JP2004247512A - Ceramic circuit board - Google Patents

Ceramic circuit board Download PDF

Info

Publication number
JP2004247512A
JP2004247512A JP2003035698A JP2003035698A JP2004247512A JP 2004247512 A JP2004247512 A JP 2004247512A JP 2003035698 A JP2003035698 A JP 2003035698A JP 2003035698 A JP2003035698 A JP 2003035698A JP 2004247512 A JP2004247512 A JP 2004247512A
Authority
JP
Japan
Prior art keywords
circuit board
ceramic substrate
brazing material
ceramic
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035698A
Other languages
Japanese (ja)
Other versions
JP4018992B2 (en
Inventor
Mitsuru Nakamura
充 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003035698A priority Critical patent/JP4018992B2/en
Publication of JP2004247512A publication Critical patent/JP2004247512A/en
Application granted granted Critical
Publication of JP4018992B2 publication Critical patent/JP4018992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Ceramic Products (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable cracking-free ceramic substrate wherein no thermal stress concentration due to difference in thermal expansion occurs at the junction between a ceramic substrate and an active brazing metal even under repeated thermal impacts inflicted after the bonding of the ceramic substrate and a metal circuit board by the active brazing metal. <P>SOLUTION: The ceramic circuit board comprises a ceramic substrate 1 and a metal circuit board 2 made of copper or a copper alloy which is bonded by an active brazing metal 3 to the top surface of the ceramic substrate 1. Just under the edge of the active brazing metal 3 which is above the top surface of the ceramic substrate 1, a groove in the ceramic substrate 1 and a unbonded region 5 which is free of the active brazing metal 3 are in presence along a bonded edge A, wherein an opening extends from a location facing a bonded edge B formed between the metal circuit board 2 and the active brazing metal 3 to a bonded edge A formed between the ceramic substrate 1 and the active brazing metal 3, with the bonded edge A located further inside the bonded edge B. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック基板に銅または銅合金から成る金属回路板を活性金属ろう材を介して接合して成るセラミック回路基板に関する。
【0002】
【従来の技術】
近年、パワーモジュール用基板やスイッチングモジュール用基板等の回路基板として、セラミック基板上に活性金属ろう材を介して銅または銅合金等から成る金属回路板を接合して成るセラミック回路基板が用いられている。
【0003】
このようなセラミック回路基板は、具体的には以下の方法によって製作される。まず、銀−銅合金にチタン,ジルコニウム,ハフニウムおよびこれらの水素化物の少なくとも1種を添加した活性金属粉末に有機溶剤、溶媒を添加混合して成る活性金属ろう材ペーストを準備する。
【0004】
次に、例えばセラミック基板が酸化アルミニウム質焼結体から成る場合、酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な有機バインダ、可塑剤、溶剤等を添加混合して泥漿状と成すとともにこれを従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術により複数のセラミックグリーンシート(以下、グリーンシートともいう)を得た後、これらを所定寸法に切断し、次にグリーンシートを必要に応じて複数枚積層するとともに還元雰囲気中で約1600℃の温度で焼成し、グリーンシートを焼結一体化させてセラミック基板を形成する。
【0005】
次に、セラミック基板に活性金属ろう材ペーストを所定のパターンに印刷するとともに乾燥し、しかる後、活性金属ろう材ペースト上に銅または銅合金から成る金属回路板を載置する。
【0006】
最後に、セラミック基板と金属回路板との間に配した活性金属ろう材ペーストを非酸化性雰囲気中で約900℃の温度に加熱して溶融させ、この活性金属ろう材によりセラミック基板と金属回路板とを接合することによって、セラミック回路基板が製作される。
【0007】
このようにして製作されたセラミック回路基板は、これにIGBT(Insulated Gate Bipolar Transistor)やMOS−FET(Metal Oxide Semiconductor−Field Effect Transistor)等の半導体素子を半田等の接着材を介して実装した後、外部入出力用の端子が一体成型された樹脂ケース内に装着され、半導体モジュールとなる。そして、この半導体モジュールは、ロボットなどの産業機器から電車の駆動部や電気自動車などの幅広い用途に使用され、厳しい環境下での高い信頼性が要求されている。
【0008】
しかしながら、この端子一体成型の樹脂ケースの製作には、成型用金型が必要であり製造コストが高いことから、半導体モジュールの製造コストが増加する難点があった。また、端子一体成型の樹脂ケースにセラミック回路基板を組み込んだ後、樹脂ケースの端子部とセラミック回路基板の金属回路板とをボンディングワイヤなどで電気的に接続する必要もあり、製造工程数が増加するという問題点があった。
【0009】
このため、端子を金属回路板に半田や超音波接合法等で直接接合するセラミック回路基板や、金属回路板の一部を端子として延出させた端子一体型のセラミック回路基板が採用されるようになってきている。
【0010】
しかしながら、半田により端子を金属回路板に接合する場合、その後の半導体素子などの電子部品を実装するときの加熱によって接合がはずれないように、その加熱温度よりも融点が高い90%鉛−錫合金等の高温半田(融点300℃程度)が必要であることから、この高温半田を加熱溶融させることによる熱履歴によって、金属回路板とセラミック基板との熱膨張差によりセラミック基板にクラックが発生する。また、回路パターンを外部環境から保護したり、電子部品をプリント配線板に表面実装する際に行われる半田付け工程で不必要な部分に半田が付着しないようにするための250℃程度の耐熱性しかないエポキシ樹脂系のソルダーレジストが使用できないという問題点を有していた。
【0011】
また、超音波接合によって端子を接合する場合、例えば金属回路板に接触させた端子の接合部の表面には10〜50MPaの圧力で超音波発振ホーンが押圧されるため、この高圧力が端子の接合部直下のセラミック基板に金属回路板とろう材とを介して加わり、また超音波振動により発生する約500℃以上の熱が瞬間的に端子の接合部直下のセラミック基板に加わることにより、セラミック基板に微小なクラックが生じることがあり、その場合、セラミック回路基板の機械的強度が低下し、信頼性が著しく劣化するという問題点を有していた。
【0012】
このような問題点を解決するために、構造がよりシンプルで実装の工程数が少なく信頼性の高い、金属回路板の一部を端子部として延出させた端子一体型のセラミック回路基板が採用されるようになってきている。この金属回路板は、圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって、所望の回路配線パターン形状に製作される。または、セラミック基板と略同形状の金属板をろう付けした後にエッチングにより不要な金属部分を除去して回路配線パターンの形成を行なうことによって製作される。
【0013】
なお、この場合、図3に従来のセラミック回路基板の断面図で示すように、セラミック基板1と活性金属ろう材3との接合端aと、金属回路板2と活性金属ろう材3との接合端bとは対向する位置にある。すなわち、セラミック回路基板を平面視したときに重なった位置となっている。
【0014】
【特許文献1】
特開2002−164461号公報
【0015】
【発明が解決しようとする課題】
しかしながら、図3のセラミック回路基板においては、セラミック回路基板に超音波接合等による熱衝撃が繰り返し加えられた際に、セラミック基板1と活性金属ろう材3との接合端aに、セラミック基板1と活性金属ろう材3との間に生じる両者の熱膨張差により発生する熱応力と、金属回路板2と活性金属ろう材3との間に生じる両者の熱膨張差により発生する熱応力とが重畳して加わることとなり、セラミック基板1と活性金属ろう材3との接合端aにクラックが発生しやすくなり、その結果、接合強度や熱伝導性、電気絶縁性が低下し、信頼性が低下するという問題点を有していた。
【0016】
したがって、本発明は上記問題点に鑑みて完成されたものであり、その目的は、端子一体型のセラミック回路基板において、セラミック基板と金属回路板とを活性金属ろう材を介して接合した後に熱衝撃が繰り返し加えられても、セラミック基板の活性金属ろう材との接合端に熱膨張差により発生する熱応力が集中することが無く、その結果、セラミック基板にクラックが発生しない、信頼性の高いセラミック回路基板を提供することにある。
【0017】
【課題を解決するための手段】
本発明のセラミック回路基板は、セラミック基板の上面に活性金属ろう材を介して銅または銅合金から成る金属回路板が接合されて成るセラミック回路基板であって、前記セラミック基板は、その上面で前記活性金属ろう材の端の直下の部位に、前記金属回路板と前記活性金属ろう材との接合端と対向する位置から前記接合端よりも内側に存在する前記セラミック基板と前記活性金属ろう材との接合端にわたる開口を有する溝状の前記セラミック基板と前記活性金属ろう材との非接合領域が、前記セラミック基板と前記活性金属ろう材との接合端に沿って設けられていることを特徴とする。
【0018】
本発明のセラミック回路基板は、セラミック基板は、その上面で活性金属ろう材の端の直下の部位に、金属回路板と活性金属ろう材との接合端と対向する位置からその接合端よりも内側に存在するセラミック基板と活性金属ろう材との接合端にわたる開口を有する溝状のセラミック基板と活性金属ろう材との非接合領域が、セラミック基板と活性金属ろう材との接合端に沿って設けられていることから、セラミック回路基板を平面視したときに金属回路板と活性金属ろう材との接合端およびセラミック基板と活性金属ろう材との接合端が重なることはない。その結果、セラミック回路基板に繰り返し熱衝撃が加えられた際に、セラミック基板と活性金属ろう材との接合端に、セラミック基板と活性金属ろう材との間に生じる両者の熱膨張差により発生する熱応力と、金属回路板と活性金属ろう材との間に生じる両者の熱膨張差により発生する熱応力とが重畳して加わることがなくなる。したがって、セラミック基板と活性金属ろう材との接合端にクラックが発生して接合強度や熱伝導性、電気絶縁性が低下することのない信頼性の高いセラミック回路基板とすることができる。
【0019】
【発明の実施の形態】
本発明のセラミック回路基板について以下に詳細に説明する。図1は、本発明のセラミック回路基板の実施の形態の一例を示す断面図、図2は図1のセラミック回路基板の平面図である。これらの図において、1はセラミック基板、2は金属回路板、3は活性金属ろう材、4は金属回路板2の端子部、5は溝状の非接合領域、Aはセラミック基板1と活性金属ろう材3との接合端、Bは金属回路板2と活性金属ろう材3との接合端である。なお、図2では溝状の非接合領域5を点線で示している。
【0020】
本発明のセラミック回路基板は、セラミック基板1の上面に活性金属ろう材3を介して銅または銅合金から成る金属回路板2が接合されて成るセラミック回路基板であって、セラミック基板1は、その上面で活性金属ろう材3の端の直下の部位に、金属回路板2と活性金属ろう材3との接合端Bと対向する位置から接合端Bよりも内側に存在するセラミック基板1と活性金属ろう材3との接合端Aにわたる開口を有する溝状のセラミック基板1と活性金属ろう材3との非接合領域5が、セラミック基板1と活性金属ろう材3との接合端Aに沿って設けられている。
【0021】
本発明におけるセラミック基板1は、その一辺の長さが20〜200mm程度、厚みが0.2〜1.0mm程度の四角形状であり、その上面に銅または銅合金から成る金属回路板2が活性金属ろう材3を介して接合される。このセラミック基板1は、金属回路板2を支持する支持部材であり、酸化アルミニウム(Al)質焼結体(アルミナセラミックス),ムライト(3Al・2SiO)質焼結体,炭化珪素(SiC)質焼結体,窒化アルミニウム(AlN)質焼結体,窒化珪素(Si)質焼結体等の電気絶縁材料であるセラミックスから成る。
【0022】
またセラミック基板1は、例えば酸化アルミニウム質焼結体から成る場合、酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な有機バインダ、可塑剤、溶剤を添加混合して泥漿状となし、その泥漿物を用いて従来周知のドクターブレード法やカレンダーロール法によってセラミックグリーンシート(セラミック生シートで、以下、グリーンシートともいう)を得、しかる後、グリーンシートに適当な打ち抜き加工を施すとともに必要に応じて複数枚積層し、約1600℃の高温で焼成することによって製作される。
【0023】
セラミック基板1は、その厚みを0.2〜1.0mmとすることがよく、セラミック回路基板の小型化、薄型化の要求を満足するため、金属回路板2を接合したときのセラミック基板1の割れ抑制のため、および搭載される半導体素子(図示せず)が発生する100℃以上の熱の伝熱性を向上させるためといった点で好ましい。セラミック基板1の厚みが0.2mm未満では、セラミック基板1に金属回路板2を接合したときに発生する熱応力により、セラミック基板1に割れ等が発生しやすくなる傾向がある。他方、1.0mmを超えると、セラミック回路基板の薄型化への対応が困難となるとともに、搭載される半導体素子が発生する100℃以上の熱をセラミック基板1を介して良好に放熱することが困難となる傾向がある。
【0024】
また、金属回路板2は、銅または銅合金から成り、その一端部は外部電気回路(図示せず)と電気的に接続される端子部4とされており、セラミック基板1の上面に活性金属ろう材3を介して以下のようにして接合される。
【0025】
まず、銀−銅合金粉末等から成る銀ろう粉末やアルミニウム−シリコン合金粉末等から成るアルミニウムろう粉末に、チタン,ジルコニウム,ハフニウム等の活性金属やその水素化物の少なくとも1種から成る活性金属粉末を2〜5質量%添加した活性金属ろう材に、適当な有機溶剤、溶媒を添加混合して得た活性金属ろう材ペーストを、セラミック基板1の上面に従来周知のスクリーン印刷法で金属回路板2に対応した所定パターンに印刷する。なお、金属回路板2の端子部4は、セラミック基板1の上面に対してほぼ垂直に折り曲げて使用されるため、セラミック基板1の端子部4に対応する部分には活性金属ろう材ペーストを印刷しない。
【0026】
そして、金属回路板2を活性金属ろう材ペーストのパターン上に載置し、または活性金属ろう材ペーストが印刷されたセラミック基板1を金属回路板2上に活性金属ろう材ペーストが金属回路板2と接合するように載置し、これらを真空中、または中性もしくは還元雰囲気中で、所定温度(約900℃)で加熱処理し、活性金属ろう材ペーストを溶融させることにより、セラミック基板1の上面に金属回路板2が接合されセラミック回路基板となる。
【0027】
なお、セラミック基板1と金属回路板2との接合は、活性金属ろう材3がセラミック基板1上面の溝状の活性金属ろう材3との非接合領域5に流入しないように、活性金属ろう材ペーストが印刷されたセラミック基板1を金属回路板2上に載置して行なうことが好ましい。または、金属回路板2のセラミック基板1との接合領域に活性金属ろう材ペーストを印刷し、活性金属ろう材ペーストが印刷された金属回路板2上にセラミック基板1を載置して接合することが好ましい。
【0028】
そして、上記のようにセラミック基板1と金属回路板2との組立体を加熱して活性金属ろう材ペーストを溶融させると、溶融して膨張した活性金属ろう材ペーストは金属回路板2の表面を濡れて外側に広がるが、セラミック基板1の非接合領域5においては濡れ広がるのが有効に抑制される。すなわち、セラミック基板1のセラミック表面は元々活性金属ろう材3の濡れ性が悪い(溶融した活性金属ろう材3の接触角が大きい)うえに、溝状の非接合領域5の端では溶融した活性金属ろう材3に対する接触角がより大きくなっているため、溶融した活性金属ろう材3が非接合領域5に入り込むのを効果的に抑えることができる。その結果、活性金属ろう材3の端部に図1のような傾斜したメニスカスが形成される。
【0029】
また、金属回路板2は、銅または銅−亜鉛合金(亜鉛の含有量が30質量%以下)、銅−錫合金(錫の含有量が5質量%以下)、銅−白金合金(白金の含有量が5質量%以下)、銅−パラジウム合金(パラジウムの含有量が5質量%以下)、銅−ニッケル合金(ニッケルの含有量が5質量%以下)等の銅合金のインゴット(塊)に、圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって、例えば厚さ0.5mmの所望の回路配線パターン形状に製作される。このとき、回路配線パターンと一体となった端子部4も同時に形成される。
【0030】
なお、金属回路板2の厚みは、セラミック回路基板の小型化、薄型化の要求を満足するため、また20〜50Aといった大電流の信号を流す際の電気抵抗の仕様を満足するため、さらにはセラミック基板1と接合したときのセラミック基板1の割れ防止のためといった観点から、0.1〜1.0mmが好ましい。金属回路板2の厚みが0.1mm未満の場合、電気抵抗が大きくなるため20〜50Aといった大電流の信号が良好に流れにくくなる傾向があり、他方1.0mmを超えると、薄型化への対応が困難となるとともに、セラミック基板1と金属回路板2とを接合したときに発生する熱応力により、セラミック基板1に割れ等が発生しやすくなる傾向がある。
【0031】
なお、金属回路板2が無酸素銅から成るのがよく、その場合活性金属ろう材3が酸化されにくくなり濡れ性が良好となるため、金属回路板2をセラミック基板1に強固に接合することができる。
【0032】
また、端子部4は金属回路板2の一部であり、その室温でのビッカース硬度が100Hv以上となるように加工を施こすことが好ましい。これは、通常の端子として使用されるタフピッチ銅のビッカース硬度80Hvに対して、それ以上の硬度とすることにより、端子一体型のセラミック回路基板を樹脂ケースに実装する際に端子部4の変形や曲がりが少なくなり、搭載される半導体素子等の電子部品を安定して作動させることができるためである。
【0033】
端子部4のビッカース硬度を100Hv以上にするための加工方法としては、無電解ニッケルめっき加工や衝撃加工、半田皮膜形成加工等が好適に使用される。
【0034】
無電解ニッケルめっき加工は、例えば、燐を含む無電解ニッケルめっきを端子部4に被着し、その後250℃以上の温度で熱処理を行ない、ニッケル−燐を結晶化させてビッカース硬度を100Hv以上とする加工方法である。このとき、ニッケル皮膜中に含まれる燐は8質量%以上にするとよい。燐が8質量%未満では、ニッケル−燐化合物の結晶化が十分になされず、その結果、端子部4のビッカース硬度が100Hv以上とならない傾向がある。なお、燐以外に、ニッケルと化合物を生成してビッカース硬度が100Hv以上となるホウ素等を用いてもよい。
【0035】
また、無電解ニッケルめっきの厚みは1.5μm以上がよい。1.5μm以下の場合、端子部4のビッカース硬度を増加させる効果が小さく、100Hv以上のビッカース硬度が得られなくなる傾向がある。さらに、250℃以上の熱処理を行なうのは、その熱処理を行なわないと、ニッケル−燐化合物の結晶化が全く進まず、ビッカース硬度の上昇も起こらないことがあるためである。この熱処理は、めっき皮膜を形成した後に行なってもよいし、めっき皮膜を形成したセラミック回路基板に半田等により半導体素子等の電子部品を実装する際の熱処理を利用して行なってもよい。
【0036】
また、端子部4への衝撃加工としては、例えば、サンドブラスト,ウエットブラスト(砥粒と水とを空気圧により噴射させる方法),金型による押圧等が挙げられる。ブラストによる衝撃加工の場合は、端子部4のみに施してもよいし、セラミック回路基板全体をブラスト処理して異物除去等の工程と兼ねることもできる。金型による押圧加工は、例えば、端子部4を金型に入れてハンマー等で端子部4のみを叩くようにした装置を用いればよい。
【0037】
さらに、端子部4への半田皮膜形成加工としては、例えば、半田めっきによる半田皮膜加工や半田ディッピングによる半田皮膜の形成加工が挙げられる。半田はSnを含むPb−Sn系やSn−Ag系などの半田が使用され、Snが端子部4の銅とCu−Sn合金を生成することにより、端子部4のビッカース硬度が上昇する。
【0038】
そして、本発明のセラミック回路基板においては、セラミック基板は、その上面で活性金属ろう材3の端の直下の部位に、金属回路板2と活性金属ろう材3との接合端Bと対向する位置からその接合端よりも内側に存在するセラミック基板1と活性金属ろう材3との接合端Aにわたる開口を有する溝状のセラミック基板1と活性金属ろう材3との非接合領域5が、接合端Aに沿って設けられている。この構成により、セラミック回路基板1を平面視したときに接合端A,Bが重なることがなく、セラミック回路基板1に繰り返し熱衝撃が加えられた際に、接合端Aに、セラミック基板1と活性金属ろう材3との間に生じる両者の熱膨張差により発生する熱応力と、金属回路板2と活性金属ろう材3との間に生じる両者の熱膨張差により発生する熱応力とが重畳して加わることはなくなる。その結果、接合端Aにクラックが発生して接合強度や熱伝導性、電気絶縁性が低下することのない信頼性の高いセラミック回路基板とすることができる。
【0039】
この溝状の非接合領域5は、その幅がセラミック基板1の厚みの0.05〜2倍であることが好ましい。0.05倍未満の場合、非接合領域5に活性金属ろう材3が流入して、セラミック回路基板を平面視したときに接合端A,Bが重なる危険性がある。2倍を超えると、非接合領域5の部位でセラミック基板1の強度が急激に低下し、端子部4を折り曲げて使用する際に非接合領域5でセラミック基板1が破壊される危険性が大きくなる。
【0040】
また、溝状の非接合領域5の深さはセラミック基板1の厚みの10〜40%が好ましい。10%未満の場合、非接合領域5に活性金属ろう材3が容易に流入して、セラミック回路基板を平面視したときに接合端A,Bが重なる危険性がある。40%を超えると、非接合領域5の部位でセラミック基板1の強度が急激に低下し、端子部4を折り曲げて使用する際に非接合領域5で破壊される危険性が大きくなる。
【0041】
さらに、溝状の非接合領域5の断面形状は、半円形状、半楕円形状、三角形状、四角形状等の多角形状の種々の形状とし得る。応力を分散させるという観点からは、内周面に不連続点を有しない半円形や半楕円形状、角部が曲面状とされた三角形状や四角形状等の多角形状が好ましい。
【0042】
また、金属回路板2の端子部4は、活性金属ろう材3の接合端Bから端までの長さが5〜20mm程度であることが好ましい。5mm未満の場合、端子部4を上方向に折り曲げて使用する際に折り曲げることが困難となる傾向があり、20mmを超えると、金属回路板3が必要以上に大きくなるため高コストとなる。
【0043】
なお、本実施の形態では、溝状の非接合領域5をセラミック基板1上面でセラミック基板1と金属回路板2との間に設けた例を示したが、セラミック基板1の一端面から対向する端面にかけて形成してもよい。この場合、金属回路板2をセラミック基板1に接合した後、非接合領域5でセラミック基板1を分割し一端部を分離除去することにより、端子部4をセラミック基板1よりも外側に容易に延出させることができ、端子部4を折り曲げることが容易になる。また、この場合、溝状の非接合領域5の断面形状を三角形とするのがよく、非接合領域5でセラミック基板1を良好に分割することができる。
【0044】
この溝状の非接合領域5は、焼成後にセラミック基板1となるグリーンシートの所定の位置に、プレス加工により焼成後に溝状となるように加圧加工を施しておくことにより形成される。
【0045】
かくして、本発明のセラミック回路基板は、セラミック基板1と金属回路板2との間に配されている活性金属ろう材ペーストを非酸化性雰囲気中で約900℃に加熱して溶融させ、セラミック基板1に金属回路板2を接合することによって製作され、さらにこれに半導体素子等の電子部品を半田等の接着材を介して実装した後、樹脂ケース内に装着することにより半導体モジュールとなる。
【0046】
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0047】
【発明の効果】
本発明のセラミック回路基板は、セラミック基板は、その上面で活性金属ろう材の端の直下の部位に、金属回路板と活性金属ろう材との接合端と対向する位置からその接合端よりも内側に存在するセラミック基板と活性金属ろう材との接合端にわたる開口を有する溝状のセラミック基板と活性金属ろう材との非接合領域が、セラミック基板と活性金属ろう材との接合端に沿って設けられていることから、セラミック回路基板を平面視したときに金属回路板と活性金属ろう材との接合端およびセラミック基板と活性金属ろう材との接合端が重なることはない。その結果、セラミック回路基板に繰り返し熱衝撃が加えられた際に、セラミック基板と活性金属ろう材との接合端に、セラミック基板と活性金属ろう材との間に生じる両者の熱膨張差により発生する熱応力と、金属回路板と活性金属ろう材との間に生じる両者の熱膨張差により発生する熱応力とが重畳して加わることがなくなる。したがって、セラミック基板と活性金属ろう材との接合端にクラックが発生して接合強度や熱伝導性、電気絶縁性が低下することのない信頼性の高いセラミック回路基板とすることができる。
【図面の簡単な説明】
【図1】本発明のセラミック回路基板の実施の形態の一例を示す断面図である。
【図2】図1のセラミック回路基板の断面図である。
【図3】従来のセラミック回路基板の断面図である。
【符号の説明】
1:セラミック基板
2:金属回路板
3:活性金属ろう材
4:端子部
5:溝状の非接合領域
A:セラミック基板と活性金属ろう材との接合端
B:金属回路板と活性金属ろう材との接合端
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic circuit board formed by joining a metal circuit board made of copper or a copper alloy to a ceramic substrate via an active metal brazing material.
[0002]
[Prior art]
In recent years, as a circuit board such as a board for a power module or a board for a switching module, a ceramic circuit board formed by joining a metal circuit board made of copper or a copper alloy on a ceramic board via an active metal brazing material has been used. I have.
[0003]
Such a ceramic circuit board is specifically manufactured by the following method. First, an active metal brazing material paste is prepared by adding an organic solvent and a solvent to an active metal powder obtained by adding at least one of titanium, zirconium, hafnium and a hydride thereof to a silver-copper alloy.
[0004]
Next, for example, when the ceramic substrate is made of an aluminum oxide sintered body, an appropriate organic binder, a plasticizer, a solvent, and the like are added to and mixed with raw material powders of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. After obtaining a plurality of ceramic green sheets (hereinafter, also referred to as green sheets) by a tape forming technique such as a doctor blade method or a calender roll method, which are well known in the art, these are cut into a predetermined size, and then the green sheets are cut. A plurality of sheets are laminated as necessary and fired at a temperature of about 1600 ° C. in a reducing atmosphere, and the green sheets are sintered and integrated to form a ceramic substrate.
[0005]
Next, the active metal brazing paste is printed in a predetermined pattern on the ceramic substrate and dried, and then a metal circuit board made of copper or a copper alloy is placed on the active metal brazing paste.
[0006]
Finally, the paste of the active metal brazing material disposed between the ceramic substrate and the metal circuit board is heated and melted at a temperature of about 900 ° C. in a non-oxidizing atmosphere. By joining the board, a ceramic circuit board is manufactured.
[0007]
The ceramic circuit board manufactured in this manner is mounted with a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor) via an adhesive such as solder. The terminal for external input / output is mounted in a resin case integrally molded to form a semiconductor module. The semiconductor module is used in a wide range of applications from industrial equipment such as robots to driving parts of trains and electric vehicles, and is required to have high reliability under severe environments.
[0008]
However, the production of the resin case integrally molded with the terminals requires a molding die, and the production cost is high. Therefore, there is a problem that the production cost of the semiconductor module increases. In addition, after incorporating the ceramic circuit board into the resin case with integrated terminals, it is necessary to electrically connect the terminals of the resin case and the metal circuit board of the ceramic circuit board with bonding wires, etc., increasing the number of manufacturing steps. There was a problem of doing.
[0009]
For this reason, a ceramic circuit board in which terminals are directly joined to a metal circuit board by soldering or ultrasonic bonding, or a terminal-integrated ceramic circuit board in which a part of the metal circuit board is extended as a terminal is employed. It is becoming.
[0010]
However, when the terminals are joined to the metal circuit board by soldering, a 90% lead-tin alloy having a melting point higher than the heating temperature is used so that the joining does not come off due to heating when mounting electronic components such as semiconductor elements. Since a high-temperature solder (melting point: about 300 ° C.) is required, cracks are generated in the ceramic substrate due to a difference in thermal expansion between the metal circuit board and the ceramic substrate due to heat history caused by heating and melting the high-temperature solder. Heat resistance of about 250 ° C to protect circuit patterns from the external environment and to prevent solder from adhering to unnecessary parts in the soldering step performed when surface mounting electronic components on printed wiring boards However, there is a problem that an epoxy resin-based solder resist that can only be used cannot be used.
[0011]
Further, when the terminals are joined by ultrasonic joining, for example, since the ultrasonic oscillation horn is pressed with a pressure of 10 to 50 MPa on the surface of the joint portion of the terminal contacted with the metal circuit board, this high pressure is applied to the terminal. The ceramic substrate immediately below the junction is applied via a metal circuit board and brazing material to the ceramic substrate immediately below the junction, and heat of about 500 ° C. or more generated by ultrasonic vibration is instantaneously applied to the ceramic substrate immediately below the junction of the terminal, so that the ceramic In some cases, minute cracks are formed on the substrate, and in that case, there is a problem that the mechanical strength of the ceramic circuit substrate is reduced and the reliability is significantly deteriorated.
[0012]
In order to solve such problems, a terminal-integrated ceramic circuit board with a simpler structure, less number of mounting steps, and higher reliability, with a part of the metal circuit board extended as a terminal part is adopted. It is becoming. This metal circuit board is manufactured into a desired circuit wiring pattern shape by applying a conventionally known metal working method such as a rolling method or a punching method. Alternatively, it is manufactured by brazing a metal plate having substantially the same shape as the ceramic substrate and then removing unnecessary metal portions by etching to form a circuit wiring pattern.
[0013]
In this case, as shown in the cross-sectional view of the conventional ceramic circuit board in FIG. 3, the joining end a between the ceramic substrate 1 and the active metal brazing material 3 and the joining between the metal circuit board 2 and the active metal brazing material 3 It is located at a position facing end b. In other words, the positions are overlapping when the ceramic circuit board is viewed in plan.
[0014]
[Patent Document 1]
JP-A-2002-164461
[Problems to be solved by the invention]
However, in the ceramic circuit board shown in FIG. 3, when the ceramic circuit board is repeatedly subjected to thermal shock by ultrasonic bonding or the like, the ceramic board 1 and the active metal brazing material 3 The thermal stress generated due to the difference in thermal expansion between the active metal brazing material 3 and the thermal stress generated due to the difference in thermal expansion between the metal circuit board 2 and the active metal brazing material 3 is superimposed. Cracks are likely to occur at the joint end a between the ceramic substrate 1 and the active metal brazing material 3, and as a result, the joint strength, thermal conductivity, and electrical insulation are reduced, and the reliability is reduced. There was a problem that.
[0016]
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a terminal-integrated ceramic circuit board, which has been heated after bonding the ceramic board and the metal circuit board via an active metal brazing material. Even if the impact is repeatedly applied, the thermal stress generated due to the difference in thermal expansion does not concentrate on the joint end of the ceramic substrate with the active metal brazing material. As a result, the ceramic substrate does not crack and has high reliability. It is to provide a ceramic circuit board.
[0017]
[Means for Solving the Problems]
The ceramic circuit board of the present invention is a ceramic circuit board in which a metal circuit board made of copper or a copper alloy is bonded to an upper surface of the ceramic substrate via an active metal brazing material, and the ceramic substrate has the upper surface thereof. The ceramic substrate and the active metal brazing material, which are located at a position immediately below the end of the active metal brazing material and are located inside the joining end from a position facing the joining end of the metal circuit board and the active metal brazing material. A groove-shaped non-joining region between the ceramic substrate and the active metal brazing material having an opening extending over the joining end thereof is provided along a joining end between the ceramic substrate and the active metal brazing material. I do.
[0018]
In the ceramic circuit board of the present invention, the ceramic substrate is provided at a position directly below the end of the active metal brazing material on the upper surface thereof from the position facing the joint end between the metal circuit board and the active metal brazing material, inside the joint end. A groove-shaped non-joining region between the ceramic substrate and the active metal brazing material having an opening over the joining end between the ceramic substrate and the active metal brazing material is provided along the joining end between the ceramic substrate and the active metal brazing material. Therefore, when the ceramic circuit board is viewed in plan, the joining end between the metal circuit board and the active metal brazing material and the joining end between the ceramic substrate and the active metal brazing material do not overlap. As a result, when a thermal shock is repeatedly applied to the ceramic circuit board, a thermal expansion difference is generated between the ceramic substrate and the active metal brazing material at the joint end between the ceramic substrate and the active metal brazing material. The thermal stress and the thermal stress generated by the difference in thermal expansion between the metal circuit board and the active metal brazing material generated between the metal circuit board and the active metal brazing material do not overlap and are applied. Therefore, a highly reliable ceramic circuit board can be provided in which cracks are not generated at the joining end between the ceramic substrate and the active metal brazing material, and the joining strength, thermal conductivity, and electrical insulation are not reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The ceramic circuit board of the present invention will be described in detail below. FIG. 1 is a sectional view showing an example of an embodiment of a ceramic circuit board of the present invention, and FIG. 2 is a plan view of the ceramic circuit board of FIG. In these figures, 1 is a ceramic substrate, 2 is a metal circuit board, 3 is an active metal brazing material, 4 is a terminal portion of the metal circuit board 2, 5 is a groove-shaped non-joining area, and A is the ceramic substrate 1 and the active metal. A joint end B with the brazing material 3 is a joint end between the metal circuit board 2 and the active metal brazing material 3. In FIG. 2, the groove-shaped non-joining region 5 is indicated by a dotted line.
[0020]
The ceramic circuit board of the present invention is a ceramic circuit board in which a metal circuit board 2 made of copper or a copper alloy is joined to an upper surface of a ceramic board 1 with an active metal brazing material 3 interposed therebetween. The ceramic substrate 1 and the active metal existing on the upper surface immediately below the end of the active metal brazing material 3 from the position facing the bonding end B between the metal circuit board 2 and the active metal brazing material 3 and inside the bonding end B A non-joining region 5 between the grooved ceramic substrate 1 and the active metal brazing material 3 having an opening extending over the joining end A with the brazing material 3 is provided along the joining end A between the ceramic substrate 1 and the active metal brazing material 3. Have been.
[0021]
The ceramic substrate 1 according to the present invention has a square shape with a side length of about 20 to 200 mm and a thickness of about 0.2 to 1.0 mm, and a metal circuit board 2 made of copper or a copper alloy is activated on its upper surface. It is joined via the metal brazing material 3. The ceramic substrate 1 is a supporting member for supporting the metal circuit board 2, and includes an aluminum oxide (Al 2 O 3 ) sintered body (alumina ceramics), a mullite (3Al 2 O 3 .2SiO 2 ) sintered body, It is made of a ceramic which is an electrically insulating material such as a silicon carbide (SiC) based sintered body, an aluminum nitride (AlN) based sintered body, and a silicon nitride (Si 3 N 4 ) based sintered body.
[0022]
When the ceramic substrate 1 is made of, for example, an aluminum oxide-based sintered body, an appropriate organic binder, a plasticizer, and a solvent are added to a raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide, and the mixture is mixed to form a slurry. None, a ceramic green sheet (ceramic green sheet, hereinafter also referred to as green sheet) is obtained from the slurry by a well-known doctor blade method or calender roll method, and then the green sheet is subjected to an appropriate punching process. It is also manufactured by stacking a plurality of sheets as necessary and firing at a high temperature of about 1600 ° C.
[0023]
The thickness of the ceramic substrate 1 is preferably set to 0.2 to 1.0 mm. In order to satisfy the requirements for downsizing and thinning of the ceramic circuit board, the ceramic substrate 1 when the metal circuit board 2 is bonded is required. This is preferable in terms of suppressing cracks and improving the heat conductivity of heat of 100 ° C. or more generated by a semiconductor element (not shown) to be mounted. When the thickness of the ceramic substrate 1 is less than 0.2 mm, cracks and the like tend to occur easily in the ceramic substrate 1 due to thermal stress generated when the metal circuit board 2 is joined to the ceramic substrate 1. On the other hand, when the thickness exceeds 1.0 mm, it is difficult to cope with the thinning of the ceramic circuit board, and it is possible to satisfactorily radiate heat of 100 ° C. or more generated by the mounted semiconductor element through the ceramic substrate 1. Tends to be difficult.
[0024]
The metal circuit board 2 is made of copper or a copper alloy, and one end of the metal circuit board 2 is a terminal section 4 that is electrically connected to an external electric circuit (not shown). The joining is performed via the brazing material 3 as follows.
[0025]
First, an active metal powder such as titanium, zirconium or hafnium or an active metal powder comprising at least one hydride thereof is added to a silver brazing powder such as a silver-copper alloy powder or an aluminum brazing powder such as an aluminum-silicon alloy powder. An active metal brazing material paste obtained by adding and mixing an appropriate organic solvent and a solvent to the active metal brazing material to which 2 to 5% by mass is added is coated on the upper surface of the ceramic substrate 1 by a conventionally well-known screen printing method. Is printed in a predetermined pattern corresponding to. Since the terminal portions 4 of the metal circuit board 2 are used by being bent substantially perpendicularly to the upper surface of the ceramic substrate 1, active metal brazing material paste is printed on portions corresponding to the terminal portions 4 of the ceramic substrate 1. do not do.
[0026]
Then, the metal circuit board 2 is placed on the pattern of the active metal brazing material paste, or the ceramic substrate 1 on which the active metal brazing material paste is printed is placed on the metal circuit board 2 by the active metal brazing material paste. Are heated in a vacuum or in a neutral or reducing atmosphere at a predetermined temperature (about 900 ° C.) to melt the active metal brazing material paste. The metal circuit board 2 is joined to the upper surface to form a ceramic circuit board.
[0027]
The joining between the ceramic substrate 1 and the metal circuit board 2 is performed so that the active metal brazing material 3 does not flow into the non-joining region 5 of the grooved active metal brazing material 3 on the upper surface of the ceramic substrate 1. It is preferable that the ceramic substrate 1 on which the paste is printed be placed on the metal circuit board 2. Alternatively, an active metal brazing material paste is printed on a joining region of the metal circuit board 2 with the ceramic substrate 1, and the ceramic substrate 1 is placed on the metal circuit board 2 on which the active metal brazing material paste is printed and joined. Is preferred.
[0028]
When the assembly of the ceramic substrate 1 and the metal circuit board 2 is heated to melt the active metal brazing paste as described above, the molten and expanded active metal brazing paste pastes the surface of the metal circuit board 2. Although it wets and spreads outward, it spreads effectively in the non-bonding region 5 of the ceramic substrate 1. That is, the ceramic surface of the ceramic substrate 1 originally has poor wettability of the active metal brazing material 3 (the contact angle of the molten active metal brazing material 3 is large), and the molten active metal brazing material 3 has a molten active Since the contact angle with the metal brazing material 3 is larger, it is possible to effectively suppress the molten active metal brazing material 3 from entering the non-joining region 5. As a result, an inclined meniscus as shown in FIG. 1 is formed at the end of the active metal brazing material 3.
[0029]
The metal circuit board 2 is made of copper or a copper-zinc alloy (a zinc content of 30% by mass or less), a copper-tin alloy (a tin content of 5% by mass or less), a copper-platinum alloy (a platinum content Amount is 5 mass% or less), copper-palladium alloy (palladium content is 5 mass% or less), copper-nickel alloy (nickel content is 5 mass% or less), etc. By applying a conventionally known metal working method such as a rolling working method or a punching working method, a desired circuit wiring pattern shape having a thickness of, for example, 0.5 mm is manufactured. At this time, the terminal portion 4 integrated with the circuit wiring pattern is also formed at the same time.
[0030]
In addition, the thickness of the metal circuit board 2 satisfies the requirements for miniaturization and thinning of the ceramic circuit board, and also satisfies the specification of the electric resistance when a large current signal such as 20 to 50 A flows. From the viewpoint of preventing cracking of the ceramic substrate 1 when joined to the ceramic substrate 1, it is preferably 0.1 to 1.0 mm. When the thickness of the metal circuit board 2 is less than 0.1 mm, a large current signal such as 20 to 50 A tends to be difficult to flow satisfactorily due to an increase in electric resistance. It is difficult to cope with the problem, and cracks and the like tend to be easily generated in the ceramic substrate 1 due to thermal stress generated when the ceramic substrate 1 and the metal circuit board 2 are joined.
[0031]
It is preferable that the metal circuit board 2 is made of oxygen-free copper. In this case, the active metal brazing material 3 is hardly oxidized and the wettability is improved, so that the metal circuit board 2 is strongly bonded to the ceramic substrate 1. Can be.
[0032]
The terminal portion 4 is a part of the metal circuit board 2 and is preferably processed so that its Vickers hardness at room temperature becomes 100 Hv or more. This is because the tough pitch copper used as a normal terminal has a Vickers hardness of 80 Hv or more, so that the terminal portion 4 is not deformed when the terminal-integrated ceramic circuit board is mounted on the resin case. This is because bending is reduced and electronic components such as semiconductor elements to be mounted can be operated stably.
[0033]
As a processing method for setting the Vickers hardness of the terminal portion 4 to 100 Hv or more, electroless nickel plating, impact processing, solder film forming processing, and the like are suitably used.
[0034]
The electroless nickel plating is performed, for example, by applying electroless nickel plating containing phosphorus to the terminal portion 4 and then performing a heat treatment at a temperature of 250 ° C. or more to crystallize the nickel-phosphorus to have a Vickers hardness of 100 Hv or more. It is a processing method. At this time, the amount of phosphorus contained in the nickel film is preferably 8% by mass or more. If the phosphorus content is less than 8% by mass, the nickel-phosphorus compound cannot be sufficiently crystallized, and as a result, the Vickers hardness of the terminal portion 4 tends not to be 100 Hv or more. In addition, other than phosphorus, boron or the like which forms a compound with nickel and has a Vickers hardness of 100 Hv or more may be used.
[0035]
The thickness of the electroless nickel plating is preferably 1.5 μm or more. When the thickness is 1.5 μm or less, the effect of increasing the Vickers hardness of the terminal portion 4 is small, and a Vickers hardness of 100 Hv or more tends to be not obtained. Further, the heat treatment at 250 ° C. or higher is performed because the crystallization of the nickel-phosphorous compound does not proceed at all and the Vickers hardness may not increase unless the heat treatment is performed. This heat treatment may be performed after the formation of the plating film, or may be performed by using a heat treatment when electronic components such as semiconductor elements are mounted on the ceramic circuit board on which the plating film is formed by soldering or the like.
[0036]
Examples of the impact processing on the terminal portion 4 include sand blasting, wet blasting (a method of injecting abrasive grains and water by air pressure), and pressing with a mold. In the case of impact processing by blasting, it may be applied only to the terminal portion 4 or may be subjected to blasting of the entire ceramic circuit board to also serve as a step of removing foreign matter. Pressing with a mold may be performed, for example, by using a device in which the terminal 4 is put into a mold and only the terminal 4 is hit with a hammer or the like.
[0037]
Further, examples of the solder film forming process on the terminal portion 4 include a solder film process by solder plating and a solder film forming process by solder dipping. As the solder, a Pb-Sn-based or Sn-Ag-based solder containing Sn is used, and the Sn forms a Cu-Sn alloy with the copper of the terminal portion 4, whereby the Vickers hardness of the terminal portion 4 increases.
[0038]
In the ceramic circuit board according to the present invention, the ceramic substrate is located at a position directly below the end of the active metal brazing material 3 on the upper surface thereof at a position facing the joining end B between the metal circuit board 2 and the active metal brazing material 3. The non-joining region 5 between the groove-shaped ceramic substrate 1 and the active metal brazing material 3 having an opening extending over the joining end A between the ceramic substrate 1 and the active metal brazing material 3 existing inside the joint end from the joining end is formed. A is provided along A. With this configuration, when the ceramic circuit board 1 is viewed in a plan view, the joining ends A and B do not overlap, and when the ceramic circuit board 1 is repeatedly subjected to thermal shock, the joining end A and the ceramic substrate 1 are activated. The thermal stress generated by the difference in thermal expansion between the metal brazing material 3 and the thermal stress generated by the difference in thermal expansion between the metal circuit board 2 and the active metal brazing material 3 is superimposed. Will not join. As a result, it is possible to obtain a highly reliable ceramic circuit board without cracks occurring at the joint end A and reducing the joint strength, thermal conductivity, and electrical insulation.
[0039]
It is preferable that the width of the groove-shaped non-joining region 5 is 0.05 to 2 times the thickness of the ceramic substrate 1. If the ratio is less than 0.05 times, the active metal brazing material 3 flows into the non-joining region 5, and there is a risk that the joining ends A and B overlap when the ceramic circuit board is viewed in plan. If it exceeds twice, the strength of the ceramic substrate 1 is sharply reduced at the non-bonded region 5, and there is a high risk that the ceramic substrate 1 is broken at the non-bonded region 5 when the terminal portion 4 is bent and used. Become.
[0040]
The depth of the groove-shaped non-joining region 5 is preferably 10 to 40% of the thickness of the ceramic substrate 1. If it is less than 10%, there is a risk that the active metal brazing material 3 easily flows into the non-joining region 5 and the joining ends A and B overlap when the ceramic circuit board is viewed in plan. If it exceeds 40%, the strength of the ceramic substrate 1 is sharply reduced at the portion of the non-joining region 5, and the risk of being broken in the non-joining region 5 when the terminal portion 4 is bent and used is increased.
[0041]
Further, the cross-sectional shape of the groove-shaped non-joining region 5 may be various shapes such as a semicircular shape, a semi-elliptical shape, a triangular shape, and a quadrangular shape. From the viewpoint of dispersing the stress, a polygonal shape such as a semicircular or semielliptical shape having no discontinuous point on the inner peripheral surface, a triangular shape having rounded corners, or a quadrangular shape is preferable.
[0042]
Further, it is preferable that the terminal portion 4 of the metal circuit board 2 has a length from the joining end B to the end of the active metal brazing material 3 of about 5 to 20 mm. If it is less than 5 mm, it tends to be difficult to bend the terminal portion 4 when used by bending it upward, and if it is more than 20 mm, the metal circuit board 3 becomes unnecessarily large, resulting in high cost.
[0043]
In the present embodiment, an example is shown in which the groove-shaped non-joining region 5 is provided between the ceramic substrate 1 and the metal circuit board 2 on the upper surface of the ceramic substrate 1, but is opposed from one end surface of the ceramic substrate 1. It may be formed over the end face. In this case, after joining the metal circuit board 2 to the ceramic substrate 1, the ceramic substrate 1 is divided at the non-joining region 5 and one end is separated and removed, so that the terminal portion 4 is easily extended outside the ceramic substrate 1. The terminal portion 4 can be easily bent. In this case, it is preferable that the cross-sectional shape of the groove-shaped non-joining region 5 is triangular, and the non-joining region 5 can divide the ceramic substrate 1 well.
[0044]
The groove-shaped non-bonding region 5 is formed by applying a pressure process to a predetermined position of a green sheet that becomes the ceramic substrate 1 after firing so that the green sheet becomes a groove shape after firing.
[0045]
Thus, according to the ceramic circuit board of the present invention, the active metal brazing material paste disposed between the ceramic board 1 and the metal circuit board 2 is heated to about 900 ° C. in a non-oxidizing atmosphere to be melted. The semiconductor module is manufactured by bonding a metal circuit board 2 to an electronic component 1 and further mounting an electronic component such as a semiconductor element via an adhesive such as solder, and then mounting the electronic component in a resin case.
[0046]
The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present invention.
[0047]
【The invention's effect】
In the ceramic circuit board of the present invention, the ceramic substrate is provided at a position directly below the end of the active metal brazing material on the upper surface thereof from the position facing the joint end between the metal circuit board and the active metal brazing material, inside the joint end. A groove-shaped non-joining region between the ceramic substrate and the active metal brazing material having an opening over the joining end between the ceramic substrate and the active metal brazing material is provided along the joining end between the ceramic substrate and the active metal brazing material. Therefore, when the ceramic circuit board is viewed in plan, the joining end between the metal circuit board and the active metal brazing material and the joining end between the ceramic substrate and the active metal brazing material do not overlap. As a result, when a thermal shock is repeatedly applied to the ceramic circuit board, a thermal expansion difference is generated between the ceramic substrate and the active metal brazing material at the joint end between the ceramic substrate and the active metal brazing material. The thermal stress and the thermal stress generated by the difference in thermal expansion between the metal circuit board and the active metal brazing material generated between the metal circuit board and the active metal brazing material do not overlap and are applied. Therefore, a highly reliable ceramic circuit board can be provided in which cracks are not generated at the joining end between the ceramic substrate and the active metal brazing material, and the joining strength, thermal conductivity, and electrical insulation are not reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic circuit board of the present invention.
FIG. 2 is a sectional view of the ceramic circuit board of FIG. 1;
FIG. 3 is a cross-sectional view of a conventional ceramic circuit board.
[Explanation of symbols]
1: ceramic substrate 2: metal circuit board 3: active metal brazing material 4: terminal portion 5: groove-shaped non-joining region A: joining end between ceramic substrate and active metal brazing material B: metal circuit board and active metal brazing material Junction end with

Claims (1)

セラミック基板の上面に活性金属ろう材を介して銅または銅合金から成る金属回路板が接合されて成るセラミック回路基板であって、前記セラミック基板は、その上面で前記活性金属ろう材の端の直下の部位に、前記金属回路板と前記活性金属ろう材との接合端と対向する位置から前記接合端よりも内側に存在する前記セラミック基板と前記活性金属ろう材との接合端にわたる開口を有する溝状の前記セラミック基板と前記活性金属ろう材との非接合領域が、前記セラミック基板と前記活性金属ろう材との接合端に沿って設けられていることを特徴とするセラミック回路基板。A ceramic circuit board in which a metal circuit board made of copper or a copper alloy is joined to an upper surface of a ceramic substrate via an active metal brazing material, wherein the ceramic substrate has an upper surface immediately below an end of the active metal brazing material. A groove having an opening extending from a position opposed to a joint end between the metal circuit board and the active metal brazing material to a joint end between the ceramic substrate and the active metal brazing material present inside the joint end. A ceramic circuit board, wherein a non-joining region between the ceramic substrate and the active metal brazing material is provided along a joint end between the ceramic substrate and the active metal brazing material.
JP2003035698A 2003-02-13 2003-02-13 Ceramic circuit board Expired - Fee Related JP4018992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035698A JP4018992B2 (en) 2003-02-13 2003-02-13 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035698A JP4018992B2 (en) 2003-02-13 2003-02-13 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2004247512A true JP2004247512A (en) 2004-09-02
JP4018992B2 JP4018992B2 (en) 2007-12-05

Family

ID=33021051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035698A Expired - Fee Related JP4018992B2 (en) 2003-02-13 2003-02-13 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP4018992B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258416A (en) * 2006-03-23 2007-10-04 Mitsubishi Materials Corp Power module and substrate therefor and method of manufacturing substrate for power module
JP2008218905A (en) * 2007-03-07 2008-09-18 Tokuyama Corp Method of manufacturing wiring substrate
JP2008311296A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Substrate for power module
JP2010165720A (en) * 2009-01-13 2010-07-29 Mitsubishi Materials Corp Method of manufacturing substrate for power module
JP2013135199A (en) * 2011-12-27 2013-07-08 Toyota Industries Corp Semiconductor device
CN106679433A (en) * 2016-12-24 2017-05-17 信宜市翔胜家电科技有限公司 Fixing structure for ceramic stove and circuit board
WO2019198551A1 (en) * 2018-04-09 2019-10-17 三菱マテリアル株式会社 Ceramics-metal bonded body and method of manufacturing same, and multi-piece ceramics-metal bonded body and method of manufacturing same
CN113853365A (en) * 2019-05-20 2021-12-28 罗杰斯德国有限公司 Method for producing a metal-ceramic substrate and metal-ceramic substrate produced by said method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258416A (en) * 2006-03-23 2007-10-04 Mitsubishi Materials Corp Power module and substrate therefor and method of manufacturing substrate for power module
JP4682889B2 (en) * 2006-03-23 2011-05-11 三菱マテリアル株式会社 Power module substrate, power module, and method of manufacturing power module substrate
JP2008218905A (en) * 2007-03-07 2008-09-18 Tokuyama Corp Method of manufacturing wiring substrate
JP2008311296A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Substrate for power module
JP2010165720A (en) * 2009-01-13 2010-07-29 Mitsubishi Materials Corp Method of manufacturing substrate for power module
JP2013135199A (en) * 2011-12-27 2013-07-08 Toyota Industries Corp Semiconductor device
CN106679433A (en) * 2016-12-24 2017-05-17 信宜市翔胜家电科技有限公司 Fixing structure for ceramic stove and circuit board
WO2019198551A1 (en) * 2018-04-09 2019-10-17 三菱マテリアル株式会社 Ceramics-metal bonded body and method of manufacturing same, and multi-piece ceramics-metal bonded body and method of manufacturing same
CN113853365A (en) * 2019-05-20 2021-12-28 罗杰斯德国有限公司 Method for producing a metal-ceramic substrate and metal-ceramic substrate produced by said method

Also Published As

Publication number Publication date
JP4018992B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4168114B2 (en) Metal-ceramic joint
JP4018992B2 (en) Ceramic circuit board
JP5002614B2 (en) Manufacturing method of ceramic circuit board
JP3850335B2 (en) Ceramic circuit board
JP5902557B2 (en) Multilayer wiring board and electronic device
JP3971554B2 (en) Ceramic circuit board and semiconductor module using the same
JP2011171349A (en) Wiring board and electronic device using the same
JP2003068966A (en) Ceramic circuit board
JP2002164461A (en) Ceramic circuit board
JP2007324182A (en) Wiring board and electronic device
JP2002232090A (en) Ceramic circuit board
JP2003068936A (en) Ceramic circuit board
JP4669965B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JP3279844B2 (en) Semiconductor device and manufacturing method thereof
JP3441194B2 (en) Semiconductor device and manufacturing method thereof
JP2013229377A (en) Circuit board and electronic apparatus using the same
WO2021200801A1 (en) Ceramic circuit board, electronic device, metal member, and production method for ceramic circuit board
JP2008004760A (en) Wiring board and electronic device
JP2000340716A (en) Wiring substrate
JP2003100983A (en) Ceramic circuit board
JP3279846B2 (en) Method for manufacturing semiconductor device
JP2003198077A (en) Ceramic circuit board
JP2002043481A (en) Ceramic module and its manufacturing method
JP2001210948A (en) Ceramic circuit board
JP5777456B2 (en) Ceramic circuit board and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070921

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees