JP2004247577A - Layered electronic parts and method for manufacturing the same - Google Patents

Layered electronic parts and method for manufacturing the same Download PDF

Info

Publication number
JP2004247577A
JP2004247577A JP2003036771A JP2003036771A JP2004247577A JP 2004247577 A JP2004247577 A JP 2004247577A JP 2003036771 A JP2003036771 A JP 2003036771A JP 2003036771 A JP2003036771 A JP 2003036771A JP 2004247577 A JP2004247577 A JP 2004247577A
Authority
JP
Japan
Prior art keywords
laminate
coil conductor
peripheral side
electrode
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036771A
Other languages
Japanese (ja)
Other versions
JP4338070B2 (en
Inventor
Akira Watanabe
明 渡辺
Yoshimitsu Sato
善光 佐藤
Toshiki Sato
俊樹 佐藤
Mamoru Kawauchi
守 川内
Osami Kumagai
修美 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003036771A priority Critical patent/JP4338070B2/en
Publication of JP2004247577A publication Critical patent/JP2004247577A/en
Application granted granted Critical
Publication of JP4338070B2 publication Critical patent/JP4338070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of gaps at the end electrodes, to prevent moisture from remaining in the end electrodes in an electric plating process or the like, and to prevent the short-circuit accident with the other neighboring electronic parts due to scattering solder in a reflow process. <P>SOLUTION: In nearly rectangular parallelepiped laminate electronic parts, coil conductors 2 and a magnetic body or a non-magnetic body are laminated, and a coil is formed inside a laminate 1. The both ends of the laminate 1 are provided with end electrodes 3. The coil conductors 2 are exposed on the peripheral side faces of the laminate. The exposing positions of coil conductor leading parts 21 are arranged in maximum regional parts 30 of electrode thickness wherein the end electrodes 3 creep to the peripheral side faces of the laminate 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、チップコイル等の積層型電子部品及びその製造方法に係り、主として磁性体もしくは非磁性体で形成される積層体内部に螺旋状のコイル導体が配置されてなる表面実装用の積層型電子部品及びその製造方法に関する。
【0002】
【従来の技術】
従来のこの種の積層型電子部品においては、図2(A)に示すように、コイル導体2と磁性体又は非磁性体とを積層して積層体1の内部に螺旋状コイルを形成した場合、前記積層体1の焼成後には図2(B)に示すように、積層体周側面へ露出するコイル導体引出し部分21と積層体1の間に空隙3Aが存在することが知られている。
【0003】
また、前記積層体1に端部電極塗布後に焼付けを行って端部電極3を積層体1の積層方向両端部に形成した状態では、積層体1のコーナー部分31や、端部電極回り込み終端部分32では端部電極3の塗布厚みが極端に低下するため、コイル導体引出し部分21が、積層体のコーナー部分31や、端部電極回り込み終端部分32の近くに形成された場合には、図2(B)のように端部電極3にも空隙3Bが発生しやすくなり、その後の端部電極の電気めっき等の工程において、前記空隙3A、3Bには水分が滞留しやすくなり、図2(C)に示すように水分を滞留した状態のまま、電気めっき皮膜(金属めっき皮膜)4のみでシールドされて積層型電子部品として完成することになる。
【0004】
その水分を滞留した状態のまま、電気めっきのみでシールドされた積層型電子部品は、回路基板に実装される場合、図3(A)(図2と同一部分には同一符号を付してある)に示すように、回路基板(プリント基板)7のランド5にメタルマスク等で印刷されたはんだ6上にマウントされ、その後リフローを行なってはんだで固着する場合が殆どであるが、はんだの溶解温度である183℃以上にてリフローされた場合、図3(B)に示すように、電子部品内(空隙3A、3B内)に滞留した水分が熱膨張して気化し、電気めっき皮膜4を破壊すると同時に溶融したはんだ61が飛散し、その飛散したはんだ6Aが近傍の他の電子部品の端子に達して急冷した場合、はんだによるショートとなり、回路動作を不能にする原因となる。
【0005】
この現象は、近年多く使用されるようになってきた鉛フリーはんだの場合、はんだの溶融温度がさらに高くなっていることから、リフロー温度も高く設定する必要があるため、さらに顕著に現われやすくなってきている。
【0006】
公知例としては、本発明にて触れているように積層型電子部品の端部電極に発生する空隙をなくし、よって部品リフロー時のはんだ飛散をなくす目的ではないが、構造的に類似したものとして、下記特許文献1や特許文献2が挙げられる。
【0007】
また、磁性体又は非磁性体からなる積層体に、焼成後において図2(B)に示すように、積層体周側面へ露出するコイル導体引出し部分21と積層体1の間に空隙3Aが存在することに関しては、下記特許文献3や特許文献4が挙げられる。
【0008】
【特許文献1】特開平10−284324号公報
【特許文献2】特開平11−265822号公報
【特許文献3】特許第2983049号公報
【特許文献4】特許第2987176号公報
【0009】
図4は特許文献2に開示されている積層型電子部品の断面図であり、1は積層体、2はコイル導体、21はコイル導体引出し部分、3は端部電極である。この場合、端部電極の積層体周側面への回り込み終端部分にコイル導体引出し部分が接続している。従って、空隙に起因するリフロー時のはんだ飛散の問題を解決するものではない。
【0010】
【発明が解決しようとする課題】
本発明は、それらの問題点に鑑み、端部電極の空隙発生を防止し、故に、その後の電気めっき等の工程における端部電極への水分の滞留をなくすることにより、その後のリフロー工程において、はんだの飛散に起因する近傍の他の電子部品とのショート事故を防止することが可能な積層型電子部品及びその製造方法を提供することを目的とする。
【0011】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係る積層型電子部品は、コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成したほぼ直方体状をなす構成において、
前記積層体の両端部に端部電極を備え、前記コイル導体は前記積層体の周側面に露出され、該コイル導体引出し部分の露出位置は、前記端部電極が前記積層体の周側面に回り込む部分における電極厚みの最大領域部分であることを特徴としている。
【0013】
このように、積層体の周側面にコイル導体を露出させる場合、前記コイル導体と電気的に接合する端部電極は、極端に塗布厚みが低下する積層体のコーナー部分や端部電極回り込み終端部を避け、電極厚みの最大領域部分にコイル導体引出し部分を配置することにより、該コイル導体引出し部分に発生する空隙を端部電極で完全にシールド(閉鎖)することができる。
【0014】
本願請求項2の発明に係る積層型電子部品は、請求項1において、前記コイル導体引出し部分の前記積層体周側面への露出位置と、前記端部電極が前記積層体周側面に回り込む部分における電極厚みの最大位置との位置ずれが、前記コイル導体引出し部分の露出する電極厚みの4倍以内であることを特徴としている。
【0015】
端部電極が、積層体の周側面に回り込む部分における電極厚みの最大領域部分は厚み変化が少々なだらかであるため、電極厚み最大位置(最大点)とコイル導体引出し部分の露出位置との位置ずれが、当該コイル導体引出し部分の露出する電極厚みの4倍以内程度の位置ずれ量であれば、コイル導体引出し部分に発生する空隙を、完全にシールドすることができる。
【0016】
本願請求項3の発明に係る積層型電子部品の製造方法は、コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成し、前記積層体の両端部に端部電極を設けたほぼ直方体状をなす積層型電子部品を製造する場合において、
前記コイル導体引出し部分の前記積層体周側面への露出位置が、前記端部電極の前記積層体周側面に回り込む部分における電極厚みの最大領域部分となるように、前記端部電極の回り込み寸法を調整することを特徴としている。
【0017】
このように、塗布する端部電極の塗布条件設定を、コイル導体引出し部分の積層体周側面への露出位置に対し、端部電極厚みが最大領域部分となるようにすることで、量産化が容易な積層型電子部品が得られる。
【0018】
本願請求項4の発明に係る積層型電子部品の製造方法は、コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成し、前記積層体の両端部に端部電極を設けたほぼ直方体状をなす積層型電子部品を製造する場合において、
前記コイル導体引出し部分の前記積層体周側面への露出位置が、前記端部電極の前記積層体周側面に回り込む部分における電極厚みの最大領域部分となるように、前記コイル導体引出し部分の前記積層体周側面への露出位置を調整することを特徴としている。
【0019】
このように、端部電極における積層体周側面に回り込んだ部分での厚みの最大領域部分の位置に、コイル導体引出し部分が露出するように積層体周側面への露出位置を調整することで量産化が容易な積層型電子部品が得られる。
【0020】
本願請求項5の発明に係る積層型電子部品の製造方法は、請求項3又は4において、前記コイル導体引出し部分の前記積層体周側面への露出位置と、前記端部電極が前記積層体周側面に回り込む部分における電極厚みの最大位置との位置ずれが、前記コイル導体引出し部分の露出する電極厚みの4倍以内となるように調整することを特徴としている。
【0021】
【発明の実施の形態】
以下、本発明に係る積層型電子部品及びその製造方法の実施の形態を図面に従って説明する。
【0022】
図1は本発明に係る積層型電子部品の一実施の形態として、ほぼ直方体状のチップ型インダクタの長手方向を断面図で示しており、積層体1はその長手方向に絶縁性磁性体又は非磁性体と螺旋状のコイル導体2とを印刷積層工法により交互に積層したものである。コイル導体2の巻回開始部と、終了部はコイル導体引出し部分21で、積層体1の周側面へ露出している。ここでは、印刷積層工法にて実施したが、グリーンシートにコイル導体2の印刷とコイル導体2を螺旋状に巻回するためのスルーホールを具備して積層する、シート積層工法でも、なんら構わない。
【0023】
また、積層型電子部品としてのチップ型インダクタは、多数個取りのコイル導体パターンを印刷積層した後、チップ単体(つまり直方体状の積層体1)となるように切断し、高温にて焼成後、積層体1の積層方向両端部に端子電極3となる電極ペーストを塗布して焼付けし、端部電極3に電気めっきで電気めっき皮膜4を形成して電子部品として完成するが、端部電極3は積層体1の周側面へ露出しているコイル導体引出し部分21の位置において、前記積層体周側面に回り込む部分における電極厚みの最大領域部分30となっている。
【0024】
このように、コイル導体引出し部分21の積層体周側面への露出位置が、端部電極3の前記積層体周側面に回り込む部分における電極厚みの最大領域部分30となるようにすることは、端部電極3の回り込み寸法(積層体周側面への電極ペースト塗布寸法)及び電極ペーストの粘度を調整することや、コイル導体引出し部分21の前記積層体周側面への露出位置を調整することで実現できる。
【0025】
なお、端部電極3が、積層体1の周側面に回り込む部分における電極厚みの最大領域部分30は少々なだらかであるため、電極厚みの最大位置(最大点)に対してコイル導体引出し部分21の露出する電極厚みの4倍以内程度の位置ずれであれば、コイル導体引出し部分21に発生する空隙を、完全にシールド(空隙を波及させることなく閉鎖)することができる。なお、製品寸法が1608タイプ(縦1.6mm、横0.8mm、厚み0.8mm)ではコイル導体引出し部分21の露出する電極厚みは約20μm、2012タイプ(縦2.0mm、横1.2mm、厚み1.2mm)では約26μm、1005タイプ(縦1.0mm、横0.5mm、厚み0.5mm)では約14μmである。
【0026】
前記電気めっきは、銅とニッケルと錫、ニッケルと錫、ニッケルと金、ニッケルとパラジウムと金、ニッケルとパラジウムと銀、あるいはニッケルと銀等のめっきを順次行うことにより完成させる(但し、銅やニッケルは下層、錫、金及び銀は上層のめっきである)。
【0027】
この実施の形態によれば、次の通りの効果を得ることができる。
【0028】
(1) コイル導体2と磁性体又は非磁性体とを積層して積層体1の内部に螺旋状コイルを形成した積層体1の焼成後に、積層体周側面へ露出したコイル導体引出し部分21と積層体1の間に空隙が生じるが、その空隙が端部電極に波及しないようにコイル導体引出し部分21の露出位置が端部電極3の積層体周側面に回り込む部分における電極厚みの最大領域部分30となるように設定することで、その後の電気めっき等の工程において、端部電極への水分の滞留をなくすることができる。それにより、本実施の形態に示した積層型電子部品では、リフロー工程において、はんだの飛散により近傍の他の電子部品とのショートが発生する不都合が防止可能となり、信頼性の高い製品を製造することが可能となる。
【0029】
(2) コイル導体引出し部分21の積層体周側面への露出位置が、端部電極3の積層体周側面に回り込む部分における電極厚みの最大領域部分30となるようにすることは、端部電極3の回り込み寸法(積層体周側面への電極ペースト塗布寸法)及び電極ペーストの粘度を調整することや、コイル導体引出し部分21の前記積層体周側面への露出位置を調整することで容易に実現できる。
【0030】
(3) 端部電極3が、積層体1の周側面に回り込む部分における電極厚みの最大領域部分30は少々なだらかであるため、電極厚みの最大位置(最大点)に対してコイル導体引出し部分21の露出する電極厚みの4倍以内程度の位置ずれであれば、コイル導体引出し部分21に発生する空隙を完全にシールドするとともに、端部電極3自体への空隙発生を防止できる。
【0031】
【実施例】
本発明の実施例として、積層体1に磁性体としてのNi−Cu−Zn系フェライトを主成分としたペーストを用い、層間厚みを約50μmとし、コイル導体2は銀を主成分とするペーストを用い、パターン幅を約150μm、パターンの電極厚みを約20μm、パターン内径を約350μmとした略半円形のパターンとし、当該コイル導体パターンと磁性体ペーストとを交互に印刷積層して多数個取りの基板を完成させた。その後、ダイサー等によりチップ単体となるように切断し、チップのエッジ部分を除去する目的でバレル研摩を行った後、焼成雰囲気を大気中にて約880℃で焼成を行い、積層体1を完成した。さらに、銀を主成分とした電極ペーストにて端部電極3を塗布して約700℃にて焼付けを行い、電気めっきを、銅、ニッケル、錫の順に行ってほぼ直方体状のチップ型インダクタを完成させた。そのときの完成寸法は長さ1.6mm、幅及び厚み0.8mmとした。なお、コイル導体引出し部分21の積層体周側面への露出位置は、端部電極3の積層体周側面に回り込む部分における電極厚みの最大領域部分30となるよう調整した。
【0032】
本発明の効果を確認するため、上記実施例のチップ型インダクタについて、ピーク温度が250℃のプロファイルにてリフロー実験を行い、端子電極部分でのはんだ飛散を確認した結果、従来品では20,000個中21個にはんだの飛散が見られたが、本発明品(実施例)では40,000個でも0であった。この結果からも本発明の積層型電子部品の端部電極形成方法は確実に効果があると判断できる。
【0033】
以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0034】
【発明の効果】
以上説明したように、本発明によれば、コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成したほぼ直方体状をなす積層型電子部品において、積層体周側面へ露出したコイル導体引出し部分と積層体間に空隙が生じている場合であっても、コイル導体引出し部分の露出位置が端部電極の積層体周側面に回り込む部分における電極厚みの最大領域部分となっていることにより、前記空隙が端部電極に波及せず、その後の電気めっき等の工程において、端部電極への水分の滞留をなくすることができる。それにより、本発明の積層型電子部品では、リフロー工程において、はんだの飛散により近傍の他の電子部品とのショートが発生する不都合が防止可能となり、信頼性の高い製品を製造することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る積層型電子部品及びその製造方法の一実施の形態を示す断面図である。
【図2】従来品の積層型電子部品であって、(A)は端部電極焼付け後の断面図、(B)は(A)のコイル導体引出し部分と積層体間の空隙、及び端部電極の空隙を示す拡大断面図、(C)は(B)に電気めっきを施した状態を示す拡大断面図である。
【図3】従来品の積層型電子部品において、端部電極に電気めっきを施した状態であって、(A)はプリント基板に実装するためマウントした状態を示す拡大断面図、(B)は(A)がリフロー時に発生するはんだの飛散状態を示す拡大断面図である。
【図4】従来の特開平11−265822号公報に開示されている積層型電子部品の断面図である
【符号の説明】
1 積層体
2 コイル導体
3 端部電極
3A コイル導体引出し部分と積層体間の空隙
3B 端部電極の空隙
4 電気めっき皮膜
5 ランド
6 印刷されたはんだ
6A 飛散したはんだ
7 回路基板
21 コイル導体引出し部分
30 電極厚み最大領域部分
31 端部電極の積層体コーナー部分
32 端部電極の回り込み終端部分
61 溶融状態のはんだ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer electronic component such as a chip coil and a method for manufacturing the same, and more particularly to a multilayer electronic component for surface mounting in which a spiral coil conductor is disposed inside a multilayer body formed of a magnetic or non-magnetic material. The present invention relates to an electronic component and a method for manufacturing the same.
[0002]
[Prior art]
In a conventional laminated electronic component of this type, as shown in FIG. 2A, a spiral coil is formed inside a laminated body 1 by laminating a coil conductor 2 and a magnetic substance or a non-magnetic substance. It is known that after firing of the laminate 1, a gap 3A exists between the coil conductor lead-out portion 21 exposed to the peripheral side surface of the laminate and the laminate 1, as shown in FIG.
[0003]
When the end electrodes 3 are formed at both ends of the laminate 1 in the laminating direction by baking after the application of the end electrodes to the laminate 1, the corner portions 31 of the laminate 1 and the end portions around the end electrodes. 32, the coating thickness of the end electrode 3 is extremely reduced. Therefore, when the coil conductor lead-out portion 21 is formed near the corner portion 31 of the laminate or near the end electrode wraparound end portion 32, FIG. As shown in FIG. 2 (B), voids 3B are likely to be generated in the end electrodes 3 as well, and in the subsequent steps such as electroplating of the end electrodes, moisture tends to stay in the voids 3A and 3B. As shown in C), the laminate is shielded only by the electroplating film (metal plating film) 4 while keeping the moisture, thereby completing a multilayer electronic component.
[0004]
When the laminated electronic component shielded only by electroplating while retaining the moisture is mounted on a circuit board, FIG. 3A (the same parts as those in FIG. 2 are denoted by the same reference numerals). In most cases, as shown in ()), the solder is printed on the solder 6 printed on the land 5 of the circuit board (printed board) 7 with a metal mask or the like, and then reflowed and fixed with solder. When the reflow is performed at a temperature of 183 ° C. or higher, as shown in FIG. 3B, the moisture retained in the electronic components (the gaps 3A and 3B) is thermally expanded and vaporized, and the electroplating film 4 is formed. If the molten solder 61 is scattered at the same time as the breakage, and the scattered solder 6A reaches the terminals of other nearby electronic components and is rapidly cooled, short-circuiting due to the solder may occur, which may cause a circuit operation to be disabled.
[0005]
In the case of lead-free solder, which has been widely used in recent years, this phenomenon is more likely to appear more remarkably because the melting temperature of the solder is higher and the reflow temperature must be set higher. Is coming.
[0006]
As a well-known example, as described in the present invention, it is not intended to eliminate voids generated in the end electrodes of the multilayer electronic component, and thus to eliminate solder scattering at the time of component reflow. And Patent Document 1 and Patent Document 2 below.
[0007]
In addition, in the laminate made of a magnetic material or a non-magnetic material, as shown in FIG. 2B, a gap 3A exists between the coil conductor lead-out portion 21 exposed to the peripheral side surface of the laminate and the laminate 1 after firing. Regarding this, Patent Document 3 and Patent Document 4 below are cited.
[0008]
[Patent Document 1] Japanese Patent Application Laid-Open No. 10-284324 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-265822 [Patent Document 3] Japanese Patent No. 2983049 [Patent Document 4] Japanese Patent No. 2987176
FIG. 4 is a cross-sectional view of a multilayer electronic component disclosed in Patent Literature 2, wherein 1 is a laminate, 2 is a coil conductor, 21 is a coil conductor lead-out portion, and 3 is an end electrode. In this case, a coil conductor lead-out portion is connected to a terminal end portion of the end electrode that goes around the peripheral side surface of the laminate. Therefore, it does not solve the problem of solder scattering at the time of reflow due to voids.
[0010]
[Problems to be solved by the invention]
In view of the above problems, the present invention prevents the generation of voids in the end electrodes, and thus eliminates the retention of moisture in the end electrodes in the subsequent steps such as electroplating, so that in the subsequent reflow step It is another object of the present invention to provide a multilayer electronic component capable of preventing a short circuit accident with other nearby electronic components due to scattering of solder and a method of manufacturing the same.
[0011]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a laminated electronic component according to the invention of claim 1 of the present application has a substantially rectangular parallelepiped shape in which a coil conductor and a magnetic or non-magnetic material are laminated to form a coil inside the laminated body. In the configuration,
An end electrode is provided at both ends of the laminate, the coil conductor is exposed on the peripheral side surface of the laminate, and the exposed position of the coil conductor lead-out portion is such that the end electrode goes around the peripheral side surface of the laminate. It is characterized in that it is the maximum region of the electrode thickness in the portion.
[0013]
As described above, when the coil conductor is exposed on the peripheral side surface of the laminated body, the end electrode electrically connected to the coil conductor is a corner portion of the laminated body where the coating thickness is extremely reduced or an end electrode wraparound terminal end. By arranging the lead portion of the coil conductor in the maximum region of the electrode thickness, the gap generated in the lead portion of the coil conductor can be completely shielded (closed) by the end electrode.
[0014]
A multilayer electronic component according to a second aspect of the present invention is the multilayer electronic component according to the first aspect, in which a position where the coil conductor lead-out portion is exposed to the peripheral side surface of the laminate and a portion where the end electrode wraps around the peripheral side surface of the laminate. It is characterized in that the displacement of the electrode thickness from the maximum position is within four times the exposed electrode thickness of the coil conductor lead-out portion.
[0015]
The maximum thickness of the electrode in the region where the end electrode goes around the peripheral side surface of the laminate has a slight gradual change in thickness, so the position deviation between the maximum electrode thickness position (maximum point) and the exposed position of the coil conductor lead-out portion. However, if the displacement amount is within about four times the thickness of the exposed electrode of the coil conductor lead portion, the gap generated in the coil conductor lead portion can be completely shielded.
[0016]
According to a third aspect of the present invention, there is provided a method for manufacturing a laminated electronic component, comprising: laminating a coil conductor and a magnetic or non-magnetic material to form a coil inside the laminated body; In the case of manufacturing a laminated electronic component having a substantially rectangular parallelepiped shape provided with electrodes,
The wraparound dimension of the end electrode is set such that the exposed position of the coil conductor lead-out portion on the peripheral side surface of the laminate is the maximum region of the electrode thickness in the portion of the end electrode wrapping around the peripheral side surface of the laminate. It is characterized by adjustment.
[0017]
In this way, mass production can be achieved by setting the application condition of the end electrode to be applied such that the end electrode thickness is the maximum region portion with respect to the position where the coil conductor lead-out portion is exposed to the peripheral side surface of the laminate. An easy laminated electronic component can be obtained.
[0018]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a laminated electronic component, comprising: laminating a coil conductor and a magnetic or non-magnetic material to form a coil inside the laminated body; In the case of manufacturing a laminated electronic component having a substantially rectangular parallelepiped shape provided with electrodes,
The lamination of the coil conductor lead-out portion is such that the exposed position of the coil conductor lead-out portion on the peripheral side surface of the laminate is the maximum region of the electrode thickness in a portion of the end electrode that goes around the laminate peripheral side surface. It is characterized by adjusting the exposure position on the side surface of the body.
[0019]
As described above, by adjusting the position of exposure to the peripheral side surface of the laminate such that the coil conductor lead-out portion is exposed at the position of the maximum area portion of the thickness of the end electrode wrapped around the peripheral side surface of the laminate. A multilayer electronic component that can be easily mass-produced is obtained.
[0020]
In the method for manufacturing a multilayer electronic component according to a fifth aspect of the present invention, in the third or fourth aspect, the position where the coil conductor lead-out portion is exposed to the peripheral side surface of the multilayer body and the end electrode is located at the periphery of the multilayer body. The electrode thickness is adjusted so that the position deviation from the maximum position of the electrode thickness in the part that goes around the side surface is within four times the electrode thickness exposed in the coil conductor lead-out part.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a multilayer electronic component and a method of manufacturing the same according to the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a sectional view showing a longitudinal direction of a chip-shaped inductor having a substantially rectangular parallelepiped shape as an embodiment of a laminated electronic component according to the present invention. The magnetic material and the spiral coil conductor 2 are alternately laminated by a printing lamination method. The winding start part and the end part of the coil conductor 2 are exposed to the peripheral side surface of the multilayer body 1 at the coil conductor lead-out part 21. Here, the printing is performed by the printing lamination method. However, the sheet lamination method in which the green sheet is provided with a through hole for printing the coil conductor 2 and spirally winding the coil conductor 2 may be used. .
[0023]
In addition, a chip-type inductor as a multilayer electronic component is formed by printing and laminating a multi-piece coil conductor pattern, cutting it into a single chip (that is, a rectangular parallelepiped laminate 1), firing at a high temperature, An electrode paste to be the terminal electrode 3 is applied to both ends in the stacking direction of the laminate 1 and baked, and an electroplating film 4 is formed on the end electrode 3 by electroplating to complete the electronic component. In the position of the coil conductor lead-out portion 21 exposed to the peripheral side surface of the multilayer body 1, a portion 30 of the maximum electrode thickness in a portion that goes around the peripheral side surface of the multilayer body is formed.
[0024]
In this manner, the position where the coil conductor lead-out portion 21 is exposed to the peripheral side surface of the laminated body is the maximum region 30 of the electrode thickness in the portion of the end electrode 3 that goes around the peripheral side surface of the laminated body. This is achieved by adjusting the wraparound dimension of the external electrode 3 (the dimension of electrode paste applied to the peripheral side surface of the laminate) and the viscosity of the electrode paste, and by adjusting the position where the coil conductor lead-out portion 21 is exposed to the peripheral side surface of the laminate. it can.
[0025]
Since the maximum region 30 of the electrode thickness in the portion where the end electrode 3 goes around the peripheral side surface of the multilayer body 1 is slightly gentle, the coil conductor lead-out portion 21 is positioned at the maximum position (maximum point) of the electrode thickness. If the displacement is within about four times the exposed electrode thickness, the gap generated in the coil conductor lead-out portion 21 can be completely shielded (closed without spreading the gap). When the product dimensions are 1608 type (length 1.6 mm, width 0.8 mm, thickness 0.8 mm), the exposed electrode thickness of the coil conductor lead-out portion 21 is about 20 μm, and the 2012 type (length 2.0 mm, width 1.2 mm) , 1.2 mm) and about 14 μm for the 1005 type (1.0 mm long, 0.5 mm wide, 0.5 mm thick).
[0026]
The electroplating is completed by sequentially plating copper and nickel and tin, nickel and tin, nickel and gold, nickel and palladium and gold, nickel and palladium and silver, or nickel and silver, etc. Nickel is the lower layer plating, tin, gold and silver are the upper layer plating).
[0027]
According to this embodiment, the following effects can be obtained.
[0028]
(1) After firing the laminate 1 in which the coil conductor 2 and the magnetic or non-magnetic material are laminated to form a spiral coil inside the laminate 1, the coil conductor lead-out portion 21 exposed to the peripheral side surface of the laminate is formed. Although a gap is formed between the laminates 1, the exposed position of the coil conductor lead-out portion 21 is such that the gap does not spread to the end electrodes, and a portion where the electrode thickness is the largest in a portion of the end electrode 3 that extends around the peripheral side surface of the laminate. By setting it to be 30, it is possible to eliminate the stagnation of water on the end electrodes in the subsequent steps such as electroplating. As a result, in the multilayer electronic component shown in the present embodiment, in the reflow process, it is possible to prevent a disadvantage that a short circuit occurs with other nearby electronic components due to scattering of solder, thereby manufacturing a highly reliable product. It becomes possible.
[0029]
(2) The position where the coil conductor lead-out portion 21 is exposed to the peripheral side surface of the laminated body is the maximum region 30 of the electrode thickness in the portion of the end electrode 3 that goes around the peripheral side surface of the laminated body. 3 is easily realized by adjusting the wraparound dimension (the dimension of electrode paste applied to the peripheral side surface of the laminate) and the viscosity of the electrode paste, and adjusting the position where the coil conductor lead-out portion 21 is exposed to the peripheral side surface of the laminate. it can.
[0030]
(3) Since the maximum region 30 of the electrode thickness in the portion where the end electrode 3 goes around the peripheral side surface of the multilayer body 1 is slightly gentle, the coil conductor lead-out portion 21 is located at the maximum position (maximum point) of the electrode thickness. If the displacement is within about four times the exposed electrode thickness, the gap generated in the coil conductor lead-out portion 21 can be completely shielded, and the gap in the end electrode 3 itself can be prevented.
[0031]
【Example】
As an example of the present invention, a paste containing Ni—Cu—Zn-based ferrite as a main component as a magnetic substance is used for the laminate 1, the interlayer thickness is set to about 50 μm, and the coil conductor 2 is a paste containing silver as a main component. The pattern width was about 150 μm, the electrode thickness of the pattern was about 20 μm, the pattern inner diameter was about 350 μm, and the pattern was a substantially semicircular pattern. The coil conductor pattern and the magnetic paste were alternately printed and laminated to obtain a large number of pieces. The substrate was completed. Thereafter, the chip is cut into single chips by a dicer or the like, and barrel polishing is performed for the purpose of removing an edge portion of the chip. Then, firing is performed at about 880 ° C. in a firing atmosphere in the air to complete the multilayer body 1. did. Further, the end electrode 3 is coated with an electrode paste containing silver as a main component, baked at about 700 ° C., and electroplating is performed in the order of copper, nickel, and tin to obtain a substantially rectangular chip-shaped inductor. Completed. The completed dimensions at that time were 1.6 mm in length, 0.8 mm in width and thickness. The exposed position of the coil conductor lead-out portion 21 on the peripheral side surface of the laminate was adjusted so as to be the maximum region 30 of the electrode thickness in the portion of the end electrode 3 that goes around the peripheral side surface of the laminate.
[0032]
In order to confirm the effect of the present invention, a reflow experiment was performed on the chip-type inductor of the above-described example with a profile having a peak temperature of 250 ° C., and as a result of confirming the scattering of solder at the terminal electrode portion, the conventional product was 20,000. Spattering of solder was observed in 21 of the pieces, but in the product of the present invention (Example), it was 0 even at 40,000. From these results, it can be determined that the method of forming the end electrode of the multilayer electronic component of the present invention is surely effective.
[0033]
Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to these and various modifications and changes can be made within the scope of the claims. There will be.
[0034]
【The invention's effect】
As described above, according to the present invention, in a laminated electronic component having a substantially rectangular parallelepiped shape in which a coil conductor and a magnetic or non-magnetic material are laminated to form a coil inside the laminated body, Even if there is a gap between the coil conductor lead-out portion and the laminate exposed to the outside, the exposed position of the coil conductor lead-out portion and the maximum area portion of the electrode thickness at the portion of the end electrode that goes around the peripheral surface of the laminate As a result, the gap does not spread to the end electrode, and the stagnation of water on the end electrode can be eliminated in the subsequent steps such as electroplating. As a result, in the multilayer electronic component of the present invention, in the reflow process, it is possible to prevent the disadvantage that a short circuit occurs with other nearby electronic components due to the scattering of solder, and it is possible to manufacture a highly reliable product. Become.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a multilayer electronic component and a method for manufacturing the same according to the present invention.
FIGS. 2A and 2B are cross-sectional views of a conventional laminated electronic component after end electrode baking, and FIG. 2B is a diagram showing a gap between a coil conductor lead-out portion and a laminated body of FIG. FIG. 4 is an enlarged cross-sectional view showing a gap of an electrode, and FIG. 4C is an enlarged cross-sectional view showing a state in which electroplating is performed on FIG.
3A and 3B are enlarged cross-sectional views showing a state in which an end electrode is electroplated in a conventional multilayer electronic component, in which FIG. 3A is mounted on a printed circuit board for mounting, and FIG. (A) is an enlarged sectional view showing the state of scattering of solder generated at the time of reflow.
FIG. 4 is a cross-sectional view of a laminated electronic component disclosed in a conventional Japanese Patent Application Laid-Open No. H11-265822.
REFERENCE SIGNS LIST 1 laminated body 2 coil conductor 3 end electrode 3A gap between coil conductor lead-out portion and laminate 3B end electrode gap 4 electroplating film 5 land 6 printed solder 6A scattered solder 7 circuit board 21 coil conductor lead-out portion Reference Signs List 30 maximum electrode thickness region 31 corner corner portion of end electrode laminate 32 wraparound end portion 61 of end electrode 61 molten solder

Claims (5)

コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成したほぼ直方体状をなす積層型電子部品において、
前記積層体の両端部に端部電極を備え、前記コイル導体は前記積層体の周側面に露出され、該コイル導体引出し部分の露出位置は、前記端部電極が前記積層体の周側面に回り込む部分における電極厚みの最大領域部分であることを特徴とする積層型電子部品。
In a laminated electronic component having a substantially rectangular parallelepiped shape in which a coil conductor and a magnetic material or a non-magnetic material are laminated to form a coil inside the laminated body,
An end electrode is provided at both ends of the laminate, the coil conductor is exposed on the peripheral side surface of the laminate, and the exposed position of the coil conductor lead-out portion is such that the end electrode goes around the peripheral side surface of the laminate. A multilayer electronic component, wherein the multilayer electronic component is a maximum region of the electrode thickness in the portion.
前記コイル導体引出し部分の前記積層体周側面への露出位置と、前記端部電極が前記積層体周側面に回り込む部分における電極厚みの最大位置との位置ずれが、前記コイル導体引出し部分の露出する電極厚みの4倍以内である請求項1記載の積層型電子部品。The positional deviation between the exposed position of the coil conductor lead-out portion on the peripheral side surface of the laminate and the maximum position of the electrode thickness in the portion where the end electrode goes around the peripheral surface of the laminate exposes the coil conductor lead-out portion. 2. The multilayer electronic component according to claim 1, wherein the thickness is within four times the electrode thickness. コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成し、前記積層体の両端部に端部電極を設けたほぼ直方体状をなす積層型電子部品の製造方法において、
前記コイル導体引出し部分の前記積層体周側面への露出位置が、前記端部電極の前記積層体周側面に回り込む部分における電極厚みの最大領域部分となるように、前記端部電極の回り込み寸法を調整することを特徴とする積層型電子部品の製造方法。
A method of manufacturing a laminated electronic component having a substantially rectangular parallelepiped shape in which a coil conductor and a magnetic or non-magnetic material are laminated to form a coil inside the laminate, and end electrodes are provided at both ends of the laminate. ,
The wraparound dimension of the end electrode is set such that the exposed position of the coil conductor lead-out portion on the peripheral side surface of the laminate is the maximum region of the electrode thickness in the portion of the end electrode wrapping around the peripheral side surface of the laminate. A method for manufacturing a laminated electronic component, comprising adjusting.
コイル導体と磁性体又は非磁性体とを積層して積層体の内部にコイルを形成し、前記積層体の両端部に端部電極を設けたほぼ直方体状をなす積層型電子部品の製造方法において、
前記コイル導体引出し部分の前記積層体周側面への露出位置が、前記端部電極の前記積層体周側面に回り込む部分における電極厚みの最大領域部分となるように、前記コイル導体引出し部分の前記積層体周側面への露出位置を調整することを特徴とする積層型電子部品の製造方法。
A method of manufacturing a laminated electronic component having a substantially rectangular parallelepiped shape in which a coil conductor and a magnetic or non-magnetic material are laminated to form a coil inside the laminate, and end electrodes are provided at both ends of the laminate. ,
The lamination of the coil conductor lead-out portion is such that the exposed position of the coil conductor lead-out portion on the peripheral side surface of the laminate is the maximum region of the electrode thickness in a portion of the end electrode that goes around the laminate peripheral side surface. A method for manufacturing a laminated electronic component, comprising adjusting an exposure position on a body peripheral side surface.
前記コイル導体引出し部分の前記積層体周側面への露出位置と、前記端部電極が前記積層体周側面に回り込む部分における電極厚みの最大位置との位置ずれが、前記コイル導体引出し部分の露出する電極厚みの4倍以内となるように調整する請求項3又は4記載の積層型電子部品の製造方法。The positional deviation between the exposed position of the coil conductor lead-out portion on the peripheral side surface of the laminate and the maximum position of the electrode thickness in the portion where the end electrode goes around the peripheral surface of the laminate exposes the coil conductor lead-out portion. The method for manufacturing a multilayer electronic component according to claim 3, wherein the adjustment is performed so as to be within four times the electrode thickness.
JP2003036771A 2003-02-14 2003-02-14 Multilayer electronic component and manufacturing method thereof Expired - Lifetime JP4338070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036771A JP4338070B2 (en) 2003-02-14 2003-02-14 Multilayer electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036771A JP4338070B2 (en) 2003-02-14 2003-02-14 Multilayer electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004247577A true JP2004247577A (en) 2004-09-02
JP4338070B2 JP4338070B2 (en) 2009-09-30

Family

ID=33021768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036771A Expired - Lifetime JP4338070B2 (en) 2003-02-14 2003-02-14 Multilayer electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4338070B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525736B1 (en) * 2014-05-07 2015-06-03 삼성전기주식회사 Multilayered electronic component and manufacturing method thereof
WO2024004484A1 (en) * 2022-06-27 2024-01-04 株式会社村田製作所 Multilayer coil component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525736B1 (en) * 2014-05-07 2015-06-03 삼성전기주식회사 Multilayered electronic component and manufacturing method thereof
WO2024004484A1 (en) * 2022-06-27 2024-01-04 株式会社村田製作所 Multilayer coil component

Also Published As

Publication number Publication date
JP4338070B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US11170935B2 (en) Manufacturing method for electronic component including electrode formed by removal of insulating layer by laser light
US10147533B2 (en) Inductor
US20060006972A1 (en) Coil component
US11728084B2 (en) Inductor
JP6407540B2 (en) Multilayer inductor
KR20160000612A (en) Chip coil component and manufacturing method thereof
CN108695051B (en) Electronic component
US9953753B2 (en) Electronic component
JPH0363205B2 (en)
JP7234552B2 (en) Laminated coil parts
JP2004247577A (en) Layered electronic parts and method for manufacturing the same
JP2007012825A (en) Chip part and its manufacturing method
US11657945B2 (en) Laminated inductor component
JP2005294618A (en) Electronic component
TWI436389B (en) Electronic Parts
JP3567144B2 (en) Chip type resistor and method of manufacturing the same
JP2006147790A (en) Inductor component
JPS6229886B2 (en)
JP4185452B2 (en) Multilayer electronic components
JP6984688B2 (en) Composite electronic components
JP2005072267A (en) Laminated inductor
JP2018082139A (en) Chip resistance element, and chip resistance element assembly
US20220293332A1 (en) Method for manufacturing multilayer coil component
JP6525392B2 (en) Multilayer inductor
JPH07176430A (en) Laminated inductor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

R150 Certificate of patent or registration of utility model

Ref document number: 4338070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

EXPY Cancellation because of completion of term