layer collapse prevention mat (hereinafter referred to as the present mat) 1 according to the present embodiment has a surface layer collapse prevention combined greening structure (hereinafter referred to as the present structure) 2 on the slope N. It is used for the surface layer collapse prevention combined greening method (hereinafter referred to as this method) to be constructed, and as shown in FIGS. 2 (A) and 2 (B), the vegetation mat 3 and water are passed through and cement particles are passed through. It is composed of a woven fabric having a mesh that does not allow the vegetation mat 3, and includes a tubular body 4 mounted on one side of the vegetation mat 3.

植生マット3は、ネットの下面に植生シートを重合してなるものであり、例えば平面視において縦2m、横1mの矩形状を呈するように構成されている。 The vegetation mat 3 is formed by superimposing a vegetation sheet on the lower surface of the net, and is configured to have a rectangular shape of, for example, 2 m in length and 1 m in width in a plan view.

ここで、ネットの材質としては、年月の経過とともに土壌化する必要があるときは、天然繊維や生分解性プラスチックの繊維を使用し、表層土の流動や侵食防止効果を半永久的に確保したい場合には、ポリエチレン、ナイロン等の繊維を使用すればよい。 Here, as the material of the net, when it is necessary to turn it into soil over the years, we would like to use natural fibers or biodegradable plastic fibers to semi-permanently secure the flow and erosion prevention effect of the surface soil. In that case, fibers such as polyethylene and nylon may be used.

また、 植生シートは、スフ等の薄綿状シートに、植生種子、肥料、土壌改良材等の植生基材を担持させたものである。薄綿状シートは、シート状の薄綿(綿花を意味しているのではなく、薄い綿状のものを意味している)であることが望ましいが、不織布や紙のようなものであってもよく、この薄綿状シートは植物の通芽や通根を妨げない程度の強度を有するものであり、その平均厚みを0.1〜10mm、望ましくは、0.5〜5mmに設定することで、侵食防止機能を有しながらも植物を地面に根付かせ易くすることができる。 The vegetation sheet is a thin cotton-like sheet such as rayon on which a vegetation base material such as vegetation seeds, fertilizer, and soil conditioner is supported. The thin cotton-like sheet is preferably sheet-like thin cotton (not meaning cotton, but thin cotton-like material), but may be something like non-woven fabric or paper. This thin cotton-like sheet has enough strength not to hinder the sprouting and rooting of plants, and the average thickness thereof is set to 0.1 to 10 mm, preferably 0.5 to 5 mm to prevent erosion. It is possible to make it easier for plants to take root in the ground while having a function.

そして、ネットと植生シートとは積層状態で一体化されて植生マット3を構成するのであり、その一体化は、例えば植生シートの薄綿状シートの繊維をネットに絡み付かせることによって行ってもよいし、ネットと植生シートとを少量の水溶性接着剤で接着することによって行ってもよく、両方の手段を併用するようにしてもよい。薄綿状シートの繊維をネットに絡み付かせる方法としては、ネットと植生シートとを積層した状態でローラ間に通して加圧することにより、薄綿状シートの繊維をネットに絡み付かせる方法や、薄綿状シート側から空気を吹きつけたり、ネット側から空気を吸引したりすることにより、薄綿状シートの繊維をネット側に起毛させてネットに絡みつかせる方法が考えられる。 Then, the net and the vegetation sheet are integrated in a laminated state to form the vegetation mat 3, and the integration may be performed, for example, by entwining the fibers of the thin cotton-like sheet of the vegetation sheet with the net. , The net and the vegetation sheet may be adhered with a small amount of water-soluble adhesive, or both means may be used in combination. As a method of entwining the fibers of the thin cotton-like sheet with the net, a method of entwining the fibers of the thin cotton-like sheet with the net by passing the net and the vegetation sheet between the rollers in a laminated state and applying pressure, or the thin cotton-like sheet side A method is conceivable in which the fibers of the thin cotton-like sheet are raised toward the net side and entangled with the net by blowing air from the net side or sucking air from the net side.

筒状体4は、セメント流動物を流通させるための流路部として、植生マット3の長手方向に延びる縦流路部5と、この縦流路部5に連通する状態でその左右に向かって(あるいは縦流路部5に直交する方向に)延びる横流路部6とを有する。また、筒状体4は、横流路部6の縁から張り出す張出部7を有し、張出部7には、図外のアンカーピンが貫通可能な貫通孔8が設けられている。すなわち、貫通孔8は、平面視において流路部5,6を避けた位置に設けられている。 The tubular body 4 has a vertical flow path portion 5 extending in the longitudinal direction of the vegetation mat 3 and a vertical flow path portion 5 communicating with the vertical flow path portion 5 as a flow path portion for circulating the cement fluid, toward the left and right sides thereof. It has a horizontal flow path portion 6 extending (or in a direction orthogonal to the vertical flow path portion 5). Further, the tubular body 4 has an overhanging portion 7 protruding from the edge of the lateral flow path portion 6, and the overhanging portion 7 is provided with a through hole 8 through which an anchor pin (not shown) can penetrate. That is, the through hole 8 is provided at a position avoiding the flow path portions 5 and 6 in a plan view.

筒状体4を構成する織布には、炭素繊維等、引張強度の強い繊維を使用し、セメント粒径が20μmであるのに対して、概ね0.001μm(1nm)の目合い(セメント粒径の約1/20000の大きさの目合い)を有する織布を用いるのが好ましい。 Fibers with high tensile strength such as carbon fibers are used for the woven fabric constituting the tubular body 4, and while the cement particle size is 20 μm, the mesh size (cement grains) is approximately 0.001 μm (1 nm). It is preferable to use a woven fabric having a mesh size of about 1/20000 of the diameter).

そして、植生マット3の片面に対する筒状体4の装着は、例えば、圧着、縫合、適宜の部材による連結等によって行うことができ、形成後の本マット1は、例えばロール状に梱包された状態で運搬可能である。 The tubular body 4 can be attached to one side of the vegetation mat 3 by, for example, crimping, suturing, connecting with an appropriate member, or the like, and the formed mat 1 is packed in a roll shape, for example. It can be carried at.

次に、本マット1を用いる本工法について説明する。 Next, this construction method using the present mat 1 will be described.

(1)まず、予め表面を整地した法面N上に、複数の本マット1を敷き並べる。 (1) First, a plurality of the mats 1 are laid out on a slope N whose surface has been leveled in advance.

この際、横流路部6が等高線に沿うように各本マット1を配置し、かつ、各本マット1をアンカーピン等の固定部材によって法面Nに固定する。なお、本マット1の法面N上への敷設は、人力若しくはレッカー等の使用により行うことができる。 At this time, each mat 1 is arranged so that the lateral flow path portion 6 follows the contour line, and each mat 1 is fixed to the slope N by a fixing member such as an anchor pin. The mat 1 can be laid on the slope N by human power or by using a tow truck or the like.

(2)続いて、隣り合う本マット1の筒状体4の流路部5,6の端部どうしを連結し、かつ、筒状体4の貫通孔8を貫くように図外のアンカーピンを打設する(図3参照)。 (2) Subsequently, an anchor pin (not shown) is shown so as to connect the ends of the flow paths 5 and 6 of the tubular body 4 of the adjacent mat 1 and to penetrate the through hole 8 of the tubular body 4. (See Fig. 3).

ここで、筒状体4の流路部5,6の端部どうしの連結は、端部の一方を他方に挿入した状態で行うこともできるし、適宜の連結管(例えば、塩化ビニール管)9等を用いて行うこともできるが、何れにしても、後の工程で筒状体4内を流通することになるセメント流動物がその連結部から漏れ出さないようにするのが望ましい。 Here, the ends of the flow paths 5 and 6 of the tubular body 4 can be connected to each other with one of the ends inserted into the other, or an appropriate connecting pipe (for example, a vinyl chloride pipe). 9 or the like can be used, but in any case, it is desirable that the cement fluid that will be circulated in the tubular body 4 in a later step does not leak from the connecting portion.

また、貫通孔8に対するアンカーピンの打設は、後の工程において横流路部6にセメント流動物を充填した際に、横流路部6がセメント流動物の重みで谷側に大きく弛んでしまうことを防止するために行うものであり、この弛みを防止しようとする範囲でアンカーピンの打設を行えばよく、必ずしも全ての貫通孔8にアンカーピンを打設する必要は無い。 Further, in the placement of the anchor pin in the through hole 8, when the lateral flow path portion 6 is filled with the cement fluid in a later step, the lateral flow path portion 6 is largely loosened toward the valley side due to the weight of the cement fluid. It is necessary to drive the anchor pins within the range in which the slack is to be prevented, and it is not always necessary to drive the anchor pins in all the through holes 8.

(3)各本マット1の筒状体4の流路部5,6の端部のうち、他の本マット1の筒状体4に連結されない端部を閉塞し、この際、山側に向かって開口する少なくとも一つの端部は閉塞せずに放置する。 (3) Of the ends of the flow paths 5 and 6 of the tubular body 4 of each mat 1, the ends that are not connected to the tubular body 4 of the other mat 1 are closed, and at this time, the mat faces toward the mountain side. At least one end that opens is left unobstructed.

流路部5,6の端部の閉塞は、例えば適宜の部材や装置を用いた縫合、圧着、緊縛等によって行うことができる。なお、この閉塞は、現場において行ってもよいし、流路部5,6の特定の端部が予め閉塞されている本マット1を必要に応じて配置することにより、現場にて上記閉塞作業を行う手間を省くようにしてもよい。 The ends of the flow path portions 5 and 6 can be closed by, for example, suturing, crimping, or binding using an appropriate member or device. This closing may be performed at the site, or by arranging the mat 1 in which the specific ends of the flow paths 5 and 6 are closed in advance as necessary, the closing operation is performed at the site. You may try to save the trouble of doing.

なお、本実施形態において、端部が閉塞される流路部5,6を有するのは、複数敷き並べられた本マット1のうち、外周部(最外部)に位置する本マット1のみである。 In this embodiment, only the mat 1 located on the outer peripheral portion (outermost) of the plurality of mats 1 having the flow path portions 5 and 6 whose ends are closed is provided. ..

(4)上記(3)において、閉塞せずに放置した流路部5,6の端部から、セメント流動物を流し込み、各筒状体4内に充填する。 (4) In the above (3), the cement fluid is poured from the ends of the flow path portions 5 and 6 left unobstructed and filled into each tubular body 4.

セメント流動物は、法面Nの凹凸に馴染み易い、W/C100%以上、フロー値1000mm程度の極めて流動性に富んだセメントミルク(水とセメント及び必要に応じてセメント混和剤からなるもの)若しくはモルタル(少なくとも水とセメントと細骨材を含むもの)である。そして、本実施形態では、図1に示すように、水とセメントとを混合して生成されたセメント流動物としてのセメントミルクが、圧送用ポンプ(例えば毎分30L以上の吐出能力を有するモルタル圧送用ポンプ)10によりホース11内を圧送され、ホース11の先端のノズル12から筒状体4内に充填される。 The cement fluid is extremely fluid cement milk (consisting of water, cement and, if necessary, a cement admixture) with a W / C of 100% or more and a flow value of about 1000 mm, which easily adapts to the unevenness of the slope N. Mortar (including at least water, cement and fine aggregate). Then, in the present embodiment, as shown in FIG. 1, cement milk as a cement fluid produced by mixing water and cement is pumped by a pump (for example, a mortar pump having a discharge capacity of 30 L or more per minute). The inside of the hose 11 is pumped by the pump) 10, and the inside of the tubular body 4 is filled from the nozzle 12 at the tip of the hose 11.

(5)セメント流動物を収容した各筒状体4から、重力により余剰水がある程度自動的に排出される(筒状体4が目減りする)のを待って、再度、セメント流動物を筒状体4内に充填する、という手順を、各筒状体4が目減りしなくなるまで繰り返す。 (5) Waiting for excess water to be automatically discharged to some extent from each tubular body 4 containing the cement fluid (the tubular body 4 is reduced) due to gravity, the cement fluid is again tubular. The procedure of filling the inside of the body 4 is repeated until each tubular body 4 is not reduced.

すなわち、上述したように、筒状体4は、水を通過させ、セメント粒子を通過させない目合いを有する織布からなるため、セメント流動物を収容した各筒状体4から余剰水は排出されるが、セメント粒子は筒状体4内に残留することになる。 That is, as described above, since the tubular body 4 is made of a woven fabric having a mesh that allows water to pass through and does not allow cement particles to pass through, excess water is discharged from each tubular body 4 containing the cement fluid. However, the cement particles will remain in the tubular body 4.

ここで、セメント成分はPH12.5の強アルカリ性であり、筒状体4から排出された余剰水による植生への影響を抑えるためには、その中和を図るのが好ましく、具体的には、例えば、中和剤をセメント流動物に混合する、筒状体4に担持させる、法面Nに散布する、といった方法をとることができる。 Here, the cement component is strongly alkaline with a pH of 12.5, and in order to suppress the influence of excess water discharged from the tubular body 4 on vegetation, it is preferable to neutralize the cement component. For example, the neutralizing agent can be mixed with the cement fluid, supported on the tubular body 4, or sprayed on the slope N.

(6)各筒状体4の内部空間に収容されたセメント流動物が固化すれば、本構造体2が法面N上に築造された状態となるのであり(図1参照)、これにより、本工法が完了する。 (6) When the cement fluid contained in the internal space of each tubular body 4 solidifies, the structure 2 is in a state of being built on the slope N (see FIG. 1). This method is completed.

本マット1を用いる本工法により構築される本構造体2は、植生マット3によって法面Nの緑化機能を発揮し、その内部空間にセメントの入った(その内部空間にてセメント流動物が固化した)筒状体4によって法面Nの表層の崩壊防止に必要な構造物機能を発揮することになる。 In the structure 2 constructed by this method using the mat 1, the vegetation mat 3 exerts a greening function on the slope N, and cement is contained in the internal space (the cement fluid is solidified in the internal space). The tubular body 4 exerts the structural function necessary for preventing the surface layer of the slope N from collapsing.

また、セメント流動物を収容した各筒状体4から余剰水のみを排出することができる本工法では、セメント流動物の固化後に構築される本構造物2の強度低下防止、ひいては高強度化を図ることができるだけでなく、筒状体4内に充填(収容)するまでのセメント流動物の水セメント比を高くしておいてその流動性を上げ、セメント流動物を筒状体4に充填するスピードを高めれば、施工の短期化をも図ることが可能となる。 Further, in this construction method in which only excess water can be discharged from each tubular body 4 containing the cement fluid, the strength of the structure 2 constructed after the solidification of the cement fluid is prevented from being lowered, and the strength is increased. Not only can it be planned, but the water-cement ratio of the cement fluid until it is filled (accommodated) in the tubular body 4 is increased to increase its fluidity, and the cement fluid is filled in the tubular body 4. If the speed is increased, it will be possible to shorten the construction time.

しかも、従来の現場吹付法枠工では型枠の設置等に多大な労力が掛かるが、本工法では、そういった型枠の設置等は不要であり、本構造体2を簡易に構築することができる。 Moreover, the conventional on-site spraying method frame construction requires a great deal of labor to install the formwork, but this construction method does not require the installation of such formwork, and the structure 2 can be easily constructed. ..

さらに、本工法では、余剰水の排出後に筒状体4内に残留するセメント流動物を、W/Cが50%以下の低水セメント比のものとすることができ、その4週圧縮強度が30N/mm以上を有する(従来の湿式モルタル吹付けでは18N/mm)ようにすれば、これをアンカー工(ロックボルト工あるいはグラウンドアンカー工)における受圧板(受圧盤)としても利用可能となる。そして、このように本工法とアンカー工とを併用する場合には、両者を個別に行うよりも大幅な工期短縮を達成することができる。 Further, in this method, the cement fluid remaining in the tubular body 4 after the surplus water is discharged can be made to have a low water cement ratio of W / C of 50% or less, and the four-week compressive strength is increased. if so (18N / mm 2 in the conventional wet mortar spraying) to 30 N / mm having 2 or more, which can also be used as a pressure receiving plate (pressure receiving plate) in the anchor Engineering (lock bolt Engineering or ground anchor Engineering) and Become. When this method and the anchor method are used together in this way, it is possible to achieve a significant reduction in the construction period as compared with the case where both methods are used individually.

また、一般に、枠が連続的で曲げ剛性が期待できるものについては、法面Nの表層すべりに対し、ある程度の抑制機能があると考えられているが、斯かる観点からすると、本構造体2において筒状体4によって形成される枠は、連続的で曲げ剛性が期待できるものであるため、法面Nの表層すべりの抑制機能をも発揮するということになる。 Further, it is generally considered that a frame having a continuous frame and expected flexural rigidity has a function of suppressing the surface slip of the slope N to some extent, but from such a viewpoint, the present structure 2 Since the frame formed by the tubular body 4 is continuous and can be expected to have flexural rigidity, it also exerts a function of suppressing surface slip on the slope N.

なお、本発明は、上記の実施の形態に何ら局限されず、本発明の要旨を逸脱しない範囲において種々に改変して実施し得ることは勿論である。例えば、以下のような例を挙げることができる。 Needless to say, the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention. For example, the following examples can be given.

本マット1、本構造体2及び本工法は、法面Nに限らず、平地等において使用・施工してもよい。 The mat 1, the structure 2, and the construction method are not limited to the slope N, and may be used and constructed on flat ground or the like.

植生マット3は、ネットの下面に植生シートを重合してなるものに限らず、例えば、ネット状や厚みの薄いシート状をしていてもよい。 The vegetation mat 3 is not limited to a vegetation sheet laminated on the lower surface of the net, and may be in the form of a net or a thin sheet, for example.

筒状体4内に収容するセメント流動物に、減水剤を混和させてあってもよい。また、セメント流動物に、アラミド繊維、ナノセルロール等の混和剤を混入させてもよく、この場合、筒状体4によって形成される本構造体の枠の引張強度は飛躍的に向上する。 A water reducing agent may be mixed with the cement fluid contained in the tubular body 4. Further, an admixture such as aramid fiber or nanocell roll may be mixed in the cement fluid, and in this case, the tensile strength of the frame of the present structure formed by the tubular body 4 is dramatically improved.

筒状体4に設ける縦流路部5、横流路部6の数や配置、太さや間隔(ピッチ)は種々に変更可能であり、これらの要素を変更することにより、表層の侵食防止の度合い(対応深さ)が変わる。また、例えば横流路部6を設けず、筒状体4が縦流路部5のみを有するようにしてもよく、この場合、縦流路部5をジグザグ状等としてもよい。また、筒状体4の形状を適宜に改変すれば、擁壁、土留め堰堤等、多種多様な土木建築分野への利用が容易に可能となる。 The number and arrangement, thickness and spacing (pitch) of the vertical flow path portion 5 and the horizontal flow path portion 6 provided in the tubular body 4 can be changed in various ways, and by changing these elements, the degree of prevention of surface erosion is achieved. (Correspondence depth) changes. Further, for example, the horizontal flow path portion 6 may not be provided and the tubular body 4 may have only the vertical flow path portion 5. In this case, the vertical flow path portion 5 may be in a zigzag shape or the like. Further, if the shape of the tubular body 4 is appropriately modified, it can be easily used in a wide variety of civil engineering and construction fields such as retaining walls and earth retaining dams.

セメント流動物として、少なくとも水とセメントと粗骨材を含むコンクリートを用いても良い。また、上記実施形態では、筒状体4内に収容するセメントに、少なくとも水とセメントを含むセメント流動物の形態をとらせているが、これに限らず、筒状体4内に収容する際のセメントに、例えば乾燥粉末セメント、ドライモルタル(セメントに粒状の砂、バーミキュライト、パーライト(軽石)等の骨材を混合したもの)、粒状セメントといった形態をとらせ、筒状体4内への収容後に筒状体4への散水もしくは降雨等による自然吸水・吸湿によりセメントを硬化させるようにしてもよい。 As the cement fluid, concrete containing at least water, cement and coarse aggregate may be used. Further, in the above embodiment, the cement contained in the tubular body 4 is made to take the form of a cement fluid containing at least water and cement, but the present invention is not limited to this, and when the cement is contained in the tubular body 4. In the form of, for example, dry powder cement, dry mortar (a mixture of granular sand, vermiculite, pearlite (light stone) and other aggregates), and granular cement, the cement is stored in the tubular body 4. Later, the cement may be hardened by natural water absorption / moisture absorption due to watering or rainfall on the tubular body 4.

なお、本工法では、上記工程(4)、(5)において、繰り返しセメント流動物を筒状体4内に充填する作業を行うが、斯かる手間を省くために、例えば、図4に示すように、上記(3)において、閉塞せずに放置した流路部5,6の端部に、不透水性の素材からなり例えば筒状の貯留部13を接続し、この貯留部13を介して筒状体4全体にセメント流動物を行き渡らせた後、貯留部13内にセメント流動物を貯留した状態にし、各筒状体4の目減り(余剰水の排出)に応じて貯留部13から筒状体4にセメント流動物が供給されるようにしてもよく、このようにすれば、セメント流動物の充填作業の回数を少なくし、ひいては一度のみとすることができる。 In this method, in the above steps (4) and (5), the cement fluid is repeatedly filled into the tubular body 4, but in order to save such trouble, for example, as shown in FIG. In (3) above, for example, a tubular storage portion 13 made of an impermeable material is connected to the ends of the flow path portions 5 and 6 left unobstructed, and the storage portion 13 is used. After the cement fluid is distributed throughout the tubular body 4, the cement fluid is stored in the storage unit 13, and the cylinder is discharged from the storage unit 13 according to the reduction (exhaust of excess water) of each tubular body 4. The cement fluid may be supplied to the body 4, and in this way, the number of times of filling the cement fluid can be reduced, and by extension, it can be performed only once.

上記実施の形態では、図3に示すように横流路部6を等高線に沿うように配置するために、図2(A)及び(B)に示す例では、横流路部6を縦流路部5に直交する方向に延ばしてあるが、これに限らず、例えば図5に示すように、横流路部6を等高線に沿う方向(縦流路部5に直交する方向)から角度θだけ谷側に向けて配置することができるようにしてあってもよく、この場合、横流路部6に対するセメント(セメント流動物)の充填をより容易に行える。角度θは、0〜45度付近とするのが好ましい。角度θを0度未満とし、横流路部6を山側に向けて傾斜させると横流路部6に対するセメントの充填が困難となり、角度θを45度より大きくすると、横流路部6の谷側への傾斜が急峻となって、横流路部6によって得られる土砂流亡・小転石の抑止効果や小段効果(周囲からの飛来種子、木の葉や、法面山側からの流亡土砂等を堰き止めることにより、堆積した植生基盤が小段状に形成され、その小段において植物が生長し易くなる効果)が大幅に損なわれるようになるからである。 In the above embodiment, in order to arrange the transverse flow path portion 6 along the contour lines as shown in FIG. 3, in the examples shown in FIGS. 2A and 2B, the transverse flow path portion 6 is arranged in the vertical flow path portion. It is extended in the direction orthogonal to 5, but is not limited to this, and as shown in FIG. 5, for example, the lateral flow path portion 6 is on the valley side by an angle θ from the direction along the contour line (the direction orthogonal to the vertical flow path portion 5). In this case, the lateral flow path portion 6 can be more easily filled with cement (cement fluid). The angle θ is preferably around 0 to 45 degrees. If the angle θ is less than 0 degrees and the lateral flow path portion 6 is tilted toward the mountain side, it becomes difficult to fill the lateral flow path portion 6 with cement. If the angle θ is larger than 45 degrees, the lateral flow path portion 6 is directed to the valley side. The slope becomes steep, and the effect of suppressing sediment runoff and small boulders obtained by the lateral flow path 6 and the small step effect (accumulation by blocking flying seeds from the surroundings, leaves, runoff sediment from the slope mountain side, etc.) This is because the vegetation base is formed in small steps, and the effect of facilitating the growth of plants in the small steps) is significantly impaired.

図1に示す例では、圧送用ポンプ10を用いてセメントミルク(セメント流動物)を筒状体4内に流し込んでいるが、これに限らず、例えば筒状体4の山側でセメントミルク(セメント流動物)を作成し、自重によってセメントミルクを筒状体4内に流し込むようにしてもよい。 In the example shown in FIG. 1, cement milk (cement fluid) is poured into the tubular body 4 by using a pump 10 for pumping, but the present invention is not limited to this, and for example, cement milk (cement) is poured on the mountain side of the tubular body 4. A fluid) may be created and the cement milk may be poured into the tubular body 4 by its own weight.

上記実施の形態における筒状体4を、織布によって一重構造にしてあってもよいが、図6(A)に示すように、二重以上の多重構造(図示例では3重構造)にしてもよく、この場合、内側にある織布14ほどセメント流動物の膨張等に伴って膨らみ、目合いが拡大し易い傾向にあるが、外側にある織布14ほどそういった影響を受け難く、これにより、圧力が分散され、筒状体4の全てで目合いが大きくはならず、より確実に余剰水のみを筒状体4の目合いから抜くことが可能となる。また、法面N等に突起が存在する場合でも、外側にある織布14がその突起によって破損しても内側にある織布14まで破損してしまう可能性は低いため、筒状体4が全体として破損し難いものとなる。なお、図6(A)には、3重に重ねた織布14と、これとは別に3重に重ねた織布14とを表裏に重ね、その重ねた端部どうしを縫合して筒状体4を形成する例を示している。 The tubular body 4 in the above embodiment may have a single structure with a woven fabric, but as shown in FIG. 6A, it has a double or more multiple structure (triple structure in the illustrated example). In this case, the woven fabric 14 on the inner side tends to swell with the expansion of the cement fluid and the texture tends to expand, but the woven fabric 14 on the outer side is less susceptible to such influence. , The pressure is dispersed, the mesh size does not become large in all of the tubular body 4, and only the excess water can be more reliably removed from the mesh size of the tubular body 4. Further, even if there are protrusions on the slope N or the like, even if the outer woven fabric 14 is damaged by the protrusions, it is unlikely that the inner woven fabric 14 will be damaged, so that the tubular body 4 is formed. It will be hard to break as a whole. In addition, in FIG. 6A, a triple-layered woven fabric 14 and another triple-layered woven fabric 14 are stacked on the front and back sides, and the stacked ends are sewn together to form a tubular shape. An example of forming the body 4 is shown.

上記実施の形態における筒状体4内に、PC鋼線等の線状の芯材(図示していない)や網状の芯材15(図6(B)参照)を設けておき、強度向上を図るようにしてもよい。図6(B)には、図6(A)に示す例と同様に3重に重ねた織布14の端部どうしを縫合する際、その間に網状の芯材15を挟む例を示している。 A linear core material (not shown) such as a PC steel wire or a net-like core material 15 (see FIG. 6B) is provided in the tubular body 4 in the above embodiment to improve the strength. You may try to plan. FIG. 6B shows an example in which a net-like core material 15 is sandwiched between the ends of the three-layered woven fabrics 14 when the ends of the woven fabrics 14 are sewn together in the same manner as in the example shown in FIG. ..

セメント流動物にスチールファイバー等の補強材を混合し、硬化後の筒状体4の強度向上効果が得られるようにしてもよい。また、セメント流動物に硬化遅延材を配合し、硬化スピードを下げることにより、硬化後の筒状体4のひび割れ防止効果が得られるようにしてもよい。 A reinforcing material such as steel fiber may be mixed with the cement fluid so that the effect of improving the strength of the tubular body 4 after curing can be obtained. Further, the effect of preventing cracks in the tubular body 4 after curing may be obtained by adding a curing retarding material to the cement fluid to reduce the curing speed.

上記実施の形態では、筒状体4の張出部7に設けられた貫通孔8にアンカーピンを打設するが、この構成に代えて、あるいはこの構成に加えて、張出部7ではなく筒状体4の本体にアンカーピンを打設するようにしてもよい。この場合、セメント流動物の収容後、ある程度余剰水が排出され、セメント流動物が固化しきる前の筒状体4本体に直接アンカーピンを打設するようにすれば、アンカーピンの打設自体はセメント流動物から大きな抵抗を受けることなく簡単に行え、かつ、筒状体4中のセメント流動物が固化した後に筒状体4とアンカーピンは強固に一体化した構造となる。また、このようなアンカーピンの打設を行っても筒状体4からのセメント流動物の漏出を防止可能であることを発明者らは確認している。 In the above embodiment, the anchor pin is driven into the through hole 8 provided in the overhanging portion 7 of the tubular body 4, but instead of or in addition to this configuration, instead of the overhanging portion 7. Anchor pins may be driven into the main body of the tubular body 4. In this case, if surplus water is discharged to some extent after the cement fluid is contained and the anchor pin is directly driven into the main body of the tubular body 4 before the cement fluid is completely solidified, the anchor pin itself can be driven. It can be easily performed without receiving a large resistance from the cement fluid, and the tubular body 4 and the anchor pin are firmly integrated after the cement fluid in the tubular body 4 is solidified. Further, the inventors have confirmed that it is possible to prevent the leakage of the cement fluid from the tubular body 4 even if such an anchor pin is placed.

なお、本明細書で挙げた改変例どうしを適宜組み合わせてもよいことはいうまでもない。 Needless to say, the modifications given in the present specification may be combined as appropriate.

1 表層崩壊防止用マット
2 表層崩壊防止兼用緑化構造体
3 植生マット
4 筒状体
5 縦流路部
6 横流路部
7 張出部
8 貫通孔
9 連結管
10 圧送用ポンプ
11 ホース
12 ノズル
13 貯留部
14 織布
15 網状の芯材
N 法面
1 Surface layer collapse prevention mat 2 Surface layer collapse prevention combined greening structure 3 Vegetation mat 4 Cylindrical body 5 Vertical flow path part 6 Horizontal flow path part 7 Overhanging part 8 Through hole 9 Connecting pipe 10 Pumping pump 11 Hose 12 Nozzle 13 Storage Part 14 Woven cloth 15 Net-like core material N Slope

Claims (4)

植生マットの片面に、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成された筒状体を装着してあることを特徴とする表層崩壊防止用マット。 A surface layer collapse prevention mat characterized in that a tubular body made of a woven cloth having a mesh that allows water to pass through and cement particles to pass through is attached to one side of the vegetation mat. 前記筒状体は、少なくともセメントを流通させるための流路部と、アンカーピンが貫通可能な貫通孔とを有し、前記貫通孔は、前記流路部を避けた位置に設けられている請求項1に記載の表層崩壊防止用マット。 The tubular body has at least a flow path portion for circulating cement and a through hole through which an anchor pin can penetrate, and the through hole is provided at a position avoiding the flow path portion. Item 2. The mat for preventing surface collapse. 地面に敷設された植生マットと、該植生マットの上側に配置され、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成された筒状体とを具備し、前記筒状体は、端部が塞がれ、その内部空間に少なくともセメントが収容されていることを特徴とする表層崩壊防止兼用緑化構造体。 The tubular body comprises a vegetation mat laid on the ground and a tubular body arranged above the vegetation mat and composed of a woven cloth having a mesh that allows water to pass through and cement particles to pass through. Is a surface layer collapse prevention and greening structure characterized in that the end is closed and at least cement is contained in the internal space thereof. 地面に敷設された植生マットの上側に配置され、水を通過させ、セメント粒子を通過させない目合いを有する織布によって構成された筒状体内に少なくともセメントを収容することを特徴とする表層崩壊防止兼用緑化工法。

Surface collapse prevention characterized by containing at least cement in a tubular body composed of a woven fabric that is placed above the vegetation mat laid on the ground and has a mesh that allows water to pass through and does not allow cement particles to pass through. Combined greening method.

JP2020176513A 2020-10-21 2020-10-21 Slope surface collapse prevention method Active JP7084648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020176513A JP7084648B2 (en) 2020-10-21 2020-10-21 Slope surface collapse prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020176513A JP7084648B2 (en) 2020-10-21 2020-10-21 Slope surface collapse prevention method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016197958A Division JP6811469B2 (en) 2016-10-06 2016-10-06 Surface layer collapse prevention mat, surface layer collapse prevention combined greening structure and surface layer collapse prevention combined greening method

Publications (2)

Publication Number Publication Date
JP2021008815A true JP2021008815A (en) 2021-01-28
JP7084648B2 JP7084648B2 (en) 2022-06-15

Family

ID=74199619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020176513A Active JP7084648B2 (en) 2020-10-21 2020-10-21 Slope surface collapse prevention method

Country Status (1)

Country Link
JP (1) JP7084648B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110321A (en) * 1986-10-28 1988-05-14 Nisshoku Corp Slope frame material made of fabric
JPH0790855A (en) * 1993-09-24 1995-04-04 Sanin Kensetsu Kogyo Kk Slant face covering member and installing method for bag body and slant face covering member
JPH0813502A (en) * 1994-07-01 1996-01-16 Kajima Corp Cut slope face stabilizing construction method
JP2002227213A (en) * 2001-01-30 2002-08-14 Suzuki Kinzoku Kogyo Kk Slope-stabilizing method and its reinforced frame
JP2002363990A (en) * 2001-06-12 2002-12-18 Nisshoku Corp Slope seeding and planting method
JP2004251101A (en) * 2002-12-25 2004-09-09 Ashimori Ind Co Ltd Bag body for forming civil-engineering structure and civil-engineering structure using it and slope stabilizing construction method
JP2005163309A (en) * 2003-12-01 2005-06-23 Kajima Corp Method for surface layer treatment of soft ground, and surface layer treatment bag body and surface layer treatment reinforcing material used for the same
JP2008082149A (en) * 2006-08-29 2008-04-10 Ashimori Ind Co Ltd Cylindrical member connecting structure and slope stabilizing construction method using the cylindrical member
JP2016156124A (en) * 2015-02-23 2016-09-01 日本植生株式会社 Slope protection tool and slope protection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110321A (en) * 1986-10-28 1988-05-14 Nisshoku Corp Slope frame material made of fabric
JPH0790855A (en) * 1993-09-24 1995-04-04 Sanin Kensetsu Kogyo Kk Slant face covering member and installing method for bag body and slant face covering member
JPH0813502A (en) * 1994-07-01 1996-01-16 Kajima Corp Cut slope face stabilizing construction method
JP2002227213A (en) * 2001-01-30 2002-08-14 Suzuki Kinzoku Kogyo Kk Slope-stabilizing method and its reinforced frame
JP2002363990A (en) * 2001-06-12 2002-12-18 Nisshoku Corp Slope seeding and planting method
JP2004251101A (en) * 2002-12-25 2004-09-09 Ashimori Ind Co Ltd Bag body for forming civil-engineering structure and civil-engineering structure using it and slope stabilizing construction method
JP2005163309A (en) * 2003-12-01 2005-06-23 Kajima Corp Method for surface layer treatment of soft ground, and surface layer treatment bag body and surface layer treatment reinforcing material used for the same
JP2008082149A (en) * 2006-08-29 2008-04-10 Ashimori Ind Co Ltd Cylindrical member connecting structure and slope stabilizing construction method using the cylindrical member
JP2016156124A (en) * 2015-02-23 2016-09-01 日本植生株式会社 Slope protection tool and slope protection method

Also Published As

Publication number Publication date
JP7084648B2 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
JP6811469B2 (en) Surface layer collapse prevention mat, surface layer collapse prevention combined greening structure and surface layer collapse prevention combined greening method
CA1072351A (en) Form for erosion control structures
JP6680461B2 (en) Slope protection tool and slope protection method
KR101162547B1 (en) Reinforcement mattress gabion for afforestation environment and construction method
JP6811470B2 (en) Revetment mat, revetment greening structure and revetment construction method
JP3260315B2 (en) Construction method of impermeable layer and impermeable layer
JP7084647B2 (en) Slope surface collapse prevention method
JP7084648B2 (en) Slope surface collapse prevention method
JP2018057324A (en) Vegetation mat, and manufacturing method of vegetation mat
JP7285482B2 (en) Law frame forming tool and law frame forming method
JP7513261B2 (en) Slope protection structure and slope protection method
JP3729169B2 (en) Surface treatment method for soft ground
JP7292645B2 (en) Law frame forming tool and law frame forming method
JP3791692B1 (en) Manufacturing method of block for civil engineering structure
JP4024064B2 (en) Revetment structure and revetment method
JP6563697B2 (en) Method frame construction method and method frame structure formed using it
JP4368488B2 (en) Slope greening protection method using a soil injection mat
JP2021025284A (en) Slope frame forming tool and slope frame forming method
JP2021025281A (en) Slope frame forming tool and slope frame forming method
JPH1121897A (en) Greening vegetation mat structure
RU2762404C1 (en) Method for creating shell-less reclamation water lines-moisture exchangers
JP2008297780A (en) Slope stabilizing method
KR102315169B1 (en) on-site hydration concrete complex having edge-dropping prevention of cement mixed powder and its on-site hydration concrete mat
JP2020094492A (en) Slope protection tool and slope protection method
JP2000240060A (en) Protecting/greening structure for slope, wall face or bank face

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220527

R150 Certificate of patent or registration of utility model

Ref document number: 7084648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150