JP4115900B2 - Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag - Google Patents

Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag Download PDF

Info

Publication number
JP4115900B2
JP4115900B2 JP2003206869A JP2003206869A JP4115900B2 JP 4115900 B2 JP4115900 B2 JP 4115900B2 JP 2003206869 A JP2003206869 A JP 2003206869A JP 2003206869 A JP2003206869 A JP 2003206869A JP 4115900 B2 JP4115900 B2 JP 4115900B2
Authority
JP
Japan
Prior art keywords
woven fabric
cylindrical
civil engineering
tubular
engineering structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206869A
Other languages
Japanese (ja)
Other versions
JP2004251101A (en
Inventor
健一 柴田
和孝 ▲から▼▲さき▼
清美 辻
順一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashimori Industry Co Ltd
Original Assignee
Ashimori Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashimori Industry Co Ltd filed Critical Ashimori Industry Co Ltd
Priority to JP2003206869A priority Critical patent/JP4115900B2/en
Publication of JP2004251101A publication Critical patent/JP2004251101A/en
Application granted granted Critical
Publication of JP4115900B2 publication Critical patent/JP4115900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法に関し、特に、切り土等の斜面の安定化工法等の土木工法に広くかつ好適に用いることができる土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法に関するものである。
【0002】
【従来の技術】
例えば、山間部に道路や宅地等を造成する場合、山肌を削ること、すなわち、切り土を行うことがあるが、このように切り土を行った斜面は、それまであった土の重さがなくなるので膨らもうとするため、不安定となる。
【0003】
このような切り土を行った斜面の安定化を図るため、従来より、PC鋼材等の高強度の鋼材からなるグランドアンカーを地盤中に打設し、グランドアンカーの両端部を地盤中と地表面とにそれぞれ定着することにより地盤の緩みを防止するアンカー工法が用いられている。
【0004】
このアンカー工法では、グランドアンカーを、地表面、すなわち、切り土を行った斜面へ定着させるために、斜面上に反力構造物を設けるようにしている。
そして、反力構造物には、図13に示すような、斜面からグランドアンカーGを介して受圧板Cが受ける力の大きさに応じて、通常、数トン〜数十トン程度の重量で、十字形や矩形の全体形状を有し、グランドアンカーGの挿通孔C1及び固定部C2を形成した、プレキャストコンクリート製の受圧板Cが汎用されている(例えば、特開平6−299558公報参照)。
【0005】
【特許文献1】
特開平6−299558号公報
【0006】
【発明が解決しようとする課題】
ところで、図13に示すようなプレキャストコンクリート製の受圧板Cは、斜面上に単に設置するだけで反力構造物としての機能を奏するため、施工期間を大幅に短縮でき、また、斜面からグランドアンカーGを介して受圧板Cが受ける力の大きさに応じた受圧板Cの重量の大小の選択を容易に行うことができる等の利点を有している。
しかしながら、その反面、プレキャストコンクリート製の受圧板Cは、重量が大きく、取扱性が悪いため、山間部等で施工現場の立地条件が悪く重機が使用できない場合等には、施工が不可能になったり、施工コストが上昇する等の問題があった。
【0007】
本発明は、上記従来のプレキャストコンクリート製の受圧板Cの有する問題点に鑑み、軽量で、取扱性がよく、このため、施工現場の立地条件に左右されず、例えば、山間部等で施工現場の立地条件が悪く重機が使用できない場合等でも施工可能で、切り土等の斜面の安定化工法等の土木工法に広くかつ好適に用いることができる土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の土木構造物形成用袋体は、経糸及び緯糸からなる筒状織布に他の筒状織布の織幅に略一致する長さで2箇所の切れ目を入れ、該切れ目に他の筒状織布を挿入して、筒状織布の前記切れ目の縁近傍と該切れ目に当接する他の筒状織布の表面を接着剤、熱融着又は縫合により接合した接合部を備え、筒状織布の内部に位置する他の筒状織布に、他の筒状織布の内部から筒状織布の内部に通じる孔を形成してなるとともに、他の筒状織布に流動性材料の注入口を設けたことを特徴とする。
【0009】
この場合、土木構造物形成用袋体は、希望する土木構造物の形状に応じて、2本の筒状織布を略十字形状に接合するようにしたり、4本の筒状織布を接合してなり、2本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記2本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成するようにしたり、さらに、複数本の筒状織布を接合してなり、複数本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記複数本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成することができる。
【0010】
また、上記土木構造物形成用袋体を用いる本発明の土木構造物は、上記土木構造物形成用袋体を構成している複数の筒状織布の中に、順に流動性材料を注入して構築したことを特徴とする。
そして、土木構造物形成用袋体の交差部にアンカー定着具を設け、筒状織布の内部に充填して、筒状織布及びアンカー定着具を一体化するようにしたり、さらに、土木構造物形成用袋体の筒状織布の内部、長手方向に補強材を配して、該補強材と筒状織布の端部を固定し、筒状織布の内部に流動性材料を充填して、筒状織布、補強材及びアンカー定着具を一体化するようにすることができる。
【0011】
また、上記土木構造物形成用袋体を用いる本発明の斜面安定化工法は、上記土木構造物形成用袋体の筒状織布を、斜面に縦横方向になるように設置したり、斜面に斜めに設置し、筒状織布の内部に流動性材料を充填することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法の実施の形態を図面に基づいて説明する。
【0013】
[実施例1]
図1〜図7に、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法の実施例1を示す。
この実施例は、地盤の緩みを防止するアンカー工法に用いられる受圧板に本発明を適用したもので、土木構造物形成用袋体を、一方の筒状織布(以下、本明細書において、「筒状織布1A」という。)の略中央に他方の筒状織布(以下、本明細書において、「筒状織布1B」という。)の織幅に略一致する長さで2箇所の切れ目11を入れ、この切れ目11に筒状織布1Bを挿入して、筒状織布1Aに筒状織布1Bを貫通させ、筒状織布1Aの切れ目11の縁近傍とこの切れ目11に当接する筒状織布1Bの表面を接着剤、熱融着、縫合等することにより接合させ、筒状織布1Aの内部に位置する筒状織布1Bに、筒状織布1Bの内部から筒状織布1Aの内部に通じる複数個の孔12を形成し、筒状織布1Bに流動性材料としてのモルタル等の流動性固化材の注入口13を設けて構成するようにしている。
【0014】
この場合において、筒状織布1A、1Bは、特に限定されるものではないが、例えば、直径400mm程度の一定の直径を有する透水性を有する筒状の織物であって、円周方向の糸はスパイラル状に連続して織り込まれている。
そして、筒状織布1A、1Bの経糸及び緯糸は、耐候性を有する繊維、例えば、ポリエステル繊維からなり、太さは1000d/2本、密度は経20本/インチ、緯20本/インチで、織組織は平織りとしている。具体的には、環状織機で織られたもので、緯糸が筒状織布の前記スパイラル状の糸を構成する。
なお、筒状織布1A、1Bの経糸及び/又は緯糸に、高強度繊維やワイヤ等の引張強度の大きい線材を織り込むことにより、筒状織布1A、1Bの強度を向上することができる。
【0015】
また、図1及び図2に示すように、筒状織布1Aの中央部には対向する位置に2箇所、長さ600mmの切れ目11が設けられており、筒状織布1Bがそこを貫通するように組み立てられるようにしている。
【0016】
筒状織布1Aの切れ目11の縁近傍とこの切れ目11に当接する筒状織布1Bの表面の接合は、接着剤11aによるもので、モルタル等の流動性固化材の充填時に、接合部が剥離しやすい筒状織布1Aの切れ目両端部のみ、筒状織布1A、1Bを一体に縫合11bするようにする。
接着剤は、一般的な低融点のナイロンやウレタン等のホットメルト系接着剤を使用する。
なお、筒状織布1Aの切れ目11の縁近傍とこの切れ目11に当接する筒状織布1Bの表面の接合方法は、これに限定されず、例えば、図3に示す変形例のように、筒状織布1Aの切れ目11に当接する筒状織布1Bを、切れ目11との当接位置で少しつまんで短く折り返すことにより2重にだぶらせ、この状態で、筒状織布1A、1Bを一体に1周又はそれ以上縫製11cするようにすることもでき、これにより、筒状織布1A、1Bの接合部における変形の自由度を大きくし、接合部が剥離することを防止することができる。
【0017】
筒状織布1Bの内部から筒状織布1Aの内部に通じる複数個の孔12は、図1に示すように、筒状織布1A内部に面した筒状織布1Bの側面に、本実施例においては、4箇所設けられ、寸法は直径30mmに設定している。
【0018】
筒状織布1Bに設けた流動性固化材の注入口13には、必要に応じて、逆止弁14を装着することができる。
【0019】
そして、この土木構造物形成用袋体は、両方の筒状織布1A、1Bの内部、長手方向に1本又は複数本の補強材としての異形棒鋼2を配して(補強材の本数と配設位置は、受圧板の荷重設計によるが、2本以上が適当で、配設位置は筒状織布1A、1Bが膨らんだ状態でその断面の中心位置より若干下が適当である。なお、本実施例においては、各2本配設するようにしている。)、この補強材2と筒状織布1A、1Bの端部を固定するようにしている。
また、両方の筒状織布1A、1Bの交差部には、筒状織布1A、1Bに固定するようにして、図5に示すアンカー定着具3を設けるようにする。
そして、筒状織布1Bに設けた流動性固化材の注入口13から両方の筒状織布1A、1Bの内部に流動性固化材8を充填して、両方の筒状織布1A、1B、補強材2及びアンカー定着具3を一体化するようにしている。
なお、この場合、筒状織布1Aの内部、長手方向に配する補強材2は、筒状織布1Bに形成した、筒状織布1Bの内部から筒状織布1Aの内部に通じる孔12を貫通するようにして配設するようにする。
【0020】
筒状織布1A、1Bの内部、長手方向に配する補強材2は、筒状織布1A、1Bより若干長く形成した異径棒鋼で構成し、端部にねじ加工を施すようにする。
そして、端部をねじ加工した棒鋼を、図1及び図4に示すような2枚の金属板41、42(金属板42の片面には内側に雌ねじ加工が施されている。)及びリング43からなる端末金具4と、ナット21(又は図1に示すように、端末金具4の金属板41Xに植設した雌ねじ部材41b)を用いて固定するようにしている。
なお、本実施例においては、補強材2として、異径棒鋼を用いるようにしているが、このほか、通常の丸棒鋼やH型鋼等の形鋼等、任意の断面形状のものを用いることができ、さらには、材質も鋼材製のもののほか、FRP製のもの等を用いることができる。
【0021】
そして、端末金具4には、筒状織布1A、1Bの端部を、端末金具4の2枚の金属板41、42の間にリング43を介して挟持し、ボルト44を金属板42に形成したねじ孔42aに螺合して締め付けることにより、取り付けるようにしている。
この端末金具4の構造により、土木構造物形成用袋体を斜面に設置して筒状織布1A、1Bの内部に流動性固化材を充填する際、筒状織布1A、1Bに張力をかけることができる。
さらに、片端のねじにナットを固定(溶接、ダブルナット等)した補強材2を用いれば、金属板42に雌ねじ加工が施されているため、解除する方向にナットを回せば、筒状織布1A、1Bをより強固に展張することができる。
これらによって、筒状織布1A、1Bがだぶつかず、形状を保持しながら流動性固化材を充填することができる。
【0022】
アンカー定着具3は、図5に示すように、2枚のフランジ31、32とリング33を両端部に有する筒状金具からなる。
そして、このアンカー定着具3を、筒状織布1A、1Bの交差部の上下両面に形成した装着孔15に挿入し、筒状織布1A、1Bの装着孔15の周縁を、アンカー定着具3のフランジ32上にリング33を介して挟持し、フランジ31に形成したねじ孔31aにボルトを螺合してリング33を締め付けることにより、取り付けるようにしている。
アンカー定着具3の高さは、両端の筒状織布1A、1Bを挟み込むフランジ32、32間の距離が、筒状織布1A、1Bの直径に略等しいかそれよりも若干小さい寸法となるように設定する。
【0023】
次に、この土木構造物形成用袋体を用いる斜面安定化工法について、図6及び図7を用いて説明する。
まず、筒状織布1Aの内部、長手方向に配する補強材2は、筒状織布1Bに形成した、筒状織布1Bの内部から筒状織布1Aの内部に通じる孔12を貫通するようにして配設し、両端を、筒状織布1Aの端部とともに、端末金具4によって固定する。
筒状織布1Aに補強材2が挿入され、筒状織布1Bの流動性固化材の注入口13に逆止弁14が装着された状態で、筒状織布1Bを筒状織布1Aに巻き付けるようにしてコンパクトな状態でその他の金具類等とともに工場から施工現場に出荷される(図7(b))。
【0024】
そして、施工現場では、土木構造物形成用袋体を、筒状織布1Bの両端の端末金具4の金属板41に設けられたリング41aを利用してクレーン等を用いて吊り上げ(図7(c))、筒状織布1A、1Bを斜面に縦横方向に、すなわち、筒状織布1Aを斜面の等高線方向に、筒状織布1Bを筒状織布1Aと直交する方向になるように設置し(この場合、流動性固化材の注入口13が斜面の上方に位置するように設置する。)、端末金具4の金属板41に設けられたリング41aを利用して筒状織布1Aをアンカー5により斜面に仮固定する(図6(a))。
なお、本実施例においては、筒状織布1A、1Bを斜面に縦横方向に設置するようにしたが、これに限定されず、例えば、図12に示すように、複数本の筒状織布1Fを略格子状に接合する構造とした場合等には、各筒状織布1Fを斜面に斜め方向に、すなわち、筒状織布1A、1Bを斜面の等高線に対して、略45゜の角度をなす方向に設置するようにすることもできる。
筒状織布1Bの内部に配する補強材2は、施工現場で挿入され、両端を、筒状織布1Bの端部とともに、端末金具4によって固定する。
この場合、筒状織布1Bの内部は、単に筒状の空洞があるだけなので補強材2を容易に挿入できる。
そして、筒状織布1Bの端末金具4の金属板41に設けられたリング41aを利用して筒状織布1Bをアンカー5により斜面に仮固定する(図6(b))。
【0025】
なお、予め工場で筒状織布1Bの内部に配する補強材2を組み込み、両端を、筒状織布1Bの端部とともに、端末金具4によって固定することもできる。
この場合も、略十字形状の土木構造物形成用袋体を筒状織布1Aと筒状織布1Bの交差角が小さくなるように折り畳むことにより、コンパクトな状態で工場から施工現場に出荷することができる。
【0026】
次に、アンカー定着具3を、筒状織布1A、1Bの交差部の上下両面に形成した装着孔15に挿入、取り付ける。
なお、予め工場でアンカー定着具3を取り付けることもできる。
アンカー定着具3には、PC鋼材等の高強度の鋼材からなるグランドアンカー6を地盤中に打設し、グランドアンカー6の下端部を地盤中に定着する(図6(c))。
【0027】
この状態で、流動性固化材ポンプ71を介して流動性固化材プラント7に接続したホース72を流動性固化材の注入口13に接続し、流動性固化材の注入口13から流動性固化材を注入することにより、両方の筒状織布1A、1Bの内部に流動性固化材を充填する(図6(b)、図7(a))。
この場合、流動性固化材の注入口13から注入された流動性固化材8は、筒状織布1Bの下方から次第に充填され、筒状織布1A、1Bの交差部を超えた時点で、筒状織布1Bの内部から筒状織布1Aの内部に通じる孔12を通して筒状織布1Aにも充填され始める。
このため、交差部では筒状織布1Aが十分膨らんだ状態が保たれつつ筒状織布1Bに流動性固化材8が充填されていき、最終的に筒状織布1Bに流動性固化材8が完全に充填されれば、流動性固化材の注入口13から注入ホースを取り除いて注入作業を完了する。なお、流動性固化材の注入口13に逆止弁14を装着することにより、流動性固化材の流出事故を防止することができる。
【0028】
筒状織布1A、1Bに充填する流動性固化材には、例えば、一般的なポルトランドセメントを用いた通常のモルタルを使用し、最終的な注入圧をやや高めにして筒状織布1A、1Bの織目を通して脱水させ、内部の流動性固化材8をち密にして早期に硬化させ、ブリージング等による硬化後の体積減少がないようにする。なお、注入圧は、0.3MPa程度が適当である。
硬化後の体積減少がない特殊モルタルを使用した場合は、脱水の必要がなく、注入圧はやや低くても構わないが、斜面に設置されているため、ある程度の圧力をかけないと斜面の等高線方向(水平方向)の筒状織布1Aの断面が流動性固化材の自重で歪な形にとどまってしまうことがある。略円形にするためには、0.1MPa程度の注入圧が必要である。
また、ここでは、流動性固化材8として、モルタルを例に挙げて説明したが、流動性固化材8としては、このほか、セメントペーストやコンクリート等のセメント系固化材や樹脂系硬化材等の耐候性を有する固化材を用いることができる。
【0029】
筒状織布1A、1Bの表面に、耐候性を付与するための塩化ビニル樹脂、アスファルト等の表面処理が施されている場合は、織目から脱水できないので、硬化後の体積減少がない特殊流動性固化材を使用する。
なお、耐候性を付与するための筒状織布1A、1Bの表面処理は、筒状織布1A、1Bに充填した流動性固化材8が硬化した後に施すことができる。
【0030】
このほか、筒状織布1A、1Bの表面に、難燃処理等を施すことができる。
【0031】
最後に仮アンカー5を除去し、流動性固化材8が完全に硬化した時点でグランドアンカー6の両端部を地盤中とアンカー定着具3とにそれぞれ定着して施工を完了する(図6(d))。
なお、筒状織布1A、1Bの端末金具4は、そのままにしておいてもよいが、流動性固化材8が硬化した後撤去して再利用することもできる。この場合、端部からはみ出た補強材2は必要に応じて切断して除去する。
【0032】
[実施例2]
上記実施例1と同じ筒状織布1A、1Bを用い、両端部を斜めに切断する。
斜めに切断した端部を、実施例1と同様、端末金具4で補強材2と一体に固定する。
筒状織布1A、1B共に、斜めに切断した長い面が下面側(地山側)になるようにする。
そして、筒状織布1A、1Bの上面側と補強材2の端末金具4間の距離とを略同じに設定すると、筒状織布1A、1Bの下面側の長さが上面側より長くなるため、たるんだ状態になる。
受圧板が設置される斜面は、表面状態が平滑であるとは限らず、かなり凸凹した状態であることも多く不陸があるため、受圧板と斜面間に空隙が生じ、グランドアンカー6の反力構造体として斜面に均等な荷重がかからず、また、受圧板自体も不均等な荷重を受けるため強度が弱くなる。
筒状織布1A、1Bの下面にたるんだ部分があると、筒状織布1A、1Bの両端末はアンカー5で斜面に仮固定されており、アンカー定着具3にはグランドアンカー6が打ち込まれているので、流動性固化材が注入されることで筒状織布1A、1Bの下面は斜面の凹凸に沿って膨らむことができ、不陸調整を自動的に行うことができる。
なお、その他の構成は、実施例1と同じである。
【0033】
[実施例3]
図8に示すように、筒状織布1A、1Bに、直径が長手方向に亘って変化した織物を用い、それ以外は実施例1と同じである。
筒状織布1A、1Bの直径は、特に限定されるものではないが、例えば、中央部が直径600mmのストレート部(長さ600mm)から、両側にテーパー状に直径が変化し(長さ1800mm)、両端は直径400mmとなった後、再度ストレート部(長さ200mm)が形成されるように設定されている。
筒状織布1A、1Bの組み立て、接合、筒状織布1B内部から筒状織布1A内部に通じる孔12、流動性固化材の注入口13、補強材2、アンカー定着具3、端末金具4、受圧板の施工は、実施例1と同じで、アンカー定着具3の高さも、実施例1と同じく、両端の筒状織布1A、1Bを挟み込むフランジ32、32間の距離が、筒状織布1A、1Bの直径に略等しいかそれよりも若干小さい寸法となるように設定する。
流動性固化材の注入後の受圧板の形状は、中央が幅・高さとも大きく、十字の端部側へいくに従いテーパー状に小さくなる。テーパー形状は受圧板の設計手法により曲げモーメントの分布に応じて設定されている。
テーパーを有した筒状織布1A、1Bで土木構造物形成用袋体を形成し受圧板として施工した場合、斜面に置かれた状態で、筒状織布1A、1Bの両端の端末金具4及び補強材2が自重で筒状織布1A、1Bの断面中心より下方に下がる。したがって、筒状織布1A、1Bの下面側は筒状織布1A、1Bが長手方向にたるんだ状態となる。このたるみは実施例2と同じく不陸調整に用いることができる。
なお、その他の構成は、実施例1と同じである。
【0034】
[実施例4]
上記実施例1と同じ筒状織布1A、1Bを用い、組み立て等も同様に行うが、図9に示すように、筒状織布1Aと筒状織布1Bの接合を下記の手順で行う。
長さ200mmの短尺筒状織布1Cを用意し、長手方向の中央まで表裏が逆になるように折り返して当て布1C’を作成する。
筒状織布1Aの切れ目に、当て布1C’を挿入し、当て布1C’の一方の縁(外周側)を筒状織布1Aの切れ目11の縁近傍と一体に縫合し、もう一方の縁(内周側)を切れ目11に当接する筒状織布1Bの表面と一体に縫合する。
このようにして、長手方向の中央で折り返した当て布1C’を介して筒状織布1A、1Bを接合することで、流動性固化材を注入することによって筒状織布1A、1Bが膨らんだとき、当て布1C’が緩衝作用をもたらし、接合部が一層破れにくくなる。
なお、その他の構成は、実施例1と同じである。
【0035】
[実施例5]
上記実施例1と同じ筒状織布1A、1Bを用い、組み立て、接合等も同様に行うが、図10に示すように、筒状織布1A、1Bの下面に重なるようにして筒状織布1C、1Dからなる略十字形状の袋体を配設する。
なお、筒状織布1C、1Dを配設することに代えて、筒状織布1A、1Bの下面部を流動性固化材の注入空間を備えた2層構造とすることもできる。
この筒状織布1C、1Dには補強材を挿入せず、端末金具を用いず単に縫合によって閉じるだけでありそれ以外は筒状織布1A、1Bと同じ構成である。
筒状織布1C、1Dの十字の中央部は、アンカー定着具3により、筒状織布1A、1Bの下面側の取り付けとともに一体に固定されている。
そして、筒状織布1A、1Bへの流動性固化材の注入後に、筒状織布1C、1Dの適宜箇所に形成した流動性固化材の注入口(図示省略)から筒状織布1C、1D内に流動性固化材を注入する。筒状織布1C、1Dへの流動性固化材の注入は、袋体に圧力がほとんど加わらない状態で行い、筒状織布1C、1Dの織布表面は、筒状織布1A、1Bの形状及び地山の凹凸に沿って広がるようにする。
このようにして、地山に不陸が大きく存在する場合でも、筒状織布1C、1Dによる不陸調整機能で受圧板と地山の間隙を埋めることができる。また、筒状織布1A、1Bは、断面が略円形に膨らむため、実施例2や実施例3のように下面にたるみを取っていないと地山に接する部分が少なくなるが、筒状織布1C、1Dにより筒状織布1C、1Dの下面と地山の隙間自体も埋めることができる。このようにして、受圧板と地山の荷重伝達が円滑に行われる構造となる。
なお、その他の構成は、実施例1と同じである。
そして、この実施例のものは、切り土を施さない法面でも設置、施工を行うことができる。
【0036】
次に、上記実施例の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた土木構造物及び斜面安定化工法の作用について説明する。
上記土木構造物形成用袋体によれば、筒状織布1Aに筒状織布1Bを貫通し、織布表面同士を接合させ、筒状織布1Bに筒状織布1Aの内部に通じる孔12を設け、筒状織布1Bには流動性固化材の注入口13を設けるようにしているため、流動性固化材の注入口13から注入された流動性固化材8は、交差部において筒状織布1Bを十分膨らませてから筒状織布1Aに注入される。先に筒状織布1Aに流動性固化材が注入されてしまうと筒状織布1Bが交差部で膨らみきれなくなるが、この交差部の構造であれば交差部内部の筒状織布1Bが膨らみきらない状態が発生せず、円滑な流動性固化材の注入と安定した筒状織布1A、1Bの膨らみが実現する。
これにより、硬化した後の流動性固化材8の表面を、筒状織布1A、1Bの連続した繊維で補強し、交差部においては2重に補強することになる。その結果、流動性固化材の注入時の布型枠として良好な機能が得られるだけでなく、一般に表面クラックや欠けが発生しやすい構造物表面の強化にも有効に機能する。
【0037】
また、受圧板の施工場所へ、袋の状態でコンパクトにたためて持ち込め、プレキャストコンクリート製の受圧板と比べてはるかに軽量であるため、部材の運搬等の問題から現場立地条件が悪い場合でも、施工が容易になる。
【0038】
筒状織布1A、1Bの内部に補強材2を配して端部で一体に固定し、筒状織布1A、1Bの貫通する箇所にアンカー定着具3を設け、内部が流動性固化材8で充填されて一体に成形された受圧板は、全体が一体に成形された構造物となり、グランドアンカー6の斜面への定着のための反力構造物として有効に機能する。
筒状織布1Aと筒状織布1Bの表面の接合が接着剤等によるもので、筒状織布1Aの切れ目11の両端部のみ筒状織布1A、1Bを一体に縫合してあると、流動性固化材の注入時に多少注入圧を高くして筒状織布1Aの膨らみにより切れ目11が大きくなっても、筒状織布1Bは縫合部により引っ張られ、その間に隙間ができることがなく、流動性固化材の漏れが発生しない。
【0039】
長手方向の中央で表裏が逆となるように折り返した当て布1C’を介して筒状織布1A、1Bを接合することで、流動性固化材を注入することによって筒状織布1A、1Bが膨らんだとき、当て布1C’が緩衝作用をもたらし、筒状織布1A、1Bの互いの膨らみによる動きが接合部において直接相互に影響せず、接合部が一層破れにくくなって流動性固化材の漏れがより発生しにくくなる。
【0040】
補強材2は、端部がねじ加工されて端末金具4に固定され、筒状織布1A、1B端部も端末金具4によって挟持されるようにして取り付けられているので、袋体が膨らんだ状態において、補強材は予め設計された適当な本数が適当な位置に配置されることになる。また、端末金具4は流動性固化材8の硬化後撤去することができ、再利用することも可能である。
また、補強材2に異形棒鋼を用いることにより、流動性固化材8との付着、一体性を向上することができる。
【0041】
筒状織布1A、1Bの交差部は、流動性固化材の注入により筒状織布の他の部分より大きく膨らみ、このまま流動性固化材が固化すると、交差部の周囲において筒状織布に括れができてしまい、構造物として応力が集中しやすい形状となってしまう。アンカー定着具3の高さが、筒状織布1A、1Bの直径に略等しいかそれよりもやや小さい寸法となっていると、アンカー定着具3がその膨らみを抑え、十字の表面の形状を滑らかなものとなり、応力集中問題が生じない。
【0042】
筒状織布1A、1Bが、長手方向に直径の変化した織物であり、中央部の径が大きく両端部に向かってテーパー状に小さくなっている場合は、略十字形状の受圧板に加わる曲げモーメントの分布に応じて受圧板の剛性を設計することができ、経済的である。
【0043】
筒状織布1A、1Bの下面にたるみを設けてある場合は、流動性固化材の注入により不陸調整が自動で行われ、多少の凹凸がある地山に対しても受圧板下面が沿った状態で形成される。
【0044】
また、筒状織布1A、1Bの下面に重なるようにして筒状織布1C、1Dからなる略十字形状の袋体を設け、不陸調整用の袋とすると、地山の凹凸が大きい場合でも筒状織布1C、1Dの下面が地山の凹凸に密着し、1A、1Bの筒状織布に高い注入圧で流動性固化材を注入しても、筒状織布1C、1Dの上面が筒状織布1A、1Bに密着して、受圧板と地山の荷重伝達を円滑にする。
【0045】
ここまで、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた受圧板及び斜面安定化工法を、地盤の緩みを防止するアンカー工法に用いられる受圧板に適用した複数の実施例に基づいて説明したが、本発明の適用対象は、受圧板に限定されるものでなく、各種土木構造物に、広く適用することができる。
【0046】
具体的には、この土木構造物形成用袋体を受圧板として用いる場合には、上記のとおり、2本の筒状織布1A、1Bを略十字形状に接合する構造とするが、このほか、図11に示すように、上部構造物Sの沈下防止や地震時における地盤の液状化防止を目的とする地盤安定化工法の基礎部材(地上に設置されるもののほか、海中に設置されるものも含む。)として用いる場合には、4本の筒状織布1Eを略井桁状に接合する構造としたり、また、図12に示すように、処分場の軟弱地盤の補強工法、法面安定化工法、藻(海草)場造成工法(藻場造成シート押さえ用ジャケット)等の広い範囲に適用される土木構造物(地上に設置されるもののほか、海中に設置されるものも含む。)として用いる場合には、複数本の筒状織布1Fを略格子状に接合した構造とする等、形成しようとする土木構造物に応じて、任意の形状に組み合わせて用いることができる。
そして、図11に示すように、4本の筒状織布1Eを略井桁状に接合する構造の場合には、流動性材料の注入口13を備える筒状織布1E1が、2本の筒状織布1E2を貫通するように組み立て、さらに2本の筒状織布1E2が1E1と同じ方向に配した別の筒状織布1E3に貫通する形状に組み立てる。そして、筒状織布1E1、1E2にはそれぞれ筒状織布1E2、1E3に通じる孔12を設けておく。この構造によると、流動性材料の注入口13から注入された流動性材料は、筒状織布1E1の中に充填された後、孔12を通じて筒状織布1E2の中に充填され、最後に筒状織布1E3の中に充填されるので、交差部において筒状織布1E1と1E2の間及び筒状織布1E2と1E3の間に流動性材料が充填されることがなく、すべての交差部を十分に膨張させることができる。
また、図12に示すように、複数本の筒状織布1Fを略格子状に接合する構造の場合には、筒状織布1F1に設けた流動性材料の注入口13から注入した流動性材料を、筒状織布1F1の内部から筒状織布1E2の内部に通じる孔を通して複数本の筒状織布1F2に充填し、さらに、筒状織布1F2の内部から筒状織布1F3の内部に通じる孔を通して複数本の筒状織布1F3に充填するようにする。
さらに、土木構造物形成用袋体を藻場造成シート押さえ用ジャケットとして用いる場合には、土木構造物形成用袋体を生分解性繊維で織成された筒状織布で構成するとともに、筒状織布に充填する流動性材料としてスラリー状の砂や汚泥等を用いることにより、藻場が完成した後に、筒状織布が自然分解して現場に残らないようにすることもできる。
【0047】
以上、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた受圧板及び斜面安定化工法について、複数の実施例に基づいて説明したが、本発明の土木構造物形成用袋体並びにこの土木構造物形成用袋体を用いた受圧板及び斜面安定化工法の構成は、上記実施例に記載したものに限定されるものではなく、上記各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
【0048】
【発明の効果】
本発明の土木構造物形成用袋体は、コンパクトにたたんで施工現場に持ち込むことができ、プレキャストコンクリート製の受圧板等の従来の土木構造物形成用部材と比べてはるかに軽量で、取扱性がよく、このため、施工現場の立地条件に左右されず、例えば、山間部等で施工現場の立地条件が悪く重機が使用できない場合等でも施工可能で、切り土等の斜面の安定化工法等の土木工法に広くかつ好適に用いることができる。
また、流動性材料を他の筒状織布に形成した孔を介して、当該他の筒状織布に接合した別の筒状織布の中に円滑に充填することができ、安定した形状で筒状織布が膨らむので、応力集中の起こらない土木構造物が得られ、筒状織布に充填した流動性材料が硬化した後は筒状織布による構造物表面の補強機能を併せ奏することができる。
【0049】
この場合、土木構造物形成用袋体は、希望する土木構造物の形状に応じて、2本の筒状織布を略十字形状に接合するようにしたり、4本の筒状織布を接合してなり、2本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記2本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成するようにしたり、さらに、複数本の筒状織布を接合してなり、複数本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記複数本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とから構成することができ、これにより、本発明の土木構造物形成用袋体を、受圧板を始めとする各種土木構造物の形成に、広く適用することができる。
【0050】
また、この土木構造物形成用袋体を用いた土木構造物は、筒状織布に充填した流動性材料が硬化した後は、筒状織布及びアンカー定着具、さらには補強材が一体化し、他の筒状織布の内部から当該他の筒状織布に接合した別の筒状織布の内部に通じる孔を介して、固化した流動性固化材が連続した構造物になることとも相俟って、設計上も適切な形状及び強度を有する構造物となり、グランドアンカーの斜面への定着のための反力構造物として有効に機能し、長年の使用に亘って構造物表面のクラック等による欠けの発生を防止することができる。
【0051】
また、この土木構造物形成用袋体を用いた斜面安定化工法は、筒状織布を斜面に縦横方向になるように設置したり、斜め方向に設置することにより、筒状織布の内部に流動性材料を極めて円滑に充填することができ、斜面安定化の機能を安定して得ることができる。
【図面の簡単な説明】
【図1】 本発明を受圧板に適用した実施例1を示す分解図である。
【図2】 同交差部の説明図である。
【図3】 同交差部の変形例の説明図で、(a)は交差部の組み立て工程の説明図、(b)は交差部の断面図である。
【図4】 同受圧板の部分説明図で、(a)は交差部の内部説明図、(b)は端部説明図、(c)は交差部の縦断面説明図である。
【図5】 同アンカー定着具の説明図で、(a)は外観斜視図、(b)は部分断面図である。
【図6】 本発明の斜面安定化工法の施工工程の説明図である。
【図7】 本発明の斜面安定化工法の施工工程の説明図である。
【図8】 本発明を受圧板に適用した実施例3の説明図で、(a)は土木構造物形成用袋体の外観斜視図、(b)は正面断面図、(c)は側面断面図、(d)は平面図である。
【図9】 本発明を受圧板に適用した実施例4の交差部の組み立て工程の説明図である。
【図10】 本発明を受圧板に適用した実施例5の正面断面図である。
【図11】 4本の筒状織布を略井桁状に接合した実施例を示す説明図である。
【図12】 複数本の筒状織布を略格子状に接合した実施例を示す説明図である。
【図13】 従来のアンカー工法の例を示す説明図である。
【符号の説明】
1A 筒状織布
1B 筒状織布
1C 筒状織布
1D 筒状織布
1E 筒状織布
1F 筒状織布
11 切れ目
12 孔
13 注入口
14 逆止弁
15 アンカー定着具の装着孔
2 補強材(異形棒鋼)
3 アンカー定着具
4 端末金具
5 端末金具
6 グランドアンカー
7 流動性固化材プラント
71 流動性固化材ポンプ
72 ホース
8 流動性固化材(モルタル)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a civil engineering structure forming bag, and a civil engineering structure and a slope stabilization method using the civil engineering structure forming bag, and more particularly to civil engineering methods such as a slope stabilization method for cut soil. In addition, the present invention relates to a civil engineering structure forming bag that can be suitably used, and a civil engineering structure and slope stabilization method using the civil engineering structure forming bag.
[0002]
[Prior art]
For example, when creating roads, residential land, etc. in mountainous areas, the mountain surface may be shaved, that is, cut soil may be cut. It will become unstable because it will disappear.
[0003]
In order to stabilize the slope where such cuts have been made, conventionally, ground anchors made of high-strength steel materials such as PC steel have been placed in the ground, and both ends of the ground anchor are placed in the ground and the ground surface. The anchor method is used to prevent loosening of the ground by fixing to each other.
[0004]
In this anchor construction method, a reaction force structure is provided on the slope in order to fix the ground anchor to the ground surface, that is, the slope where the cut is cut.
And, as shown in FIG. 13, the reaction force structure usually has a weight of several tons to several tens of tons depending on the magnitude of the force received by the pressure receiving plate C from the slope via the ground anchor G. A precast concrete pressure-receiving plate C having a cross-shaped or rectangular overall shape and having an insertion hole C1 and a fixing portion C2 of the ground anchor G is widely used (see, for example, Japanese Patent Laid-Open No. Hei 6-299558).
[0005]
[Patent Document 1]
JP-A-6-299558
[0006]
[Problems to be solved by the invention]
By the way, the pressure-receiving plate C made of precast concrete as shown in FIG. 13 functions as a reaction force structure simply by being installed on the slope, so that the construction period can be greatly shortened. There is an advantage that the weight of the pressure receiving plate C can be easily selected according to the magnitude of the force received by the pressure receiving plate C via G.
However, on the other hand, the pressure-receiving plate C made of precast concrete is heavy and has poor handling properties. Therefore, construction is impossible when the location conditions of the construction site are bad and the heavy equipment cannot be used in a mountainous area or the like. There was a problem that construction cost increased.
[0007]
The present invention is light in weight and easy to handle in view of the problems of the above-described conventional precast concrete pressure-receiving plate C. For this reason, the construction site is not affected by the location conditions of the construction site. It can be constructed even when heavy machinery cannot be used due to poor location conditions, and it can be used widely and suitably for civil engineering methods such as slope stabilization methods such as cut soil, and this civil engineering structure forming bag body and this civil engineering structure An object of the present invention is to provide a civil engineering structure and a slope stabilization method using a forming bag.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the civil engineering structure forming bag of the present invention comprises: Consists of warp and weft Two cuts are made in the tubular woven fabric with a length substantially equal to the woven width of the other tubular woven fabric, the other tubular woven fabric is inserted into the cut, and the cut of the tubular woven fabric is inserted. The surface of the other cylindrical woven fabric that touches the edge and the cut Equipped with a joint joined by adhesive, heat fusion or stitching A hole is formed in the other tubular woven cloth located inside the tubular woven cloth from the inside of the other tubular woven cloth to the inside of the tubular woven cloth. Become In addition, another cylindrical woven fabric is provided with an inlet for a fluid material.
[0009]
In this case, the civil engineering structure forming bag body may be formed by joining two tubular woven fabrics in a substantially cross shape or joining four tubular woven fabrics according to the desired shape of the civil engineering structure. The other cylindrical woven fabric that penetrates through the two cylindrical woven fabrics and has the injection port, and the other cylindrical woven fabric that penetrates through the two cylindrical woven fabrics and that has the injection port. It is made up of another tubular woven fabric arranged substantially parallel to the tubular woven fabric, or a plurality of tubular woven fabrics are joined and penetrated into the plurality of tubular woven fabrics. , Another tubular woven fabric provided with the injection port, and another tube that is penetrated by the plurality of cylindrical woven fabrics and arranged substantially parallel to the other tubular woven fabric provided with the injection port And a woven fabric.
[0010]
Further, in the civil engineering structure of the present invention using the civil engineering structure forming bag, a fluid material is sequentially injected into a plurality of cylindrical woven fabrics constituting the civil engineering structure forming bag. It is characterized by having built.
Then, an anchor fixing tool is provided at the intersection of the civil engineering structure forming bag body, and the inside of the cylindrical woven fabric is filled so that the cylindrical woven fabric and the anchor fixing tool are integrated. Inside the cylindrical woven fabric of the product forming bag, a reinforcing material is arranged in the longitudinal direction, the ends of the reinforcing material and the cylindrical woven fabric are fixed, and a fluid material is filled inside the cylindrical woven fabric. Thus, the tubular woven fabric, the reinforcing material, and the anchor fixing tool can be integrated.
[0011]
In addition, the slope stabilization method of the present invention using the above-mentioned civil engineering structure forming bag body is configured such that the tubular woven fabric of the above civil engineering structure forming bag body is installed in the vertical and horizontal directions on the slope, or on the slope. It is installed obliquely and is filled with a fluid material inside the tubular woven fabric.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a civil engineering structure forming bag according to the present invention, a civil engineering structure using this civil engineering structure forming bag, and a slope stabilization method will be described below with reference to the drawings.
[0013]
[Example 1]
1 to 7 show a civil engineering structure forming bag of the present invention, a civil engineering structure using the civil engineering structure forming bag, and a slope stabilization method according to a first embodiment.
In this embodiment, the present invention is applied to a pressure receiving plate used in an anchor method that prevents loosening of the ground, and a civil engineering structure forming bag body is connected to one tubular woven fabric (hereinafter referred to as the following in this specification, At approximately the center of the “tubular woven fabric 1A”), two locations with a length that approximately matches the woven width of the other tubular woven fabric (hereinafter referred to as “tubular woven fabric 1B”). The tubular woven cloth 1B is inserted into the cut line 11, and the tubular woven cloth 1B is passed through the tubular woven cloth 1A. The vicinity of the edge of the cut line 11 of the tubular woven cloth 1A and the cut line 11 are inserted. The surface of the cylindrical woven fabric 1B that is in contact with the inner surface of the cylindrical woven fabric 1B is bonded to the cylindrical woven fabric 1B located inside the cylindrical woven fabric 1A by bonding the surface of the cylindrical woven fabric 1B by adhesive, heat sealing, stitching, or the like. A plurality of holes 12 communicating with the interior of the cylindrical woven fabric 1A are formed, and mortar or the like as a fluid material is formed in the cylindrical woven fabric 1B It is to be constructed by providing the inlet 13 of the fluidity solidifying material.
[0014]
In this case, the tubular woven fabrics 1A and 1B are not particularly limited. For example, the tubular woven fabrics 1A and 1B are water-permeable tubular woven fabrics having a constant diameter of about 400 mm, and are circumferential yarns. Is continuously woven in a spiral.
The warp and weft of the cylindrical woven fabrics 1A and 1B are made of a weather-resistant fiber, for example, a polyester fiber. The thickness is 1000d / 2, the density is warp 20 / inch, and weft 20 / inch. The weaving structure is plain weave. Specifically, the yarn is woven with a ring loom, and the weft yarn constitutes the spiral yarn of the tubular woven fabric.
In addition, the strength of the cylindrical woven fabrics 1A and 1B can be improved by weaving high-strength fibers and wires having high tensile strength into the warp and / or the wefts of the cylindrical woven fabrics 1A and 1B.
[0015]
Moreover, as shown in FIG.1 and FIG.2, the center part of 1 A of cylindrical woven fabrics is provided with the cut | interruption 11 of length 600mm in two places in the position which opposes, and the cylindrical woven fabric 1B penetrates there So that they can be assembled.
[0016]
The joining of the vicinity of the edge of the cut 11 of the tubular woven fabric 1A and the surface of the tubular woven fabric 1B that is in contact with the cut 11 is due to the adhesive 11a, and when the fluid solidifying material such as mortar is filled, the joined portion is The tubular woven fabrics 1A and 1B are integrally stitched 11b only at both ends of the cut of the tubular woven fabric 1A that is easy to peel off.
As the adhesive, a general hot-melt adhesive such as nylon or urethane having a low melting point is used.
In addition, the joining method of the edge vicinity of the cut line 11 of the cylindrical woven fabric 1A and the surface of the cylindrical woven cloth 1B that is in contact with the cut line 11 is not limited to this, for example, as in the modification shown in FIG. The tubular woven fabric 1B that is in contact with the cut 11 of the tubular woven fabric 1A is double-folded by pinching a little at the contact position with the cut 11 and folding it back. In this state, the tubular woven fabric 1A, It is also possible to sew 1B integrally one or more rounds 11c, thereby increasing the degree of freedom of deformation at the joints of the tubular woven fabrics 1A and 1B and preventing the joints from peeling off. be able to.
[0017]
As shown in FIG. 1, a plurality of holes 12 leading from the inside of the tubular woven cloth 1B to the inside of the tubular woven cloth 1A are formed on the side surface of the tubular woven cloth 1B facing the inside of the tubular woven cloth 1A. In the embodiment, four places are provided and the size is set to 30 mm.
[0018]
A check valve 14 can be attached to the fluidity solidifying material inlet 13 provided in the tubular woven fabric 1B, if necessary.
[0019]
And this civil engineering structure formation bag body arranges the deformed steel bar 2 as one or a plurality of reinforcing materials in the inside of both cylindrical woven fabrics 1A and 1B in the longitudinal direction (the number of reinforcing materials and Depending on the load design of the pressure receiving plate, two or more are suitable for the arrangement position, and the arrangement position is appropriate slightly below the center position of the cross-section when the tubular woven fabrics 1A and 1B are inflated. In the present embodiment, two of each are arranged.) The ends of the reinforcing material 2 and the cylindrical woven fabrics 1A and 1B are fixed.
Further, the anchor fixing tool 3 shown in FIG. 5 is provided so as to be fixed to the cylindrical woven fabrics 1A and 1B at the intersections of both the cylindrical woven fabrics 1A and 1B.
Then, both the tubular woven fabrics 1A and 1B are filled with the fluidized solidifying material 8 from the fluid solidifying material inlet 13 provided in the tubular woven fabric 1B. The reinforcing material 2 and the anchor fixing tool 3 are integrated.
In this case, the reinforcing material 2 arranged in the longitudinal direction in the tubular woven cloth 1A is formed in the tubular woven cloth 1B, and is a hole extending from the inside of the tubular woven cloth 1B to the inside of the tubular woven cloth 1A. 12 is arranged so as to penetrate.
[0020]
The reinforcing members 2 disposed in the longitudinal direction in the tubular woven fabrics 1A and 1B are made of different-diameter steel bars formed slightly longer than the tubular woven fabrics 1A and 1B, and the ends are threaded.
Then, the steel bar whose end portion is threaded is made of two metal plates 41 and 42 as shown in FIGS. 1 and 4 (one surface of the metal plate 42 is internally threaded) and a ring 43. The terminal fitting 4 and the nut 21 (or a female screw member 41b planted on the metal plate 41X of the terminal fitting 4 as shown in FIG. 1) are fixed.
In the present embodiment, different diameter steel bars are used as the reinforcing material 2, but in addition to this, one having an arbitrary cross-sectional shape such as a normal round bar steel or a shape steel such as an H-shaped steel may be used. Furthermore, in addition to the steel material, FRP material or the like can be used.
[0021]
Then, the end of the tubular woven fabric 1A, 1B is sandwiched between the two metal plates 41, 42 of the terminal fitting 4 via the ring 43, and the bolt 44 is attached to the metal plate 42. The screw holes 42a thus formed are screwed and tightened to be attached.
Due to the structure of the terminal fitting 4, when the civil engineering structure forming bag body is installed on the slope and the fluidized solidifying material is filled in the tubular woven fabrics 1A and 1B, the tubular woven fabrics 1A and 1B are tensioned. You can hang it.
Further, if the reinforcing material 2 in which a nut is fixed to one end of the screw (welding, double nut, etc.) is used, the metal plate 42 is internally threaded. If the nut is turned in the releasing direction, a tubular woven fabric is provided. 1A and 1B can be expanded more firmly.
By these, cylindrical woven fabric 1A, 1B does not collide, and it can be filled with a fluid solidification material, maintaining a shape.
[0022]
As shown in FIG. 5, the anchor fixing tool 3 is formed of a cylindrical metal fitting having two flanges 31 and 32 and a ring 33 at both ends.
Then, the anchor fixing tool 3 is inserted into the mounting holes 15 formed on the upper and lower surfaces of the intersecting portions of the cylindrical woven fabrics 1A and 1B, and the peripheral edges of the mounting holes 15 of the cylindrical woven fabrics 1A and 1B are inserted into the anchor fixing tools. 3 is sandwiched via a ring 33, and a bolt 33 is screwed into a screw hole 31a formed in the flange 31 so that the ring 33 is tightened.
The height of the anchor fixing tool 3 is such that the distance between the flanges 32 and 32 sandwiching the tubular woven fabrics 1A and 1B at both ends is approximately equal to or slightly smaller than the diameter of the tubular woven fabrics 1A and 1B. Set as follows.
[0023]
Next, the slope stabilization method using this civil engineering structure formation bag is demonstrated using FIG.6 and FIG.7.
First, the reinforcing material 2 arranged in the longitudinal direction inside the tubular woven fabric 1A passes through a hole 12 formed in the tubular woven fabric 1B and leading from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A. The both ends are fixed by the terminal fitting 4 together with the end portion of the cylindrical woven fabric 1A.
In the state where the reinforcing material 2 is inserted into the tubular woven fabric 1A and the check valve 14 is attached to the fluidity solidifying material inlet 13 of the tubular woven fabric 1B, the tubular woven fabric 1B is attached to the tubular woven fabric 1A. It is shipped from the factory to the construction site together with other metal fittings in a compact state as shown in FIG. 7 (b).
[0024]
At the construction site, the civil engineering structure forming bag is lifted by using a crane or the like using the ring 41a provided on the metal plate 41 of the terminal fitting 4 at both ends of the cylindrical woven fabric 1B (FIG. 7 ( c)) The cylindrical woven fabrics 1A and 1B are arranged in the vertical and horizontal directions on the slopes, that is, the cylindrical woven fabric 1A is in the contour direction of the slopes, and the cylindrical woven fabric 1B is orthogonal to the cylindrical woven fabric 1A. (In this case, the fluidized solidification material inlet 13 is placed above the slope), and a tubular woven fabric using a ring 41a provided on the metal plate 41 of the terminal fitting 4 1A is temporarily fixed to the inclined surface by the anchor 5 (FIG. 6A).
In this embodiment, the cylindrical woven fabrics 1A and 1B are installed in the vertical and horizontal directions on the slope, but the present invention is not limited to this. For example, as shown in FIG. When the 1F is structured to be joined in a substantially lattice shape, etc., each tubular woven fabric 1F is inclined to the inclined surface, that is, the tubular woven fabrics 1A and 1B are approximately 45 ° with respect to the contour lines of the inclined surface. It can also be installed in an angled direction.
The reinforcing material 2 disposed inside the tubular woven fabric 1B is inserted at the construction site, and both ends are fixed together with the end fittings 4 together with the ends of the tubular woven fabric 1B.
In this case, since the inside of the cylindrical woven fabric 1B has only a cylindrical cavity, the reinforcing material 2 can be inserted easily.
Then, the tubular woven fabric 1B is temporarily fixed to the inclined surface by the anchor 5 using the ring 41a provided on the metal plate 41 of the terminal fitting 4 of the tubular woven fabric 1B (FIG. 6B).
[0025]
It is also possible to incorporate the reinforcing material 2 disposed in advance in the tubular woven fabric 1B at the factory and fix both ends together with the end fitting 4 together with the end portions of the tubular woven fabric 1B.
Also in this case, the substantially cross-shaped civil engineering structure forming bag is folded from the factory to the construction site in a compact state by folding the bag so that the crossing angle between the tubular woven cloth 1A and the tubular woven cloth 1B becomes small. be able to.
[0026]
Next, the anchor fixing tool 3 is inserted and attached to the mounting holes 15 formed on the upper and lower surfaces of the intersecting portions of the tubular woven fabrics 1A and 1B.
The anchor fixing tool 3 can be attached in advance at the factory.
On the anchor fixing tool 3, a ground anchor 6 made of a high strength steel material such as a PC steel material is placed in the ground, and the lower end portion of the ground anchor 6 is fixed in the ground (FIG. 6 (c)).
[0027]
In this state, the hose 72 connected to the fluidizable solidification plant 7 via the fluidized solidification material pump 71 is connected to the fluidization solidification material inlet 13, and the fluidity solidification material 13 is connected to the fluidity solidification material inlet 13. Is injected to fill the inside of both cylindrical woven fabrics 1A and 1B with a fluid solidifying material (FIG. 6B, FIG. 7A).
In this case, the fluidized solidified material 8 injected from the fluidized solidified material inlet 13 is gradually filled from the bottom of the tubular woven fabric 1B, and when the crossing part of the tubular woven fabrics 1A and 1B is exceeded, The tubular woven cloth 1A starts to be filled through the hole 12 that leads from the inside of the tubular woven cloth 1B to the inside of the tubular woven cloth 1A.
Therefore, the fluidized solidification material 8 is filled in the tubular woven fabric 1B while maintaining the state where the tubular woven fabric 1A is sufficiently swollen at the intersection, and finally the fluidized solidified material is filled in the tubular woven fabric 1B. If 8 is completely filled, the injection hose is removed from the injection port 13 of the fluidized solidifying material to complete the injection operation. In addition, by installing the check valve 14 in the inlet 13 of the fluidized solidifying material, it is possible to prevent the fluidized solidified material from flowing out.
[0028]
For example, a normal mortar using general Portland cement is used as the fluidized solidified material to be filled in the cylindrical woven fabrics 1A and 1B, and the final injection pressure is slightly increased to make the cylindrical woven fabric 1A, It is dehydrated through the 1B texture, and the fluid solidifying material 8 inside is made dense and hardened early so that there is no volume reduction after hardening due to breathing or the like. The injection pressure is suitably about 0.3 MPa.
When special mortar that does not decrease in volume after curing is used, dehydration is not necessary, and the injection pressure may be slightly low, but since it is installed on the slope, the contour lines of the slope must be applied to some extent. The cross-section of the cylindrical woven fabric 1A in the direction (horizontal direction) may remain in a distorted shape due to the weight of the fluidized solidified material. In order to obtain a substantially circular shape, an injection pressure of about 0.1 MPa is required.
In addition, although the mortar has been described as an example of the fluidized solidifying material 8, the fluidized solidifying material 8 may be a cement-based solidified material such as cement paste or concrete, a resin-based cured material, or the like. A solidified material having weather resistance can be used.
[0029]
When surface treatments such as vinyl chloride resin and asphalt for imparting weather resistance are applied to the surfaces of the cylindrical woven fabrics 1A and 1B, they cannot be dehydrated from the texture, so there is no special decrease in volume after curing. Use flowable solidification material.
In addition, the surface treatment of the cylindrical woven fabrics 1A and 1B for imparting weather resistance can be performed after the fluidized solidifying material 8 filled in the cylindrical woven fabrics 1A and 1B is cured.
[0030]
In addition, flame retardant treatment or the like can be performed on the surfaces of the cylindrical woven fabrics 1A and 1B.
[0031]
Finally, the temporary anchor 5 is removed, and when the fluidized solidifying material 8 is completely cured, both ends of the ground anchor 6 are fixed in the ground and the anchor fixing tool 3 respectively, thereby completing the construction (FIG. 6 (d). )).
The terminal fittings 4 of the cylindrical woven fabrics 1A and 1B may be left as they are, but can be removed and reused after the fluidized solidifying material 8 is cured. In this case, the reinforcing material 2 protruding from the end is cut and removed as necessary.
[0032]
[Example 2]
Using the same tubular woven fabrics 1A and 1B as in Example 1, both ends are cut obliquely.
The end portion cut obliquely is fixed integrally with the reinforcing member 2 by the terminal fitting 4 as in the first embodiment.
In both of the tubular woven fabrics 1A and 1B, the long surface cut obliquely is set to the lower surface side (natural ground side).
And if the distance between the upper surface side of cylindrical woven fabric 1A, 1B and the terminal metal fitting 4 of the reinforcing material 2 is set substantially the same, the length of the lower surface side of cylindrical woven fabric 1A, 1B will become longer than an upper surface side. Therefore, it will be in a sagging state.
The slope on which the pressure receiving plate is installed is not necessarily smooth in the surface state, and is often considerably uneven, and is uneven. As a force structure, an even load is not applied to the slope, and the pressure receiving plate itself receives an uneven load, so that the strength is weakened.
If there are sagging portions on the lower surfaces of the tubular woven fabrics 1A and 1B, both ends of the tubular woven fabrics 1A and 1B are temporarily fixed to the inclined surfaces by the anchors 5, and the ground anchor 6 is driven into the anchor fixing device 3. Therefore, the lower surface of the cylindrical woven fabrics 1A and 1B can swell along the unevenness of the slope by injecting the fluidized solidifying material, and the unevenness adjustment can be automatically performed.
Other configurations are the same as those in the first embodiment.
[0033]
[Example 3]
As shown in FIG. 8, the tubular woven fabrics 1A and 1B are the same as the first embodiment except that a woven fabric having a diameter changed over the longitudinal direction is used.
The diameters of the tubular woven fabrics 1A and 1B are not particularly limited. For example, the diameter changes from a straight portion (length 600 mm) at the center to a taper shape on both sides (length 1800 mm). ), Both ends are set so that a straight portion (length: 200 mm) is formed again after the diameter becomes 400 mm.
Assembling and joining of the tubular woven fabrics 1A and 1B, a hole 12 leading from the inside of the tubular woven fabric 1B to the inside of the tubular woven fabric 1A, an inlet 13 for a fluidized solidifying material, a reinforcing material 2, an anchor fixing tool 3, and a terminal fitting 4. The construction of the pressure receiving plate is the same as in the first embodiment, and the height of the anchor fixing tool 3 is the same as in the first embodiment, and the distance between the flanges 32, 32 sandwiching the cylindrical woven fabrics 1A, 1B at both ends is The size is set to be approximately equal to or slightly smaller than the diameter of the woven fabrics 1A and 1B.
The shape of the pressure receiving plate after injection of the fluidized solidifying material has a large width and height at the center, and becomes smaller in a tapered shape as it goes to the end of the cross. The taper shape is set according to the distribution of the bending moment by the pressure receiving plate design method.
When the civil engineering structure forming bag is formed with the tapered woven fabrics 1A and 1B and is constructed as a pressure receiving plate, the end fittings 4 at both ends of the cylindrical woven fabrics 1A and 1B are placed on the slopes. And the reinforcing material 2 falls below the cross-sectional center of the cylindrical woven fabrics 1A and 1B by its own weight. Therefore, the cylindrical woven fabrics 1A and 1B are in a state where the cylindrical woven fabrics 1A and 1B sag in the longitudinal direction. This sagging can be used for unevenness adjustment as in the second embodiment.
Other configurations are the same as those in the first embodiment.
[0034]
[Example 4]
The same tubular woven fabrics 1A and 1B as in Example 1 are used, and assembling and the like are performed in the same manner. As shown in FIG. 9, the tubular woven fabric 1A and the tubular woven fabric 1B are joined by the following procedure. .
A short tubular woven fabric 1C having a length of 200 mm is prepared, and folded back so that the front and back sides are reversed up to the center in the longitudinal direction to create a patch 1C ′.
The patch cloth 1C ′ is inserted into the cut of the tubular woven cloth 1A, and one edge (outer peripheral side) of the patch cloth 1C ′ is integrally stitched with the vicinity of the edge of the cut line 11 of the tubular woven cloth 1A. The edge (inner peripheral side) is sewn together with the surface of the tubular woven fabric 1B that is in contact with the cut 11.
In this way, the tubular woven fabrics 1A and 1B are inflated by injecting the fluidized solidifying material by joining the tubular woven fabrics 1A and 1B via the covering cloth 1C 'folded in the center in the longitudinal direction. At that time, the patch 1C ′ provides a buffering action, and the joint portion is more difficult to break.
Other configurations are the same as those in the first embodiment.
[0035]
[Example 5]
The same tubular woven fabrics 1A and 1B as in Example 1 are used, and assembly, joining, and the like are similarly performed. However, as shown in FIG. 10, the tubular woven fabric is overlapped with the lower surfaces of the tubular woven fabrics 1A and 1B. A substantially cross-shaped bag made of cloth 1C, 1D is disposed.
Instead of disposing the cylindrical woven fabrics 1C and 1D, the lower surface portions of the cylindrical woven fabrics 1A and 1B can have a two-layer structure provided with a flowable solidifying material injection space.
The cylindrical woven fabrics 1C and 1D are not inserted with a reinforcing material, and are simply closed by sewing without using terminal fittings, and the other configurations are the same as the cylindrical woven fabrics 1A and 1B.
The center portions of the crosses of the tubular woven fabrics 1C and 1D are integrally fixed together with the attachment of the lower surfaces of the tubular woven fabrics 1A and 1B by the anchor fixing tool 3.
And after injection | pouring of the fluid solidification material to cylindrical woven fabric 1A, 1B, cylindrical woven fabric 1C, from the injection | pouring (illustration omitted) of the fluidization solidification material formed in the appropriate location of cylindrical woven fabric 1C, 1D, A fluidized solid material is injected into 1D. The fluidized solidifying material is injected into the cylindrical woven fabrics 1C and 1D in a state where almost no pressure is applied to the bag body, and the woven fabric surfaces of the cylindrical woven fabrics 1C and 1D are formed of the cylindrical woven fabrics 1A and 1B. Spread along the shape and unevenness of the natural ground.
In this way, even when unevenness exists largely in the natural ground, the gap between the pressure receiving plate and the natural ground can be filled by the unevenness adjusting function using the cylindrical woven fabrics 1C and 1D. In addition, the tubular woven fabrics 1A and 1B swell in a substantially circular cross section. Therefore, as in the second and third embodiments, if the slack is not taken on the lower surface, the portion in contact with the ground is reduced. The gaps between the bottom surfaces of the tubular woven fabrics 1C and 1D and the natural ground can be filled with the cloths 1C and 1D. In this way, the structure is such that the load transmission between the pressure receiving plate and the natural ground is smoothly performed.
Other configurations are the same as those in the first embodiment.
And the thing of this Example can be installed and constructed even on a slope without cutting.
[0036]
Next, the civil engineering structure forming bag of the above embodiment, the civil engineering structure using the civil engineering structure forming bag, and the operation of the slope stabilization method will be described.
According to the above civil engineering structure forming bag body, the tubular woven fabric 1B penetrates the tubular woven fabric 1B, the surfaces of the woven fabric are joined together, and the tubular woven fabric 1B communicates with the inside of the tubular woven fabric 1A. Since the hole 12 is provided and the fluidized solidifying material inlet 13 is provided in the tubular woven fabric 1B, the fluidized solidified material 8 injected from the fluidized solidifying material inlet 13 is formed at the intersection. The tubular woven fabric 1B is sufficiently inflated and then injected into the tubular woven fabric 1A. If the fluidized solidifying material is first injected into the tubular woven fabric 1A, the tubular woven fabric 1B cannot be swollen at the intersecting portion. The state which does not swell completely does not occur, and smooth injection of the fluidized solidifying material and stable swell of the cylindrical woven fabrics 1A and 1B are realized.
Thereby, the surface of the fluidized solidified material 8 after being cured is reinforced by continuous fibers of the cylindrical woven fabrics 1A and 1B, and doubled at the intersection. As a result, not only a good function can be obtained as a cloth mold at the time of injecting the fluidized solidifying material, but it also effectively functions to strengthen the surface of a structure that is generally prone to surface cracks and chips.
[0037]
In addition, it can be compactly brought into the construction site of the pressure plate in a bag state and is much lighter than the pressure plate made of precast concrete, so even if the site location conditions are bad due to problems such as transportation of parts, Construction becomes easy.
[0038]
The reinforcing material 2 is arranged inside the cylindrical woven fabrics 1A and 1B and fixed integrally at the end, and the anchor fixing tool 3 is provided at a location where the cylindrical woven fabrics 1A and 1B penetrate, and the inside is a fluid solidifying material. The pressure receiving plate filled with 8 and integrally formed becomes a structure integrally formed as a whole, and effectively functions as a reaction force structure for fixing to the slope of the ground anchor 6.
The joining of the surface of the tubular woven fabric 1A and the tubular woven fabric 1B is by an adhesive or the like, and the tubular woven fabrics 1A and 1B are integrally stitched only at both ends of the cut 11 of the tubular woven fabric 1A. Even if the injection pressure is slightly increased at the time of injection of the fluidized solidifying material and the cut line 11 becomes large due to the swelling of the cylindrical woven fabric 1A, the cylindrical woven fabric 1B is pulled by the stitching portion, and there is no gap between them. , No leakage of fluidized solidified material.
[0039]
The tubular woven fabrics 1A and 1B are injected by injecting the fluidized solidifying material by joining the tubular woven fabrics 1A and 1B via the backing cloth 1C 'which is folded back so that the front and back sides are reversed at the center in the longitudinal direction. When the fabric swells, the patch 1C ′ provides a buffering action, and the movements of the tubular woven fabrics 1A and 1B caused by the mutual swelling do not directly affect each other at the joint, making the joint more difficult to break and solidifying the fluidity. Material leakage is less likely to occur.
[0040]
Since the end portion of the reinforcing member 2 is threaded and fixed to the terminal fitting 4 and the end portions of the tubular woven fabrics 1A and 1B are also sandwiched by the terminal fitting 4, the bag body swells. In this state, an appropriate number of reinforcing members that are designed in advance are arranged at appropriate positions. The terminal fitting 4 can be removed after the fluidized solidifying material 8 is cured, and can be reused.
Further, by using a deformed steel bar for the reinforcing material 2, adhesion and integrity with the fluidized solidifying material 8 can be improved.
[0041]
The intersecting portions of the tubular woven fabrics 1A and 1B swell larger than other portions of the tubular woven fabric by the injection of the fluidized solidifying material, and when the fluidized solidifying material solidifies as it is, the cylindrical woven fabric is formed around the intersecting portions. As a result, the structure becomes constricted and stress tends to concentrate. If the height of the anchor fixing device 3 is approximately equal to or slightly smaller than the diameter of the tubular woven fabrics 1A and 1B, the anchor fixing device 3 suppresses the swelling and the shape of the cross surface is reduced. Smooth and no stress concentration problem.
[0042]
When the tubular woven fabrics 1A and 1B are woven fabrics having diameters that change in the longitudinal direction, and the diameter of the central portion is large and decreases toward both ends, the bending applied to the substantially cross-shaped pressure receiving plate The rigidity of the pressure receiving plate can be designed according to the moment distribution, which is economical.
[0043]
When slack is provided on the lower surfaces of the cylindrical woven fabrics 1A and 1B, the unevenness adjustment is automatically performed by injecting the fluidized solidifying material, and the lower surface of the pressure receiving plate extends along the ground with some irregularities. It is formed in the state.
[0044]
In addition, when a substantially cross-shaped bag body made of the cylindrical woven fabrics 1C and 1D is provided so as to overlap the lower surfaces of the cylindrical woven fabrics 1A and 1B, and the unevenness of the ground is large, However, the bottom surfaces of the cylindrical woven fabrics 1C and 1D are in close contact with the unevenness of the natural ground, and even if the fluidized solidifying material is injected into the cylindrical woven fabrics 1A and 1B with a high injection pressure, the cylindrical woven fabrics 1C and 1D The upper surface is in close contact with the cylindrical woven fabrics 1A, 1B, and the load transmission between the pressure receiving plate and the natural ground is made smooth.
[0045]
Up to now, the civil engineering structure forming bag of the present invention, the pressure receiving plate using the civil engineering structure forming bag and the slope stabilization method have been applied to the pressure receiving plate used in the anchor method for preventing loosening of the ground. Although described based on several Example, the application object of this invention is not limited to a pressure receiving board, It can apply widely to various civil engineering structures.
[0046]
Specifically, when this civil engineering structure forming bag is used as a pressure receiving plate, the two tubular woven fabrics 1A and 1B are joined in a substantially cross shape as described above. As shown in Fig. 11, the foundation member of the ground stabilization method for the purpose of preventing settlement of the superstructure S and preventing ground liquefaction during an earthquake (in addition to those installed on the ground, those installed in the sea In the case of use, the structure is such that four tubular woven fabrics 1E are joined in a substantially cross-beam shape, or, as shown in FIG. Civil engineering structures (including those installed on the ground as well as those installed in the sea) that are applicable to a wide range of chemical methods, algae (seaweed) ground construction methods (jacket for seaweed ground construction sheet presser), etc. When used, a plurality of cylindrical woven fabrics 1F are substantially lattice-shaped. Etc. to a joining structure in accordance with the civil structures to be formed, it can be used in any combination of shapes.
Then, as shown in FIG. 11, in the case of a structure in which the four tubular woven fabrics 1E are joined in a substantially cross-beam shape, the tubular woven fabric 1E1 including the fluid material inlet 13 is composed of two tubes. Assembled so as to penetrate the woven cloth 1E2, and further assembled into a shape in which two tubular woven cloth 1E2 penetrates another tubular woven cloth 1E3 arranged in the same direction as 1E1. And the hole 12 which leads to the cylindrical woven fabrics 1E2, 1E3 is provided in the cylindrical woven fabrics 1E1, 1E2, respectively. According to this structure, after the fluid material injected from the fluid material inlet 13 is filled into the tubular woven fabric 1E1, it is filled into the tubular woven fabric 1E2 through the holes 12, and finally. Since the tubular woven fabric 1E3 is filled, a fluid material is not filled between the tubular woven fabrics 1E1 and 1E2 and between the tubular woven fabrics 1E2 and 1E3 at the intersections. The part can be sufficiently expanded.
In addition, as shown in FIG. 12, in the case of a structure in which a plurality of tubular woven fabrics 1F are joined in a substantially lattice shape, the fluidity injected from the fluid material inlet 13 provided in the tubular woven fabric 1F1. The material is filled into the plurality of tubular woven fabrics 1F2 through the holes extending from the inside of the tubular woven fabric 1F1 to the inside of the tubular woven fabric 1E2, and further, the cylindrical woven fabric 1F3 is filled with the material from the inside of the tubular woven fabric 1F2. A plurality of cylindrical woven fabrics 1F3 are filled through holes that lead to the inside.
Further, when the civil engineering structure forming bag is used as a jacket for holding the seaweed bed forming sheet, the civil engineering structure forming bag is composed of a tubular woven fabric woven with biodegradable fibers, By using slurry-like sand or sludge as a fluid material to be filled in the woven fabric, it is possible to prevent the tubular woven fabric from being naturally decomposed and remaining on the site after the seaweed bed is completed.
[0047]
The civil engineering structure forming bag of the present invention and the pressure receiving plate and slope stabilization method using the civil engineering structure forming bag have been described based on a plurality of embodiments. The structure of the forming bag body and the pressure receiving plate and slope stabilization method using this civil engineering structure forming bag body are not limited to those described in the above embodiments, but the structures described in the above embodiments. The configuration can be changed as appropriate without departing from the spirit of the invention, for example, by appropriately combining them.
[0048]
【The invention's effect】
The civil engineering structure forming bag of the present invention can be folded compactly and brought into the construction site, and is much lighter than conventional civil engineering structure forming members such as precast concrete pressure plates. For this reason, it is not affected by the location conditions at the construction site, and can be constructed even when the location conditions at the construction site are bad and heavy machinery cannot be used in mountainous areas, etc. It can be used widely and suitably for civil engineering methods such as.
In addition, the fluid material can be smoothly filled into another cylindrical woven fabric joined to the other cylindrical woven fabric through a hole formed in the other cylindrical woven fabric, and has a stable shape. Since the tubular woven fabric swells, a civil engineering structure that does not cause stress concentration is obtained, and after the fluid material filled in the tubular woven fabric is cured, it also functions to reinforce the structure surface with the tubular woven fabric. be able to.
[0049]
In this case, the civil engineering structure forming bag body may be formed by joining two tubular woven fabrics in a substantially cross shape or joining four tubular woven fabrics according to the desired shape of the civil engineering structure. The other cylindrical woven fabric that penetrates through the two cylindrical woven fabrics and has the injection port, and the other cylindrical woven fabric that penetrates through the two cylindrical woven fabrics and that has the injection port. It is made up of another tubular woven fabric arranged substantially parallel to the tubular woven fabric, or a plurality of tubular woven fabrics are joined and penetrated into the plurality of tubular woven fabrics. , Another tubular woven fabric provided with the injection port, and another tube that is penetrated by the plurality of cylindrical woven fabrics and arranged substantially parallel to the other tubular woven fabric provided with the injection port Thus, the civil engineering structure forming bag of the present invention can be widely applied to the formation of various civil engineering structures including pressure receiving plates. .
[0050]
In addition, in the civil engineering structure using the bag for forming a civil engineering structure, after the fluid material filled in the cylindrical woven fabric is cured, the cylindrical woven fabric, the anchor fixing tool, and the reinforcing material are integrated. The solidified fluidized solidified material may become a continuous structure through a hole that leads from the inside of another cylindrical woven fabric to the inside of another cylindrical woven fabric joined to the other cylindrical woven fabric. Together, it becomes a structure with an appropriate shape and strength in design, effectively functions as a reaction force structure for anchoring to the slope of the ground anchor, and cracks on the structure surface over many years of use It is possible to prevent the occurrence of chipping due to the like.
[0051]
In addition, the slope stabilization method using the civil engineering structure forming bag body can be installed inside the cylindrical woven fabric by installing the cylindrical woven fabric in a vertical or horizontal direction on the slope, or by installing it in an oblique direction. The fluid material can be filled very smoothly, and the function of stabilizing the slope can be obtained stably.
[Brief description of the drawings]
FIG. 1 is an exploded view showing a first embodiment in which the present invention is applied to a pressure receiving plate.
FIG. 2 is an explanatory diagram of the intersection.
FIGS. 3A and 3B are explanatory views of a modification of the intersection, where FIG. 3A is an explanatory view of an assembly process of the intersection, and FIG. 3B is a cross-sectional view of the intersection;
4A and 4B are partial explanatory views of the pressure receiving plate, wherein FIG. 4A is an internal explanatory view of an intersecting portion, FIG. 4B is an end explanatory view, and FIG. 4C is a longitudinal sectional explanatory view of the intersecting portion.
5A and 5B are explanatory views of the anchor fixing tool, wherein FIG. 5A is an external perspective view, and FIG. 5B is a partial cross-sectional view.
FIG. 6 is an explanatory diagram of a construction process of the slope stabilization method according to the present invention.
FIG. 7 is an explanatory diagram of a construction process of the slope stabilization method according to the present invention.
FIGS. 8A and 8B are explanatory views of Example 3 in which the present invention is applied to a pressure receiving plate, wherein FIG. 8A is an external perspective view of a civil engineering structure forming bag body, FIG. 8B is a front cross-sectional view, and FIG. FIG. 4D is a plan view.
FIG. 9 is an explanatory diagram of an assembly process of an intersecting portion according to a fourth embodiment in which the present invention is applied to a pressure receiving plate.
FIG. 10 is a front sectional view of Example 5 in which the present invention is applied to a pressure receiving plate.
FIG. 11 is an explanatory view showing an embodiment in which four tubular woven fabrics are joined in a substantially cross-beam shape.
FIG. 12 is an explanatory view showing an embodiment in which a plurality of tubular woven fabrics are joined in a substantially lattice shape.
FIG. 13 is an explanatory view showing an example of a conventional anchor method.
[Explanation of symbols]
1A Tubular woven fabric
1B Tubular woven fabric
1C Tubular woven fabric
1D tubular woven fabric
1E Tubular woven fabric
1F Tubular woven fabric
11 breaks
12 holes
13 Inlet
14 Check valve
15 Anchor fixing tool mounting hole
2 Reinforcement material (deformed bar)
3 Anchor anchor
4 Terminal bracket
5 Terminal bracket
6 Ground anchor
7 Fluidity solidification plant
71 Fluidity solidifying material pump
72 hose
8 Fluidity solidifying material (mortar)

Claims (11)

経糸及び緯糸からなる筒状織布に他の筒状織布の織幅に略一致する長さで2箇所の切れ目を入れ、該切れ目に他の筒状織布を挿入して、筒状織布の前記切れ目の縁近傍と該切れ目に当接する他の筒状織布の表面を接着剤により接合した接合部を備え、筒状織布の内部に位置する他の筒状織布に、他の筒状織布の内部から筒状織布の内部に通じる孔を形成してなるとともに、他の筒状織布に流動性材料の注入口を設けたことを特徴とする土木構造物形成用袋体。 A cylindrical woven fabric made of warp and weft is cut into two cuts with a length substantially matching the woven width of the other cylindrical woven fabric, and another cylindrical woven fabric is inserted into the cut, and the cylindrical woven fabric is inserted. Provided with a joining portion obtained by joining the vicinity of the edge of the cut of the cloth and the surface of another tubular woven cloth that contacts the cut with an adhesive , and the other tubular woven cloth positioned inside the tubular woven cloth; For forming civil engineering structures, characterized in that a hole leading from the inside of the cylindrical woven fabric to the inside of the cylindrical woven fabric is formed, and an inlet for a fluid material is provided in another cylindrical woven fabric. Bag body. 経糸及び緯糸からなる筒状織布に他の筒状織布の織幅に略一致する長さで2箇所の切れ目を入れ、該切れ目に他の筒状織布を挿入して、筒状織布の前記切れ目の縁近傍と該切れ目に当接する他の筒状織布の表面を熱融着により接合した接合部を備え、筒状織布の内部に位置する他の筒状織布に、他の筒状織布の内部から筒状織布の内部に通じる孔を形成してなるとともに、他の筒状織布に流動性材料の注入口を設けたことを特徴とする土木構造物形成用袋体。 A cylindrical woven fabric made of warp and weft is cut into two cuts with a length substantially matching the woven width of the other cylindrical woven fabric, and another cylindrical woven fabric is inserted into the cut, and the cylindrical woven fabric is inserted. In the other tubular woven cloth located inside the tubular woven cloth, provided with a joining portion obtained by joining the vicinity of the edge of the cloth and the surface of the other tubular woven cloth contacting the cut by heat fusion , A civil engineering structure formed by forming a hole leading from the inside of another cylindrical woven fabric to the inside of the cylindrical woven fabric, and providing an inlet for a fluid material in the other cylindrical woven fabric Bag body. 経糸及び緯糸からなる筒状織布に他の筒状織布の織幅に略一致する長さで2箇所の切れ目を入れ、該切れ目に他の筒状織布を挿入して、筒状織布の前記切れ目の縁近傍と該切れ目に当接する他の筒状織布の表面を縫合により接合した接合部を備え、筒状織布の内部に位置する他の筒状織布に、他の筒状織布の内部から筒状織布の内部に通じる孔を形成してなるとともに、他の筒状織布に流動性材料の注入口を設けたことを特徴とする土木構造物形成用袋体。 A cylindrical woven fabric made of warp and weft is cut into two cuts with a length substantially matching the woven width of the other cylindrical woven fabric, and another cylindrical woven fabric is inserted into the cut, and the cylindrical woven fabric is inserted. A joint portion obtained by joining the vicinity of the edge of the cut of the cloth and the surface of another tubular woven cloth that contacts the cut by stitching , and the other tubular woven cloth positioned inside the tubular woven cloth A civil engineering structure forming bag characterized in that a hole leading from the inside of the cylindrical woven fabric to the inside of the cylindrical woven fabric is formed, and an inlet for a fluid material is provided in another cylindrical woven fabric. body. 2本の筒状織布を略十字形状に接合してなることを特徴とする請求項1、2又は3記載の土木構造物形成用袋体。The civil engineering structure forming bag according to claim 1, 2 or 3 , wherein two tubular woven fabrics are joined in a substantially cross shape. 4本の筒状織布を接合してなり、2本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記2本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とからなることを特徴とする請求項1、2又は3記載の土木構造物形成用袋体。Four cylindrical woven fabrics are joined, penetrated through the two cylindrical woven fabrics, penetrated by the other cylindrical woven fabrics provided with the injection port, and the two cylindrical woven fabrics, 4. The civil engineering structure forming bag according to claim 1, 2 or 3 , characterized by comprising another cylindrical woven fabric provided substantially parallel to the other cylindrical woven fabric provided with the inlet. . 複数本の筒状織布を接合してなり、複数本の筒状織布に貫通する、前記注入口を設けた他の筒状織布と、前記複数本の筒状織布に貫通され、かつ前記注入口を設けた他の筒状織布と略平行に配置される別の筒状織布とからなることを特徴とする請求項1、2又は3記載の土木構造物形成用袋体。A plurality of tubular woven fabrics are joined, and penetrated through the plurality of tubular woven fabrics, penetrated by the other tubular woven fabrics provided with the inlet, and the plurality of tubular woven fabrics, 4. The civil engineering structure forming bag according to claim 1, 2 or 3 , characterized by comprising another cylindrical woven fabric provided substantially parallel to the other cylindrical woven fabric provided with the inlet. . 請求項1、2、3、4、5又は6記載の土木構造物形成用袋体を構成している複数の筒状織布の中に、順に流動性材料を注入して構築したことを特徴とする土木構造物。It is constructed by sequentially injecting a fluid material into a plurality of cylindrical woven fabrics constituting the civil engineering structure forming bag according to claim 1, 2, 3, 4, 5 or 6. Civil engineering structure. 土木構造物形成用袋体の交差部にアンカー定着具を設け、筒状織布の内部に充填して、筒状織布及びアンカー定着具を一体化するようにしたことを特徴とする請求項7記載の土木構造物。 Claims an anchor fixing device provided at the intersection of civil engineering structures formed bag body was filled into the cylindrical fabric, characterized in that so as to integrate the tubular fabric and the anchor fixing device The civil engineering structure according to 7 . 土木構造物形成用袋体を構成する筒状織布の内部、長手方向に補強材を配して、該補強材と筒状織布の端部を固定し、筒状織布の内部に流動性材料を充填して、筒状織布、補強材及びアンカー定着具を一体化するようにしたことを特徴とする請求項7又は8記載の土木構造物。Inside the cylindrical woven fabric constituting the civil engineering structure forming bag body, a reinforcing material is arranged in the longitudinal direction, the ends of the reinforcing material and the cylindrical woven fabric are fixed, and the fluid flows into the cylindrical woven fabric. The civil engineering structure according to claim 7 or 8 , wherein the tubular woven fabric, the reinforcing material, and the anchor fixing device are integrated by filling with a functional material. 請求項1、2、3、4、5又は6記載の土木構造物形成用袋体を構成する筒状織布を、斜面に縦横方向に設置し、筒状織布の内部に流動性材料を充填することを特徴とする斜面安定化工法。A tubular woven fabric constituting the civil engineering structure forming bag according to claim 1, 2, 3, 4, 5 or 6 is installed in a vertical and horizontal direction on a slope, and a fluid material is placed inside the cylindrical woven fabric. Slope stabilization method characterized by filling. 請求項1、2、3、4、5又は6記載の土木構造物形成用袋体の筒状織布を、斜面に斜め方向に設置し、筒状織布の内部に流動性材料を充填することを特徴とする斜面安定化工法。The tubular woven fabric of the civil engineering structure forming bag according to claim 1, 2, 3, 4, 5 or 6 is installed obliquely on the slope and filled with a fluid material inside the tubular woven fabric. Slope stabilization method characterized by that.
JP2003206869A 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag Expired - Fee Related JP4115900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206869A JP4115900B2 (en) 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002374072 2002-12-25
JP2003206869A JP4115900B2 (en) 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag

Publications (2)

Publication Number Publication Date
JP2004251101A JP2004251101A (en) 2004-09-09
JP4115900B2 true JP4115900B2 (en) 2008-07-09

Family

ID=33031776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206869A Expired - Fee Related JP4115900B2 (en) 2002-12-25 2003-08-08 Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag

Country Status (1)

Country Link
JP (1) JP4115900B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908262B2 (en) * 2006-08-29 2012-04-04 芦森工業株式会社 Cylindrical member connection structure and slope stabilization method using the cylindrical member
JP4896835B2 (en) * 2007-07-30 2012-03-14 鹿島建設株式会社 Surface treatment material for soft ground
JP4975548B2 (en) * 2007-07-30 2012-07-11 芦森工業株式会社 Connection structure of cylindrical members
JP4959626B2 (en) * 2008-05-08 2012-06-27 芦森工業株式会社 Injection device for bag body and method for attaching the injection device to the bag body
JP7084648B2 (en) * 2020-10-21 2022-06-15 日本植生株式会社 Slope surface collapse prevention method
JP7084647B2 (en) * 2020-10-21 2022-06-15 日本植生株式会社 Slope surface collapse prevention method

Also Published As

Publication number Publication date
JP2004251101A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US5531547A (en) Reinforced earth construction
US5657595A (en) Fabric reinforced beam and column connections
JP4965922B2 (en) Embankment reinforcement structure and embankment body
US3425228A (en) Fabric forms for concrete structures
JP4850276B2 (en) Fixing structure of reinforced earth structure and embankment reinforcement
KR101058561B1 (en) Retaining wall with improved drainage function and construction method of retaining wall
JP5023219B2 (en) Precast temporary structure and construction method thereof
CN108729564A (en) Assembled architecture system
US20020094238A1 (en) Plastic lined canal
DE3527100A1 (en) Device for protection against high-water
JP4115900B2 (en) Civil engineering structure forming bag, civil engineering structure and slope stabilization method using this civil engineering structure forming bag
JP4307967B2 (en) Surface treatment method for soft ground
CN110924313A (en) Construction method of bridge foundation cofferdam
JPS58529A (en) Method and apparatus for producing concrete casting structure
US20100215441A1 (en) Reinforced Mass of Material and Method of Forming
JP4115922B2 (en) Civil engineering structure forming bag and civil engineering structure using this civil engineering structure forming bag
JP2007262811A (en) Pile structure and pile member driving method
JP4208057B2 (en) Construction method of cast-in-place piles
JP4908262B2 (en) Cylindrical member connection structure and slope stabilization method using the cylindrical member
JP4636478B2 (en) Liquefaction prevention structure
KR102138839B1 (en) Cast-in-place concrete blocks using large scales and revetment methods using them
AU2712297A (en) Structural material and method of joining the same
KR20100040230A (en) Reinforced earth retaining wall system connecting to earth bolt with panel and geosynthetics on steep slope
JPS5941236Y2 (en) Bag-shaped fabric formwork
JP4951254B2 (en) Leg frame structure and method for constructing the frame structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees