JP2004246960A - Optical disk - Google Patents

Optical disk Download PDF

Info

Publication number
JP2004246960A
JP2004246960A JP2003034784A JP2003034784A JP2004246960A JP 2004246960 A JP2004246960 A JP 2004246960A JP 2003034784 A JP2003034784 A JP 2003034784A JP 2003034784 A JP2003034784 A JP 2003034784A JP 2004246960 A JP2004246960 A JP 2004246960A
Authority
JP
Japan
Prior art keywords
recording
film
light
optical disk
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034784A
Other languages
Japanese (ja)
Inventor
Minoru Kawasaki
実 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003034784A priority Critical patent/JP2004246960A/en
Publication of JP2004246960A publication Critical patent/JP2004246960A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical disk for high density recording and reproduction having a light transmission layer enhancing light transmittance of a laser beam having 400 nm wavelength up to 90 to 95%. <P>SOLUTION: The optical disk is constituted by successively layering a recording film 2, a light transmission film 3 and a protective film 4 on a substrate 1. A recording laser beam 5 is transmitted through an object lens 6, the protective film 6 and the light transmission film 3 and then made incident on the recording film 2. The light transmission film 3 is formed by using a UV curing resin to which 1 to 3wt.% photoinitiator having only one benzene ring in its chemical structure is added and which transmits the recording laser beam 5 having 400 nm wavelength at 90 to 95% transmittance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高光透過率を有する光透過膜を備えた高密度記録再生用の光ディスクに関する。
【0002】
【従来の技術】
一般に、オーディオ、画像用途、コンピュータメモリとして、レーザ光を用いて情報の再生、記録、消去を行うDVD等の光ディスクにおいて、レンズの高開口度、レーザ光の短波長化等により、光ディスクの高密度化が行われている。高密度化のためには、光ピックアップの対物レンズと光ディスクの反射膜の距離を短くしてレンズ収差を抑制する。すなわち、コマ収差を抑制するために、レーザ光が通過する厚さを薄くする必要がある。
【0003】
高密度光ディスクとしては例えば、厚さ1.1mmの基板表面にピット列又は記録溝からなる情報が形成されていて、それらはトラックピッチ0.32μm、最短記録ピット0.16μmであって、直径120mmのディスク上に信号方式が2T(T:チャンネル周期)系で22GB〜27GBの記録容量を有しているものである。ピット又は記録溝が形成されている基板表面上には、情報面を保護しかつ外部から照射されるレーザ光を透過させるための厚さ90μmから110μmの光透過層が形成されている。
【0004】
このようなディスク構造としては、下記する特許文献1に記載のように厚さ100μm程度の樹脂シートを数ミクロンの接着剤で基板表面に貼り付ける方法や、下記する特許文献2公報に記載のように紫外線硬化樹脂を滴下して100μm程度の光透過層を基板表面上に形成する方法が知られている。また、この光透過層として紫外線硬化樹脂の光開始剤の吸収波長と紫外線の波長を重複させることが下記する特許文献3、ベンゾフェノン光開始剤0.1〜10重量%を紫外線硬化樹脂に添加することが下記する特許文献4に記載され知られている。
【0005】
【特許文献1】
特開2000−311392号公報
【0006】
【特許文献2】
特開2001−307380号公報
【0007】
【特許文献3】
特開平9−26907号公報
【0008】
【特許文献4】
特開平9−180263号
【0009】
【発明が解決しようとする課題】
しかしながら、紫外線硬化樹脂やポリマーシートを接着剤で基板表面に貼る特許文献1や、プラズマ処理した基板表面に紫外線硬化樹脂を塗布展開して光透過層を形成する特許文献2、紫外線硬化樹脂の光開始剤の吸収波長と紫外線の波長を重複させる特許文献3、ベンゾフェノン光開始剤0.1〜10重量%を紫外線硬化樹脂に添加する特許文献4においてそれぞれ開示されている光ディスクの発明では、光透過層である紫外線硬化樹脂に多数個のベンゼン環を有する光開始剤を0.1〜10重量%含有しているために、光透過層を透過する波長400nmのレーザ光の光透過率は、90%未満に減少してしまう。このために、例えば情報信号を記録する場合は、記録再生機における、記録時のレーザパワーがより多く必要となり、この結果レーザの寿命が短くなったり、より大きな出力のレーザを必要とするために、レーザの消費電力が増加してしまうという問題点があった。
【0010】
そこで本発明は上述した課題に鑑みて創案されたものであり、特に、光透過層として、唯1個のベンゼン環を有する光開始剤を1〜3重量%含有した紫外線硬化樹脂を用いることによって、この光透過層を透過する波長400nmのレーザ光の光透過率を90%〜95%と向上させた、高密度記録再生用の光ディスクを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記した課題を解決するために、本発明は下記の構成になる光ディスクを提供する。
光ディスク基板上に少なくとも記録膜及び光透過膜が順次積層されてなり、かつ前記光透過膜を透過した記録レーザ光が前記記録膜上に照射される光ディスクであって、
前記光透過膜は、ベンゼン環1個の光開始剤1〜3重量%を添加した、波長400nmの前記記録レーザ光を光透過率90%〜95%で透過する紫外線硬化樹脂であることを特徴とする光ディスク。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明し、この後に具体的な実施例について説明する。
図1、図2はそれぞれ本発明に係わる光ディスクの第1、第2実施例の部分拡大縦断面図である。
本発明の光ディスクAは、図1に示すように、光ディスク基板1上に、記録膜2、光透過膜3、保護膜4が順次積層されてなる光ディスクである。記録レーザ光5は、対物レンズ6、保護膜4、光透過膜3をそれぞれ透過して記録膜2上に照射される。光透過膜3は、ベンゼン環1個の光開始剤1〜3重量%を添加した、波長400nmの記録レーザ光5を光透過率90%〜95%で透過する紫外線硬化樹脂である。
【0013】
図1において、光ディスク基板1は、射出成型で溝やピットを金属原盤より転写成型してなるポリカーボネート樹脂基板である。光ディスク基板1の厚さは0.6mm(1.1mm、1.2mmの厚さのものを使用してもよい)。
記録膜2は、光ディスク基板1上に、Al合金反射層を厚さ10〜100nm、ZnS−SiO、誘電体層を厚さ15〜30nm、GeSbTe系記録層を厚さ20〜40nm、ZnS−SiO、誘電体層を厚さ100〜130nmを順次成膜してなる。
光透過膜3は、記録膜2(厚さ100〜130nmのZnS−SiO誘電体層)上に、バーコースターやスピンコーター等で、ベンゼン環1個の光開始剤1〜3重量%を添加した、波長400nmの記録レーザ光5を光透過率90%〜95%で透過する紫外線硬化樹脂を塗布した後に、紫外線硬化してなる。
保護膜4は、光透過膜3の表面上に、厚さ0.09nmのポリカーボネート樹脂フィルムを貼着する。
こうして図1に示す光ディスクAを得ることができる。
【0014】
また、本発明の光ディスクBは、図2に示すように、光ディスク基板1上に、記録膜2、光透過膜7が順次積層されてなる光ディスクである。記録レーザ光5は、対物レンズ6、光透過膜7をそれぞれ透過して記録膜2上に照射される。光透過膜7は、ベンゼン環1個の光開始剤1〜3重量%を添加した、波長400nmの記録レーザ光5を光透過率90%〜95%で透過する紫外線硬化樹脂である。前述したものと同一構成部分には同一符号を付しその説明を省略した。
【0015】
図2において、光ディスク基板1は、射出成型で溝やピットを金属原盤より転写成型してなるポリカーボネート樹脂基板である。光ディスク基板1の厚さは0.6mm(1.1mm、1.2mmの厚さのものを使用してもよい)。
記録膜2は、光ディスク基板1上に、Al合金反射層を厚さ10〜100nm、ZnS−SiO、誘電体層を厚さ15〜30nm、GeSbTe系記録層を厚さ20〜40nm、ZnS−SiO、誘電体層を厚さ100〜130nmを順次成膜してなる。
【0016】
次に、本発明の光ディスクA,Bの具体的な構成について説明する。
光ディスク基板1は射出成形機に光ディスク専用金型を装着し、ポリカーボネート樹脂などの熱可塑性樹脂を材料として射出成形によって製造される。光ディスク用金型内には、スタンパと呼ばれる、円盤状のニッケル盤が装着されている。ニッケル盤の表面には、高密度情報として、ピット列又は記録溝からなる情報面が形成されていて、例えばそれらはトラックピッチ0.32μm、最短記録ピット0.16μmであって、直径120mmのディスク上に信号方式が2T系で22GB〜27GBの記録容量を有しているものである。このような射出成形によって表面に情報面の形成された光ディスク基板1が製造される。
【0017】
この光ディスク基板1の情報面をアルミニウムなどの、レーザ光5に対して高反射率を示す反射膜で覆えば、再生専用光ディスクとなり、ゲルマニウム、アンチモン、テルルなどの合金からなる加熱冷却速度により、結晶と非結晶のような相の変化において光に対する反射率が変化するような記録膜2で覆えば記録再生用光ディスクとなる。
【0018】
通常、透明な保護膜4(光透過膜7)側からレーザ光5が入射して記録膜2に対して記録再生が行われる。そして、レーザ光5のスポット径は(レーザ光5の波長)÷(対物レンズ6の開口数)に依存する。レーザ光5の波長400nm、対物レンズ6の開口数0.9であると、0.44μmのスポット径になり記録密度の高密度化ができる。また、スキュー角(ディスクA,Bの、レーザ光5の光軸に対する傾斜角)とレーザ光5が通過する透明な保護膜4+光透過膜3(光透過膜7)の厚みと対物レンズ6の開口数の3乗の積に比例する量であるコマ収差を小さくする必要がある。このために、レーザ光5が通過する光透過膜3(光透過膜7)をポリカーボネート樹脂より屈折率の小さい紫外線硬化樹脂を用いて100μm以下の厚さの光透過膜で形成して記録再生を行う。
【0019】
次に、本発明の光ディスクA(図1),B(図2)の具体的な製造方法について説明する。
まず、溝やピットが形成されているポリカーボネート樹脂などの光ディスク基板1上に、スパッタや蒸着により硫化亜鉛、二酸化珪素などの無機化合物からなる誘電体層、ゲルマニウム、アンチモン、テルルなどの合金からなる記録層、アルミニウムなどの合金からなる反射層を形成して記録膜2を作る。
【0020】
次に、記録膜2上に、ベンゼン環1個の光開始剤(例えば、ジ及びトリクロロアセトフェノン類)1〜3重量%を含む紫外線硬化樹脂(例えば、ポリエステルアクリレート、ポリウレタンアクリレートなど)をスピンコーター等で塗布する。この塗布厚は、0.09mm厚のフィルムを貼り合せるとき0.01mmに(図1)、フィルムを貼り合せないとき0.1mmにする(図2)。この塗布後に、高圧水銀ランプ等を備えた紫外線照射装置から紫外線を照射して紫外線硬化樹脂を硬化して光透過膜3,7を作成する。
【0021】
図3は本発明の光ディスクを構成する光透過膜における、添加済光開始剤のベンゼン環数に対する光透過膜の光透過率変化を示すグラフである。
【0022】
まず、ポリエステルアクリレート、ポリウレタンアクリレート、エポキシアクリレートの紫外線硬化樹脂へ、ベンゼン環0個の光開始剤テトラメチルチウムモノサルファイド、ベンゼン環1個の2.2ジエトキシアセトフェノン、ベンゼン環2個のベンゾフェノン、ベンゼン環3個のアンスラキノンを4重量%添加し(3×4=12種類の試料)、高圧水銀ランプを備えた紫外線照射装置から紫外線を1000mJ照射して硬化させて、厚さ100μmの光透過膜を作り、分光光度計を用いて波長400nmのレーザ光を照射したときのそれぞれの光透過率を測定する。
【0023】
ベンゼン環個数0、1の光開始剤の波長400nmの各光透過率は、90%〜95%で極めて良いが、ベンゼン環個数0の光開始剤を用いると、光透過膜の硬化が不十分になる。
【0024】
図4は本発明の光ディスクを構成する光透過膜における、ベンゼン環1個の光開始剤の添加率に対する光透過膜の光透過率変化を示すグラフである。
【0025】
まず、ポリエステルアクリレート、ポリウレタンアクリレート、エポキシアクリレートの紫外線硬化樹脂へ、ベンゼン環1個の光開始剤2.2ジエトキシアセトフェノンを、0.5、1、2、3、4、5重量%添加し(3×6=18種類の試料)、高圧水銀ランプを備えた紫外線照射装置から紫外線を1000mJ照射して硬化させて、厚さ100μmの光透過膜を作り、分光光度計を用いて波長400nmのレーザ光を照射したときのそれぞれの光透過率を測定する。
【0026】
厚さ100μmのポリカーボネート樹脂基板(保護膜4)に対する波長400nmのレーザ光の吸収率は約14%(光透過率約86%)なので、記録膜2に到達するレーザ光5の光エネルギーが減衰されて、記録再生感度が悪くなる。このため所要の記録再生感度を得るためには、大きい記録再生パワーのレーザ光が必要になる。例えば、図1、図2に示した光ディスクA,Bにおいて光透過膜3,7がポリカーボネート樹脂を用いると、線速5.3m/sで記録するのに、レーザパワーが5.2mW必要であるが、光透過膜3,7のレーザ光の光透過率を90%以上にすると、レーザパワーを約4mWとすれば良い。
従って、光透過膜3,7のレーザ光5の光透過率を90%以上、記録時に大きなレーザパワーが必要となり、省エネ上問題が生じることのみならず、高出力でのレーザ使用はレーザ寿命を縮めることとなり、ドライブのもちを悪くする。
【0027】
図4に示すように、ベンゼン環1個の光開始剤2.2ジエトキシアセトフェノンの添加量が4重量%以上になると、光透過膜3,7の波長400nmのレーザ光5の光透過率が90%を割ってしまう。また、0.5重量%だと光透過膜3,7の硬化が不十分である。このことから、紫外線硬化樹脂の分子構造に於いても同様なことを言うことができ、紫外線硬化樹脂自体にも、ベンゼン環の個数の少ないものを選択することにより、更に光透過率を向上させることができ、光ディスクへの記録時のレーザパワーを減少させることができる効果を有するようになる。
ベンゼン環が波長400nmに吸収域があるために、ベンゼン環を多く含む樹脂は波長400nmの光透過率が悪くなるので、紫外線硬化樹脂はできるだけベンゼン環の個数が少ないものを用いる、できればベンゼン環の個数が1個のものを用いる。ビスフェノールA型からのものを用いないほうがよい。
【0028】
【発明の効果】
以上詳細したことから明らかなように、本発明は、特に、光透過層として、唯1個のベンゼン環を有する光開始剤を1〜3重量%含有した紫外線硬化樹脂を用いることによって、この光透過層を透過する波長400nmのレーザ光の光透過率を90%〜95%と向上させた高密度記録再生用の光ディスクを提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる光ディスクの第1実施例の部分拡大縦断面図。
【図2】本発明に係わる光ディスクの第2実施例の部分拡大縦断面図。
【図3】本発明の光ディスクを構成する光透過膜における、添加済光開始剤のベンゼン環数に対する光透過膜の光透過率変化を示すグラフ。
【図4】本発明の光ディスクを構成する光透過膜における、ベンゼン環1個の光開始剤の添加率に対する光透過膜の光透過率変化を示すグラフ。
【符号の説明】
1 光ディスク基板
2 記録膜
3,7 光透過膜
4 保護膜
5 レーザ光(記録レーザ光)
A,B 光ディスク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical disk for high-density recording and reproduction provided with a light transmitting film having a high light transmittance.
[0002]
[Prior art]
Generally, in an optical disk such as a DVD for reproducing, recording, and erasing information using a laser beam as an audio, an image application, and a computer memory, a high-density optical disk is used due to a high aperture of a lens and a short wavelength of a laser beam. Is being done. To increase the density, the distance between the objective lens of the optical pickup and the reflection film of the optical disk is shortened to suppress lens aberration. That is, in order to suppress coma, it is necessary to reduce the thickness through which the laser light passes.
[0003]
As a high-density optical disk, for example, information consisting of pit rows or recording grooves is formed on the surface of a substrate having a thickness of 1.1 mm, which has a track pitch of 0.32 μm, the shortest recording pit of 0.16 μm, and a diameter of 120 mm. Has a recording capacity of 22 GB to 27 GB in a 2T (T: channel period) system on the disk of No. 1. On the surface of the substrate on which the pits or recording grooves are formed, a light transmitting layer having a thickness of 90 μm to 110 μm for protecting the information surface and transmitting laser light emitted from the outside is formed.
[0004]
As such a disk structure, a method in which a resin sheet having a thickness of about 100 μm is attached to the substrate surface with an adhesive of several microns as described in Patent Document 1 described below, or as described in Patent Document 2 described below A method of forming a light transmitting layer of about 100 μm on a substrate surface by dropping an ultraviolet curable resin onto a substrate is known. In addition, Patent Literature 3, which discloses that the absorption wavelength of the photoinitiator of the ultraviolet curable resin and the wavelength of the ultraviolet light overlap each other as the light transmitting layer, 0.1 to 10% by weight of a benzophenone photoinitiator is added to the ultraviolet curable resin. This is described and known in Patent Document 4 below.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-31392
[Patent Document 2]
JP 2001-307380 A
[Patent Document 3]
JP-A-9-26907
[Patent Document 4]
JP-A-9-180263
[Problems to be solved by the invention]
However, Patent Document 1 in which an ultraviolet-curable resin or a polymer sheet is adhered to the substrate surface with an adhesive, Patent Document 2 in which an ultraviolet-curable resin is applied to a plasma-treated substrate surface to form a light-transmitting layer, In the optical disk inventions disclosed in Patent Document 3 in which the absorption wavelength of the initiator and the wavelength of the ultraviolet light overlap, and in Patent Document 4 in which 0.1 to 10% by weight of the benzophenone photoinitiator is added to the ultraviolet curable resin, the light transmission is disclosed. Since the ultraviolet curable resin as a layer contains a photoinitiator having a large number of benzene rings in an amount of 0.1 to 10% by weight, the light transmittance of a laser beam having a wavelength of 400 nm transmitted through the light transmitting layer is 90%. %. For this reason, for example, when recording an information signal, a recording / reproducing apparatus requires more laser power at the time of recording, and as a result, the life of the laser is shortened or a laser with a larger output is required. However, there is a problem that the power consumption of the laser increases.
[0010]
Therefore, the present invention has been made in view of the above-mentioned problems, and in particular, by using an ultraviolet curable resin containing 1 to 3% by weight of a photoinitiator having only one benzene ring as a light transmitting layer. It is another object of the present invention to provide an optical disk for high-density recording / reproduction in which the light transmittance of a laser beam having a wavelength of 400 nm transmitted through the light transmitting layer is improved to 90% to 95%.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an optical disk having the following configuration.
An optical disc in which at least a recording film and a light transmitting film are sequentially laminated on an optical disc substrate, and a recording laser beam transmitted through the light transmitting film is irradiated onto the recording film,
The light transmitting film is an ultraviolet curable resin to which the recording laser light having a wavelength of 400 nm is transmitted at a light transmittance of 90% to 95%, to which 1 to 3% by weight of a photo initiator of one benzene ring is added. Optical disk.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, and then specific examples will be described.
FIGS. 1 and 2 are partially enlarged longitudinal sectional views of first and second embodiments of the optical disk according to the present invention, respectively.
As shown in FIG. 1, the optical disc A of the present invention is an optical disc in which a recording film 2, a light transmitting film 3, and a protective film 4 are sequentially laminated on an optical disc substrate 1. The recording laser beam 5 is transmitted through the objective lens 6, the protective film 4, and the light transmitting film 3, and is irradiated onto the recording film 2. The light transmitting film 3 is an ultraviolet curable resin to which a recording laser beam 5 having a wavelength of 400 nm is transmitted at a light transmittance of 90% to 95% to which 1 to 3% by weight of a photo initiator of one benzene ring is added.
[0013]
In FIG. 1, an optical disk substrate 1 is a polycarbonate resin substrate formed by transfer molding grooves and pits from a metal master by injection molding. The thickness of the optical disk substrate 1 is 0.6 mm (a thickness of 1.1 mm or 1.2 mm may be used).
The recording film 2 has an Al alloy reflective layer having a thickness of 10 to 100 nm, ZnS—SiO 2 , a dielectric layer having a thickness of 15 to 30 nm, a GeSbTe-based recording layer having a thickness of 20 to 40 nm, and a ZnS— SiO 2 and a dielectric layer are sequentially formed to a thickness of 100 to 130 nm.
The light transmitting film 3 is formed by adding 1 to 3% by weight of a photo initiator of one benzene ring to the recording film 2 (100 to 130 nm thick ZnS-SiO 2 dielectric layer) by using a bar coaster or a spin coater. An ultraviolet curable resin that transmits the recording laser light 5 having a wavelength of 400 nm at a light transmittance of 90% to 95% is applied, and then cured by ultraviolet light.
The protective film 4 is formed by attaching a 0.09 nm-thick polycarbonate resin film on the surface of the light transmitting film 3.
Thus, the optical disc A shown in FIG. 1 can be obtained.
[0014]
The optical disk B of the present invention is an optical disk in which a recording film 2 and a light transmitting film 7 are sequentially laminated on an optical disk substrate 1 as shown in FIG. The recording laser beam 5 passes through the objective lens 6 and the light transmitting film 7 and is irradiated onto the recording film 2. The light transmitting film 7 is an ultraviolet curable resin to which the recording laser light 5 having a wavelength of 400 nm is transmitted at a light transmittance of 90% to 95% to which 1 to 3% by weight of a photo initiator of one benzene ring is added. The same components as those described above have the same reference characters allotted, and description thereof will not be repeated.
[0015]
In FIG. 2, an optical disk substrate 1 is a polycarbonate resin substrate obtained by transfer molding grooves and pits from a metal master by injection molding. The thickness of the optical disk substrate 1 is 0.6 mm (a thickness of 1.1 mm or 1.2 mm may be used).
The recording film 2 has an Al alloy reflective layer having a thickness of 10 to 100 nm, ZnS—SiO 2 , a dielectric layer having a thickness of 15 to 30 nm, a GeSbTe-based recording layer having a thickness of 20 to 40 nm, and a ZnS— SiO 2 and a dielectric layer are sequentially formed to a thickness of 100 to 130 nm.
[0016]
Next, a specific configuration of the optical discs A and B of the present invention will be described.
The optical disc substrate 1 is manufactured by mounting a mold dedicated to an optical disc on an injection molding machine and performing injection molding using a thermoplastic resin such as a polycarbonate resin as a material. A disk-shaped nickel disk called a stamper is mounted in the optical disk mold. On the surface of the nickel disk, an information surface composed of a pit row or a recording groove is formed as high-density information. For example, they have a track pitch of 0.32 μm, the shortest recording pit of 0.16 μm, and a disk of 120 mm in diameter. The signal system is of a 2T type and has a recording capacity of 22 GB to 27 GB. The optical disc substrate 1 having the information surface formed on the surface by such injection molding is manufactured.
[0017]
When the information surface of the optical disk substrate 1 is covered with a reflective film such as aluminum or the like having a high reflectivity to the laser beam 5, the optical disk becomes a read-only optical disk. If it is covered with the recording film 2 whose reflectance with respect to light changes due to a phase change such as a non-crystalline phase, it becomes a recording / reproducing optical disk.
[0018]
Normally, laser light 5 is incident from the transparent protective film 4 (light transmitting film 7) side to perform recording / reproducing on the recording film 2. The spot diameter of the laser beam 5 depends on (the wavelength of the laser beam 5) 5 (the numerical aperture of the objective lens 6). If the wavelength of the laser beam 5 is 400 nm and the numerical aperture of the objective lens 6 is 0.9, the spot diameter becomes 0.44 μm, and the recording density can be increased. The skew angle (the tilt angle of the disks A and B with respect to the optical axis of the laser light 5), the thickness of the transparent protective film 4 + the light transmitting film 3 (the light transmitting film 7) through which the laser light 5 passes, and the thickness of the objective lens 6 It is necessary to reduce coma, which is an amount proportional to the product of the cube of the numerical aperture. For this purpose, the light-transmitting film 3 (light-transmitting film 7) through which the laser light 5 passes is formed of a light-transmitting film having a thickness of 100 μm or less using an ultraviolet curable resin having a smaller refractive index than the polycarbonate resin to perform recording and reproduction. Do.
[0019]
Next, a specific method for manufacturing the optical disks A (FIG. 1) and B (FIG. 2) of the present invention will be described.
First, a dielectric layer made of an inorganic compound such as zinc sulfide and silicon dioxide by sputtering or vapor deposition, and a recording made of an alloy such as germanium, antimony, and tellurium are formed on an optical disk substrate 1 such as a polycarbonate resin having grooves and pits formed thereon. A recording layer 2 is formed by forming a layer and a reflective layer made of an alloy such as aluminum.
[0020]
Next, on the recording film 2, an ultraviolet curable resin (eg, polyester acrylate, polyurethane acrylate, etc.) containing 1 to 3% by weight of a photoinitiator having one benzene ring (eg, di- and trichloroacetophenones) is applied by a spin coater or the like. Apply with. This coating thickness is set to 0.01 mm when a film having a thickness of 0.09 mm is bonded (FIG. 1), and to 0.1 mm when not bonding the film (FIG. 2). After this application, ultraviolet rays are irradiated from an ultraviolet irradiation device equipped with a high-pressure mercury lamp or the like to cure the ultraviolet-curable resin to form the light transmitting films 3 and 7.
[0021]
FIG. 3 is a graph showing a change in light transmittance of the light transmitting film with respect to the number of benzene rings of the added photoinitiator in the light transmitting film constituting the optical disc of the present invention.
[0022]
First, to a UV curable resin such as polyester acrylate, polyurethane acrylate, or epoxy acrylate, a photoinitiator of zero benzene ring, tetramethyltium monosulfide, 2.2 diethoxyacetophenone of one benzene ring, benzophenone of two benzene rings, benzene Anthraquinone with 3 rings was added at 4% by weight (3 × 4 = 12 kinds of samples), and was irradiated with 1000 mJ of ultraviolet light from an ultraviolet irradiation device equipped with a high-pressure mercury lamp, and was cured to form a light-transmitting film having a thickness of 100 μm. Are measured, and the respective light transmittances when a laser beam having a wavelength of 400 nm is irradiated using a spectrophotometer are measured.
[0023]
The light transmittance at a wavelength of 400 nm of a photoinitiator having 0 or 1 benzene ring is extremely good at 90% to 95%. However, when a photoinitiator having 0 benzene ring is used, curing of the light transmitting film is insufficient. become.
[0024]
FIG. 4 is a graph showing the change in the light transmittance of the light-transmitting film with respect to the addition ratio of the photo initiator of one benzene ring in the light-transmitting film constituting the optical disk of the present invention.
[0025]
First, 0.5, 1, 2, 3, 4, 5% by weight of a photoinitiator 2.2 diethoxyacetophenone having one benzene ring is added to an ultraviolet curable resin of polyester acrylate, polyurethane acrylate, or epoxy acrylate ( (3 × 6 = 18 kinds of samples), ultraviolet light was irradiated from a UV irradiation device equipped with a high-pressure mercury lamp at 1000 mJ and cured to form a 100 μm-thick light transmitting film, and a laser having a wavelength of 400 nm was measured using a spectrophotometer. The respective light transmittances when irradiated with light are measured.
[0026]
Since the absorptance of a laser beam having a wavelength of 400 nm to a polycarbonate resin substrate (protective film 4) having a thickness of 100 μm is about 14% (light transmittance is about 86%), the light energy of the laser light 5 reaching the recording film 2 is attenuated. As a result, the recording / reproducing sensitivity deteriorates. Therefore, in order to obtain the required recording / reproducing sensitivity, a laser beam having a large recording / reproducing power is required. For example, if the optical transmission films 3 and 7 of the optical disks A and B shown in FIGS. 1 and 2 use a polycarbonate resin, a laser power of 5.2 mW is required for recording at a linear velocity of 5.3 m / s. However, when the light transmittance of the laser light of the light transmitting films 3 and 7 is 90% or more, the laser power may be about 4 mW.
Therefore, the light transmittance of the laser beam 5 of the light transmitting films 3 and 7 is 90% or more, and a large laser power is required at the time of recording, which causes not only a problem in energy saving but also the use of the laser at a high output reduces the laser life. It shrinks and makes the drive less sticky.
[0027]
As shown in FIG. 4, when the addition amount of the photoinitiator 2.2 diethoxyacetophenone per benzene ring is 4% by weight or more, the light transmittance of the light transmitting films 3 and 7 for the laser light 5 having a wavelength of 400 nm is reduced. 90% will be broken. On the other hand, if the content is 0.5% by weight, curing of the light transmitting films 3 and 7 is insufficient. From this, the same can be said for the molecular structure of the UV-curable resin, and the UV-curable resin itself is further improved in light transmittance by selecting a resin having a small number of benzene rings. Therefore, the laser power at the time of recording on the optical disc can be reduced.
Since the benzene ring has an absorption range at a wavelength of 400 nm, a resin containing a large amount of benzene rings has a poor light transmittance at a wavelength of 400 nm. Use one piece. It is better not to use those from bisphenol A type.
[0028]
【The invention's effect】
As is apparent from the above-described details, the present invention particularly provides a light transmission layer using an ultraviolet curable resin containing 1 to 3% by weight of a photoinitiator having only one benzene ring. An optical disc for high-density recording / reproduction in which the light transmittance of laser light having a wavelength of 400 nm transmitted through the transmission layer is improved to 90% to 95% can be provided.
[Brief description of the drawings]
FIG. 1 is a partially enlarged longitudinal sectional view of a first embodiment of an optical disk according to the present invention.
FIG. 2 is a partially enlarged longitudinal sectional view of a second embodiment of the optical disc according to the present invention.
FIG. 3 is a graph showing a change in light transmittance of the light transmitting film with respect to the number of benzene rings of the added photoinitiator in the light transmitting film constituting the optical disc of the present invention.
FIG. 4 is a graph showing a change in light transmittance of a light-transmitting film with respect to an addition ratio of a photoinitiator having one benzene ring in a light-transmitting film constituting an optical disk of the present invention.
[Explanation of symbols]
Reference Signs List 1 optical disk substrate 2 recording films 3, 7 light transmitting film 4 protective film 5 laser beam (recording laser beam)
A and B optical disks

Claims (1)

光ディスク基板上に少なくとも記録膜及び光透過膜が順次積層されてなり、かつ前記光透過膜を透過した記録レーザ光が前記記録膜上に照射される光ディスクであって、
前記光透過膜は、ベンゼン環1個の光開始剤1〜3重量%を添加した、波長400nmの前記記録レーザ光を光透過率90%〜95%で透過する紫外線硬化樹脂であることを特徴とする光ディスク。
An optical disc in which at least a recording film and a light transmitting film are sequentially laminated on an optical disc substrate, and a recording laser beam transmitted through the light transmitting film is irradiated onto the recording film,
The light transmitting film is an ultraviolet curable resin to which the recording laser light having a wavelength of 400 nm is transmitted at a light transmittance of 90% to 95% to which 1 to 3% by weight of a photo initiator of one benzene ring is added. Optical disk.
JP2003034784A 2003-02-13 2003-02-13 Optical disk Pending JP2004246960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034784A JP2004246960A (en) 2003-02-13 2003-02-13 Optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034784A JP2004246960A (en) 2003-02-13 2003-02-13 Optical disk

Publications (1)

Publication Number Publication Date
JP2004246960A true JP2004246960A (en) 2004-09-02

Family

ID=33020374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034784A Pending JP2004246960A (en) 2003-02-13 2003-02-13 Optical disk

Country Status (1)

Country Link
JP (1) JP2004246960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145017A1 (en) * 2020-01-15 2021-07-22

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145017A1 (en) * 2020-01-15 2021-07-22
WO2021145017A1 (en) * 2020-01-15 2021-07-22 パナソニックIpマネジメント株式会社 Optical disk, manufacturing method thereof, optical information device, and information processing method
CN113412518A (en) * 2020-01-15 2021-09-17 松下知识产权经营株式会社 Optical disk, method for manufacturing the same, optical information device, and information processing method
JP7122509B2 (en) 2020-01-15 2022-08-22 パナソニックIpマネジメント株式会社 Optical disc, manufacturing method thereof, optical information device and information processing method
CN113412518B (en) * 2020-01-15 2022-11-25 松下知识产权经营株式会社 Optical disk, method for manufacturing the same, optical information device, and information processing method

Similar Documents

Publication Publication Date Title
JP3250989B2 (en) Optical information recording medium, recording / reproducing method thereof, manufacturing method thereof, and optical information recording / reproducing apparatus
US6353592B1 (en) Optical recording medium and optical disk device
JP4099549B2 (en) Optical recording medium and optical disk device
JP2002050053A (en) Optical information medium
JPH10326435A (en) Optical recording medium and optical disk device
JPH11195243A (en) Multilayered optical disk and recording and reproducing device
JP4136980B2 (en) Multi-layer phase change information recording medium and recording / reproducing method thereof
US20040002018A1 (en) Manufacturing method of optical disc and optical disc thereby
JP2002008269A (en) Optical recording medium and method for manufacturing the same
JP2000011454A (en) Optical recording medium, optical recording and reproducing device using in, and manufacture thereof
JPH0935333A (en) Optical recording medium
WO2006033410A1 (en) Multilayer information recording medium and production method therefor, and photosensitive adhesive sheet
JPH09320117A (en) Optical disk
JP4890507B2 (en) Optical information recording medium and manufacturing method thereof
JP2008071439A (en) Optical information recording medium
JPH05151616A (en) Optical recording medium, production thereof and reproducing device
JP2004246960A (en) Optical disk
JP2007133970A (en) Optical recording medium and manufacturing method of the same
JP2003123316A (en) Optical information medium
US7993818B2 (en) Optical disk manufacturing method
JP2002092956A (en) Optical information recording medium and producing method thereof
JP2002269826A (en) Phase change type optical information recording medium
JP4856600B2 (en) Manufacturing method of optical information medium
JP2001273674A (en) Optical information recording medium, method for recording and reproducing the same, method for manufacturing that medium, and optical information recording and reproducing device
JPH09306026A (en) Optical disk and formation of light transmissible layer of optical disk