JP3987778B2 - Transformer and rectifier using the same - Google Patents

Transformer and rectifier using the same Download PDF

Info

Publication number
JP3987778B2
JP3987778B2 JP2002279820A JP2002279820A JP3987778B2 JP 3987778 B2 JP3987778 B2 JP 3987778B2 JP 2002279820 A JP2002279820 A JP 2002279820A JP 2002279820 A JP2002279820 A JP 2002279820A JP 3987778 B2 JP3987778 B2 JP 3987778B2
Authority
JP
Japan
Prior art keywords
phase
transformer
coil
tap
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002279820A
Other languages
Japanese (ja)
Other versions
JP2004120878A (en
Inventor
杉 通 可 植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2002279820A priority Critical patent/JP3987778B2/en
Publication of JP2004120878A publication Critical patent/JP2004120878A/en
Application granted granted Critical
Publication of JP3987778B2 publication Critical patent/JP3987778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、3相交流を高調波の少ない直流に変換するのに好適な変圧器及びこれを用いた整流器に関する。
【0002】
【従来の技術】
3相交流を直流に変換する場合、6つの整流素子をブリッジ接続してなる一つの3相全波整流器を用いるのが最も一般的な方法である。このような3相全波整流器では、60度ごとに順次通電する整流素子が切り換わって直流電圧が出力されるが、この方法で整流される直流電圧には電源周波数の6倍の周期を持つ振幅の大きな電圧リップルが含まれ、これが高調波となって様々な障害を引き起こしている。
【0003】
この対策として、3相交流を直流に変換する主3相全波整流器と、3相交流の相電圧を正三角形のベクトル図で表わし、各頂点を中心として残りの2つの頂点を結んで描いた円弧を3等分して得られた2点をそれぞれ通る直線と、正三角形の各頂点を通り、これらの頂点と対向する一辺に平行な直線とで形成される六角形で表された変圧器ベクトル図を満たす変圧器と、この変圧器から出力される2種類の3相交流をそれぞれ直流に変換すると共に、直流出力ラインが主3相全波整流器と並列接続された2個の補助3相全波整流器とを備えた、18パルス方式の整流器が提案されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−10646号公報(第6頁、第8図)
【0005】
【発明が解決しようとする課題】
しかしながら、上記の変圧器は3相電圧のベクトルに対応して作図した六角形の線分の長さからコイルの巻数比を決定していたため、良好な高調波低減効果を得るには試行錯誤を繰り返さなければならなかった。また、鉄心に連続して巻回されるコイルに複数の中間タップを設けて出力端子としていることから、コイル電流の少ない部分が存在するにも拘わらず、線径、すなわち、断面積の等しい導線を用いているため、変圧器を小型化するという目的が十分に達成されてはいなかった。
【0006】
本発明は、上記の事情を考慮してなされたもので、その目的は六角形で表された変圧器ベクトル図に係る電圧の値及び位相を正確に決定することができると共に、小型化を可能にする変圧器及びこれを用いた整流器を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、
3相交流の各相電圧を正三角形のベクトル図で表わし、前記正三角形の各頂点を中心として残りの2つの頂点を結んで描いた円弧を3等分して得られた2点をそれぞれ通る直線と、前記正三角形の各頂点を通り、前記各頂点と対向する一辺に平行な直線とで形成される六角形で表された変圧器ベクトル図を満たす変圧器において、
3相分の鉄心にそれぞれ巻装された第1及び第2のコイルを備え、
前記第1のコイルの一端は極性が同一で順次相が異なる前記第2のコイルの一端に接続され、前記第1のコイルの他端は極性が同一で、前記一端とは異なる組み合わせで順次相が異なる前記第2のコイルの他端に接続され、
a,b,cをそれぞれ2以上の数として、前記第1のコイルの巻数を2aとして巻数の中間位置に第1のタップが設けられ、前記第2のコイルの巻数を2b+cとして、一端から巻数bだけ内側の位置に第2のタップが設けられ、他端から巻数bだけ内側の位置に第3のタップが設けられ、
3相分の前記第1のタップが3相交流電圧の入力端子とされ、3相分の前記第2のタップが3相交流電圧の第1の出力端子とされ、3相分の前記第3のタップが3相交流電圧の第2の出力端子とされ、
前記第2のコイルの巻数cに対応する前記第2のタップと前記第3のタップとの間の部分の導線の断面積が、他の部分と比較して小さくされている、
ことを特徴とする。
請求項2に係る発明は、
3相交流を直流に変換する主3相全波整流器と、3相交流を入力して電気角で±20°だけ位相を異ならせた2種類の3相交流を出力する変圧器と、変圧器から出力される2種類の3相交流をそれぞれ直流に変換すると共に、直流出力ラインが主3相全波整流器と並列接続された2個の補助3相全波整流器とを備えた整流器において、
変圧器として請求項1に記載の変圧器を用いたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。図1は本発明に係る変圧器の一実施形態の具体的な巻線構造を表す変圧器ベクトル図である。図中、電源の3相交流電圧が正三角形R1,S1,T1で表される。この正三角形の頂点R1を中心にして残りの2つの頂点S1,T1を結んで描いた円弧を3等分して得られた2点をそれぞれS3,T2とする。また、正三角形の頂点S1を中心にして残りの2つの頂点T1,R1を結んで描いた円弧を3等分して得られた2点をそれぞれT3,R2とする。さらに、正三角形の頂点T1を中心にして残りの2つの頂点R1,S1を結んで描いた円弧を3等分して得られた2点をそれぞれR3,S2とする。
【0009】
次に、正三角形の頂点R1を通り、対向する一辺に平行な直線と、円弧上の2点T3,R2を通る直線及び円弧上の2点R3,S2を通る直線との交点をそれぞれR4,R5とする。また、正三角形の頂点S1を通り、対向する一辺に平行な直線と、円弧上の2点R3,S2を通る直線及び円弧上の2点S3,T2を通る直線との交点をそれぞれS4,S5とする。さらに、正三角形の頂点T1を通り、対向する一辺に平行な直線と、円弧上の2点S3,T2を通る直線及び円弧上の2点T3,R2を通る直線との交点をそれぞれT4,T5とする。
【0010】
これによって、点R4−R5−S4−S5−T4−T5−R4を連ねてなる六角形の変圧器ベクトル図が形成される。このうち、線分R4−R5がR相第1コイル2に、線分S5−T4がR相第2コイル3にそれぞれ対応し、線分S4−S5がS相第1コイル5に、線分T5−R4がS相第2コイル6にそれぞれ対応し、線分T4−T5がT相第1コイル8に、線分R5−S4がT相第2コイル9にそれぞれ対応している。そして、線分の長さがR,S,V各相の鉄心に対するコイルの巻数に相当し、各線分の一端部に付加された「・」は極性が、例えば、「正」であることを表している。
【0011】
図2は図1に示した変圧器ベクトル図を満たす変圧器10の巻線構造図であり、図1中の等分点及び交点を示す符号が対応する巻線の端子又はタップとして表されている。この図2において、R相鉄心1にR相第1コイル2及びR相第2コイル3が巻装され、このうち、R相第1コイル2には中間タップR1が設けられ、R相第2コイル3には中間タップT2,S3が設けられている。また、S相鉄心4にS相第1コイル5及びS相第2コイル6が巻装され、このうち、S相第1コイル5には中間タップS1が設けられ、S相第2コイル6には中間タップR2,T3が設けられている。さらに、T相鉄心7にはT相第1コイル8及びT相第2コイル9が巻装され、このうちT相第1コイル8には中間タップT1が設けられ、T相第2コイル9には中間タップS2,R3が設けられている。
【0012】
また、R相第1コイル2の一端R4がS相第2コイル6の一端に、S相第1コイル5の一端がT相第2コイル9の一端に、T相第1コイル8の一端がR相第2コイル3の一端にそれぞれ接続され、R相第1コイル2の他端がT相第2コイル9の他端に、S相第1コイル5の他端がR相第2コイル3の他端に、T相第1コイル8の他端がS相第2コイル6の他端にそれぞれ接続されている。そして、中間タップR1,S1,T1から導線が引き出されて3相交流の入力端子R1,S1,T1となり、中間タップR2,S2,T2から導線が引き出されて第1の3相交流出力端子R2,S2,T2となり、中間タップR3,S3,T3,から導線が引き出されて第2の3相交流出力端子R3,S3,T3となっている。
【0013】
なお、以下の説明において、中間タップR1,S1,T1を3相交流の入力端子、中間タップR2,S2,T2及びR3,S3,T3を3相交流出力端子ともいう。
【0014】
図3は図1に示した変圧器ベクトル図に基づいて、コイルの巻数比を決定するために、幾何学的な解析を行うための拡大図であり、特に、R相第1コイル2の中間タップR1からその他端R5までの巻数aに相当する線分R1−R5と、T相第2コイル9の他端R5から中間タップR3までの巻数bに相当する線分R5−R3と、T相第2コイル9の中間タップR3からS2までの巻数cに相当する線分R3−S2との関係を説明するための図であり、このうち、線分R3−S2は点R1と点R3を結ぶ線分R1−R3に等しいことを利用してコイルの巻数比a:b:cを決定する場合を示している。
【0015】
図3において、円弧R1⌒S1は点R3とS2で3等分されており、弦R1−R3は弦R3−S2に等しい。すなわち、線分R1−R3も巻数cに相当する。ここで、∠R3,R1,S1は円弧R3⌒S1の円周角であるから、中心角∠R3,T1,S1の半分である。すなわち、∠R3,T1,S1=40°であるから∠R3,R1,S1=20°である。また、線分R1−S1と線分R5−S4は平行、すなわち、R1−S1//R5−S4であるから∠R3,R1,S1=∠R1,R3,R5(錯角)である。従って、∠R1,R3,R5=20°である。
【0016】
次に、三角形△R1,R5,R3に着目すると、∠R1,R5,R3=120°であるから∠R5,R1,R3=40°となる。よって正弦定理により次式が成立する。
【0017】

Figure 0003987778
この関係式は線分R1−R5、R5−R3、R3−S2に対応するコイルのみに限らず、これと同様な関係にある他の5箇所のコイルの巻数の決定に適用される。
【0018】
このように、(2)式の関係に従って各コイルの巻数比を決定することによって、3相電圧のベクトルに対応して作図した六角形の線分の長さからコイルの巻数比を決定した従来の変圧器と比較して、電圧の値及び位相をより正確に決定することができる。
【0019】
図4は上記の実施形態による変圧器10を用いて、高調波の少ない直流に変換する18パルス整流器の構成を示す回路図である。図4において、3相交流電源11から電力の供給を受ける経路の線路インピーダンスが抵抗12R,12S,12Tとインダクタンス13R,13S,13Tとで表されている。この3相交流電源ラインに主3相全波整流器21が接続されている。主3相全波整流器21の直流出力端子間に、リアクトル31及び平滑コンデンサ32でなる平滑回路が接続され、平滑コンデンサ32の両端に負荷抵抗33が接続されている。また、3相交流電源ラインに、変圧器10の中間タップR1,S1,T1から導線が引き出されて3相交流の入力端子が接続され、この変圧器10の中間タップR2,S2,T2から導線が引き出されて第1の3相交流出力端子に補助3相全波整流器22の交流入力端が接続され、中間タップR3,S3,T3,から導線が引き出されて第2の3相交流出力端子に補助3相全波整流器23の交流入力端が接続されている。補助3相全波整流器22及び補助3相全波整流器23の各直流出力端子は主3相全波整流器21の直流出力端子に並列に接続されている。
【0020】
図5(a)及び(b)は上記(2)式の関係を満たすように各コイルの巻数比a,b,cを決定した解析数値による入力電流と高調波成分をシミュレーションした場合の波形(太い実線で示す)と、(2)式の値のうち、例えば、a(=1)に対応する値を1.07として7%の誤差を見込んだ実測誤差数値による入力電流と高調波成分をシミュレーションした場合の波形(細い実線で示す)とを併せて示した波形図である。これらの図から明らかなように、巻数を(2)式に基づいて決定した場合の高調波成分は略ゼロと見なし得るのに対して、(2)式に示す値に7%の誤差を見込んだ場合には5次高調波成分が2%も含まれることが分かる。
【0021】
このシミュレーション結果から明らかなように、作図による六角形の線分の長さからコイルの巻数比を決定する場合に7%程度の誤差はやむを得ないものとして変圧器を作製し、この変圧器を用いて整流器を構成した場合には、様々な障害を引き起こしやすい5次高調波成分が2%程度になるのに対して、本実施形態のように(2)式の関係を満たすように各コイルの巻数比を決定することにより変圧器の定数調整が容易化され、これに従って変圧器を作製し、この変圧器を用いて整流器を構成した場合には高調波成分を実質的にゼロに抑え込むことができる。
【0022】
図6(a)〜(d)は図4に示した主3相全波整流器21、補助3相全波整流器22及び補助3相全波整流器23にそれぞれ印加される3相交流電圧、R,S,T各相の電流をそれぞれシミュレーションした波形図であり、電気角で20°の間隔で正、負の最大瞬時値を出力する導電端子が切換わっている。
【0023】
ここで、図6中に一点鎖線の枠で囲った1導通区間(20°)での変圧器10の電流の経路に着目すると、例えば、3相交流入力端子R1から、主3相全波整流器21及び補助3相全波整流器22を経て、3相交流出力端子T2へ電流が流れる区間には、変圧器10の3相交流出力端子T2以外の出力端子には電流は流れない。このとき図7に示すように、次の電流経路を通して電流I1,I2,I3,I4が流れる。
【0024】
I1…R1←R4←T5←T1
I2…R1→R5→S4→S1
I3…T1→T4→T2
I4…S1←S5←T2
上述した電流I1〜I4によって発生する磁束の方向をR相鉄心1の磁束方向に合わせると、R相鉄心1、S相鉄心4及びT相鉄心7の合成磁束はゼロになるから、次式が成立する。
【0025】
a・I1+a・I2+b・I3+(b+c)・I4=0 …(3)
−(2b+c)・I1+a・I2−a・I4=0 …(4)
a・I1−(2b+c)・I2−a・I3=0 …(5)
ただし、a,b,cは前述した巻数である。
【0026】
この(3)〜(5)式に上記(2)式の値を代入して電流比を求めると次式の関係が得られる。
【0027】
I1:I2:I3:I4=1:−3.87939:25.40467:−10.1702…(6)
上記(6)式の関係で表される電流は3相交流出力端子T2以外の導通区間にも、導通端子に応じた巻線に流れているが、最も大きい電流I3に相当する電流は出力端子R2,S2,T2,R3,S3,T3から常に巻線b側に流れ、巻線cを通ることはない。このため、巻線cに流れる1サイクルでの電流の実効値は他の巻線と比較して大幅に小さくなる。
【0028】
図8は3相交流出力端子T2に接続される中間タップT2の両側の巻線cと巻線bの電流をシミュレーションした電流波形図である。この波形図から明らかなように、3相交流出力端子T2の導通時のみ正側と負側の値が異なり、巻線cの電流の実効値は巻線bの電流の実効値に対して約55%になる。一つの鉄心の巻線bと他の鉄心の巻線aとの接続点には外部端子が接続されていないので電流値は全て同じになる。
【0029】
そこで、変圧器10の巻線a,b,cの断面積は全て同じにする必要はないため、本実施形態では電流の実効値に応じて導線の断面積を異ならせたもので、その具体例として、巻数cに対応する部分の導線の断面積を、他の部分と比較して小さくしている。
【0030】
この結果、信頼性を損なうことなく、変圧器及びこれを用いた整流器の小型化が可能になる。
【0031】
【発明の効果】
以上の説明によって明らかなように、本発明によれば、六角形で表された変圧器ベクトル図に係る電圧の値及び位相を正確に決定することができると共に、一層の小型化を可能にする変圧器及びこれを用いた整流器を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る変圧器の実施形態の具体的な巻線構造を表す変圧器ベクトル図。
【図2】図1に示した変圧器ベクトル図を満たす変圧器の巻線構造図。
【図3】図1に示した変圧器ベクトル図に基づいて、コイルの巻数比を決定するために、幾何学的な解析を行うための拡大図。
【図4】図1の実施形態による変圧器を用いて、高調波の少ない直流に変換する整流器の構成を示す回路図。
【図5】図4に示す整流器におけるコイルの巻数比の解析数値と、実測誤差数値によるに各入力電流と高調波成分をシミュレーションした波形図。
【図6】図4に示した3相全波整流器にそれぞれ印加される3相交流電圧及び3相交流電流のシミュレーション結果を示す波形図。
【図7】図6中に一点鎖線の枠で囲った1導通区間における電流経路を、変圧器ベクトル図と併せて示した図。
【図8】図6中に一点鎖線の枠で囲った1導通区間における中間タップの両側の巻線に流れる電流をシミュレーションした瞬時値及び実効値を示す波形図。
【符号の説明】
1 R相鉄心
2 R相第1コイル
3 R相第2コイル
4 S相鉄心
5 S相第1コイル
6 S相第2コイル
7 T相鉄心
8 T相第1コイル
9 T相第2コイル
10 変圧器
11 3相交流電源
12R,12S,12T 抵抗
13R,13S,13T インダクタンス
21 主3相全波整流器
22,23 補助3相全波整流器
31 リアクトル
32 平滑コンデンサ
33 負荷抵抗[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transformer suitable for converting three-phase alternating current into direct current with less harmonics, and a rectifier using the transformer.
[0002]
[Prior art]
When three-phase alternating current is converted into direct current, the most common method is to use one three-phase full-wave rectifier formed by bridge-connecting six rectifier elements. In such a three-phase full-wave rectifier, the rectifying elements that are sequentially energized every 60 degrees are switched to output a DC voltage, but the DC voltage rectified by this method has a cycle that is six times the power supply frequency. A voltage ripple with a large amplitude is included, which becomes a harmonic and causes various obstacles.
[0003]
As a countermeasure, the main three-phase full-wave rectifier that converts three-phase alternating current to direct current and the phase voltage of the three-phase alternating current are represented by a vector diagram of an equilateral triangle, and the other two vertices are drawn around each vertex. Transformer represented by a hexagon formed by straight lines that pass through two points obtained by dividing an arc into three equal parts, and straight lines that pass through the vertices of an equilateral triangle and are parallel to one side facing these vertices Transformer that satisfies the vector diagram, and two auxiliary three-phases that convert the two types of three-phase alternating current output from the transformer into direct current, and the DC output line is connected in parallel with the main three-phase full-wave rectifier An 18-pulse rectifier including a full-wave rectifier has been proposed (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-10646 (page 6, FIG. 8)
[0005]
[Problems to be solved by the invention]
However, since the above transformer determines the coil turns ratio from the length of the hexagonal line segment drawn corresponding to the vector of the three-phase voltage, trial and error is required to obtain a good harmonic reduction effect. Had to repeat. In addition, since a plurality of intermediate taps are provided on the coil wound continuously around the iron core as an output terminal, the conductor having the same wire diameter, i.e., cross-sectional area, despite the presence of a portion with a small coil current. The purpose of downsizing the transformer has not been fully achieved.
[0006]
The present invention has been made in consideration of the above-described circumstances, and the object thereof is to accurately determine the voltage value and phase according to the transformer vector diagram represented by a hexagon, and to enable miniaturization. An object of the present invention is to provide a transformer and a rectifier using the same.
[0007]
[Means for Solving the Problems]
The invention according to claim 1
Each phase voltage of the three-phase alternating current is represented by a regular triangle vector diagram, and passes through two points obtained by dividing the arc drawn by connecting the remaining two vertices with each vertex of the regular triangle as the center. In a transformer satisfying a transformer vector diagram represented by a hexagon formed by a straight line and a straight line passing through each vertex of the equilateral triangle and parallel to one side facing each vertex,
Comprising first and second coils respectively wound around a three-phase iron core;
One end of the first coil is connected to one end of the second coil having the same polarity and sequentially different phases, and the other end of the first coil has the same polarity and sequentially different phases from the one end. Are connected to the other ends of the different second coils,
Each of a, b, and c is a number of 2 or more, the number of turns of the first coil is 2a, a first tap is provided at an intermediate position of the number of turns, and the number of turns of the second coil is 2b + c. a second tap is provided at an inner position by b, and a third tap is provided at an inner position by the number of turns b from the other end,
The first tap for three phases is used as an input terminal for three-phase AC voltage, and the second tap for three phases is used as a first output terminal for three-phase AC voltage. Is the second output terminal of the three-phase AC voltage,
The cross-sectional area of the conductor of the portion between the second tap and the third tap corresponding to the number of turns c of the second coil is made smaller than that of the other portion;
It is characterized by that.
The invention according to claim 2
A main three-phase full-wave rectifier that converts three-phase alternating current to direct current, a transformer that outputs three types of three-phase alternating current that is input by shifting the phase by ± 20 ° in electrical angle, and transformer In the rectifier comprising two auxiliary three-phase full-wave rectifiers, each of which converts two types of three-phase alternating currents output from the direct current into DC, and the DC output line is connected in parallel with the main three-phase full-wave rectifier,
The transformer according to claim 1 is used as a transformer.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a transformer vector diagram showing a specific winding structure of an embodiment of a transformer according to the present invention. In the figure, the three-phase AC voltage of the power supply is represented by equilateral triangles R1, S1, and T1. Two points obtained by equally dividing the arc drawn by connecting the remaining two vertices S1 and T1 around the vertex R1 of the equilateral triangle as S3 and T2, respectively. Further, two points obtained by equally dividing the arc drawn by connecting the remaining two vertices T1 and R1 with the vertex S1 of the equilateral triangle as the center are defined as T3 and R2, respectively. Furthermore, two points obtained by equally dividing the arc drawn by connecting the remaining two vertices R1 and S1 around the vertex T1 of the equilateral triangle as R3 and S2, respectively.
[0009]
Next, the intersections of the straight line passing through the vertex R1 of the equilateral triangle and parallel to the opposite side and the straight line passing through the two points T3 and R2 on the arc and the straight line passing through the two points R3 and S2 on the arc are R4, respectively. R5. Further, the intersection points of a straight line passing through the vertex S1 of the equilateral triangle and parallel to the opposite side, a straight line passing through the two points R3 and S2 on the arc, and a straight line passing through the two points S3 and T2 on the arc are respectively S4 and S5. And Furthermore, the intersections of a straight line passing through the vertex T1 of the equilateral triangle and parallel to the opposite side, a straight line passing through the two points S3 and T2 on the arc, and a straight line passing through the two points T3 and R2 on the arc are respectively T4 and T5. And
[0010]
As a result, a hexagonal transformer vector diagram formed by connecting the points R4-R5-S4-S5-T4-T5-R4 is formed. Of these, the line segment R4-R5 corresponds to the R-phase first coil 2, the line segment S5-T4 corresponds to the R-phase second coil 3, and the line segment S4-S5 corresponds to the S-phase first coil 5, respectively. T5-R4 corresponds to the S-phase second coil 6, line segment T4-T5 corresponds to the T-phase first coil 8, and line segment R5-S4 corresponds to the T-phase second coil 9, respectively. The length of the line segment corresponds to the number of turns of the coil with respect to the cores of the R, S, and V phases, and “·” added to one end of each line segment indicates that the polarity is “positive”, for example. Represents.
[0011]
FIG. 2 is a winding structure diagram of the transformer 10 that satisfies the transformer vector diagram shown in FIG. 1, and the symbols indicating the dividing points and intersections in FIG. 1 are represented as corresponding winding terminals or taps. Yes. In FIG. 2, an R-phase first coil 2 and an R-phase second coil 3 are wound around an R-phase iron core 1. Among these, an intermediate tap R 1 is provided on the R-phase first coil 2, and an R-phase second The coil 3 is provided with intermediate taps T2 and S3. In addition, an S-phase first coil 5 and an S-phase second coil 6 are wound around the S-phase iron core 4, and among these, the S-phase first coil 5 is provided with an intermediate tap S <b> 1. Are provided with intermediate taps R2, T3. Further, a T-phase first coil 8 and a T-phase second coil 9 are wound around the T-phase iron core 7, and among these, the T-phase first coil 8 is provided with an intermediate tap T <b> 1. Are provided with intermediate taps S2, R3.
[0012]
One end R4 of the R-phase first coil 2 is one end of the S-phase second coil 6, one end of the S-phase first coil 5 is one end of the T-phase second coil 9, and one end of the T-phase first coil 8 is one end. The other end of the R-phase first coil 2 is connected to the other end of the T-phase second coil 9 and the other end of the S-phase first coil 5 is connected to the R-phase second coil 3. The other end of the T-phase first coil 8 is connected to the other end of the S-phase second coil 6. Then, the conducting wire is drawn out from the intermediate taps R1, S1, and T1 to become three-phase AC input terminals R1, S1, and T1, and the conducting wire is drawn out from the intermediate taps R2, S2, and T2, and the first three-phase AC output terminal R2 is drawn. , S2, and T2, and the lead wires are drawn out from the intermediate taps R3, S3, and T3 to form second three-phase AC output terminals R3, S3, and T3.
[0013]
In the following description, the intermediate taps R1, S1, and T1 are also referred to as three-phase AC input terminals, and the intermediate taps R2, S2, and T2, and R3, S3, and T3 are also referred to as three-phase AC output terminals.
[0014]
FIG. 3 is an enlarged view for performing a geometric analysis to determine the coil turns ratio based on the transformer vector diagram shown in FIG. A line segment R1-R5 corresponding to the number of turns a from the tap R1 to the other end R5, a line segment R5-R3 corresponding to the number of turns b from the other end R5 of the T-phase second coil 9 to the intermediate tap R3, and the T-phase It is a figure for demonstrating the relationship with line segment R3-S2 equivalent to the winding | turns number c from the intermediate taps R3 to S2 of the 2nd coil 9, and among these, line segment R3-S2 connects point R1 and point R3. The case where the turns ratio a: b: c of the coil is determined using the fact that it is equal to the line segment R1-R3 is shown.
[0015]
In FIG. 3, the arc R1⌒S1 is divided into three equal parts at points R3 and S2, and the strings R1-R3 are equal to the strings R3-S2. That is, the line segment R1-R3 also corresponds to the number of turns c. Here, ∠R3, R1, S1 is the circumferential angle of the arc R3⌒S1, and is half of the central angle ∠R3, T1, S1. That is, since ∠R3, T1, S1 = 40 °, ∠R3, R1, S1 = 20 °. Moreover, since the line segment R1-S1 and the line segment R5-S4 are parallel, that is, R1-S1 // R5-S4, ∠R3, R1, S1 = ∠R1, R3, R5 (complex angle). Therefore, ∠R1, R3, R5 = 20 °.
[0016]
Next, focusing on the triangles ΔR1, R5, and R3, since ∠R1, R5, and R3 = 120 °, ∠R5, R1, and R3 = 40 °. Therefore, the following equation is established by the sine theorem.
[0017]
Figure 0003987778
This relational expression is applied not only to the coils corresponding to the line segments R1-R5, R5-R3, and R3-S2, but also to the determination of the number of turns of the other five coils having the same relationship.
[0018]
Thus, by determining the turn ratio of each coil according to the relationship of equation (2), the turn ratio of the coil is determined from the length of the hexagonal line segment drawn corresponding to the vector of the three-phase voltage. Compared with the current transformer, the voltage value and phase can be determined more accurately.
[0019]
FIG. 4 is a circuit diagram showing a configuration of an 18-pulse rectifier that converts to direct current with less harmonics using the transformer 10 according to the above embodiment. In FIG. 4, the line impedance of the path that receives power from the three-phase AC power supply 11 is represented by resistors 12R, 12S, and 12T and inductances 13R, 13S, and 13T. A main three-phase full-wave rectifier 21 is connected to the three-phase AC power supply line. A smoothing circuit including a reactor 31 and a smoothing capacitor 32 is connected between the DC output terminals of the main three-phase full-wave rectifier 21, and load resistors 33 are connected to both ends of the smoothing capacitor 32. Further, a three-phase AC power supply line is connected to a three-phase AC input terminal from the intermediate taps R1, S1, and T1 of the transformer 10, and is connected to the three-phase AC power line from the intermediate taps R2, S2, and T2 of the transformer 10. Is pulled out and the AC input terminal of the auxiliary three-phase full-wave rectifier 22 is connected to the first three-phase AC output terminal, and the conducting wire is drawn out from the intermediate taps R3, S3, T3, and the second three-phase AC output terminal. Is connected to the AC input terminal of the auxiliary three-phase full-wave rectifier 23. The DC output terminals of the auxiliary three-phase full-wave rectifier 22 and the auxiliary three-phase full-wave rectifier 23 are connected in parallel to the DC output terminal of the main three-phase full-wave rectifier 21.
[0020]
5 (a) and 5 (b) show waveforms when the input current and the harmonic component are simulated based on the analytical values that determine the turns ratios a, b, and c of each coil so as to satisfy the relationship of the above expression (2). (Shown by a thick solid line) and the input current and the harmonic component based on the actual measurement error value with an error of 7%, for example, assuming that the value corresponding to a (= 1) is 1.07 among the values of equation (2) It is the wave form diagram which showed together the waveform at the time of simulation (it shows with a thin continuous line). As is apparent from these figures, the harmonic component when the number of turns is determined based on the formula (2) can be regarded as substantially zero, whereas the value shown in the formula (2) is estimated to have an error of 7%. In this case, it can be seen that 2% of the fifth harmonic component is included.
[0021]
As is clear from the simulation results, a transformer was manufactured assuming that an error of about 7% is unavoidable when determining the turns ratio of the coil from the length of the hexagonal line segment by drawing, and this transformer was used. When the rectifier is configured, the fifth-order harmonic component that easily causes various faults is about 2%, whereas each coil has a relationship of the expression (2) as in the present embodiment. By determining the turns ratio, the constant adjustment of the transformer is facilitated, and when a transformer is made according to this and a rectifier is configured using this transformer, the harmonic component can be suppressed to substantially zero. it can.
[0022]
6A to 6D show three-phase AC voltages applied to the main three-phase full-wave rectifier 21, the auxiliary three-phase full-wave rectifier 22 and the auxiliary three-phase full-wave rectifier 23 shown in FIG. It is a wave form diagram which each simulated the electric current of each phase of S, T, and the electric conduction terminal which outputs a positive and negative maximum instantaneous value is switched at intervals of 20 degrees by an electrical angle.
[0023]
Here, when attention is paid to the current path of the transformer 10 in one conduction section (20 °) surrounded by a one-dot chain line in FIG. 6, for example, the main three-phase full-wave rectifier from the three-phase AC input terminal R1. No current flows to any output terminal other than the three-phase AC output terminal T2 of the transformer 10 in a section where the current flows to the three-phase AC output terminal T2 via the auxiliary phase 21 and the auxiliary three-phase full-wave rectifier 22. At this time, as shown in FIG. 7, currents I1, I2, I3, and I4 flow through the next current path.
[0024]
I1 ... R1 ← R4 ← T5 ← T1
I2 ... R1 → R5 → S4 → S1
I3 ... T1 → T4 → T2
I4 ... S1 ← S5 ← T2
When the direction of the magnetic flux generated by the currents I1 to I4 described above is matched with the magnetic flux direction of the R-phase core 1, the combined magnetic flux of the R-phase core 1, the S-phase core 4 and the T-phase core 7 becomes zero. To establish.
[0025]
a · I1 + a · I2 + b · I3 + (b + c) · I4 = 0 (3)
-(2b + c) .I1 + a.I2-a.I4 = 0 (4)
a.I1- (2b + c) .I2-a.I3 = 0 (5)
However, a, b, and c are the number of turns described above.
[0026]
Substituting the values of the above equation (2) into the equations (3) to (5) to obtain the current ratio, the relationship of the following equation is obtained.
[0027]
I1: I2: I3: I4 = 1: -3.887939: 25.40467: -10.702 ... (6)
The current expressed by the relationship of the above expression (6) flows in the winding corresponding to the conduction terminal also in the conduction section other than the three-phase AC output terminal T2, but the current corresponding to the largest current I3 is the output terminal. It always flows from R2, S2, T2, R3, S3, T3 to the winding b side and does not pass through the winding c. For this reason, the effective value of the current in one cycle flowing through the winding c is significantly smaller than that of the other windings.
[0028]
FIG. 8 is a current waveform diagram simulating the currents in the windings c and b on both sides of the intermediate tap T2 connected to the three-phase AC output terminal T2. As is apparent from this waveform diagram, the positive and negative values differ only when the three-phase AC output terminal T2 is conductive, and the effective value of the current in the winding c is about the effective value of the current in the winding b. 55%. Since no external terminal is connected to the connection point between the winding b of one iron core and the winding a of the other iron core, the current values are all the same.
[0029]
Therefore, since the cross-sectional areas of the windings a, b, and c of the transformer 10 do not have to be the same, in this embodiment, the cross-sectional areas of the conductors are varied according to the effective value of the current. As an example, the cross-sectional area of the conductor corresponding to the number of turns c is made smaller than that of other parts.
[0030]
As a result, the transformer and the rectifier using the transformer can be downsized without impairing reliability.
[0031]
【The invention's effect】
As is apparent from the above description, according to the present invention, the voltage value and phase relating to the transformer vector diagram represented by a hexagon can be accurately determined, and further miniaturization can be achieved. A transformer and a rectifier using the transformer can be provided.
[Brief description of the drawings]
FIG. 1 is a transformer vector diagram showing a specific winding structure of an embodiment of a transformer according to the present invention.
FIG. 2 is a winding structure diagram of a transformer that satisfies the transformer vector diagram shown in FIG. 1;
FIG. 3 is an enlarged view for performing a geometric analysis to determine the coil turns ratio based on the transformer vector diagram shown in FIG. 1;
FIG. 4 is a circuit diagram showing a configuration of a rectifier that uses a transformer according to the embodiment of FIG.
5 is a waveform diagram in which each input current and harmonic components are simulated based on an analysis numerical value of the coil turns ratio and an actual measurement error value in the rectifier shown in FIG. 4;
6 is a waveform diagram showing simulation results of a three-phase alternating voltage and a three-phase alternating current applied to the three-phase full-wave rectifier shown in FIG. 4, respectively.
FIG. 7 is a diagram showing a current path in one conduction section surrounded by a one-dot chain line in FIG. 6 together with a transformer vector diagram.
8 is a waveform diagram showing instantaneous values and effective values simulating currents flowing through windings on both sides of an intermediate tap in one conduction section surrounded by a one-dot chain line in FIG. 6;
[Explanation of symbols]
1 R-phase iron core 2 R-phase first coil 3 R-phase second coil 4 S-phase iron core 5 S-phase first coil 6 S-phase second coil 7 T-phase iron core 8 T-phase first coil 9 T-phase second coil 10 Transformer 11 Three-phase AC power supply 12R, 12S, 12T Resistor 13R, 13S, 13T Inductance 21 Main three-phase full-wave rectifier 22, 23 Auxiliary three-phase full-wave rectifier 31 Reactor 32 Smoothing capacitor 33 Load resistance

Claims (2)

3相交流の各相電圧を正三角形のベクトル図で表わし、前記正三角形の各頂点を中心として残りの2つの頂点を結んで描いた円弧を3等分して得られた2点をそれぞれ通る直線と、前記正三角形の各頂点を通り、前記各頂点と対向する一辺に平行な直線とで形成される六角形で表された変圧器ベクトル図を満たす変圧器において、
3相分の鉄心にそれぞれ巻装された第1及び第2のコイルを備え、
前記第1のコイルの一端は極性が同一で順次相が異なる前記第2のコイルの一端に接続され、前記第1のコイルの他端は極性が同一で、前記一端とは異なる組み合わせで順次相が異なる前記第2のコイルの他端に接続され、
a,b,cをそれぞれ2以上の数として、前記第1のコイルの巻数を2aとして巻数の中間位置に第1のタップが設けられ、前記第2のコイルの巻数を2b+cとして、一端から巻数bだけ内側の位置に第2のタップが設けられ、他端から巻数bだけ内側の位置に第3のタップが設けられ、
3相分の前記第1のタップが3相交流電圧の入力端子とされ、3相分の前記第2のタップが3相交流電圧の第1の出力端子とされ、3相分の前記第3のタップが3相交流電圧の第2の出力端子とされ、
前記第2のコイルの巻数cに対応する前記第2のタップと前記第3のタップとの間の部分の導線の断面積が、他の部分と比較して小さくされている、
ことを特徴とする変圧器。
Each phase voltage of the three-phase alternating current is represented by a regular triangle vector diagram, and passes through two points obtained by dividing the arc drawn by connecting the remaining two vertices with each vertex of the regular triangle as the center. In a transformer satisfying a transformer vector diagram represented by a hexagon formed by a straight line and a straight line passing through each vertex of the equilateral triangle and parallel to one side facing each vertex,
Comprising first and second coils respectively wound around a three-phase iron core;
One end of the first coil is connected to one end of the second coil having the same polarity and sequentially different phases, and the other end of the first coil has the same polarity and sequentially different phases from the one end. Are connected to the other ends of the different second coils,
Each of a, b, and c is a number of 2 or more, the number of turns of the first coil is 2a, a first tap is provided at an intermediate position of the number of turns, and the number of turns of the second coil is 2b + c. a second tap is provided at an inner position by b, and a third tap is provided at an inner position by the number of turns b from the other end,
The first tap for three phases is used as an input terminal for three-phase AC voltage, and the second tap for three phases is used as a first output terminal for three-phase AC voltage. Is the second output terminal of the three-phase AC voltage,
The cross-sectional area of the conductor of the portion between the second tap and the third tap corresponding to the number of turns c of the second coil is made smaller than that of the other portion;
A transformer characterized by that.
3相交流を直流に変換する主3相全波整流器と、前記3相交流を入力して電気角で±20°だけ位相を異ならせた2種類の3相交流を出力する変圧器と、前記変圧器から出力される2種類の3相交流をそれぞれ直流に変換すると共に、直流出力ラインが前記主3相全波整流器と並列接続された2個の補助3相全波整流器とを備えた整流器において、
前記変圧器として請求項1に記載の変圧器を用いたことを特徴とする整流器。
A main three-phase full-wave rectifier that converts a three-phase alternating current into a direct current; a transformer that outputs two types of three-phase alternating currents that are different in phase by ± 20 ° in electrical angle by inputting the three-phase alternating current; A rectifier comprising two auxiliary three-phase full-wave rectifiers, each of which converts two types of three-phase alternating currents output from a transformer into direct current, and whose DC output line is connected in parallel with the main three-phase full-wave rectifier. In
A rectifier using the transformer according to claim 1 as the transformer.
JP2002279820A 2002-09-25 2002-09-25 Transformer and rectifier using the same Expired - Lifetime JP3987778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279820A JP3987778B2 (en) 2002-09-25 2002-09-25 Transformer and rectifier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279820A JP3987778B2 (en) 2002-09-25 2002-09-25 Transformer and rectifier using the same

Publications (2)

Publication Number Publication Date
JP2004120878A JP2004120878A (en) 2004-04-15
JP3987778B2 true JP3987778B2 (en) 2007-10-10

Family

ID=32274714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279820A Expired - Lifetime JP3987778B2 (en) 2002-09-25 2002-09-25 Transformer and rectifier using the same

Country Status (1)

Country Link
JP (1) JP3987778B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011206A1 (en) * 2004-07-29 2006-02-02 Mitsubishi Denki Kabushiki Kaisha Multiplex rectifier circuit
CN106233596A (en) * 2014-01-24 2016-12-14 东芝开利株式会社 Power-converting device, equipment machine and facility/equipment system
CN104009654B (en) * 2014-05-31 2017-08-04 山西宇欣磁业有限公司 Nine column combination iron-core transformers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933373B2 (en) * 2000-06-15 2007-06-20 株式会社東芝 Rectifier and transformer
JP4463963B2 (en) * 2000-09-29 2010-05-19 キヤノン株式会社 Grid interconnection device

Also Published As

Publication number Publication date
JP2004120878A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3933373B2 (en) Rectifier and transformer
US5619407A (en) Autotransformer
US8243481B2 (en) Power transformer and power converter incorporating same
EP2320551B1 (en) Thirty-six pulse power transformer and power converter incorporating same
US7274280B1 (en) Nine-phase step-up/step-down autotransformer
US7750782B1 (en) Nine-phase autotransformer
JP3987778B2 (en) Transformer and rectifier using the same
US7719858B1 (en) Fifteen-phase autotransformer
JP3801305B2 (en) Rectifier
CN215815555U (en) Multiphase autotransformer and rectifier system
JP4330583B2 (en) Air conditioner
CN112820524A (en) Multi-phase transformer and rectifier system
JP2022540927A (en) Asymmetric 24-pulse autotransformer rectifier unit for turbine electric propulsion and related systems and methods
US10312881B2 (en) Filters for adjustable speed drives with low DC bus capacitance and methods of manufacture and use thereof
RU2290741C2 (en) Three-phase voltage rectifying device incorporating three energy flow conversion channels (alternatives)
JP3238266B2 (en) Switching power supply
SU797023A1 (en) Three-phase single-cycle ac-to-dc voltage converter
CN216133753U (en) Multi-phase transformer and rectifier system
RU2661890C1 (en) Variable voltage converter in constant (variants)
Singh et al. Zigzag autotransformer based full-wave ac-dc converters
RU2503121C1 (en) Five-phase phase changer
SU930534A1 (en) Ac-to-dc voltage converter
JP2004248341A (en) Multipulse rectifier transformer
GB2433653A (en) Multiplex rectifier circuit
TWI579570B (en) Step - down power conversion circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350