JP2004249200A - Water quality control device of sewerage equipment - Google Patents

Water quality control device of sewerage equipment Download PDF

Info

Publication number
JP2004249200A
JP2004249200A JP2003041417A JP2003041417A JP2004249200A JP 2004249200 A JP2004249200 A JP 2004249200A JP 2003041417 A JP2003041417 A JP 2003041417A JP 2003041417 A JP2003041417 A JP 2003041417A JP 2004249200 A JP2004249200 A JP 2004249200A
Authority
JP
Japan
Prior art keywords
water quality
rainfall
sewage
time
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041417A
Other languages
Japanese (ja)
Other versions
JP4439825B2 (en
Inventor
Masahiko Tsutsumi
正 彦 堤
Yasuhiko Nagamori
森 泰 彦 永
Takumi Obara
原 卓 巳 小
Osamu Yamanaka
中 理 山
Tadao Motoki
木 唯 夫 本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003041417A priority Critical patent/JP4439825B2/en
Publication of JP2004249200A publication Critical patent/JP2004249200A/en
Application granted granted Critical
Publication of JP4439825B2 publication Critical patent/JP4439825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simply estimate a pollutant component in inflow water at the time of rainy weather with a high precision to remove the pollutant component so as to minimize the same. <P>SOLUTION: The water quality control device of sewerage equipment is equipped with a pollutant removing means for removing a pollutant in sewage containing rainwater, a rainfall time data measuring means for measuring the non-rainfall time from rainfall start time or the completion time of the previous rainfall, a rainfall quantity data measuring means for measuring rainfall quantity data including rainfall intensity and rainfall integrated quantity, a water quality estimation means for estimating the pollutant component in sewage on reference to the non-rainfall time and the rainfall integrated quantity and a control means for controlling the operation quantity of the pollutant removing means on the basis of the estimate value of the water quality estimation means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、下水道設備の水質制御装置、より詳細には、雨水吐き室に貯留された雨水を含む汚水に対し水質改善処理を施すための下水道設備の水質制御装置に関する。
【0002】
【従来の技術】
分流式あるいは合流式の下水道設備、特に晴天時に屋根や、道路、ます、管渠内に蓄積した汚濁物質が雨天時に雨水とともに雨水管もしくは汚水管、合流下水管へ流出し、雨水を含む汚水中の汚濁物質を、沈殿、貯留、凝集剤処理、殺菌剤処理、オゾン処理、紫外線殺菌などの処理を施すことによって、汚濁物質が河川や、湖沼、海域などの公共用水域へ放流されるのを防止し、又は抑制する下水道設備は公知である(例えば、特許文献1参照)。流入水中の汚濁物質成分を高精度かつ簡易に予測して、これらの汚濁物質成分を最少にするように除去する下水道設備の水質制御装置に関して従来の下水道設備の水質制御装置の一例を、図19を参照して説明する。
【0003】
図19において、合流式流入管渠1内の流入水2は一旦、雨水吐き室4へ流入し、ここから処理場送水管渠5を介して図示していない処理場へ流出される。晴天時には、流入水2は汚水のみからなる。晴天時には流入水2の流量は小さいので、水位は処理場送水管渠5の口径の範囲内にある。しかし、雨天時には汚水に雨水が混合された流入水2が雨水吐き室4へ流入するが、流入量が晴天時よりも大きいため、越流堰6を越えて越流水3が発生し、この越流水は放流管渠7および放流口8を介して、放流水9として河川に放流される。ところで、流入水2には汚水や、雨天時流出した屋根、道路などの雨水中の汚濁物質が多く含まれるため、放流水9の水質規制値超過の問題や、汚濁物質による河川10の汚染問題が起きる。特に、大腸菌群、BOD、SS、pHなどの下水道法規定の水質項目や、有機塩素化合物、農薬などの水質汚濁防止法規定の水質項目などである。
【0004】
このような問題に対処するために、例えば大腸菌群の殺菌を目的とした簡易法として、塩素殺菌装置を越流水側に設置する例を図に示す。ここでは、次亜塩素酸ナトリウム溶液貯留槽11に保管している同溶液を、ポンプ12を駆動することにより水配管13を介して雨水吐き室4の越流水3側へ供給し、この越流水3中に含まれる大腸菌群を塩素殺菌する。この場合、次亜塩素酸ナトリウム溶液の注入量が少なすぎると大腸菌群の殺菌が不充分になり、同溶液の注入量が多すぎると越流水3中に含まれる有機物と塩素が反応して、発ガン性の塩素系有機化合物が発生する虞があるので、それらを抑制するような制御が必要になる。そこで、地上雨量計14および降雨量演算手段15により降雨強度を演算し、この降雨強度から流入量予測手段16で流入量予測値を演算し、この流入量予測値から流入水質予測手段17で流入水質予測値を演算する。さらに制御目標値演算手段18で、この流入水質予測値と塩素注入量の制御目標値との関係式により、ポンプ12の流量の制御目標値を演算し、それが達成されるように制御装置19によりポンプ12の溶液流量を制御する。
【0005】
流入量予測手段16による流入量予測および演算手段17,18による演算の関係式の例を以下に例示する。流入量予測手段16の予測演算式を(1)式に、流入水質予測手段17の予測演算式を(2)式および(3)式に、制御目標値演算手段18の演算式を(4)式にそれぞれ示す。流入水質予測値Cwに係る物質はSS(浮遊物質)である。
Qw=a・C・I・A ・・・(1)
dS/dt=LF−(k・S・Qw) ・・・(2)
Cw=dS/dt/Qw ・・・(3)
QCl=K・Cw ・・・(4)
ここで、
QCl:塩素注入量制御目標値[m/min]
Cw:流入水質予測値[g/m
Qw:流入量予測値[m/min]
S:汚濁物質堆積量[g]
LF:晴天時流出負荷量[g/min]
C:流出係数
I:降雨強度[mm/min]
A:排水面積[ha]
K,k,n,a:パラメータ
である。
【0006】
また、水質制御装置のもう一つの従来例として、図20に示すものがある(例えば、特許文献2参照)。これは、図19と同様なプロセスであって、雨水吐き室4の越流堰6前段に配設したSS計20の計測値により、(4)式と同様に、塩素注入量の制御目標値を演算し、ポンプ12を制御するものである。
【0007】
【特許文献1】
特開2000−87433号公報
【特許文献2】
特開平7−82789号公報
【0008】
【発明が解決しようとする課題】
しかしながら、従来例である図19の下水道設備の水質制御装置では、次のような問題が発生し、大腸菌群の十分な殺菌と有害な塩素系有機化合物の生成抑制を達成する制御を実施することができなかった。
【0009】
(1)晴天時汚水の影響が考慮されていないので、水質予測の精度が低い
流入水質予測値は雨天時の流入量予測値から演算するものであり、雨天時のファーストフラッシュは表現できるが、晴天時汚水の汚濁物質を考慮していないので、水質を正確に予測することができなかった。特に、この従来例のような大腸菌群を殺菌するケースでは、大腸菌群の起源は汚水中に多く含まれるので、汚水を考慮しないと正確な予測は困難である。
【0010】
また、図20の下水道設備の水質制御装置においても、以下の問題により上記目的の制御を達成することができなかった。
【0011】
(2)SS計の汚れによりその精度が悪化する
SS計20が常に汚水に接触しているので、その電極部分に汚水中の汚濁物質や微生物が付着して汚れが進行し、仮に洗浄などの機能が付いていたとしても精度の回復は困難であった。
【0012】
本発明は、上記問題点を解決し、雨天時、合流式もしくは分流式でかつその合流汚水、雨水、分流汚水中の汚濁物質を処理する下水道設備において、流入水中の汚濁物質成分を高精度かつ簡易に予測して、これらの汚濁物質成分を最少にするように除去する、下水道設備の水質制御装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に係る発明の下水道設備の水質制御装置は、雨水を含む汚水中の汚濁物質を、沈殿、貯留、凝集剤処理、殺菌剤処理、オゾン処理、および紫外線殺菌の少なくとも1種類の方法で除去する水質除去手段と、降雨開始時刻もしくは前回降雨の終了時刻からの無降雨時間を計測する降雨時間情報計測手段と、降雨強度および降雨積算量を含む降雨量情報を計測する降雨量情報計測手段と、無降雨時間および降雨積算量を参照して汚水中の汚濁物質成分を予測する水質予測手段と、この水質予測手段の予測値に基づいて水質除去手段の操作量を制御する制御手段とを備えたことを特徴とする。
【0014】
請求項2に係る発明の下水道設備の水質制御装置は、雨水を含む汚水中の汚濁物質を、沈殿、貯留、凝集剤処理、殺菌剤処理、オゾン処理、および紫外線殺菌の少なくとも1種類の方法で除去する水質除去手段と、降雨開始時刻もしくは前回降雨の終了時刻からの無降雨時間を計測する降雨時間情報計測手段と、汚水流量または汚水水位を含む少なくとも1種類の汚水物理量を計測する汚水物理量計測手段と、無降雨時間および汚水物理量計測値を参照して汚水中の汚濁物質成分を予測する水質予測手段と、この水質予測手段の予測値に基づいて水質除去手段の操作量を制御する制御手段とを備えたことを特徴とする。
【0015】
請求項3に係る発明は、請求項1または2に記載の下水道設備の水質制御装置において、水質予測手段は晴天時の水質および流量のデータを蓄積したデータベースを有し、汚濁物質成分の予測に際してデータベースに蓄積されたデータを利用することを特徴とする。
【0016】
請求項4に係る発明は、請求項1または2に記載の下水道設備の水質制御装置において、汚濁物質成分は、浮遊物質(SS)、濁度、水素イオン濃度、紫外線吸光度(UV)、溶解性紫外線吸光度(S−UV)、生物化学的酸素要求量(BOD)、溶解性BOD(S−BOD)、化学的酸素要求量(COD)、溶解性COD(S−COD)、全有機炭素(TOC)、溶解性TOC(S−TOC)、アンモニア性窒素、全窒素、リン酸性リン、全リン、大腸菌群の少なくとも1種類であることを特徴とする。
【0017】
請求項5に係る発明は、請求項1または2に記載の下水道設備の水質制御装置において、汚水中の汚濁物質成分を計測する水質計測手段と、水質予測手段によって予測された汚水中の汚濁物質成分を、水質計測手段によって得られた汚濁物質成分の計測値で校正する水質予測値校正手段とを備えたことを特徴とする。
【0018】
【発明の実施の形態】
<実施の形態1>
(実施の形態1の構成)
以下、図面を参照して本発明の実施の形態1について説明する。
【0019】
図1は、本発明の実施の形態1に係る水質制御装置を示すものである。図1の水質制御装置は、すでに述べた従来技術に係る図19の水質制御装置において、流入量予測手段16および流入水質予測手段17を省略し、その代わりに、降雨時間情報計測手段21、晴天時流入水質・流入量演算手段22、および流入水質・流入量予測演算手段23を新たに設けたものに相当する。他のブロックおよび流入水が通流する主系統の設備構成は図19と同様である。図2は図1における同設備の要部の拡大説明図である。
【0020】
(実施の形態1の作用)
降雨時間情報計測手段21は、地上雨量計14および降雨量演算手段15によって演算された降雨強度Iを入力値として、その降雨強度Iが発生した時刻t1を計測する。この時刻t1から、
t2 =t1+tw ・・・(5)
により降雨流達時刻t2を算出する。ここで、twは、降雨が流入管渠1内に流入してから雨水吐き室4内に流入するまでに要する時間であるとする。
【0021】
次に、晴天時流入水質・流入量演算手段22および流入水質・流入量予測演算手段23は、時刻t2における流入量予測値Q(t2)を、
Qw(t2)=b・I(t1) ・・・(6)
として演算し、さらに時刻t2における流入大腸菌群予測値Cw(t2)を、
【数1】

Figure 2004249200
に基づいて演算する。そして、前述の従来例に係る図19の場合と同様に、制御目標値演算手段18において塩素注入量制御目標値QClを、
QCl=K・Cw ・・・(4)(再掲)
として演算し、出力する。
【0022】
ここで、各符号は、
Cw(t2):t2時における流入大腸菌群予測値[個/ml]
t:時刻
t1:降雨開始時刻
t2:降雨流達時刻
tw:流達時間[min]
b:パラメータ
I(t1):t1時における降雨強度[mm/min]
Qw(t2):t2時における流入量予測値[m/min]
QF(t2):t2時における晴天時汚水流入量<定数>[m/min]
CF(t2):t2時における晴天時汚水流入大腸菌群<定数>[個/ml]
QCl:塩素注入量制御目標値[m/min]
である。
【0023】
(5)式と(6)式における降雨強度Iと、(7)式におけるt2時における晴天時汚水流入大腸菌群CF(t2)と、同式におけるt2時における晴天時汚水流入量QF(t2)のトレンドグラフによる作用図を、図3、図4および図5にそれぞれ示す。図3の例では、9:00が降雨開始時刻であり、流達時間twが10minであるので、9:10をt2として、この時刻における晴天時の大腸菌群と汚水流入量を図4および図5から算出する。この図4および図5の内容は、流入水質・流入量予測演算手段23内に格納されている。
【0024】
晴天時においては、ほとんどその変化パターンが同様になるので、そのパターンを適用し、雨天時の流入量予測値のみを変数として、雨天時の流入水中の大腸菌群を予測すればよい。
【0025】
(実施の形態1の効果)
実施の形態1によれば、
(1)流入大腸菌群予測値Cw(t2)の演算の入力値として、時刻t2時における流入量予測値Qw(t2)を用いており、流入水2に雨水が混入する前に対応することができるので、制御のための準備、特にポンプ12の起動などに迅速に対応することができる。
【0026】
(2)定数である、時刻t2時における晴天時汚水流入量QF(t2)と、時刻t2時における晴天時汚水流入大腸菌群CF(t2)の設定を、図4と図5に示すようなトレンドデータにして利用しているので、各時刻の変化に応じた水質を予測することができ、予測精度が向上する。
【0027】
(3)降雨量演算手段15として降雨強度Iを、降雨時間情報計測手段21として降雨開始時刻t1のみをそれぞれ適用するので、簡単な入力で流入大腸菌群予測値Cw(t2)を演算することができる。したがって、パラメータの調整が容易でかつ、ユーザがわかりやすく予測値を利用することができる。
【0028】
(4)水処理プロセスとして、次亜塩素酸ナトリウムによる塩素注入場所として、雨水吐き室4内の越流堰6後段部を適用しているので、処理場送水管渠5へは次亜塩素酸ナトリウムが混入しないため、処理場への影響は発生しない。
【0029】
(5)流入水質予測の汚濁物質項目として計測困難な大腸菌群を利用するので、精度の高い大腸菌群予測値に基づく制御が可能となり、図1の塩素注入量などの殺菌プロセスにはその処理性能を向上させることができる。
【0030】
<実施の形態2>
実施の形態1の変形例として、以下の実施の形態が可能である。
【0031】
(1)流入予測以外のセンサの適用
実施の形態1では、流入大腸菌群予測値Cw(t2)の演算の入力値として、時刻t2時における流入量予測値Qw(t2)を用いたが、水位計による流入量演算や、流量計の計測値も使用することができる。
【0032】
水位計による流入量演算の一実施の形態が図8に示されている。ここでは、図1の装置との比較において、流入水質・流入量予測演算手段23に代わりに流入水質予測演算手段26が設けられ、さらに、雨水吐き室4内の越流堰6より上流側の水位を検出する水位計24、および、水位計24の検出信号に基づいて流入水2の流入量を演算する流入量演算手段25bが設けられている。
【0033】
この場合、水位計24の計測値H(t2)に比例して時刻t2時における流入量演算値Qw(t2)を、
Qw(t2)=c・H(t2) ・・・ (8)
として演算し、前述の(7)式および(4)式により時刻t2時における流入大腸菌群予測値Cw(t2)を流入水質予測演算手段26で演算して、塩素注入量を制御する。
【0034】
ここで、
Qw(t2):t2時における流入量演算値 [m/min]
c:パラメータ
H(t2):t2時における水位 [m]
である。
【0035】
なお、水位計24の設置位置は、越流堰6の後段(下流側)や、合流式流入管渠1内に配設することも可能である。また、(6)式の線形式以外にも、Q−H曲線などの非線型式も利用可能である。
【0036】
また、図9に示すように、水位計を設けるのではなく、それの代わりに雨水吐き室4への流入水2の流量を、越流堰6の前段、または後段、合流式流入管渠1内に配設して測定する流量計27を設け、測定された流量を流入水質予測演算手段26で用いるようにすることができる。
【0037】
さらに、図10に示すように、地上雨量計14(図1、図9)に代えてレーダ雨量計28を設置し、その測定結果を用いて降雨量演算をすることもできる。
【0038】
(2)無降雨時間によりファーストフラッシュ分を加算
上述の実施の形態では晴天時流入水質・流入量予測手段22内での流入水質予測演算の際、降雨時間情報計測手段21で求められた降雨開始時刻t1を利用したが、無降雨時間tFを利用することもできる。すなわち、無降雨時間tFから雨水中大腸菌群予測値CR(t2)を、
CR(t2)=k・tF ・・・ (9)
として算出し、この予測値CR(t2)と定数として与えられるt2時の晴天時汚水流入量CF(t2)との和から流入大腸菌群予測値Cw(t2)を、
【数2】
Figure 2004249200
として演算するものである。
【0039】
ここで、
Cw(t2):t2時における流入大腸菌群予測値 [個/ml]
CR(t2):t2時における雨水中大腸菌群予測値 [個/ml]
t2:時刻
tF:無降雨時間 [d]
k:パラメータ
QF(t2):t2時における晴天時汚水流入量<定数> [m/min]
CF(t2):t2時における晴天時汚水流入大腸菌群<定数> [個/ml]
である。
【0040】
他の実施の形態として、上述の大腸菌群に関する事項は後述する(5)項の「他の汚濁物質成分予測もしくは計測」と同様に、他の汚濁物質にも適用することができる。特に初期降雨時には、屋根や、道路、下水管渠内に蓄積したSS、BOD、CODなどの固形物もしくは有機物が多量に流れる現象、すなわちファーストフラッシュ現象があるので、図1に示すような塩素注入プロセスではあまり影響されないが、雨水貯留管、雨水滞水池、凝集剤、UV殺菌、オゾン処理などの水処理プロセスにおいては、予測精度をより向上させることができる。
【0041】
(3)晴天時データベースの適用
図1の装置では、(7)式におけるt2時における晴天時汚水流入大腸菌群CF(t2)と、同式におけるt2時における晴天時汚水流入量QF(t2)が、流入水質・流入量予測演算手段23内に格納されているが、晴天時データベースを活用することも可能である。図9に示すように、図4や図5のようなデータが、晴天時水質・量データベース29内に格納されており、このデータベース29内のデータを利用して水質予測演算をすることも可能である。
【0042】
この場合、データベースであるので、季節や曜日などの分類も可能となり、さらに予測精度を向上させることができる。
【0043】
(4)他の水処理プロセスへの適用
本発明は図1に示す雨水吐き室4の越流側で汚濁物質除去を行うものに限られることなく、それ以外のプロセス部分に対しても以下の(a)〜(e)に示すように適用可能である。
【0044】
(a) 水配管13が雨水吐き室4の流入部に配され、その流入部に塩素を注入するもの(図12)。また、塩素注入は流入部よりもさらに前段の合流式流入管渠1内で行うことも可能である。これらの場合、処理場への塩素混和があるものの、早めの塩素注入により注入遅れを防止することができ、大腸菌群の河川への流出を抑制することができる。
【0045】
(b) 次亜塩素酸ナトリウム溶液貯留槽11の代わりに、液体塩素、次亜塩素酸カルシウム、塩素化イソシアヌール酸、二塩化酸素、臭素系殺菌剤などの使用が可能である。また、殺菌剤のほかに、PAC、硫酸アルミニウム、硫酸鉄などの凝集剤も適用可能である(図1と同様)。
【0046】
(c) 雨水貯留管や雨水滞水池などの雨水貯留施設の操作量にも適用することができる。
【0047】
図13は雨水貯留管33を設ける例を示すものであり、雨水貯留管33は流入管渠1から、ゲート32を含む水配管31を介して接続され、ポンプ35により水配管34を介して河川10へ放流したり、ポンプ37により水配管36を介して流入管渠1へ放流したりする。この場合、制御対象となる操作量は、ゲート32、ポンプ35,36である。
【0048】
(d) オゾン処理や紫外線殺菌(UV殺菌)などへの制御にも適用可能である。図14はオゾン処理の場合の一例を示すものであり、雨水吐き室4の越流堰下流側に散気管43を浸漬させ、オゾン発生器40から調整弁41を含むガス配管42を介して散気管43に調整されたオゾンを送り、散気管43から雨水吐き室4内にオゾンを放出させるものである。この場合、制御対象となる操作量は、調整弁41である。
【0049】
図15はUV殺菌の一例を示すものであり、散気管43に代えてUVランプ48を浸漬させ、電源45から調光器46および電気線47を介してUVランプ48に調整された電力を供給し、UVランプ48からUV(紫外線)を発生させるものである。この場合、操作対象は調光器46である。なお、図14の散気管43および図15のUVランプ48は、いずれも設置場所が各図に示されたものに限定されることはない。
【0050】
(e) 本発明は、分流式下水道の雨水吐き口や、分流式下水道の簡易放流、直接放流にも適用可能である。つまり、分流式下水道の雨水中にも屋根や道路からの汚濁物質が混入するし、分流式下水道の汚水中にも雨水などの不明水が混入するので、それらの水処理設備にも、本発明を適用することができる。
【0051】
(5)他の汚濁物質成分予測もしくは計測
BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、SS(浮遊物質)、TN(全窒素)、TP(全リン)、pH(水素イオン濃度)は、法律の規制、すなわち下水道法もしくは水質汚濁防止法の適用を受ける項目であり、これらは大腸菌群と同様に予測することができる。TOC(全有機炭素)、S−TOC(溶解性TOC)、NH−N(アンモニア性窒素)、PO−P(リン酸性リン)、S−BOD(溶解性BOD)、S−COD(溶解性COD)、UVD(紫外線吸光度)、S−UV(溶解性UV)、濁度は法律の適用を受けないが、上記適用対象と相関が高く、簡易に測定できるので、予測精度の評価に有効である。
【0052】
(6)予測手段の補正
流入水質予測演算の精度が低下した時、補正を加えることができる。図16に示すように、図1における流入水質・流入量予測演算手段23に流入水質予測演算補正手段50を付設し、入力される流入水質補正値51に応じて予測演算式を補正するものである。
【0053】
さらに、補正に当たっては、図17に示すような1点補正がある。(11)式に示すように、代表的な時刻、例えば時刻tで補正値(=実測値)を入力し、この補正値から補正演算値CF(t)を演算するものである。すなわち、
CF(t)=k・CF(t3) ・・・ (11)
ここで、
CF(t):時刻tにおける晴天時汚水流入大腸菌群<定数> [個/ml]
CF(t3):時刻t2における晴天時汚水流入大腸菌群<入力値> [個/ml]
t:時刻
k:パラメータ
他の変形例としては、1点補正以外にも2点補正等が適用可能である。また、図16では補正値51を手入力で与えるものとしているが、センサ出力を利用することもできる。この場合、相関のあるセンサを用いる。例えば、流入水質予測項目が、BOD、CODの場合はUV計やTOC計などのセンサ、同項目がSSの場合はSS計もしくは濁度計、TN、NH−N、TP、PO−Pの場合は同計測値を出力するセンサなどである。大腸菌群の場合には大腸菌群センサの他にSS計、濁度計、UV計を代替することができる。
【0054】
【発明の効果】
本発明によれば、雨天時、合流式もしくは分流式でかつその合流汚水、雨水、分流汚水中の汚濁物質を処理する下水道設備において、流入水中の汚濁物質成分を高精度かつ簡易に予測して、これらの汚濁物質成分を最少にするように除去する下水道設備の水質制御装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による下水道設備の水質制御装置の一実施形態を示すブロック図。
【図2】図1の雨水吐き室周りを拡大して一部破断しかつ上蓋を外した状態で示す下水道設備の模式図。
【図3】一実施形態における降雨強度の時刻変化を示す図。
【図4】一実施形態における晴天時汚水流入大腸菌群の時刻変化を示す図。
【図5】一実施形態における晴天時汚水流入流量の時刻変化を示す図。
【図6】一実施形態における雨水中大腸菌群の時刻変化を示す図。
【図7】一実施形態における流入水中大腸菌群の時刻変化を示す図。
【図8】本発明による水質制御装置の他の実施形態を示すブロック図。
【図9】本発明による水質制御装置のさらに他の実施形態を示すブロック図。
【図10】本発明による水質制御装置の他の実施形態を示すブロック図。
【図11】一実施形態において晴天時水質・量データベースを設けた実施形態を示すブロック図。
【図12】下水道設備の流入水に次亜塩素酸ナトリウム溶液を加える実施形態を示す図。
【図13】下水道設備に雨水貯留管を設ける例を示す図。
【図14】下水道設備の流入水にオゾンを加える実施形態を示す図。
【図15】下水道設備の流入水にUVを加える実施形態を示す図。
【図16】一実施形態に流入水質予測演算補正手段を設ける例を示すブロック図。
【図17】流入水質予測演算補正手段による補正作用を説明するための図。
【図18】流入水質予測演算補正手段による他の補正作用を説明するための図。
【図19】従来の下水道設備の水質制御装置の構成例を示すブロック図。
【図20】従来の水質制御装置の他の構成例を示すブロック図。
【符号の説明】
1 合流式流入管渠
2 流入水
3 越流水
4 雨水吐き室
5 処理場送水管渠
6 越流堰
7 放流管渠
8 放流口
9 放流水
10 河川
11 次亜塩素酸ナトリウム溶液貯留槽
12 ポンプ
14 地上雨量計
15 降雨量演算手段
18 制御目標値演算手段
19 制御装置
20 SS計(浮遊物質計)
21 降雨時間情報計測手段
22 晴天時流入水質・流入量演算手段
23 流入水質・流入量予測演算手段
24 水位計
25 流入量演算手段
26 流入水質予測演算手段
27 流量計
28 レーダ雨量計
29 晴天時水質・量データベース
32 ゲート
33 雨水貯留管
35 ポンプ
40 オゾン発生器
41 調整弁
46 調光器
48 UVランプ
50 流入水質予測演算の補正手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water quality control device for a sewerage facility, and more particularly to a water quality control device for a sewerage facility for performing a water quality improvement process on sewage including rainwater stored in a rainwater discharge chamber.
[0002]
[Prior art]
Separated or combined sewerage systems, especially pollutants accumulated on roofs, roads, culverts, and sewers during fine weather, drain into rainwater pipes or sewage pipes, combined sewer pipes with rainwater during rainy weather, and Treatment of pollutants such as sedimentation, storage, coagulant treatment, disinfectant treatment, ozone treatment, and UV sterilization prevents the discharge of pollutants into public water bodies such as rivers, lakes and seas. Sewerage facilities that reduce or suppress water are known (for example, see Patent Document 1). FIG. 19 shows an example of a conventional water quality control device of a sewerage system regarding a water quality control device of a sewerage system which accurately and easily predicts pollutant components in influent water and removes these pollutant components so as to minimize them. This will be described with reference to FIG.
[0003]
In FIG. 19, the inflow water 2 in the merged inflow duct 1 once flows into the rainwater discharge chamber 4, from which it flows out to the treatment plant (not shown) via the treatment plant water supply conduit 5. When the weather is fine, the inflow water 2 consists only of sewage. Since the flow rate of the inflow water 2 is small when the weather is fine, the water level is within the range of the diameter of the water pipe 5 of the treatment plant. However, in the rainy weather, the inflow water 2 in which the sewage is mixed with the rainwater flows into the rainwater discharge chamber 4, but since the inflow is larger than that in the fine weather, the overflow water 3 is generated over the overflow weir 6, and the overflow water 3 is generated. The flowing water is discharged as discharge water 9 to a river via a discharge pipe 7 and a discharge port 8. By the way, the influent 2 contains a lot of pollutants such as sewage, rainy roofs, roads, etc., and the effluent 9 has a problem of exceeding the water quality regulation value and the pollutant has a problem of polluting the river 10. Happens. In particular, there are water quality items stipulated by the Sewerage Law, such as coliform bacteria, BOD, SS, and pH, and water quality items stipulated by the Water Pollution Control Law, such as organic chlorine compounds and pesticides.
[0004]
In order to deal with such a problem, an example in which a chlorine disinfection device is installed on the overflow water side is shown in the figure as a simple method for disinfecting coliforms, for example. Here, the same solution stored in the sodium hypochlorite solution storage tank 11 is supplied to the overflow water 3 side of the rainwater discharge chamber 4 via the water pipe 13 by driving the pump 12, 3. The coliform group contained in 3 is sterilized by chlorine. In this case, if the injection amount of the sodium hypochlorite solution is too small, the sterilization of coliform bacteria becomes insufficient, and if the injection amount of the solution is too large, the organic matter contained in the overflow water 3 reacts with chlorine, Since carcinogenic chlorine-based organic compounds may be generated, it is necessary to perform control to suppress them. Therefore, the rainfall intensity is calculated by the ground rain gauge 14 and the rainfall calculation means 15, the inflow prediction value is calculated by the inflow prediction means 16 from this rainfall intensity, and the inflow water quality prediction means 17 is calculated from this inflow prediction value. Calculate water quality prediction values. Further, the control target value calculating means 18 calculates the control target value of the flow rate of the pump 12 by the relational expression between the predicted value of the inflow water quality and the control target value of the chlorine injection amount. Controls the solution flow rate of the pump 12.
[0005]
An example of a relational expression between the inflow amount prediction by the inflow amount prediction means 16 and the calculation by the calculation means 17 and 18 will be described below. Equation (1) represents the prediction equation of the inflow rate prediction means 16, equation (2) and equation (3) represents the prediction equation of the inflow water quality prediction means 17, and equation (4) represents the equation of the control target value computation means 18. These are shown in the equations. The substance related to the predicted inflow water quality value Cw is SS (floating substance).
Qw = a · C · I · A (1)
dS / dt = LF- (k · S · Qw n) ··· (2)
Cw = dS / dt / Qw (3)
QCl = K · Cw (4)
here,
QCl: chlorine injection amount control target value [m 3 / min]
Cw: Inflow water quality prediction value [g / m 3 ]
Qw: Inflow predicted value [m 3 / min]
S: Pollutant accumulation amount [g]
LF: Outflow load at fine weather [g / min]
C: Runoff coefficient I: Rainfall intensity [mm / min]
A: Drainage area [ha]
K, k, n, a: parameters.
[0006]
Another conventional water quality control device is shown in FIG. 20 (for example, see Patent Document 2). This is a process similar to that of FIG. 19, and the control target value of the chlorine injection amount is calculated in the same manner as in the equation (4) by the measurement value of the SS meter 20 disposed in the rainwater discharge chamber 4 in the upstream stage of the overflow weir 6 in the same manner. Is calculated to control the pump 12.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-87433 [Patent Document 2]
JP-A-7-82789
[Problems to be solved by the invention]
However, the water quality control device of the sewerage system shown in FIG. 19, which is a conventional example, has the following problems. Therefore, it is necessary to perform control for achieving sufficient sterilization of coliform bacteria and suppression of generation of harmful chlorine-based organic compounds. Could not.
[0009]
(1) Since the effect of sewage on fine weather is not taken into account, the predicted value of inflow water quality with low accuracy of water quality prediction is calculated from the predicted value of inflow amount in rainy weather, and the first flash in rainy weather can be expressed. Since the pollutants of the sewage in fine weather were not considered, the water quality could not be accurately predicted. In particular, in the case of disinfecting coliforms as in this conventional example, since the origin of coliforms is often contained in sewage, accurate prediction is difficult unless sewage is considered.
[0010]
Further, in the water quality control device of the sewage system shown in FIG. 20, the above-described control could not be achieved due to the following problem.
[0011]
(2) The accuracy of the SS meter deteriorates due to the contamination of the SS meter. Since the SS meter 20 is constantly in contact with the sewage, the pollutants and microorganisms in the sewage adhere to the electrode portion, and the stain progresses. Even with the function, it was difficult to recover the accuracy.
[0012]
The present invention solves the above-mentioned problems, and in rainy days, in a sewerage facility that treats pollutants in combined sewage, rainwater, and diverted sewage in a combined or split-flow type, in a sewerage facility with high precision and high accuracy of pollutant components in influent water. It is an object of the present invention to provide a water quality control device for sewage equipment that simply predicts and removes these pollutant components to a minimum.
[0013]
[Means for Solving the Problems]
The water quality control device of the sewerage facility according to the first aspect of the present invention is a method for controlling pollutants in wastewater including rainwater by at least one method of sedimentation, storage, coagulant treatment, disinfectant treatment, ozone treatment, and ultraviolet sterilization. Water quality removing means for removing, rainfall time information measuring means for measuring no rainfall time from the rain start time or the end time of previous rainfall, and rainfall information measuring means for measuring rainfall information including rainfall intensity and integrated rainfall And water quality prediction means for predicting a pollutant component in sewage with reference to the non-rainfall time and the integrated amount of rainfall, and control means for controlling the operation amount of the water quality removal means based on the predicted value of the water quality prediction means. It is characterized by having.
[0014]
The water quality control device of the sewage equipment according to the second aspect of the present invention is capable of removing pollutants in wastewater including rainwater by at least one method of sedimentation, storage, coagulant treatment, disinfectant treatment, ozone treatment, and ultraviolet sterilization. Water quality removing means for removing, rainfall time information measuring means for measuring no rainfall time from the rain start time or the end time of previous rainfall, and sewage physical quantity measurement for measuring at least one kind of sewage physical quantity including sewage flow rate or sewage water level Means, water quality prediction means for predicting pollutant components in sewage with reference to no rainfall time and sewage physical quantity measurement values, and control means for controlling the operation amount of water quality removal means based on the predicted values of the water quality prediction means And characterized in that:
[0015]
According to a third aspect of the present invention, in the water quality control device for sewage facilities according to the first or second aspect, the water quality prediction means has a database storing data of water quality and flow rate in fine weather, and is used for predicting pollutant components. It is characterized by using data stored in a database.
[0016]
According to a fourth aspect of the present invention, in the water quality control device for sewage equipment according to the first or second aspect, the pollutant components include suspended solids (SS), turbidity, hydrogen ion concentration, ultraviolet absorbance (UV), and solubility. UV absorbance (S-UV), biochemical oxygen demand (BOD), soluble BOD (S-BOD), chemical oxygen demand (COD), soluble COD (S-COD), total organic carbon (TOC) ), Soluble TOC (S-TOC), ammonia nitrogen, total nitrogen, phosphorous phosphorus, total phosphorus, and Escherichia coli.
[0017]
The invention according to claim 5 is the water quality control device for sewage equipment according to claim 1 or 2, wherein the water quality measuring means for measuring the pollutant component in the waste water, and the pollutant in the waste water predicted by the water quality prediction means. And a water quality prediction value calibrating means for calibrating the component with the measured value of the pollutant substance component obtained by the water quality measuring means.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
<Embodiment 1>
(Configuration of Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 shows a water quality control device according to Embodiment 1 of the present invention. The water quality control device of FIG. 1 is different from the water quality control device of FIG. 19 according to the prior art described above in that the inflow amount prediction means 16 and the inflow water quality prediction means 17 are omitted, and instead, the rainfall time information measurement means 21 and the fine weather The inflow water quality / inflow amount calculation means 22 and the inflow water quality / inflow amount prediction calculation means 23 correspond to newly provided ones. The other blocks and the equipment configuration of the main system through which the inflow water flows are the same as those in FIG. FIG. 2 is an enlarged explanatory view of a main part of the same equipment in FIG.
[0020]
(Operation of Embodiment 1)
The rainfall time information measuring means 21 uses the rainfall intensity I calculated by the ground rain gauge 14 and the rainfall amount calculating means 15 as an input value and measures the time t1 at which the rainfall intensity I occurs. From this time t1,
t2 = t1 + tw (5)
To calculate the rainfall arrival time t2. Here, it is assumed that tw is a time required from the time when the rain flows into the inflow duct 1 to the time when the rain flows into the rainwater discharge chamber 4.
[0021]
Next, the inflow water quality / inflow amount calculation means 22 during fine weather and the inflow water quality / inflow amount prediction calculation means 23 calculate the inflow amount prediction value Q W (t2) at time t2,
Qw (t2) = b · I (t1) (6)
And the influx coliform bacteria group predicted value Cw (t2) at time t2 is
(Equation 1)
Figure 2004249200
Is calculated based on Then, similarly to the case of FIG. 19 according to the above-described conventional example, the control target value calculating unit 18 sets the chlorine injection amount control target value QCl to:
QCl = K · Cw (4) (repost)
And outputs the result.
[0022]
Here, each code is
Cw (t2): predicted value of influenza coliforms at t2 [pcs / ml]
t: time t1: rain start time t2: rain arrival time tw: arrival time [min]
b: Parameter I (t1): Rainfall intensity at t1 [mm / min]
Qw (t2): Predicted inflow amount at t2 [m 3 / min]
QF (t2): inflow of sewage in fine weather at t2 <constant> [m 3 / min]
CF (t2): coliform group inflowing sewage in clear weather at t2 <constant> [pcs / ml]
QCl: chlorine injection amount control target value [m 3 / min]
It is.
[0023]
Rainfall intensity I in equations (5) and (6), clear water sewage inflow coliform group CF (t2) at time t2 in equation (7), and clear weather sewage inflow QF (t2) at time t2 in the same equation 3, 4, and 5 are action diagrams based on the trend graph of FIG. In the example of FIG. 3, since 9:00 is the rainfall start time and the arrival time tw is 10 min, 9:10 is t2, and the coliform bacteria and sewage inflow at fine time at this time are shown in FIGS. Calculated from 5. 4 and 5 are stored in the inflow water quality / inflow amount prediction calculation means 23.
[0024]
When the weather is fine, the change pattern is almost the same. Therefore, the pattern may be applied to predict the coliform bacteria in the inflow water in rainy weather using only the predicted value of inflow in rainy weather as a variable.
[0025]
(Effect of Embodiment 1)
According to Embodiment 1,
(1) As the input value of the calculation of the influenza coliform group predicted value Cw (t2), the inflow amount predicted value Qw (t2) at time t2 is used, and it is possible to cope with the inflow water 2 before rainwater is mixed. Therefore, it is possible to quickly respond to the preparation for control, particularly, the activation of the pump 12.
[0026]
(2) The setting of the clear water sewage inflow amount QF (t2) at time t2 and the clear water sewage inflow coliform group CF (t2) at time t2, which are constants, are shown in FIGS. 4 and 5. Since the data is used as data, it is possible to predict the water quality according to the change at each time, and the prediction accuracy is improved.
[0027]
(3) Since only the rainfall intensity I is applied as the rainfall amount calculating means 15 and only the rainfall start time t1 is applied as the rainfall time information measuring means 21, it is possible to calculate the influenza coliform group predicted value Cw (t2) with a simple input. it can. Therefore, it is easy to adjust the parameters, and the user can easily use the predicted values.
[0028]
(4) In the water treatment process, the rear part of the overflow weir 6 in the rainwater discharge chamber 4 is used as a chlorine injection place of sodium hypochlorite, so that the hypochlorite is supplied to the treatment plant water pipe 5. There is no impact on the treatment plant because no sodium is mixed.
[0029]
(5) Use of coliforms that are difficult to measure as pollutant items in influent water quality prediction makes it possible to control based on highly accurate predicted coliforms, and the processing performance of the sterilization process such as the chlorine injection amount in Fig. 1 Can be improved.
[0030]
<Embodiment 2>
The following embodiments are possible as modifications of the first embodiment.
[0031]
(1) Application of sensor other than inflow prediction In the first embodiment, the inflow prediction value Qw (t2) at time t2 is used as the input value for the calculation of the influenza coliform group prediction value Cw (t2). The flow rate calculation by the meter and the measurement value of the flow meter can also be used.
[0032]
FIG. 8 shows an embodiment of the inflow rate calculation by the water level gauge. Here, in comparison with the apparatus of FIG. 1, an inflow water quality prediction calculation means 26 is provided instead of the inflow water quality / inflow amount prediction calculation means 23, and further, an upstream side of the overflow weir 6 in the rainwater discharge chamber 4. A water level meter 24 for detecting a water level and an inflow amount calculating means 25b for calculating an inflow amount of the inflow water 2 based on a detection signal of the water level meter 24 are provided.
[0033]
In this case, inflow amount calculation value Qw (t2) at time t2 is calculated in proportion to measurement value H (t2) of water level gauge 24,
Qw (t2) = cH (t2) (8)
And the inflow water quality prediction calculation means 26 calculates the influenza coliform group prediction value Cw (t2) at time t2 by the above-described equations (7) and (4), thereby controlling the chlorine injection amount.
[0034]
here,
Qw (t2): Inflow amount calculation value at time t2 [m 3 / min]
c: Parameter H (t2): Water level at t2 [m]
It is.
[0035]
The installation position of the water level gauge 24 can be provided at the downstream (downstream side) of the overflow weir 6 or in the merged inflow conduit 1. In addition to the linear expression of the expression (6), a non-linear expression such as a QH curve can also be used.
[0036]
Further, as shown in FIG. 9, instead of providing a water level gauge, instead of the water level gauge, the flow rate of the inflowing water 2 into the rainwater discharge chamber 4 is changed to a level before or after the overflow weir 6, A flow meter 27 is provided for measuring the flow rate, and the measured flow rate can be used by the inflow water quality prediction calculation means 26.
[0037]
Further, as shown in FIG. 10, a radar rain gauge 28 may be installed in place of the ground rain gauge 14 (FIGS. 1 and 9), and a rainfall calculation may be performed using the measurement result.
[0038]
(2) Addition of the first flash amount based on no rainfall time In the above-described embodiment, when the inflow water quality is calculated in the inflow water quality / inflow amount prediction means 22 in fine weather, the rain start calculated by the rainfall time information measurement means 21 Although the time t1 is used, the non-rainfall time tF can be used. That is, the predicted value CR (t2) of the coliform bacteria group in rainwater from the non-rainfall time tF is calculated as follows:
CR (t2) = k · tF (9)
From the sum of the predicted value CR (t2) and the inflow amount of sewage in clear weather at t2 given as a constant CF (t2), the influenza coliform group predicted value Cw (t2) is calculated as:
(Equation 2)
Figure 2004249200
Is calculated.
[0039]
here,
Cw (t2): predicted value of influenza coliforms at t2 [pcs / ml]
CR (t2): Predicted value of coliform bacteria in rainwater at t2 [pcs / ml]
t2: time tF: no rainfall time [d]
k: Parameter QF (t2): Inflow of sewage in clear weather at t2 <constant> [m 3 / min]
CF (t2): coliform group inflowing sewage in fine weather at t2 <constant> [pcs / ml]
It is.
[0040]
As another embodiment, the above-mentioned matters relating to the coliform bacteria group can be applied to other pollutants in the same manner as in "(5) Predicting or measuring other pollutant components" described later. Particularly during the initial rainfall, there is a phenomenon that a large amount of solid or organic matter such as SS, BOD and COD accumulated on the roof, roads and sewers flows, that is, a first flash phenomenon. Although not significantly affected by the process, the prediction accuracy can be further improved in water treatment processes such as rainwater storage pipes, rainwater reservoirs, flocculants, UV sterilization, and ozone treatment.
[0041]
(3) Application of fine weather database In the apparatus shown in FIG. 1, the clear water sewage inflow coliform group CF (t2) at the time t2 in the equation (7) and the fine weather sewage inflow amount QF (t2) at the time t2 in the equation are obtained. Although it is stored in the inflow water quality / inflow amount prediction calculation means 23, it is also possible to utilize a fine weather database. As shown in FIG. 9, data as shown in FIGS. 4 and 5 are stored in the clear water quality / quantity database 29, and the water quality prediction calculation can be performed using the data in the database 29. It is.
[0042]
In this case, since it is a database, classification such as season or day of the week can be performed, and the prediction accuracy can be further improved.
[0043]
(4) Application to Other Water Treatment Processes The present invention is not limited to the one that performs pollutant removal on the overflow side of the rainwater discharge chamber 4 shown in FIG. It is applicable as shown in (a) to (e).
[0044]
(A) The water pipe 13 is disposed at the inflow section of the rainwater discharge chamber 4 and injects chlorine into the inflow section (FIG. 12). Further, the chlorine injection can be performed in the merged inflow pipe 1 at a further stage before the inflow section. In these cases, although chlorine is admixed into the treatment plant, an earlier chlorine injection can prevent an injection delay and suppress the outflow of coliform bacteria to the river.
[0045]
(B) Instead of the sodium hypochlorite solution storage tank 11, liquid chlorine, calcium hypochlorite, chlorinated isocyanuric acid, oxygen dichloride, bromine-based disinfectant, or the like can be used. In addition to the disinfectant, a flocculant such as PAC, aluminum sulfate, and iron sulfate can be applied (similar to FIG. 1).
[0046]
(C) The present invention can be applied to the operation amount of a rainwater storage facility such as a rainwater storage pipe or a rainwater reservoir.
[0047]
FIG. 13 shows an example in which a rainwater storage pipe 33 is provided. The rainwater storage pipe 33 is connected from the inflow pipe 1 via a water pipe 31 including a gate 32, and is connected to a river via a water pipe 34 by a pump 35. 10 or discharged by the pump 37 to the inflow pipe 1 via the water pipe 36. In this case, the manipulated variables to be controlled are the gate 32 and the pumps 35 and 36.
[0048]
(D) It is also applicable to control to ozone treatment, ultraviolet sterilization (UV sterilization), and the like. FIG. 14 shows an example of the case of ozone treatment, in which an air diffuser 43 is immersed in the rainwater discharge chamber 4 downstream of the overflow weir and diffused from the ozone generator 40 via a gas pipe 42 including a regulating valve 41. The adjusted ozone is sent to the trachea 43, and the ozone is released from the air diffuser 43 into the rainwater discharge chamber 4. In this case, the operation amount to be controlled is the adjustment valve 41.
[0049]
FIG. 15 shows an example of UV sterilization, in which a UV lamp 48 is immersed instead of the air diffuser 43, and regulated power is supplied from the power supply 45 to the UV lamp 48 via the dimmer 46 and the electric wire 47. The UV lamp 48 generates UV (ultraviolet light). In this case, the operation target is the dimmer 46. The installation locations of the air diffuser 43 in FIG. 14 and the UV lamp 48 in FIG. 15 are not limited to those shown in the respective drawings.
[0050]
(E) The present invention is also applicable to rainwater outlets of a split-type sewer, simple discharge and direct discharge of a split-type sewer. In other words, pollutants from roofs and roads are mixed into the rainwater of the diverted sewer, and unknown water such as rainwater is mixed in the sewage of the diverted sewer. Can be applied.
[0051]
(5) Other pollutant component prediction or measurement BOD (biochemical oxygen demand), COD (chemical oxygen demand), SS (suspended matter), TN (total nitrogen), TP (total phosphorus), pH ( The hydrogen ion concentration) is an item subject to the regulation of the law, that is, the law of the Sewerage Act or the Water Pollution Control Act, and these can be predicted similarly to the coliform group. TOC (total organic carbon), S-TOC (solubility TOC), NH 4 -N (ammonia nitrogen), PO 4 -P (phosphorus acidic phosphorus), S-BOD (soluble BOD), S-COD (soluble COD), UVD (ultraviolet absorbance), S-UV (soluble UV), and turbidity are not subject to the law, but they are highly correlated with the above application and can be easily measured, so they are effective in evaluating prediction accuracy It is.
[0052]
(6) Correction of Prediction Means When the accuracy of the influent water quality prediction calculation decreases, correction can be made. As shown in FIG. 16, the inflow water quality / inflow amount prediction calculation means 23 in FIG. 1 is provided with an inflow water quality prediction calculation correction means 50, and corrects the prediction calculation equation according to the input inflow water quality correction value 51. is there.
[0053]
Further, there is a one-point correction as shown in FIG. As shown in Expression (11), a correction value (= actual measurement value) is input at a representative time, for example, time t, and a correction operation value CF (t) is calculated from the correction value. That is,
CF (t) = kCF (t3) (11)
here,
CF (t): coliform group inflowing sewage in clear weather at time t <constant> [pcs / ml]
CF (t3): coliform group inflowing sewage in clear weather at time t2 <input value> [number / ml]
t: time k: parameter As another modified example, two-point correction or the like other than one-point correction can be applied. Further, in FIG. 16, the correction value 51 is given manually, but a sensor output can be used. In this case, a correlated sensor is used. For example, the inflow water quality prediction entries, BOD, sensors such as UV meter or TOC meter For COD, the case the item is a SS SS meter or turbidimeter, TN, NH 4 -N, TP , PO 4 -P In the case of, a sensor that outputs the same measured value is used. In the case of the coliform group, an SS meter, a turbidity meter, and a UV meter can be used instead of the coliform group sensor.
[0054]
【The invention's effect】
According to the present invention, in rainy weather, in a sewerage facility that treats pollutants in the combined sewage, rainwater, and diverted sewage in a combined or diverted manner, the pollutant components in the influent are predicted with high accuracy and ease. In addition, it is possible to provide a water quality control device for sewage equipment that removes these pollutant components to a minimum.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a water quality control device for a sewer system according to the present invention.
FIG. 2 is a schematic diagram of the sewerage system shown in an enlarged state around the rainwater discharge chamber of FIG. 1 and partially broken and with an upper lid removed.
FIG. 3 is a diagram showing a time change of rainfall intensity in one embodiment.
FIG. 4 is a diagram illustrating a time change of the coliform bacteria inflowing sewage in fine weather in one embodiment.
FIG. 5 is a diagram showing a change in time of the flow rate of inflow of sewage in fine weather in one embodiment.
FIG. 6 is a diagram showing a time change of coliform bacteria in rainwater in one embodiment.
FIG. 7 is a diagram illustrating a time change of coliform bacteria in the influent water according to the embodiment.
FIG. 8 is a block diagram showing another embodiment of the water quality control device according to the present invention.
FIG. 9 is a block diagram showing still another embodiment of the water quality control device according to the present invention.
FIG. 10 is a block diagram showing another embodiment of the water quality control device according to the present invention.
FIG. 11 is a block diagram showing an embodiment in which a fine weather water quality / quantity database is provided in one embodiment.
FIG. 12 is a diagram showing an embodiment in which a sodium hypochlorite solution is added to inflow water of sewerage equipment.
FIG. 13 is a diagram showing an example in which a rainwater storage pipe is provided in a sewer system.
FIG. 14 is a diagram showing an embodiment in which ozone is added to inflow water of a sewer system.
FIG. 15 is a diagram showing an embodiment in which UV is added to inflow water of a sewer system.
FIG. 16 is a block diagram showing an example in which an inflow water quality prediction calculation correction means is provided in one embodiment.
FIG. 17 is a diagram for explaining a correction operation by an inflow water quality prediction calculation correction unit.
FIG. 18 is a view for explaining another correction operation by the inflow water quality prediction calculation correction means.
FIG. 19 is a block diagram showing a configuration example of a water quality control device of a conventional sewer system.
FIG. 20 is a block diagram showing another configuration example of a conventional water quality control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Confluence type inflow pipe 2 Inflow water 3 Overflow water 4 Rainwater discharge chamber 5 Treatment plant water pipe 6 Overflow weir 7 Discharge pipe 8 Discharge port 9 Discharge water 10 River 11 Sodium hypochlorite solution storage tank 12 Pump 14 Ground rain gauge 15 Rainfall calculating means 18 Control target value calculating means 19 Controller 20 SS meter (suspended matter meter)
Reference Signs List 21 Rainfall time information measuring means 22 Inflow water quality / inflow amount calculation means in fine weather 23 Inflow water quality / inflow amount prediction calculation means 24 Water level gauge 25 Inflow amount calculation means 26 Inflow water quality prediction calculation means 27 Flow meter 28 Radar rain gauge 29 Fine weather water quality・ Amount database 32 Gate 33 Rainwater storage pipe 35 Pump 40 Ozone generator 41 Adjustment valve 46 Dimmer 48 UV lamp 50 Correction means for predicting inflow water quality

Claims (5)

雨水を含む汚水中の汚濁物質を、沈殿、貯留、凝集剤処理、殺菌剤処理、オゾン処理、および紫外線殺菌の少なくとも1種類の方法で除去する水質除去手段と、降雨開始時刻もしくは前回降雨の終了時刻からの無降雨時間を計測する降雨時間情報計測手段と、降雨強度および降雨積算量を含む降雨量情報を計測する降雨量情報計測手段と、前記無降雨時間および降雨積算量を参照して汚水中の汚濁物質成分を予測する水質予測手段と、この水質予測手段の予測値に基づいて前記水質除去手段の操作量を制御する制御手段とを備えたことを特徴とする下水道設備の水質制御装置。Water quality removing means for removing pollutants in sewage including rainwater by at least one of sedimentation, storage, coagulant treatment, disinfectant treatment, ozone treatment, and ultraviolet sterilization, and the start time of rainfall or the end of previous rainfall Rainfall time information measuring means for measuring no rainfall time from the time, rainfall information measuring means for measuring rainfall information including rainfall intensity and rainfall integrated amount, and sewage with reference to the no rainfall time and rainfall integrated amount Water quality predicting means for predicting a pollutant component in the water, and a control means for controlling an operation amount of the water quality removing means based on a predicted value of the water quality predicting means, a water quality control device for sewage equipment, . 雨水を含む汚水中の汚濁物質を、沈殿、貯留、凝集剤処理、殺菌剤処理、オゾン処理、および紫外線殺菌の少なくとも1種類の方法で除去する水質除去手段と、降雨開始時刻もしくは前回降雨の終了時刻からの無降雨時間を計測する降雨時間情報計測手段と、汚水流量または汚水水位を含む少なくとも1種類の汚水物理量を計測する汚水物理量計測手段と、前記無降雨時間および汚水物理量計測値を参照して汚水中の汚濁物質成分を予測する水質予測手段と、この水質予測手段の予測値に基づいて前記水質除去手段の操作量を制御する制御手段とを備えたことを特徴とする下水道設備の水質制御装置。Water quality removing means for removing pollutants in sewage including rainwater by at least one of sedimentation, storage, coagulant treatment, disinfectant treatment, ozone treatment, and ultraviolet sterilization, and the start time of rainfall or the end of previous rainfall Rainfall time information measuring means for measuring no rainfall time from time, sewage physical quantity measuring means for measuring at least one kind of sewage physical quantity including sewage flow rate or sewage water level, and referring to the no rainfall time and sewage physical quantity measurement value Water quality prediction means for predicting pollutant components in wastewater, and control means for controlling the amount of operation of the water quality removal means based on the predicted value of the water quality prediction means. Control device. 前記水質予測手段は晴天時の水質および流量のデータを蓄積したデータベースを有し、汚濁物質成分の予測に際して前記データベースに蓄積されたデータを利用することを特徴とする請求項1または2に記載の下水道設備の水質制御装置。The said water quality prediction means has a database which accumulate | stored the data of the water quality and flow rate at the time of fine weather, and uses the data accumulate | stored in the said database at the time of the prediction of a pollutant substance component, The Claims 1 or 2 characterized by the above-mentioned. Water quality control device for sewage equipment. 前記汚濁物質成分は、浮遊物質、濁度、水素イオン濃度、紫外線吸光度、溶解性紫外線吸光度、生物化学的酸素要求量、溶解性生物化学的酸素要求量、化学的酸素要求量、溶解性化学的酸素要求量、全有機炭素、溶解性全有機炭素、アンモニア性窒素、全窒素、リン酸性リン、全リン、大腸菌群の少なくとも1種類であることを特徴とする請求項1または2に記載の下水道設備の水質制御装置。The pollutant components include suspended matter, turbidity, hydrogen ion concentration, ultraviolet absorbance, soluble ultraviolet absorbance, biochemical oxygen demand, soluble biochemical oxygen demand, chemical oxygen demand, and solubility chemical The sewer according to claim 1 or 2, wherein the amount is at least one of oxygen demand, total organic carbon, soluble total organic carbon, ammonia nitrogen, total nitrogen, phosphate phosphorus, total phosphorus, and coliform bacteria. Equipment water quality control device. 汚水中の汚濁物質成分を計測する水質計測手段と、前記水質予測手段によって予測された汚水中の汚濁物質成分を、前記水質計測手段によって得られた汚濁物質成分の計測値で校正する水質予測値校正手段とを備えたことを特徴とする請求項1または2に記載の下水道設備の水質制御装置。Water quality measuring means for measuring the pollutant component in the sewage, and the pollutant component in the sewage predicted by the water quality prediction means, the water quality prediction value to calibrate with the measured value of the pollutant component obtained by the water quality measurement means The water quality control device for sewage equipment according to claim 1, further comprising a calibration unit.
JP2003041417A 2003-02-19 2003-02-19 Water quality control device for sewer facilities Expired - Fee Related JP4439825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041417A JP4439825B2 (en) 2003-02-19 2003-02-19 Water quality control device for sewer facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041417A JP4439825B2 (en) 2003-02-19 2003-02-19 Water quality control device for sewer facilities

Publications (2)

Publication Number Publication Date
JP2004249200A true JP2004249200A (en) 2004-09-09
JP4439825B2 JP4439825B2 (en) 2010-03-24

Family

ID=33025002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041417A Expired - Fee Related JP4439825B2 (en) 2003-02-19 2003-02-19 Water quality control device for sewer facilities

Country Status (1)

Country Link
JP (1) JP4439825B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131583A (en) * 2003-10-31 2005-05-26 Toshiba Corp Disinfection equipment of confluent type sewerage
JP2006136866A (en) * 2004-11-15 2006-06-01 Toshiba Corp Control unit for sewage disposal plant
JP2006167579A (en) * 2004-12-15 2006-06-29 Toshiba Corp Disinfection system for combined sewage
JP2007090278A (en) * 2005-09-29 2007-04-12 Toshiba Corp Sewage disposal system
JP2007283274A (en) * 2006-04-20 2007-11-01 Hitachi Ltd Sewage treatment plant and its control equipment
JP2008231745A (en) * 2007-03-19 2008-10-02 Toshiba Corp Pump control unit
US20110049024A1 (en) * 2009-08-31 2011-03-03 Thomas Pank Method for treating runoff water using a series of treatment sequences to remove fine pollutants and clay
KR101118030B1 (en) * 2011-05-20 2012-02-27 (주) 휴마스 Spring water monitoring system
JP2014009458A (en) * 2012-06-28 2014-01-20 Takiron Co Ltd Rainwater storage piping structure
JP2015113635A (en) * 2013-12-12 2015-06-22 Jfeスチール株式会社 Water gate opening control system
KR20160027897A (en) 2014-09-02 2016-03-10 도꾜도 Liquid analyzer and liquid analysis system
CN110530813A (en) * 2019-07-25 2019-12-03 北京工业大学 A kind of initial rain flow removing device and application method based on spectrum analysis
CN111126702A (en) * 2019-12-24 2020-05-08 武汉新烽光电股份有限公司 Road surface source pollution information prediction method, device, equipment and storage medium
CN111675381A (en) * 2020-06-19 2020-09-18 中国城市建设研究院有限公司 Method for treating rain sewage mixed flowing water
CN111929262A (en) * 2020-06-30 2020-11-13 上海亨通海洋装备有限公司 Water quality COD prediction method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131583A (en) * 2003-10-31 2005-05-26 Toshiba Corp Disinfection equipment of confluent type sewerage
JP4679050B2 (en) * 2003-10-31 2011-04-27 株式会社東芝 Combined sewer disinfection equipment
JP4649175B2 (en) * 2004-11-15 2011-03-09 株式会社東芝 Sewage treatment plant control equipment
JP2006136866A (en) * 2004-11-15 2006-06-01 Toshiba Corp Control unit for sewage disposal plant
JP2006167579A (en) * 2004-12-15 2006-06-29 Toshiba Corp Disinfection system for combined sewage
JP2007090278A (en) * 2005-09-29 2007-04-12 Toshiba Corp Sewage disposal system
JP2007283274A (en) * 2006-04-20 2007-11-01 Hitachi Ltd Sewage treatment plant and its control equipment
JP2008231745A (en) * 2007-03-19 2008-10-02 Toshiba Corp Pump control unit
US20110049024A1 (en) * 2009-08-31 2011-03-03 Thomas Pank Method for treating runoff water using a series of treatment sequences to remove fine pollutants and clay
KR101118030B1 (en) * 2011-05-20 2012-02-27 (주) 휴마스 Spring water monitoring system
JP2014009458A (en) * 2012-06-28 2014-01-20 Takiron Co Ltd Rainwater storage piping structure
JP2015113635A (en) * 2013-12-12 2015-06-22 Jfeスチール株式会社 Water gate opening control system
KR20160027897A (en) 2014-09-02 2016-03-10 도꾜도 Liquid analyzer and liquid analysis system
CN110530813A (en) * 2019-07-25 2019-12-03 北京工业大学 A kind of initial rain flow removing device and application method based on spectrum analysis
CN111126702A (en) * 2019-12-24 2020-05-08 武汉新烽光电股份有限公司 Road surface source pollution information prediction method, device, equipment and storage medium
CN111126702B (en) * 2019-12-24 2024-02-27 武汉新烽光电股份有限公司 Road surface source pollution information prediction method, device, equipment and storage medium
CN111675381A (en) * 2020-06-19 2020-09-18 中国城市建设研究院有限公司 Method for treating rain sewage mixed flowing water
CN111929262A (en) * 2020-06-30 2020-11-13 上海亨通海洋装备有限公司 Water quality COD prediction method

Also Published As

Publication number Publication date
JP4439825B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4439825B2 (en) Water quality control device for sewer facilities
JP3961835B2 (en) Sewage treatment plant water quality controller
JP2005125229A (en) Sewerage treatment system
JP2019051497A (en) Water treatment control device and water treatment system
JP4008694B2 (en) Sewage treatment plant water quality controller
JP6866055B2 (en) Water treatment equipment and water treatment method
JP4364151B2 (en) Water quality prediction device and water quality control device
JP4649175B2 (en) Sewage treatment plant control equipment
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP7171445B2 (en) water treatment system
JP2007283274A (en) Sewage treatment plant and its control equipment
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JP6805002B2 (en) Water treatment control device and water treatment system
WO2021192088A1 (en) Water treatment device and water treatment method
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
JP2005313022A (en) Raw water quality estimating device
JP2020163299A (en) Method and device of treating effluent from electronic component production line
JP4908333B2 (en) Pump control device
JP4786278B2 (en) Sewage treatment system
JP4029719B2 (en) Waste water disinfection method and apparatus
JP3749800B2 (en) Sewer rainwater drainage control device
JP2003053375A (en) Device for controlling water quality
JP2001219183A (en) Water quality control apparatus of sewerage equipment
JP2007000859A (en) Phosphorous removal device in sewage disposal plant
JP2017121595A (en) Monitor and control system using activated-sludge process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4439825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees