JP2004249187A - Water treating apparatus - Google Patents

Water treating apparatus Download PDF

Info

Publication number
JP2004249187A
JP2004249187A JP2003040738A JP2003040738A JP2004249187A JP 2004249187 A JP2004249187 A JP 2004249187A JP 2003040738 A JP2003040738 A JP 2003040738A JP 2003040738 A JP2003040738 A JP 2003040738A JP 2004249187 A JP2004249187 A JP 2004249187A
Authority
JP
Japan
Prior art keywords
silver
water
electrodes
ion concentration
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040738A
Other languages
Japanese (ja)
Inventor
Takayuki Akaboshi
孝行 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003040738A priority Critical patent/JP2004249187A/en
Publication of JP2004249187A publication Critical patent/JP2004249187A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a water treating apparatus of high precision, which can perform stable sterilization regardless of water quality of raw water. <P>SOLUTION: The water treating apparatus is provided with a silver ion supply section 6 which has at least a pair of electrodes made of silver and dissolves silver ions in the raw water by electrolysis, a power supply section 1 for supplying electric current between both electrodes, a flowmeter 5 for measuring flow rate of the raw water and an electric current control section 2 for controlling the value of current flowing between both electrodes by a measured flow rate signal. Further at least one between a water thermometer 3 for measuring temperature of the raw water and a hydrogen ion concentration meter 4 for measuring hydrogen ion concentration is arranged in a prestage of the silver ion supply section. By incorporating these measured values into the electric current control section, the flowing current value is controlled. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、銀イオンにより原水の殺菌などを行う水処理装置に関する。
【0002】
【従来の技術】
従来から、銀イオンには殺菌効果があることが知られており、給水装置などにおける細菌の繁殖を抑制することを目的として、活性炭やセラミックなどの濾材に銀や銀化合物を添着したものや、銀電極を用いた電気分解で銀イオンを溶出させる方法などが数多く考案されている。特に電気分解による銀イオン溶出技術は、古くからソ連邦やヨーロッパ諸国などで利用されており、低い濃度での高い殺菌性、広域な殺菌作用を有すると共に、次亜塩素酸塩、オゾン、紫外線などの他の殺菌方法に比べて殺菌効果が長く持続するという特徴を持っていることから、航海中の船舶での飲料水や宇宙飛行中の宇宙船での飛行士の飲料水、プール水、薬等の保存水などにも使用されている。
電気分解により銀イオン溶出させる従来装置として図2はその概略を表す図である(例えば、特許文献1参照)。
図2において、1は電源部、2は電流制御部、5は流量計、6は銀イオン供給部、6aはアノード側電極、6bはカソード側電極、7は浄水カートリッジである。
銀イオン供給部6は、銀の電気分解によって銀イオンを溶出する装置であり、銀で構成されたアノード側電極6aと不溶解金属で構成されたカソード側電極6bが設けられた構造になっている。当該電極6a、6bに所定時間毎に通電することにより、電気分解が起こり、アノード側電極6aは電子を奪われ酸化し、カソード側電極6a、6bは電子を受け取って両電極6a、6b間に電流が流れ、アノード側電極6aから銀が溶解し、銀イオン(Ag+)が溶出する。カソード側電極6bは、不溶解電極材料として、白金、金、炭素棒、SUS、Ti、Ti−Ptなどが用いられている。
銀イオン供給部6の下流側には、浄水カートリッジ7が設けられている。浄水カートリッジ7は、活性炭などのろ材が収納されており、処理水中の有害成分を吸着除去して下流に流すようになっている。
銀イオンの溶出量は下式に示すファラデーの法則により決まる。したがって銀イオン添加による供給水の銀イオン濃度は、供給水の流量を検出し、該検出値に応じてアノード側電極6aとカソード側電極6bの間に流す電流値を制御すれば一定の濃度にすることができる。また任意の銀イオン濃度を電流値を制御することにより得ることができる。
銀の溶出量[g]={電流値[A]×時間[S]/96500[C/mol]}×107.9[g/mol]
供給水中の銀イオン濃度={(電流値[A]×時間[S])/(96500[C/mol]×流量[L/S])×107.9[g/mol]}
上記流量を検出するために供給水の流路中には流量計5が設けられている。この流量計5で計測された流量データは、電流制御部2に送られるようになっている。電流制御部2は、流量計5から送られてきた流量データに基づき、上記式に従って電流値を求め、電源部1を介してアノード側電極6aとカソード側電極6bに供給する電流値を制御するようになっている。この電流値制御により、上述のように銀イオン濃度を一定とすることができる。また、任意の濃度を電流値制御により得ることができる。
【0003】
【特許文献1】特開平2000−325953号公報
【0004】
【発明が解決しようとする課題】
しかしながら銀イオンの殺菌作用は、供給水の水温や水素イオン濃度などによって著しく影響を受けるため、必ずしも銀イオン濃度を一定に制御することが望ましいとは言えない。一般には銀イオンの殺菌作用は、水温上昇につれて強化されると言われている。また、水素イオン濃度の高低も殺菌効果に影響を与える。
図3は銀の殺菌効果に対する温度の影響を調べたデータである。銀イオン水は、15℃付近では10個/mlレベルであった細菌数は、30℃では10個/ml、40℃では1個/mlと温度の上昇とともに減少しており、温度が高くなるほど殺菌作用が向上することを示している。一方、図4は銀の制菌効果に対する水素イオン濃度の影響を調べたものである。銀イオン水は、pH6.5付近では細菌数は10個/mlレベルであるが、例えば、水道法で規定されている水素イオン濃度範囲の上限値であるpH8.6付近ではほとんど死滅しており、pHが殺菌効果に影響を与えていることが分かる。
このように、供給水の温度や水素イオン濃度は、制菌効果に対して著しく影響を与えることから、従来の流量計測値だけの銀溶出制御に頼ってしまうと、電極の長寿化を阻害することになる。例えば、夏場のように水温が常温に比べて高い場合、常温における殺菌に必要な銀イオン濃度よりも低い濃度で運転することができるため、電流値を低くして運転することで、銀電極の消耗を抑制すると同時に省エネルギー化にも貢献できる。また、水素イオン濃度が高い場合や低い場合も同様に、通常の銀イオン濃度よりも低い濃度で運転することが可能であり、前述と同様の効果が期待できる。
以上のように、水質に応じて省エネルギーで最適な銀イオン溶出制御を行い、安定した殺菌効果を実現するためには、流量データのみによって電流値を制御し、銀イオンを供給するのではなく、銀イオンの制菌効果に影響を与える水温や水素イオン濃度を把握し、その水質に応じた銀イオン濃度を提供できるシステムが必要である。
そこで、本発明は上記従来技術の問題点を解決し、原水の水質に関係なく安定した殺菌ができる高精度の処理装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するために、本発明は、次のように構成したものである。
請求項1記載の発明は、銀からなる少なくとも1対の電極を有し原水中に電気分解により銀イオンを溶解させる銀イオン供給部と、前記両電極間に電流を供給する電源部と、前記原水の流量を計測する流量計と、計測した流量信号により前記両電極間に通電する通電電流値を制御する電流制御部とを備えた水処理装置において、前記銀イオン供給部の前段に原水の温度を計測する水温計または水素イオンの濃度を計測する水素イオン濃度計の少なくとも一方を配置し、これらの計測値を前記電流制御部に取込んで前記通電電流値を制御するものである。
本構成によれば、水温信号を流量計から得られる流量信号と共に電流制御部に送り、そこで最適なイオン濃度になるように決定された電流値を銀イオン供給部に送ることができ、銀イオンの殺菌効果に影響を与える水温や水素イオン濃度などの水質に応じて、省エネルギーで最適な銀イオン濃度を得ることができる。
【0006】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
図1は、本発明の浄水装置を示す概略図である。図1において、3は水温を計測する水温計、4は水素イオン濃度を測定する水素イオン濃度計、8は極性切替器である。他の符号は従来例で説明したものと同じである。
水温計3は熱伝対方式を用い、水素イオン濃度計4はガラス電極方式のpHメータを用いている。流量計5は羽根車式や電磁式などを用いる。
電流制御部2は、水温計3、水素イオン濃度計4、及び流量計5と電気的に接続され、これらのデータをマイクロコンピューターで計算処理し、電源部1を介して銀イオン供給部6に電流を送る。
銀イオン供給部6は、対向するカソード側電極6bも銀とした1対のアノード側電極6aとカソード側電極6b(以下、銀電極6a、6bと略す)で構成されている。銀電極6a、6bは、極性切替器8に接続され、一定時間毎に電極が切り替えられるようになっている。なお、機器が大型で供給する銀イオン濃度が多く必要な場合は、銀電極を複数対で構成してもよい。
次に実施形態の動作について説明する。
原水は水温計3で水温を計測され、さらに水素イオン濃度計4で水素イオン濃度が計測される。これらの信号は電流制御部2に送られる。また、流量計5で計測された流量信号も合わせて電流制御部2に送られ、内蔵されたマイクロコンピュータで計算処理された後、水温やpH、流量に応じた最適な銀イオン濃度が得られるように電流供給部1を介して銀イオン供給部6に電流を流す。
銀イオン供給部6では、銀電極6a、6bに電圧を印加することにより、アノード銀側電極6aでは、銀イオン(Ag)が溶出し、銀イオン水として下流にある各水栓に供給される。
銀電極6a、6bの極性は、極性切替器8により一定時間毎に反転させており、カソード側に炭酸カルシウムなどのスケールが付着して電解効率が低下するのを防いでいる。また、銀イオンの供給に伴い、銀電極6a、6bは消耗していくので、両電極がアノードである時間とカソードである時間とは均一にしておくことで、一対の銀電極6a、6bを均等に消耗させることができ、最後まで無駄なく銀電極6a、6bを使い切ることができる。
また、銀電極6a、6bは、それ自身から銀イオンを溶出させるため、寿命を長くできるという点で、純銀板材が望ましいが、銀を含む合金や銀メッキなどであってもよい。
【0007】
【発明の効果】
以上述べたように、本発明の水処理装置によれば、電解により銀イオンを溶解させる手段と前記銀イオンの溶解量を制御する手段とを備えた浄水装置において、供給水または処理水の水質を計測する手段と計測した値に基づいて電流値を制御する装置を備えることで、処理する供給水の水質に応じて最適で高精度な銀イオン溶出制御を行うことができ、水処理装置の安全性を向上させる効果が期待できる。
【図面の簡単な説明】
【図1】本発明の浄水装置を示す概略図
【図2】従来の浄水装置を示す概略図
【図3】銀の殺菌効果に対する温度の影響を示すグラフである。
【図4】銀の制菌効果に対する水素イオン濃度の影響を示すグラフである。
【符号の説明】
1 電源部
2 電流制御部
3 水温計
4 水素イオン濃度計
5 流量計
6 銀イオン供給部
6a アノード側電極(銀電極)
6b カソード側電極
7 浄水カートリッジ
8 極性切替器
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water treatment apparatus for sterilizing raw water using silver ions.
[0002]
[Prior art]
Conventionally, silver ions have been known to have a bactericidal effect, and for the purpose of suppressing the growth of bacteria in water supply devices and the like, a filter material such as activated carbon or ceramic impregnated with silver or a silver compound, Many methods have been devised for eluting silver ions by electrolysis using a silver electrode. In particular, silver ion elution technology by electrolysis has been used in the USSR and European countries for a long time, and has high bactericidal properties at low concentrations and a wide range of bactericidal effects, as well as hypochlorite, ozone, ultraviolet rays, etc. Since it has the characteristic that the sterilizing effect lasts longer than other sterilizing methods, it can be used for drinking water on a voyage ship, drinking water for astronauts on a spacecraft in space flight, pool water, medicine, etc. It is also used for storing water.
FIG. 2 schematically shows a conventional apparatus for eluting silver ions by electrolysis (for example, see Patent Document 1).
In FIG. 2, 1 is a power supply unit, 2 is a current control unit, 5 is a flow meter, 6 is a silver ion supply unit, 6a is an anode side electrode, 6b is a cathode side electrode, and 7 is a water purification cartridge.
The silver ion supply unit 6 is a device for eluting silver ions by electrolysis of silver, and has a structure in which an anode electrode 6a made of silver and a cathode electrode 6b made of insoluble metal are provided. I have. By energizing the electrodes 6a and 6b every predetermined time, electrolysis occurs, the anode electrode 6a is deprived of electrons and oxidized, and the cathode electrodes 6a and 6b receive electrons and are placed between the electrodes 6a and 6b. A current flows, silver dissolves from the anode electrode 6a, and silver ions (Ag +) elute. For the cathode-side electrode 6b, platinum, gold, a carbon rod, SUS, Ti, Ti-Pt, or the like is used as an insoluble electrode material.
A water purification cartridge 7 is provided downstream of the silver ion supply unit 6. The water purification cartridge 7 contains a filter medium such as activated carbon, and adsorbs and removes harmful components in the treated water to flow downstream.
The amount of silver ion eluted is determined by the Faraday's law shown below. Therefore, the silver ion concentration of the supply water due to the addition of silver ions can be kept at a constant concentration by detecting the flow rate of the supply water and controlling the value of the current flowing between the anode 6a and the cathode 6b in accordance with the detected value. can do. An arbitrary silver ion concentration can be obtained by controlling the current value.
Silver elution amount [g] = {current value [A] × time [S] / 96500 [C / mol]} × 107.9 [g / mol]
Silver ion concentration in feed water = {(current value [A] × time [S]) / (96500 [C / mol] × flow rate [L / S]) × 107.9 [g / mol]}
A flow meter 5 is provided in the flow path of the supply water to detect the flow rate. The flow rate data measured by the flow meter 5 is sent to the current control unit 2. The current control unit 2 obtains a current value according to the above equation based on the flow data sent from the flow meter 5 and controls the current value supplied to the anode electrode 6a and the cathode electrode 6b via the power supply unit 1. It has become. By this current value control, the silver ion concentration can be kept constant as described above. Also, an arbitrary concentration can be obtained by controlling the current value.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-325953
[Problems to be solved by the invention]
However, the bactericidal action of silver ions is significantly affected by the temperature of the supply water, the concentration of hydrogen ions, and the like, and it is not always desirable to control the silver ion concentration to a constant value. It is generally said that the bactericidal action of silver ions is enhanced as the water temperature rises. In addition, the level of the hydrogen ion concentration also affects the bactericidal effect.
FIG. 3 shows data obtained by examining the effect of temperature on the sterilizing effect of silver. Silver ion water was at a level of 10 2 / ml near 15 ° C. The number of bacteria decreased to 10 / ml at 30 ° C and 1 / ml at 40 ° C with increasing temperature. This shows that the bactericidal action is improved. On the other hand, FIG. 4 shows the effect of the hydrogen ion concentration on the bacteriostatic effect of silver. Silver ion water has a bacterial count of about 10 2 cells / ml near pH 6.5, but almost kills near pH 8.6, which is the upper limit of the hydrogen ion concentration range specified by the Water Supply Law, for example. Thus, it can be seen that the pH affects the bactericidal effect.
As described above, since the temperature of the supply water and the hydrogen ion concentration significantly affect the bacteriostatic effect, depending on the conventional silver elution control using only the flow rate measurement value, the longevity of the electrode is hindered. Will be. For example, when the water temperature is higher than the room temperature, such as in summer, it is possible to operate at a concentration lower than the silver ion concentration necessary for sterilization at the room temperature. It can contribute to energy saving while suppressing wear. Similarly, when the hydrogen ion concentration is high or low, it is possible to operate at a concentration lower than the normal silver ion concentration, and the same effects as described above can be expected.
As described above, in order to perform the optimal silver ion elution control with energy saving according to the water quality and to realize a stable sterilization effect, instead of controlling the current value only by the flow rate data and supplying silver ions, There is a need for a system that can grasp the water temperature and the hydrogen ion concentration that affect the bacteriostatic effect of silver ions and provide the silver ion concentration according to the water quality.
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a high-precision processing apparatus capable of performing stable sterilization regardless of the quality of raw water.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 has a silver ion supply unit that has at least one pair of electrodes made of silver and dissolves silver ions by electrolysis in raw water, a power supply unit that supplies current between the two electrodes, In a water treatment device comprising a flow meter for measuring the flow rate of raw water and a current control unit for controlling a value of an energizing current applied between the two electrodes based on the measured flow signal, the raw water is provided at a stage preceding the silver ion supply unit. At least one of a water thermometer for measuring the temperature and a hydrogen ion concentration meter for measuring the concentration of hydrogen ions is arranged, and these measured values are taken into the current control section to control the energized current value.
According to this configuration, the water temperature signal is sent to the current control section together with the flow rate signal obtained from the flow meter, and the current value determined so as to have the optimal ion concentration there can be sent to the silver ion supply section, The optimum silver ion concentration can be obtained with energy saving according to the water quality such as water temperature and hydrogen ion concentration which affect the disinfection effect of water.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a water purification device of the present invention. In FIG. 1, reference numeral 3 denotes a water temperature meter for measuring water temperature, 4 denotes a hydrogen ion concentration meter for measuring hydrogen ion concentration, and 8 denotes a polarity switch. Other symbols are the same as those described in the conventional example.
The water temperature gauge 3 uses a thermocouple method, and the hydrogen ion concentration meter 4 uses a glass electrode type pH meter. The flow meter 5 uses an impeller type, an electromagnetic type, or the like.
The current control unit 2 is electrically connected to the water temperature meter 3, the hydrogen ion concentration meter 4, and the flow meter 5, and calculates and processes these data with a microcomputer. Sends current.
The silver ion supply unit 6 includes a pair of anode-side electrodes 6a and cathode-side electrodes 6b (hereinafter, abbreviated as silver electrodes 6a and 6b) in which the opposite cathode-side electrodes 6b are also made of silver. The silver electrodes 6a and 6b are connected to a polarity switch 8 so that the electrodes can be switched at regular intervals. If the device is large and needs a high silver ion concentration, a plurality of pairs of silver electrodes may be used.
Next, the operation of the embodiment will be described.
The water temperature of the raw water is measured by a water thermometer 3, and the hydrogen ion concentration is measured by a hydrogen ion concentration meter 4. These signals are sent to the current control unit 2. Further, the flow rate signal measured by the flow meter 5 is also sent to the current control unit 2 and calculated by a built-in microcomputer, and then an optimum silver ion concentration according to the water temperature, pH and flow rate is obtained. As described above, the current flows through the silver ion supply unit 6 via the current supply unit 1.
By applying a voltage to the silver electrodes 6a and 6b in the silver ion supply unit 6, silver ions (Ag + ) are eluted at the anode silver side electrode 6a and supplied to each downstream faucet as silver ion water. You.
The polarities of the silver electrodes 6a and 6b are inverted at regular intervals by the polarity switch 8, thereby preventing a scale such as calcium carbonate from adhering to the cathode side to prevent a reduction in electrolysis efficiency. Since the silver electrodes 6a and 6b are consumed with the supply of silver ions, the time when both electrodes are the anode and the time when the electrode is the cathode are made uniform so that the pair of silver electrodes 6a and 6b can be used. The silver electrodes 6a and 6b can be used up without waste until the end is consumed.
The silver electrodes 6a and 6b are desirably pure silver plate materials in that they can elute silver ions from the electrodes themselves, so that the life can be prolonged. However, silver-containing alloys or silver plating may be used.
[0007]
【The invention's effect】
As described above, according to the water treatment apparatus of the present invention, in a water purification apparatus including a means for dissolving silver ions by electrolysis and a means for controlling the amount of silver ions dissolved, the quality of feed water or treated water By providing a device for measuring the current value and a device for controlling the current value based on the measured value, it is possible to perform optimal and highly accurate silver ion elution control according to the quality of the supply water to be treated, and The effect of improving safety can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a water purification device of the present invention. FIG. 2 is a schematic diagram showing a conventional water purification device. FIG. 3 is a graph showing the effect of temperature on the sterilizing effect of silver.
FIG. 4 is a graph showing the effect of hydrogen ion concentration on the bacteriostatic effect of silver.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power supply part 2 Current control part 3 Water temperature meter 4 Hydrogen ion concentration meter 5 Flow meter 6 Silver ion supply part 6a Anode side electrode (silver electrode)
6b Cathode side electrode 7 Water purification cartridge 8 Polarity switch

Claims (1)

銀からなる少なくとも1対の電極を有し原水中に電気分解により銀イオンを溶解させる銀イオン供給部と、前記両電極間に電流を供給する電源部と、前記原水の流量を計測する流量計と、計測した流量信号により前記両電極間に通電する通電電流値を制御する電流制御部とを備えた水処理装置において、
前記銀イオン供給部の前段に原水の温度を計測する水温計または水素イオンの濃度を計測する水素イオン濃度計の少なくとも一方を配置し、これらの計測値を前記電流制御部に取込んで前記通電電流値を制御することを特徴とする水処理装置。
A silver ion supply unit having at least one pair of silver electrodes and dissolving silver ions in raw water by electrolysis, a power supply unit for supplying a current between the two electrodes, and a flow meter for measuring a flow rate of the raw water And, in the water treatment device comprising a current control unit that controls the value of the current flowing between the two electrodes by the measured flow signal,
At least one of a water thermometer for measuring the temperature of raw water and a hydrogen ion concentration meter for measuring the concentration of hydrogen ions is arranged at a stage preceding the silver ion supply unit. A water treatment apparatus characterized by controlling a current value.
JP2003040738A 2003-02-19 2003-02-19 Water treating apparatus Pending JP2004249187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040738A JP2004249187A (en) 2003-02-19 2003-02-19 Water treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040738A JP2004249187A (en) 2003-02-19 2003-02-19 Water treating apparatus

Publications (1)

Publication Number Publication Date
JP2004249187A true JP2004249187A (en) 2004-09-09

Family

ID=33024507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040738A Pending JP2004249187A (en) 2003-02-19 2003-02-19 Water treating apparatus

Country Status (1)

Country Link
JP (1) JP2004249187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006856A (en) * 2014-06-06 2014-08-27 魏国营 Water meter with hydrodynamic self-power generation type sterilizing function
JP2014200778A (en) * 2013-04-10 2014-10-27 至明 松尾 Antioxidative drinking water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200778A (en) * 2013-04-10 2014-10-27 至明 松尾 Antioxidative drinking water
CN104006856A (en) * 2014-06-06 2014-08-27 魏国营 Water meter with hydrodynamic self-power generation type sterilizing function

Similar Documents

Publication Publication Date Title
US6572902B2 (en) Process for producing improved alkaline drinking water and the product produced thereby
CN108633269B (en) Water treatment device, device for producing water for dialysate preparation, and hydrogen-rich water supply device
CN103951020A (en) Health water dispenser
JP3763836B2 (en) Metal ion elution unit and equipment equipped with the same
JP2015054996A (en) Ozone water generator
US6235188B1 (en) Water pollution evaluating system with electrolyzer
KR100768095B1 (en) Water cleaning apparatus using metal ion providing ionization automatic control function
JP2004249187A (en) Water treating apparatus
KR20060007369A (en) High electric field electrolysis cell
US6337002B1 (en) Alkaline ionic water conditioner
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JP2594022B2 (en) Electrolytic ionic water generator
JP2000343081A (en) Toilet bowl sterilization device
JPH08192161A (en) Silver ion water generator
JPH10309583A (en) Water purifying device
WO2018100354A1 (en) Electrochemical cell assembly and method for operation of the same
JP2000325953A (en) Water treatment apparatus
JPH1190446A (en) Sterilization apparatus
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JP3709051B2 (en) Electrolyzed water generator
KR101835550B1 (en) Apparatus for purifing dental water
JPH10314742A (en) Electrolyzed water producing apparatus
JP2008253874A (en) Electrodialysis system
JP4050044B2 (en) Mineral water generator
KR20220140314A (en) Sterilizing water generator, water purifier and method for controlling the same