JP2004248341A - Multipulse rectifier transformer - Google Patents

Multipulse rectifier transformer Download PDF

Info

Publication number
JP2004248341A
JP2004248341A JP2003032421A JP2003032421A JP2004248341A JP 2004248341 A JP2004248341 A JP 2004248341A JP 2003032421 A JP2003032421 A JP 2003032421A JP 2003032421 A JP2003032421 A JP 2003032421A JP 2004248341 A JP2004248341 A JP 2004248341A
Authority
JP
Japan
Prior art keywords
phase
transformer
terminal
pulse rectifier
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032421A
Other languages
Japanese (ja)
Inventor
Tetsuji Yamashita
下 哲 司 山
Atsuyuki Hiruma
間 淳 之 蛭
Naoyoshi Uesugi
杉 通 可 植
Takehiro Kobayashi
林 壮 寛 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003032421A priority Critical patent/JP2004248341A/en
Publication of JP2004248341A publication Critical patent/JP2004248341A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multipulse rectifier transformer in which connection of winding can be simplified while reducing the size by combining the transformer winding and the rectifier integrally. <P>SOLUTION: The multipulse rectifier transformer comprises a transformer (transformer 14) receiving a three-phase AC power and delivering two three-phase AC powers each having a phase shift of a specified angle from the received three-phase AC power, a terminal block plate (18) secured to the yoke of the core (11) of the transformer (14), and two rectifiers (22, 23) mounted on the terminal block plate (18) and delivering a DC power by receiving the three-phase AC power from the transformer (14). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機の高調波低減対策を講じるのに好適な多パルス整流変圧器に関する。
【0002】
【従来の技術】
圧縮機や送風機を可変速駆動するインバータ装置を備えた空気調和機は、3相交流電圧を直流電圧に変換し、この直流電圧を可変周波数の交流に変換して駆動電動機に供給する構成になっている。
【0003】
この場合、ダイオードが3相ブリッジ接続された全波整流器を用いて交流を直流に変換すると、直流側に大きな電流リップルが生じ、これが商用の3相交流電源側での高調波となる。この高調波が様々な障害を引き起こす場合には、3相電源経路に、例えば、アクティブフィルタを設けて高調波を低減する必要がある。
【0004】
しかし、高調波低減対策としてのアクティブフィルタは装置自体が高価であるため、空気調和機の価格が高騰する一因になっていた。そこで、より安価な高調波低減対策として、3相交流電圧をそのまま整流する整流回路と、この3相交流電圧に対して所定の角度だけ位相がずれた3相交流電圧を出力する1台の変圧器と、この変圧器の出力を全波整流して直流に変換し、3相交流電圧をそのまま整流する整流回路の出力経路に供給する2つの補助整流回路とを備えた「18パルス整流器」と呼ばれる高調波を低減して直流出力を行う整流器が提案されている(例えば、特許文献1参照。)。
【0005】
図7は18パルス整流器を構成する変圧器の具体的な巻線構造を表す変圧器ベクトル図である。図中、電源の3相交流電圧が正三角形R1,S1,T1で表される。この正三角形の頂点R1を中心にして残りの2つの頂点S1,T1を結んで描いた円弧を3等分して得られた2点をそれぞれS3,T2とする。また、正三角形の頂点S1を中心にして残りの2つの頂点T1,R1を結んで描いた円弧を3等分して得られた2点をそれぞれT3,R2とする。さらに、正三角形の頂点T1を中心にして残りの2つの頂点R1,S1を結んで描いた円弧を3等分して得られた2点をそれぞれR3,S2とする。
【0006】
次に、正三角形の頂点R1を通り、対向する一辺に平行な直線と、円弧上の2点T3,R2を通る直線及び円弧上の2点R3,S2を通る直線との交点をそれぞれR4,R5とする。また、正三角形の頂点S1を通り、対向する一辺に平行な直線と、円弧上の2点R3,S2を通る直線及び円弧上の2点S3,T2を通る直線との交点をそれぞれS4,S5とする。さらに、正三角形の頂点T1を通り、対向する一辺に平行な直線と、円弧上の2点S3,T2を通る直線及び円弧上の2点T3,R2を通る直線との交点をそれぞれT4,T5とする。
【0007】
これによって、点R4−R5−S4−S5−T4−T5−R4を連ねてなる六角形の変圧器ベクトル図が形成される。このうち、線分R4−R5がR相第1コイル42に、線分S5−T4がR相第2コイル43にそれぞれ対応し、線分S4−S5がS相第1コイル45に、線分T5−R4がS相第2コイル46にそれぞれ対応し、線分T4−T5がT相第1コイル48に、線分R5−S4がT相第2コイル49にそれぞれ対応している。そして、線分の長さがR,S,V各相の鉄心に対するコイルの巻数に相当し、各線分の一端部に付加された「・」は極性が、例えば、「正」であることを表している。
【0008】
図8は図7に示した変圧器ベクトル図を満たす変圧器40の巻線構造図であり、図7中の等分点及び交点を示す符号が対応する巻線の端子又はタップとして表されている。この図8において、R相鉄心41にR相第1コイル42及びR相第2コイル43が巻装され、このうち、R相第1コイル42には中間タップR1が設けられ、R相第2コイル43には中間タップT2,S3が設けられている。また、S相鉄心44にS相第1コイル45及びS相第2コイル46が巻装され、このうち、S相第1コイル45には中間タップS1が設けられ、S相第2コイル46には中間タップR2,T3が設けられている。さらに、T相鉄心47にはT相第1コイル48及びT相第2コイル49が巻装され、このうちT相第1コイル48には中間タップT1が設けられ、T相第2コイル499には中間タップS2,R3が設けられている。
【0009】
また、R相第1コイル42の一端R4がS相第2コイル46の一端R4に、S相第1コイル45の一端S4がT相第2コイル49の一端S4に、T相第1コイル48の一端T4がR相第2コイル43の一端T4にそれぞれ接続され、R相第1コイル42の他端R5がT相第2コイル49の他端R5に、S相第1コイル45の他端S5がR相第2コイル43の他端S5に、T相第1コイル48の他端T5がS相第2コイル46の他端T5にそれぞれ接続されている。そして、中間タップR1,S1,T1から導線が引き出されて3相交流の入力端子R1,S1,T1となり、中間タップR2,S2,T2から導線が引き出されて第1の3相交流出力端子R2,S2,T2となり、中間タップR3,S3,T3,から導線が引き出されて第2の3相交流出力端子R3,S3,T3となっている。
【0010】
【特許文献】
特開2002−10646号公報
【0011】
【発明が解決しようとする課題】
ところで、上述した多パルス整流器を構成する変圧器は、3相交流電源電圧の入力端子と、交流電源電圧に対してそれぞれ移相された2つの3相交流電圧を出力するための出力端子とで合計9個の端子を必要とし、さらに、他の鉄心に跨って巻線を接続する多数の接続部が存在する。このため、極めて多くの端子が必要になり、接続が面倒な上に間違いが生じるおそれがあった。
また、上記の変圧器とは別個に複数の整流器を接続しなければならないため、装置が大型化してしまうという問題もあった。
【0012】
本発明は上記の事情を考慮してなされたもので、変圧器巻線と整流器とを一体的に組合せることによって、巻線接続の簡略化が図られ、かつ、小型化が可能な多パルス整流変圧器を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に係る発明は、
3相交流を入力し、この3相交流に対してそれぞれ位相が所定角だけずれた2つの3相交流を出力する変圧器と、
変圧器の鉄心の継鉄に固定された端子台板と、
端子台板にそれぞれ実装され、変圧器から出力される3相交流を入力して直流を出力する2個の整流器と、
を備えた多パルス整流変圧器である。
【0014】
請求項2に係る発明は、請求項1に記載の多パルス整流変圧器において、2個の整流器はそれぞれ外部接続用の直流出力端子を備えたものである。
【0015】
請求項3に係る発明は、請求項1に記載の多パルス整流変圧器において、さらに、端子台板に中継端子が実装され、2個の整流器はそれぞれ外部接続用の直流出力端子を備え、これらの直流出力端子が極性を揃えて中継端子に並列接続されたものである。
【0016】
請求項4に係る発明は、請求項1ないし3のいずれか1項に記載の多パルス整流変圧器において、変圧器の巻線に対して3相交流を入、出力する以外の電線が全て中継コネクタで接続されたものである。
【0017】
請求項5に係る発明は、請求項1ないし3のいずれか1項に記載の多パルス整流変圧器において、端子台板は変圧器の継鉄に沿って細長く形成され、中央部に多極の中継端子が実装され、両端部に整流器が実装され、変圧器の巻線相互の接続が中継端子を介して行われるものである。
【0018】
【発明の実施の形態】
以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。図1は本発明に係る多パルス整流変圧器の第1の実施形態の構成を示す平面図であり、図2(a)はこの多パルス整流変圧器の主要素の実装状態を示す斜視図であり、図2(b)はそのX矢視方向側面図である。なお、図1においては、理解を容易にするために変圧器の鉄心幅を拡大して表している。
【0019】
これら各図において、多パルス整流変圧器10Aは、主に、変圧器14と、この変圧器14の鉄心11に一体的に結合された端子台板18と、この端子台板18上に実装された端子台21A及び整流器22、23とで構成されている。
【0020】
このうち、変圧器14は3脚の鉄心11の各脚にU相巻線12U、V相巻線12V、W相巻線12Wが巻装された内鉄形変圧器でなっている。これらU,V,Wの各相巻線は、それぞれ1次巻線と複数の2次巻線とでなり、場合によってこれらの巻線から中間タップが取り出される場合がある。そしてこれらが互いに他の相の巻線と接続されて3相交流電源電圧に対して、例えば、約40度だけ位相が進んだ3相交流電圧と、約40度だけ位相が遅れた3相交流電圧を出力するように、巻回数及び接続順が決定されている。
【0021】
鉄心11の一方の継鉄、すなわち、図面の上方の継鉄の両側面に誘電性の固定補助板15が配置され、これらの固定補助板15と端子台板18とが鉄心11を貫通する1対のネジ16及びナット17によって共締めされている。端子台板18は略直角に折り曲げられた取付基部と載置部とでなり、取付基部は継鉄の長さよりも僅かに短い横幅を有し、載置部は継鉄の両端部に延出する長い横幅(継鉄の長手方向)を有している。この場合、載置部が継鉄の上面に対して略平行にして浮いた状態に端子台板18が取り付けられている。
【0022】
そして、この端子台板18の載置部の幅方向の中間位置に7極の端子台21Aが実装され、載置部の一端部に進相3相交流電圧を全波整流する整流器22が、その他端部に遅相の3相交流電圧を整流する整流器23がそれぞれ実装されている。整流器22及び23はそれぞれ一方の側部に3個の3相交流入力用のネジ端子を有し、他方の側部に2個の直流出力用のネジ端子を有し、両端部が端子台板18にネジ止めされている。端子台21Aの3極分の端子に3相入力側電線31の一端が接続される。これらの端子に対応する負荷側の端子(図8の端子R1,S1,T1に対応)に3相1次巻線が接続される。また複数の2次巻線を所定の順序で接続するために、端子台板18を境にして導出された一方の導線の端部と、他方の導線の端部(図8中のR4,S4,T4,R5,S5,T5に対応)とが中継コネクタ33によって接続されている。
【0023】
整流器22及び23はそれぞれ3相交流入力端子と直流出力端子を有し、進相3相交流電圧を出力する内部配電線32が整流器22の3相交流入力端子(図8中のR2,S2,T2に対応)に接続され、遅相3相交流電圧を出力する内部配電線32が整流器23の3相交流入力端子(R3,S3,T3に対応)に接続されている。整流器22及び23の各直流出力端子は端子台21Aの残りの4極の各端子に接続され、これらの端子に対応する負荷側の端子に直流出力側電線34の一端が接続されている。
【0024】
この構成により、3相入力側電線31を3相交流電源に接続すると、この3相交流電源電圧に対して約40度だけ位相が進んだ3相交流電圧が整流器22に加えられて全波整流され、3相交流電源電圧に対して約40度だけ位相が遅れた3相交流電圧が整流器23に加えられて全波整流されて直流出力側電線34から出力される。なお、鉄心11に巻装される2次巻線の巻数及び接続方法については上記の特許文献1に詳しく説明されているので、ここではその記述を省略する。
【0025】
かくして、図1及び図2に示した第1の実施形態によれば、変圧器巻線と整流器とを一体的に組合せることによって、巻線接続の簡略化が図られ、かつ、小型化が可能な多パルス整流変圧器が得られる。
【0026】
図3は上記の多パルス整流変圧器10Aを空気調和機に適用した概略構成図であり、図中、図1又は図2と同一の要素には同一の符号を付してその説明を省略する。ここで、3相交流電源1にインバータ装置2と多パルス整流変圧器10Aとが接続されている。インバータ装置2は3相交流電圧を全波整流する整流回路3と、この整流回路3から出力される直流(脈流)を平滑する平滑コンデンサ4と、平滑された直流を、例えば、インバータ主回路と、圧縮機又は送風機を駆動する電動機とを含む負荷5を備えている。多パルス整流変圧器10Aを構成する整流器22及び23の各出力は、整流回路3の出力側に、同じ極性で並列に接続されている。
【0027】
上記の構成により、3相交流電源1の3相交流電圧は整流回路3によって全波整流され、平滑コンデンサ4によって平滑されて負荷5に供給される。この場合、負荷5が重くなるほど直流電流のリップル分は増大し、3相交流電源1側の高調波成分も増大する。多パルス整流変圧器10Aを構成する変圧器14は、これに入力される3相交流電圧に対して大きさが等しく、位相が約40度進んだ3相交流電圧及び位相が約40度遅れた3相交流電圧を出力する。これらの出力のうち、進み位相の3相交流電圧は整流器22によって全波整流され、遅れ位相の3相交流電圧は整流器23によって全波整流される。整流器22及び23の各出力端子は並列接続されているため、2つの直流分(脈流分)は合成され、整流回路3の出力側に供給される。これによって、整流回路3から出力される電圧リップルの谷間が埋められる。換言すれば、整流回路3から出力される電圧リップルの谷間を埋めるように整流器22及び23が導通する。この結果、負荷5に供給される直流電圧のリップルは小さくなり、電源側に現れる高調波成分も低減する。
【0028】
図4は本発明に係る多パルス整流変圧器の第2の実施形態の構成を示す平面図であり、図中、第1の実施形態を示す図1と同一の要素には同一の符号を付してその説明を省略する。ここに示した多パルス整流変圧器10Bは図1に示した端子台21Aの代わりに3極の端子台21Bを端子台板18の中央部に実装し、この端子台21Bの3個の端子に3相入力側電線31を接続した点、整流器22及び23の各直流出力端子から直流出力側電線34A及び34Bをそれぞれ導出した点が図1と異なるだけで、これら以外は図1と同一に構成されている。これによって極数の少ない端子台21Bを使った分だけ配線の簡略化と装置の小型化が図られる。
【0029】
かくして、図4に示した第2の実施形態によれば、巻線接続の簡略化及び小型化が容易な多パルス整流変圧器が得られる。
【0030】
図5は本発明に係る多パルス整流変圧器の第3の実施形態の構成を示す平面図であり、図中、第1の実施形態を示す図1と同一の要素には同一の符号を付してその説明を省略する。ここに示した多パルス整流変圧器10Cは図1に示した端子台21Aの代わりに5極の端子台21Cを端子台板18の中央部に実装し、この端子台21Cの3個の端子に3相入力側電線31を接続した点、整流器22及び整流器23の各出力が図2に示したように極性を揃えて互いに並列接続されることを前提にして、これらを他の2個の端子に並列接続し、対応する端子から直流出力側電線34Cを導出した点が図1と異なるだけで、これら以外は図1と同一に構成されている。これによって、第2の実施形態よりは横幅が僅かに大きくなるが、第1の実施形態よりも、配線の簡略化と装置の小型化が図られる。
【0031】
かくして、図5に示した第3の実施形態によれば、巻線接続の簡略化及び小型化が容易な多パルス整流変圧器が得られる。
【0032】
図6は本発明に係る多パルス整流変圧器の第4の実施形態の構成を示す平面図であり、図中、第1の実施形態を示す図1と同一の要素には同一の符号を付してその説明を省略する。ここに示した多パルス整流変圧器10Dは図1に示した端子台21Aの代わりに13極の端子台21Dを実装し、この端子台21Dに中継コネクタ33の機能を持たせることによって、中継コネクタ33を除去した点が図1と異なるだけで、これら以外は図1と同一に構成されている。これによって、中継コネクタ33を使用しなくとも、多パルス整流変圧器を構成することができる。この場合、中継コネクタ33を用いる場合と比較すると誤配線の割合が増えるが、少なくとも配線の単純化が図られるという利点がある。
【0033】
かくして、図6に示した第4の実施形態によれば、巻線接続の簡略化及び小型化が容易な多パルス整流変圧器が得られる。
【0034】
【発明の効果】
以上の説明によって明らかなように、本発明によれば、変圧器巻線と整流器とを一体的に組合せることによって、巻線接続の簡略化が図られ、かつ、小型化が可能な多パルス整流変圧器を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る多パルス整流変圧器の第1の実施形態の構成を示す平面図。
【図2】図1に示した多パルス整流変圧器の主要素の実装状態を示す斜視図及び側面図。
【図3】図1に示した多パルス整流変圧器を空気調和機に適用した概略構成を示す回路図。
【図4】本発明に係る多パルス整流変圧器の第2の実施形態の構成を示す平面図。
【図5】本発明に係る多パルス整流変圧器の第3の実施形態の構成を示す平面図。
【図6】本発明に係る多パルス整流変圧器の第4の実施形態の構成を示す平面図。
【図7】従来の18パルス整流器を構成する変圧器の具体的な巻線構造を表す変圧器ベクトル図。
【図8】図7に示した変圧器ベクトル図を満たす変圧器の巻線構造図。
【符号の説明】
10A,10B,10C,10D 多パルス整流変圧器
11 鉄心
12U,12V,12W U,V,Wの各相巻線
13 保護被覆
14 変圧器
18 端子台板
21A,21B,21C,21D 端子台
22,23 整流器
31 3相入力側電線
32 内部配電線
33 中継コネクタ
34,34A,34B,34C 直流出力側電線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-pulse rectifier transformer suitable for taking measures to reduce harmonics of an air conditioner.
[0002]
[Prior art]
An air conditioner equipped with an inverter device that drives a compressor or a blower at a variable speed converts a three-phase AC voltage into a DC voltage, converts the DC voltage into a variable frequency AC, and supplies the AC to a drive motor. ing.
[0003]
In this case, when AC is converted to DC by using a full-wave rectifier in which a diode is connected in a three-phase bridge, a large current ripple occurs on the DC side, and this becomes a harmonic on the commercial three-phase AC power supply side. If these harmonics cause various obstacles, it is necessary to provide, for example, an active filter in the three-phase power supply path to reduce the harmonics.
[0004]
However, an active filter as a measure to reduce harmonics is expensive in the device itself, which has been a factor in soaring the price of the air conditioner. Therefore, as less expensive harmonic reduction measures, a rectifier circuit that rectifies the three-phase AC voltage as it is and a single transformer that outputs a three-phase AC voltage that is out of phase by a predetermined angle with respect to the three-phase AC voltage. An 18-pulse rectifier comprising: a transformer and two auxiliary rectifier circuits for supplying the output of the transformer to a direct-current rectifier circuit that rectifies the output of the transformer by full-wave rectification and converts the three-phase AC voltage into a direct current. A rectifier that reduces the so-called harmonic and performs DC output has been proposed (for example, see Patent Document 1).
[0005]
FIG. 7 is a transformer vector diagram showing a specific winding structure of the transformer constituting the 18-pulse rectifier. In the figure, the three-phase AC voltage of the power supply is represented by equilateral triangles R1, S1, and T1. Two points obtained by dividing an arc drawn by connecting the remaining two vertices S1 and T1 around the vertex R1 of the regular triangle into three equal parts are defined as S3 and T2, respectively. In addition, two points obtained by dividing an arc drawn by connecting the remaining two vertices T1 and R1 around the vertex S1 of the equilateral triangle into three equal parts are defined as T3 and R2, respectively. Further, two points obtained by dividing an arc drawn by connecting the remaining two vertices R1 and S1 around the vertex T1 of the equilateral triangle into three are R3 and S2, respectively.
[0006]
Next, the intersections of a straight line passing through the vertex R1 of the equilateral triangle and parallel to the opposite side, a straight line passing through two points T3 and R2 on the arc, and a straight line passing through two points R3 and S2 on the arc are denoted by R4 and R4, respectively. R5. The intersections of the straight line passing through the vertex S1 of the equilateral triangle and parallel to the opposite side, the straight line passing through the two points R3 and S2 on the circular arc, and the straight line passing through the two points S3 and T2 on the circular arc are denoted by S4 and S5, respectively. And Further, the intersections of a straight line passing through the vertex T1 of the equilateral triangle and parallel to the opposite side, a straight line passing through the two points S3 and T2 on the arc, and a straight line passing through the two points T3 and R2 on the arc are denoted by T4 and T5, respectively. And
[0007]
As a result, a hexagonal transformer vector diagram formed by connecting the points R4-R5-S4-S5-T4-T5-R4 is formed. Among them, the line segment R4-R5 corresponds to the R-phase first coil 42, the line segment S5-T4 corresponds to the R-phase second coil 43, and the line segment S4-S5 corresponds to the S-phase first coil 45. T5-R4 corresponds to the S-phase second coil 46, line segment T4-T5 corresponds to the T-phase first coil 48, and line segment R5-S4 corresponds to the T-phase second coil 49, respectively. The length of the line segment corresponds to the number of turns of the coil with respect to the iron core of each of the R, S, and V phases, and “•” added to one end of each line segment indicates that the polarity is, for example, “positive”. Represents.
[0008]
FIG. 8 is a diagram showing the winding structure of the transformer 40 that satisfies the transformer vector diagram shown in FIG. 7. In FIG. 7, the symbols indicating the equidistant points and the intersections in FIG. 7 are represented as the terminals or taps of the corresponding windings. I have. In FIG. 8, an R-phase first coil 42 and an R-phase second coil 43 are wound around an R-phase iron core 41. Among these, the R-phase first coil 42 is provided with an intermediate tap R1, and the R-phase second coil 42 is provided. The coil 43 is provided with intermediate taps T2 and S3. Further, the S-phase first coil 45 and the S-phase second coil 46 are wound around the S-phase iron core 44, of which the S-phase first coil 45 is provided with an intermediate tap S <b> 1 and the S-phase second coil 46 is provided. Are provided with intermediate taps R2 and T3. Further, a T-phase first coil 48 and a T-phase second coil 49 are wound around the T-phase iron core 47, of which the T-phase first coil 48 is provided with an intermediate tap T <b> 1 and a T-phase second coil 499 is provided. Are provided with intermediate taps S2 and R3.
[0009]
One end R4 of the R-phase first coil 42 is connected to one end R4 of the S-phase second coil 46, one end S4 of the S-phase first coil 45 is connected to one end S4 of the T-phase second coil 49, and the T-phase first coil 48 Is connected to one end T4 of the R-phase second coil 43, the other end R5 of the R-phase first coil 42 is connected to the other end R5 of the T-phase second coil 49, and the other end of the S-phase first coil 45, respectively. S5 is connected to the other end S5 of the R-phase second coil 43, and the other end T5 of the T-phase first coil 48 is connected to the other end T5 of the S-phase second coil 46, respectively. Then, a lead wire is drawn out from the intermediate taps R1, S1, T1 to become three-phase AC input terminals R1, S1, T1, and a lead wire is drawn out from the middle taps R2, S2, T2 to obtain a first three-phase AC output terminal R2. , S2, T2, and lead wires are drawn out from the intermediate taps R3, S3, T3 to form second three-phase AC output terminals R3, S3, T3.
[0010]
[Patent Document]
JP 2002-10646 A
[Problems to be solved by the invention]
By the way, the transformer constituting the above-described multi-pulse rectifier has an input terminal for a three-phase AC power supply voltage and an output terminal for outputting two three-phase AC voltages each shifted in phase with respect to the AC power supply voltage. A total of nine terminals are required, and there are a large number of connection parts connecting the windings across other iron cores. For this reason, an extremely large number of terminals are required, connection is troublesome, and there is a possibility that an error may occur.
Further, since a plurality of rectifiers must be connected separately from the above-mentioned transformer, there is a problem that the device becomes large.
[0012]
The present invention has been made in view of the above circumstances, and by integrally combining a transformer winding and a rectifier, the winding connection can be simplified, and the multi-pulse that can be reduced in size is provided. An object is to provide a rectifier transformer.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is
A transformer that receives a three-phase alternating current and outputs two three-phase alternating currents each having a phase shifted by a predetermined angle with respect to the three-phase alternating current;
A terminal plate fixed to the yoke of the transformer core,
Two rectifiers respectively mounted on the terminal plate and inputting a three-phase AC output from the transformer and outputting a DC;
A multi-pulse rectifier transformer provided with:
[0014]
The invention according to claim 2 is the multi-pulse rectifier transformer according to claim 1, wherein each of the two rectifiers has a DC output terminal for external connection.
[0015]
According to a third aspect of the present invention, in the multi-pulse rectifier transformer according to the first aspect, a relay terminal is further mounted on the terminal board, and each of the two rectifiers includes a DC output terminal for external connection. Are connected in parallel to the relay terminals with the same polarity.
[0016]
According to a fourth aspect of the present invention, in the multi-pulse rectifier transformer according to any one of the first to third aspects, all electric wires except for inputting and outputting three-phase alternating current to and from a winding of the transformer are relayed. They are connected by connectors.
[0017]
According to a fifth aspect of the present invention, in the multi-pulse rectifier transformer according to any one of the first to third aspects, the terminal plate is formed to be elongated along the yoke of the transformer, and a multi-pole terminal is provided at the center. A relay terminal is mounted, rectifiers are mounted at both ends, and the windings of the transformer are connected to each other via the relay terminal.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a plan view showing a configuration of a first embodiment of a multi-pulse rectifier transformer according to the present invention, and FIG. 2A is a perspective view showing a mounting state of main elements of the multi-pulse rectifier transformer. FIG. 2B is a side view in the direction of the arrow X. In FIG. 1, the iron core width of the transformer is enlarged for easy understanding.
[0019]
In each of these drawings, a multi-pulse rectifier transformer 10A is mainly mounted on a transformer 14, a terminal base plate 18 integrally connected to an iron core 11 of the transformer 14, and the terminal base plate 18. Terminal block 21A and rectifiers 22 and 23.
[0020]
The transformer 14 is a core-type transformer in which a U-phase winding 12U, a V-phase winding 12V, and a W-phase winding 12W are wound around each leg of the three-legged iron core 11. Each of the U, V, and W phase windings includes a primary winding and a plurality of secondary windings, and an intermediate tap may be extracted from these windings in some cases. These are connected to the windings of the other phases, and the three-phase AC voltage whose phase is advanced by about 40 degrees and the three-phase AC voltage whose phase is delayed by about 40 degrees with respect to the three-phase AC power supply voltage. The number of turns and the connection order are determined so as to output a voltage.
[0021]
Dielectric fixing auxiliary plates 15 are arranged on one side of the yoke of the iron core 11, that is, on both sides of the yoke above the drawing, and these auxiliary fixing plates 15 and the terminal base plate 18 penetrate the iron core 11. They are fastened together by a pair of screws 16 and nuts 17. The terminal base plate 18 is composed of a mounting base and a mounting portion bent at substantially right angles, the mounting base having a width slightly shorter than the length of the yoke, and the mounting portion extending to both ends of the yoke. It has a long lateral width (the longitudinal direction of the yoke). In this case, the terminal base plate 18 is attached in a state where the mounting portion is floated substantially parallel to the upper surface of the yoke.
[0022]
A terminal block 21A having seven poles is mounted at an intermediate position of the mounting portion of the terminal base plate 18 in the width direction, and a rectifier 22 that performs full-wave rectification of the leading three-phase AC voltage at one end of the mounting portion. At the other end, rectifiers 23 for rectifying the late three-phase AC voltage are mounted. Each of the rectifiers 22 and 23 has three screw terminals for three-phase AC input on one side, two screw terminals for DC output on the other side, and a terminal block at both ends. It is screwed to 18. One end of the three-phase input-side electric wire 31 is connected to terminals of three poles of the terminal block 21A. Three-phase primary windings are connected to load-side terminals corresponding to these terminals (corresponding to terminals R1, S1, and T1 in FIG. 8). Further, in order to connect a plurality of secondary windings in a predetermined order, one end of one of the leads led out from the terminal board 18 and the other end of the lead (R4, S4 in FIG. 8) , T4, R5, S5, and T5) are connected by a relay connector 33.
[0023]
Each of the rectifiers 22 and 23 has a three-phase AC input terminal and a DC output terminal, and the internal distribution line 32 that outputs a leading three-phase AC voltage is connected to the three-phase AC input terminal (R2, S2, T2) and an internal distribution line 32 that outputs a delayed three-phase AC voltage is connected to a three-phase AC input terminal (corresponding to R3, S3, and T3) of the rectifier 23. Each DC output terminal of the rectifiers 22 and 23 is connected to the remaining four-pole terminals of the terminal block 21A, and one end of a DC output-side electric wire 34 is connected to a load-side terminal corresponding to these terminals.
[0024]
With this configuration, when the three-phase input-side electric wire 31 is connected to the three-phase AC power supply, a three-phase AC voltage whose phase is advanced by about 40 degrees with respect to the three-phase AC power supply voltage is applied to the rectifier 22 to perform full-wave rectification. Then, a three-phase AC voltage having a phase delayed by about 40 degrees with respect to the three-phase AC power supply voltage is applied to the rectifier 23, full-wave rectified, and output from the DC output side electric wire 34. Since the number of turns of the secondary winding wound around the iron core 11 and the connection method are described in detail in the above-mentioned Patent Document 1, the description is omitted here.
[0025]
Thus, according to the first embodiment shown in FIGS. 1 and 2, by integrally combining the transformer winding and the rectifier, the winding connection can be simplified and the size can be reduced. A possible multi-pulse rectifier transformer is obtained.
[0026]
FIG. 3 is a schematic configuration diagram in which the above-described multi-pulse rectifier transformer 10A is applied to an air conditioner. In the drawing, the same elements as those in FIG. 1 or FIG. . Here, the inverter device 2 and the multi-pulse rectifier transformer 10A are connected to the three-phase AC power supply 1. The inverter device 2 includes a rectifier circuit 3 for full-wave rectification of the three-phase AC voltage, a smoothing capacitor 4 for smoothing a direct current (pulsating flow) output from the rectifier circuit 3, and a smoothed direct current, for example, an inverter main circuit. And a load 5 including a motor for driving a compressor or a blower. The outputs of the rectifiers 22 and 23 constituting the multi-pulse rectifier transformer 10A are connected in parallel to the output side of the rectifier circuit 3 with the same polarity.
[0027]
With the above configuration, the three-phase AC voltage of the three-phase AC power supply 1 is full-wave rectified by the rectifier circuit 3, smoothed by the smoothing capacitor 4, and supplied to the load 5. In this case, as the load 5 becomes heavier, the ripple of the DC current increases, and the harmonic component on the three-phase AC power supply 1 side also increases. The transformer 14 constituting the multi-pulse rectifier transformer 10A is equal in magnitude to the three-phase AC voltage input thereto, and has a phase advanced by about 40 degrees and a three-phase AC voltage delayed by about 40 degrees. Outputs three-phase AC voltage. Among these outputs, the leading three-phase AC voltage is full-wave rectified by the rectifier 22, and the lagging three-phase AC voltage is full-wave rectified by the rectifier 23. Since the output terminals of the rectifiers 22 and 23 are connected in parallel, the two DC components (pulsating current components) are combined and supplied to the output side of the rectifier circuit 3. Thereby, the valley of the voltage ripple output from the rectifier circuit 3 is filled. In other words, the rectifiers 22 and 23 conduct so as to fill the valley of the voltage ripple output from the rectifier circuit 3. As a result, the ripple of the DC voltage supplied to the load 5 is reduced, and the harmonic components appearing on the power supply side are also reduced.
[0028]
FIG. 4 is a plan view showing the configuration of a second embodiment of the multi-pulse rectifier transformer according to the present invention. In the drawing, the same elements as those in FIG. 1 showing the first embodiment are denoted by the same reference numerals. The description is omitted. The multi-pulse rectifier transformer 10B shown here mounts a three-pole terminal block 21B at the center of the terminal block plate 18 instead of the terminal block 21A shown in FIG. 1 is different from FIG. 1 only in that the three-phase input-side electric wires 31 are connected and that the DC output-side electric wires 34A and 34B are respectively derived from the DC output terminals of the rectifiers 22 and 23. Have been. This simplifies wiring and reduces the size of the device by using the terminal block 21B having a small number of poles.
[0029]
Thus, according to the second embodiment shown in FIG. 4, it is possible to obtain a multi-pulse rectifier transformer in which the winding connection can be easily simplified and downsized.
[0030]
FIG. 5 is a plan view showing a configuration of a third embodiment of a multi-pulse rectifier transformer according to the present invention. In the drawing, the same elements as those in FIG. 1 showing the first embodiment are denoted by the same reference numerals. The description is omitted. In the multi-pulse rectifier transformer 10C shown here, a 5-pole terminal block 21C is mounted at the center of the terminal block plate 18 instead of the terminal block 21A shown in FIG. Assuming that the three-phase input-side electric wire 31 is connected, and that the outputs of the rectifier 22 and the rectifier 23 are connected in parallel with the same polarity as shown in FIG. 1 is different from FIG. 1 only in that a DC output side electric wire 34C is derived from a corresponding terminal, and the other points are the same as those in FIG. As a result, the width is slightly larger than in the second embodiment, but the simplification of the wiring and the miniaturization of the device are achieved as compared with the first embodiment.
[0031]
Thus, according to the third embodiment shown in FIG. 5, it is possible to obtain a multi-pulse rectifier transformer in which the winding connection can be simplified and downsized easily.
[0032]
FIG. 6 is a plan view showing a configuration of a fourth embodiment of a multi-pulse rectifier transformer according to the present invention. In the drawing, the same elements as those in FIG. 1 showing the first embodiment are denoted by the same reference numerals. The description is omitted. The multi-pulse rectifier transformer 10D shown here mounts a 13-pole terminal block 21D in place of the terminal block 21A shown in FIG. 1, and makes this terminal block 21D have the function of the relay connector 33. The configuration is the same as that of FIG. 1 except that the configuration of FIG. Thus, a multi-pulse rectifier transformer can be configured without using the relay connector 33. In this case, the ratio of incorrect wiring increases as compared with the case where the relay connector 33 is used, but there is an advantage that at least wiring can be simplified.
[0033]
Thus, according to the fourth embodiment shown in FIG. 6, it is possible to obtain a multi-pulse rectifier transformer in which the winding connection can be simplified and downsized easily.
[0034]
【The invention's effect】
As is apparent from the above description, according to the present invention, by integrally combining the transformer winding and the rectifier, the winding connection can be simplified and the multi-pulse that can be downsized can be realized. A commutation transformer can be provided.
[Brief description of the drawings]
FIG. 1 is a plan view showing a configuration of a first embodiment of a multi-pulse rectifier transformer according to the present invention.
FIG. 2 is a perspective view and a side view showing a mounting state of main elements of the multi-pulse rectifier transformer shown in FIG.
FIG. 3 is a circuit diagram showing a schematic configuration in which the multi-pulse rectifier transformer shown in FIG. 1 is applied to an air conditioner.
FIG. 4 is a plan view showing a configuration of a multi-pulse rectifier transformer according to a second embodiment of the present invention.
FIG. 5 is a plan view showing a configuration of a multi-pulse rectifier transformer according to a third embodiment of the present invention.
FIG. 6 is a plan view showing the configuration of a fourth embodiment of the multi-pulse rectifier transformer according to the present invention.
FIG. 7 is a transformer vector diagram showing a specific winding structure of a transformer constituting a conventional 18-pulse rectifier.
FIG. 8 is a winding structure diagram of a transformer that satisfies the transformer vector diagram shown in FIG. 7;
[Explanation of symbols]
10A, 10B, 10C, 10D Multi-pulse rectifier transformer 11 Phase windings 13 of cores 12U, 12V, 12W U, V, W 13 Protective coating 14 Transformer 18 Terminal board 21A, 21B, 21C, 21D Terminal board 22, 23 Rectifier 31 Three-phase input side wire 32 Internal distribution line 33 Relay connector 34, 34A, 34B, 34C DC output side wire

Claims (5)

3相交流を入力し、この3相交流に対してそれぞれ位相が所定角だけずれた2つの3相交流を出力する変圧器と、
前記変圧器の鉄心の継鉄に固定された端子台板と、
前記端子台板にそれぞれ実装され、前記変圧器から出力される3相交流を入力して直流を出力する2個の整流器と、
を備えた多パルス整流変圧器。
A transformer that receives a three-phase alternating current and outputs two three-phase alternating currents each having a phase shifted by a predetermined angle with respect to the three-phase alternating current;
A terminal plate fixed to the yoke of the core of the transformer,
Two rectifiers respectively mounted on the terminal base plate and inputting a three-phase AC output from the transformer and outputting a DC;
Multi-pulse rectifier transformer with.
前記2個の整流器はそれぞれ外部接続用の直流出力端子を備えた請求項1に記載の多パルス整流変圧器。2. The multi-pulse rectifier transformer according to claim 1, wherein each of the two rectifiers has a DC output terminal for external connection. さらに、前記端子台板に中継端子が実装され、前記2個の整流器はそれぞれ外部接続用の直流出力端子を備え、これらの直流出力端子が極性を揃えて前記中継端子に並列接続された請求項1に記載の多パルス整流変圧器。Further, a relay terminal is mounted on the terminal base plate, the two rectifiers each have a DC output terminal for external connection, and these DC output terminals are connected in parallel to the relay terminal with the same polarity. 2. The multi-pulse rectifier transformer according to 1. 前記変圧器の巻線に対して3相交流を入、出力する以外の電線が全て中継コネクタで接続された請求項1ないし3のいずれか1項に記載の多パルス整流変圧器。The multi-pulse rectifier transformer according to any one of claims 1 to 3, wherein all electric wires other than inputting and outputting three-phase alternating current to and from the windings of the transformer are connected by a relay connector. 前記端子台板は前記変圧器の継鉄に沿って細長く形成され、中央部に多極の中継端子が実装され、両端部に前記整流器が実装され、前記変圧器の巻線相互の接続が前記中継端子を介して行われる請求項1ないし3のいずれか1項に記載の多パルス整流変圧器。The terminal plate is formed to be elongated along the yoke of the transformer, a multi-pole relay terminal is mounted at the center, the rectifier is mounted at both ends, and the mutual connection of the windings of the transformer is performed. 4. The multi-pulse rectifier transformer according to claim 1, which is performed via a relay terminal.
JP2003032421A 2003-02-10 2003-02-10 Multipulse rectifier transformer Pending JP2004248341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032421A JP2004248341A (en) 2003-02-10 2003-02-10 Multipulse rectifier transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032421A JP2004248341A (en) 2003-02-10 2003-02-10 Multipulse rectifier transformer

Publications (1)

Publication Number Publication Date
JP2004248341A true JP2004248341A (en) 2004-09-02

Family

ID=33018774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032421A Pending JP2004248341A (en) 2003-02-10 2003-02-10 Multipulse rectifier transformer

Country Status (1)

Country Link
JP (1) JP2004248341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336480A (en) * 2015-11-28 2016-02-17 河南铜牛变压器有限公司 One-machine 24-pulse conjugated iron core liquid immersion type rectifier transformer
CN105336473A (en) * 2015-11-28 2016-02-17 河南铜牛变压器有限公司 Conjugate iron core for 24-pulse-wave rectifier transformer
CN108335886A (en) * 2017-12-29 2018-07-27 金盘电气集团(上海)有限公司 A kind of double transformer with split windings of change magnetic flux

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336480A (en) * 2015-11-28 2016-02-17 河南铜牛变压器有限公司 One-machine 24-pulse conjugated iron core liquid immersion type rectifier transformer
CN105336473A (en) * 2015-11-28 2016-02-17 河南铜牛变压器有限公司 Conjugate iron core for 24-pulse-wave rectifier transformer
CN105336473B (en) * 2015-11-28 2018-12-18 河南铜牛变压器有限公司 A kind of 24 pulse wave rectifier transformer conjugation-type iron cores
CN108335886A (en) * 2017-12-29 2018-07-27 金盘电气集团(上海)有限公司 A kind of double transformer with split windings of change magnetic flux

Similar Documents

Publication Publication Date Title
EP2973966B1 (en) Autotransformer system reducing total harmonic distortion
JP4808221B2 (en) High frequency modulation / demodulation multiphase rectifier
EP2320551B1 (en) Thirty-six pulse power transformer and power converter incorporating same
JP2002010646A (en) Rectifier and transformer
KR101462721B1 (en) Series-connected multi-level power conversion device
US20180019056A1 (en) Reactor
KR100364513B1 (en) Apparatus for reducing the harmonic component in the power line
JPH11144983A (en) Choke coil and rectifying/smoothing circuit using the same
JP2002281758A (en) Voltage-drop type full-wave rectifying apparatus
JP2004248341A (en) Multipulse rectifier transformer
JP3801305B2 (en) Rectifier
JP2008278714A (en) Rectifier circuit
CN215815555U (en) Multiphase autotransformer and rectifier system
JP3089848B2 (en) Rectifier transformer with phase-shift winding
JPH11122953A (en) Voltage-type inverter
JP3533982B2 (en) Power converter
JPH01179405A (en) Transformer for rectifier
JP4330583B2 (en) Air conditioner
JPH02142357A (en) Rectifier
KR20050034499A (en) A device of decreasing harmonic with keep improve the balance of voltage and current
KR200338373Y1 (en) a device of decreasing harmonic with keep improve the balance of voltage and current
JP3987778B2 (en) Transformer and rectifier using the same
JPH10337042A (en) Inverter device
JP2020156133A (en) Power supply device and medical system
GB2433653A (en) Multiplex rectifier circuit