JP2008071439A - Optical information recording medium - Google Patents

Optical information recording medium Download PDF

Info

Publication number
JP2008071439A
JP2008071439A JP2006249933A JP2006249933A JP2008071439A JP 2008071439 A JP2008071439 A JP 2008071439A JP 2006249933 A JP2006249933 A JP 2006249933A JP 2006249933 A JP2006249933 A JP 2006249933A JP 2008071439 A JP2008071439 A JP 2008071439A
Authority
JP
Japan
Prior art keywords
information recording
recording medium
optical information
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006249933A
Other languages
Japanese (ja)
Inventor
Kiyoto Shibata
清人 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006249933A priority Critical patent/JP2008071439A/en
Publication of JP2008071439A publication Critical patent/JP2008071439A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical information recording medium provided with an information recording layer and a light transmission layer comprising a light curing resin film on a substrate, nearly free from temporal change of mechanical characteristics and having high quality. <P>SOLUTION: (1) In the optical information recording medium which includes the information recording layer and the light transmission layer comprising the light curing resin film on the substrate and wherein recording/reproduction of data is performed by irradiating the information recording layer with laser light via the light transmission layer, a formula of E'×(1-x/100)≤50 is satisfied when a curing ratio of the light curing resin film and a storage modulus obtained by dynamic viscoelasticity measurement of 10 Hz are defined as x (%) and E' (MPa), respectively. (2) In the optical information recording medium mentioned in (1), E'×(1-x/100)≤30 is satisfied. (3) In the optical information recording medium mentioned in (1) or (2), 500≤E'≤1,500 is satisfied. (4) In the optical information recording medium mentioned in any of (1) to (3), 98≤x≤100 is satisfied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、経時的な機械特性の変化が少ない高品位な光情報記録媒体に関する。   The present invention relates to a high-quality optical information recording medium with little change in mechanical characteristics over time.

文字情報だけでなく、静止画像情報、更には動画情報を記録させる可搬媒体として、DVD−R/RWやDVD+R/RW等の光情報記録媒体が実用化されている。更に、近年、デジタル化の進展やブロードバンドの普及に伴って扱う情報量が増大し、高品位の動画像を高密度かつ高速でデータを記録・再生できる新たな記録システムが求められている。
このような背景から、記録再生波長の短波長化や開口数NA(Numerical Aperture)の増大により、集光ビーム径を小さくし、記録されるマークのサイズを小さくして、高密度化及び高速化を狙った光情報記録システムが提案されている。例えば、現行の記録型DVDは、記録再生波長λ=650〜660nm、開口数NA=0.65で、記録容量が4.7GBであるが、記録再生波長λを400nm程度まで短波長化し、開口数NAを0.85とした記録容量25GBの光ディスクシステムであるBlue−ray disc規格が提案されている。
Optical information recording media such as DVD-R / RW and DVD + R / RW have been put to practical use as portable media for recording not only character information but also still image information and moving image information. Furthermore, in recent years, the amount of information handled has increased with the progress of digitalization and the spread of broadband, and a new recording system capable of recording and reproducing high-quality moving images with high density and high speed has been demanded.
Against this background, by shortening the recording / reproducing wavelength and increasing the numerical aperture NA (Numerical Aperture), the focused beam diameter is reduced, the recorded mark size is reduced, and the recording density is increased and the speed is increased. An optical information recording system that aims to For example, the current recordable DVD has a recording / reproducing wavelength λ = 650 to 660 nm, a numerical aperture NA = 0.65, and a recording capacity of 4.7 GB. The Blue-ray disc standard, which is an optical disk system having a recording capacity of 25 GB with a number NA of 0.85, has been proposed.

しかしながら、このように光学系を高NA化することによって、様々な問題が生じる。例えば、光学ピックアップの光軸に対してディスク面が垂直からずれる角度、いわゆるチルト角により発生する収差の許容量が小さくなってしまう。ここで、記録・再生レーザー光の波長をλ、基板の厚さをtとすると、開口数NAによって、光学系に対する光情報記録媒体の傾きの許容度、いわゆるチルトマージンMが決まる。即ち、チルトマージンMはλ/{t×(NA)}に比例する。チルトマージンMをシステムの許容値以下に確保するためには、基板の厚さtを薄くすることが必要となる。そこで、このような高NAシステムにおいては、記録・再生光を従来の基板側からではなく、0.1mm程度の厚さに設定された光透過層を通して照射するようにしている。 However, various problems arise by increasing the NA of the optical system in this way. For example, an allowable amount of aberration caused by an angle at which the disk surface deviates from the optical axis of the optical pickup, that is, a so-called tilt angle, becomes small. Here, assuming that the wavelength of the recording / reproducing laser beam is λ and the thickness of the substrate is t, the tolerance of the tilt of the optical information recording medium with respect to the optical system, the so-called tilt margin M, is determined by the numerical aperture NA. That is, the tilt margin M is proportional to λ / {t × (NA) 3 }. In order to ensure the tilt margin M below the allowable value of the system, it is necessary to reduce the thickness t of the substrate. Therefore, in such a high NA system, the recording / reproducing light is irradiated not through the conventional substrate side but through the light transmission layer set to a thickness of about 0.1 mm.

しかし、光透過層の厚さが0.1mm程度の場合、従来のように、ポリカーボネート等の射出成形法によってこれを成形すると、十分な機械的強度や板厚分布、光学特性の面内均一性等が確保できなくなるという新たな問題が生じる。このためBlue−ray disc規格では、従来の基板とは反対側に光透過層を設ける構造が提案されている。即ち、ポリカーボネート等からなる基板上に反射層、誘電体層、記録層、誘電体層及び光透過層をこの順に形成することによって、光透過層が薄膜化された光情報記録媒体を作製する。この場合、記録層は相変化記録膜や無機系の追記型記録膜である。
かかる方法においては、まず、スタンパを用いてプリグルーブを有する基板を射出成形し、次に、プリグルーブが形成されている基板表面に、スパッタリング法等によって反射層、第1誘電体層、記録層、第2誘電体層をこの順に成膜する。そして、第2誘電体層の表面に、フィルムシートの貼り合わせや、紫外線硬化型樹脂などのスピンコートによって光透過層を形成する(例えば、特許文献1〜2参照)。
このようにして作製された光情報記録媒体においては、基板の反対側から記録・再生レーザが入射するため、基板の厚みを十分に厚くすることができる。また、基板には透過率や複屈折等の光学特性が要求されないため、溝の転写性や媒体の機械特性のみに着目した基板成形を行えばよく、このようなタイプの光情報記録媒体を用いれば、基板の機械的強度を十分に確保しつつ、高NAの光情報記録媒体用ヘッドを利用することが可能となる。
However, when the thickness of the light transmission layer is about 0.1 mm, if it is molded by an injection molding method such as polycarbonate as before, sufficient mechanical strength, plate thickness distribution, and in-plane uniformity of optical characteristics A new problem arises that it becomes impossible to secure the above. For this reason, the Blue-ray disc standard proposes a structure in which a light transmission layer is provided on the side opposite to the conventional substrate. That is, a reflective layer, a dielectric layer, a recording layer, a dielectric layer, and a light transmission layer are formed in this order on a substrate made of polycarbonate or the like, thereby producing an optical information recording medium in which the light transmission layer is thinned. In this case, the recording layer is a phase change recording film or an inorganic write-once recording film.
In this method, first, a substrate having a pregroove is injection-molded using a stamper, and then a reflection layer, a first dielectric layer, a recording layer are formed on the surface of the substrate on which the pregroove is formed by a sputtering method or the like. The second dielectric layer is formed in this order. Then, a light transmission layer is formed on the surface of the second dielectric layer by bonding of a film sheet or spin coating such as an ultraviolet curable resin (for example, see Patent Documents 1 and 2).
In the optical information recording medium thus manufactured, the recording / reproducing laser is incident from the opposite side of the substrate, so that the thickness of the substrate can be sufficiently increased. Also, since the substrate is not required to have optical characteristics such as transmittance and birefringence, it is only necessary to form the substrate by paying attention only to the transfer characteristics of the grooves and the mechanical characteristics of the medium, and this type of optical information recording medium is used. For example, a high NA optical information recording medium head can be used while sufficiently securing the mechanical strength of the substrate.

ところで、上記スピンコート法により光透過層を形成する従来技術において、長期保存を想定した環境試験により、機械特性、特にラジアルチルト特性が著しく悪化するという問題がある。例えば前述のBlue−ray disc規格では、ラジアルチルト特性の絶対値として±0.6deg.以下と規定されているが、光システム全体のマージン配分や温湿度が急激に変化した場合のマージン等を考慮すると、経時的に許容されるラジアルチルト変化量は0.4deg.以下が望ましい。しかしながら、スピンコート法により光透過層が形成された光情報記録媒体では、ラジアルチルト特性の経時変化が0.6deg.を越えてしまう不具合が頻繁に発生していた。   By the way, in the conventional technique for forming a light transmission layer by the above spin coating method, there is a problem that mechanical characteristics, particularly radial tilt characteristics, are remarkably deteriorated by an environmental test assuming long-term storage. For example, in the above-mentioned Blue-ray disc standard, the absolute value of the radial tilt characteristic is ± 0.6 deg. Although it is defined as follows, when considering the margin distribution of the entire optical system and the margin when the temperature and humidity change suddenly, the radial tilt change amount allowed over time is 0.4 deg. The following is desirable. However, in the optical information recording medium in which the light transmission layer is formed by the spin coating method, the change in radial tilt characteristics with time is 0.6 deg. There were frequent problems that exceeded the limit.

特許第3241560号公報Japanese Patent No. 3241560 特開平11−213459号公報Japanese Patent Application Laid-Open No. 11-213459

本発明は、上述のごとき実情に鑑みてなされたもので、基板上に情報記録層と光硬化性樹脂膜からなる光透過層とを備え、経時的な機械特性の変化が少なく高品位な光情報記録媒体の提供を目的とする。   The present invention has been made in view of the above-described circumstances, and includes an information recording layer and a light transmission layer made of a photocurable resin film on a substrate, and has high quality light with little change in mechanical characteristics over time. The purpose is to provide an information recording medium.

上記課題は、次の1)〜4)の発明によって解決される。
1) 基板上に、情報記録層と光硬化性樹脂膜からなる光透過層とを備え、光透過層を介して情報記録層にレーザ光を照射することにより、データの記録・再生が行われる光情報記録媒体において、光硬化性樹脂膜の硬化率をx(%)、10Hzの動的粘弾性測定から得られる貯蔵弾性率をE′(MPa)として、次の式を満足することを特徴とする光情報記録媒体。
E′×(1−x/100)≦50
2) E′×(1−x/100)≦30である請求項1記載の光情報記録媒体。
3) 500≦E′≦1500である1)又は2)記載の光情報記録媒体。
4) 98≦x≦100である1)〜3)の何れかに記載の光情報記録媒体。
The above problems are solved by the following inventions 1) to 4).
1) An information recording layer and a light transmission layer made of a photocurable resin film are provided on a substrate, and data is recorded / reproduced by irradiating the information recording layer with laser light through the light transmission layer. In an optical information recording medium, the following equation is satisfied, where the curing rate of the photocurable resin film is x (%), and the storage modulus obtained from dynamic viscoelasticity measurement at 10 Hz is E ′ (MPa). An optical information recording medium.
E ′ × (1−x / 100) ≦ 50
2) The optical information recording medium according to claim 1, wherein E ′ × (1−x / 100) ≦ 30.
3) The optical information recording medium according to 1) or 2), wherein 500 ≦ E ′ ≦ 1500.
4) The optical information recording medium according to any one of 1) to 3), wherein 98 ≦ x ≦ 100.

以下、上記本発明について詳しく説明する。
本発明者は、基板上に、情報記録層と光硬化性樹脂膜からなる光透過層とを備えた光情報記録媒体に係るものである。ここでいう情報記録層とは、基板と光透過層に挟まれた部分の、記録層、反射層、誘電体層などからなる積層体全体を指す。
本発明者が鋭意研究したところ、上記のような光情報記録媒体の経時的な機械特性の変化は、主に光透過層の膜収縮による媒体の変形によるものであることが分った。
光透過層は、紫外線硬化樹脂膜、カチオン硬化系樹脂膜などの光硬化性樹脂膜からなるが、慣用されているのは紫外線硬化樹脂膜である。
紫外線硬化樹脂膜は、例えば、エポキシアクリレートオリゴマー、ウレタンアクリレート系オリゴマー、多官能アクリルモノマー、単官能アクリルモノマー、光重合開始剤、各種添加剤等からなり、一般にスピンコート法により塗布硬化して成膜される。
しかし、光情報記録媒体は通常3〜5秒の速いタクトで生産されるため、未反応のモノマー、各種添加剤、硬化性を高めるために過剰に添加された光重合開始剤などが硬化膜中に残留してしまう。これらの未反応成分は揮発等により経時的に容易に膜外へ排出されて光透過層の膜収縮を引き起こし、バイメタル的な作用によって光情報記録媒体の機械特性(チルト)を悪化させる。機械特性の変化量は、硬化膜の硬化率(=ゲル分率)が低い程大きく、また、剛性率が高いほど顕著になる。
Hereinafter, the present invention will be described in detail.
The present inventor relates to an optical information recording medium including an information recording layer and a light transmission layer made of a photocurable resin film on a substrate. The information recording layer here refers to the entire laminate composed of a recording layer, a reflective layer, a dielectric layer, and the like at a portion sandwiched between the substrate and the light transmission layer.
As a result of intensive studies by the present inventors, it has been found that the change in mechanical properties of the optical information recording medium with time as described above is mainly due to the deformation of the medium due to the film contraction of the light transmission layer.
The light transmission layer is made of a photocurable resin film such as an ultraviolet curable resin film or a cationic curable resin film, and an ultraviolet curable resin film is commonly used.
The UV curable resin film is composed of, for example, an epoxy acrylate oligomer, a urethane acrylate oligomer, a polyfunctional acrylic monomer, a monofunctional acrylic monomer, a photopolymerization initiator, various additives, and the like, and is generally formed by coating and curing by a spin coating method. Is done.
However, since an optical information recording medium is usually produced with a fast tact time of 3 to 5 seconds, unreacted monomers, various additives, a photopolymerization initiator excessively added to improve curability, etc. are contained in the cured film. Will remain. These unreacted components are easily discharged out of the film over time due to volatilization or the like, causing film contraction of the light transmission layer, and worsening mechanical characteristics (tilt) of the optical information recording medium by a bimetallic action. The amount of change in mechanical properties increases as the curing rate (= gel fraction) of the cured film decreases, and increases as the rigidity increases.

図1は、紫外線硬化樹脂の成分と硬化条件(紫外線照度)を変えて硬化させた光透過層の硬化率(=ゲル分率)xと、信頼性加速試験後の光学膜厚変化量Δnd及び重量変化量ΔWの関係を調べた結果である。
図のように、硬化率xは光学膜厚変化量Δnd及び重量変化量ΔWと良い相関を示す。即ち、硬化率xが低いほど紫外線硬化樹脂膜中の未反応成分が多いため、その放出により膜の重量減少及び光学膜厚の収縮が起こる。
なお、膜の収縮は本来等方的に起こるが、光透過層の一方の面が媒体の情報記録層側に接合されているため、巨視的な膜収縮は主に膜厚方向のみに現れる。
具体的には、表1のように、紫外線硬化樹脂中のアクリレートオリゴマー(成分A)とアクリレートモノマー(成分B)の成分比を変え、紫外線照度を400〜3000mJ/cmの範囲で硬化させた。硬化には、フュージョンUVシステム社製のUVランプHP−6(Hバルブ)を用い、窒素環境で紫外線を照射した。
その結果、図8のように、樹脂中、成分Aのエポキシアクリレート成分(EPA)及び成分Bの多官能アクリレート(表1中のMANDAやTMPTA)が多い組成2の方が、それらが少ない組成1よりも硬化率が高くなる傾向があった。また、照度が低いほど硬化率は低く、概ね1000mJ/cm以上で硬化率は、ほぼプラトーに達し、1500〜3000mJ/cmでは硬化率に大きな違いはなかった。
FIG. 1 shows the curing rate (= gel fraction) x of the light transmission layer cured by changing the components of the ultraviolet curable resin and the curing conditions (ultraviolet illuminance), the optical film thickness change amount Δnd after the reliability acceleration test, and It is the result of investigating the relationship of the weight change amount ΔW.
As shown in the figure, the curing rate x shows a good correlation with the optical film thickness change amount Δnd and the weight change amount ΔW. That is, the lower the curing rate x, the more unreacted components in the ultraviolet curable resin film, and the release causes the film weight to decrease and the optical film thickness to shrink.
Although film shrinkage occurs isotropically, macroscopic film shrinkage mainly appears only in the film thickness direction because one surface of the light transmission layer is bonded to the information recording layer side of the medium.
Specifically, as shown in Table 1, the component ratio of the acrylate oligomer (component A) and the acrylate monomer (component B) in the ultraviolet curable resin was changed, and the ultraviolet illuminance was cured in the range of 400 to 3000 mJ / cm 2 . . For curing, UV lamp HP-6 (H bulb) manufactured by Fusion UV System was used and irradiated with ultraviolet rays in a nitrogen environment.
As a result, as shown in FIG. 8, the composition 2 in which the epoxy acrylate component (EPA) of component A and the polyfunctional acrylate of component B (MANDA and TMPTA in Table 1) are large in the resin is less in composition 1 There was a tendency for the curing rate to be higher. Further, the curing rate as the illuminance is low is low, is approximately 1000 mJ / cm 2 or more in the curing rate, almost reached a plateau, a large difference was not in 1500~3000mJ / cm 2 in the curing rate.

Figure 2008071439
Figure 2008071439

ここで、樹脂膜の硬化率x(%)は、次のようにして測定すればよい。
まず、光透過層を情報記録層との界面から剥離して樹脂膜をサンプリングする。次に、樹脂膜の秤量値をm(g)とし、該樹脂膜をアセトンやメチルエチルケトン等の有機溶媒中で超音波洗浄し、未反応物を溶出した後の秤量値をn(g)として、次の式で求めることができる。
x=n/m×100(%)
図1において、光学膜厚変化量Δnd及び重量変化量ΔWが硬化率xよりもやや小さい傾向にあるのは、このような有機溶剤を用いた強制溶出によるゲル分率測定の方が、信頼性加速試験の場合よりも未反応成分の溶出量が若干大きいためと考えられる。光学膜厚変化量Δndは、実際の光情報記録媒体において、干渉膜厚測定器等により反射スペクトルのフーリエ解析から求めることができる。また、重量変化量ΔWは、実際の媒体の重量変化から求めることができる。
Here, the curing rate x (%) of the resin film may be measured as follows.
First, the light transmission layer is peeled off from the interface with the information recording layer, and the resin film is sampled. Next, the weighing value of the resin film is m (g), the resin film is ultrasonically washed in an organic solvent such as acetone and methyl ethyl ketone, and the weighing value after eluting unreacted substances is n (g). It can be calculated by the following formula.
x = n / m × 100 (%)
In FIG. 1, the change in optical film thickness Δnd and the change in weight ΔW tend to be slightly smaller than the curing rate x. The reliability of the gel fraction measurement by forced elution using such an organic solvent is more reliable. This is probably because the amount of unreacted components eluted is slightly larger than in the accelerated test. The optical film thickness change amount Δnd can be obtained from the Fourier analysis of the reflection spectrum by an interference film thickness measuring instrument or the like in an actual optical information recording medium. The weight change amount ΔW can be obtained from the actual weight change of the medium.

図1から、紫外線硬化樹脂膜中の未反応成分の放出により、保存試験後に膜の収縮が起こり、光記録媒体のラジアルチルト角が変化してしまうことが想起された。更に、放出される未反応成分の量(1−x/100)が多いほど、また、樹脂膜の貯蔵弾性率E′が大きいほど、膜の収縮力が強くなり、ラジアルチルト角の変化が大きくなるものと考えられた。そこで、図1で硬化率を評価した媒体について、80℃、85%RHで300時間の信頼性試験を行い、E′×(1−x/100)とラジアルチルト変化量ΔRDの関係について調べたところ、図2のような結果が得られた。
図2から、硬化率xが小さく貯蔵弾性率E′の大きい膜の方が、信頼性試験後のチルト変化が大きいことが分かる。即ち、信頼性試験後のチルト変化を抑えるためには、E′×(1−x/100)が小さくなるような樹脂材料と硬化プロセスを選択すればよい。
From FIG. 1, it was recalled that the release of unreacted components in the ultraviolet curable resin film caused the film to shrink after the storage test, and the radial tilt angle of the optical recording medium changed. Furthermore, the greater the amount of unreacted component released (1-x / 100) and the greater the storage elastic modulus E ′ of the resin film, the stronger the contraction force of the film and the greater the change in radial tilt angle. It was thought to be. Therefore, a reliability test for 300 hours at 80 ° C. and 85% RH was performed on the medium whose curing rate was evaluated in FIG. 1, and the relationship between E ′ × (1−x / 100) and the radial tilt change amount ΔRD was examined. However, the result as shown in FIG. 2 was obtained.
From FIG. 2, it can be seen that the change in tilt after the reliability test is larger in the film having the smaller curing rate x and the larger storage elastic modulus E ′. That is, in order to suppress the tilt change after the reliability test, a resin material and a curing process that reduce E ′ × (1−x / 100) may be selected.

ここで、貯蔵弾性率E′の測定は次のようにして行う。まず、硬化率測定の場合と同様に、情報記録層との界面から剥離した光透過層の樹脂膜から、数mm×40〜60mm程度の短冊状フィルムを試験片として切り出す。次に、市販の引っ張り法レオメーターを用いて、試験片を室温から2℃/分程度の昇温速度で上昇させながら、10Hz程度の引っ張り周波数で動的粘弾性分析を行い、室温25℃付近の値を本発明で扱う貯蔵弾性率E′とする。動的粘弾性分析とは、図3のように樹脂硬化物の粘弾性物性、より具体的には、貯蔵弾性率E′、損失弾性率E″、ガラス転移温度Tg(通常、損失正接tanδ=E″/E′のピーク温度から求める)を評価する方法である。例えば、図3において、ガラス転移温度は58℃、貯蔵弾性率E′は約1700MPaである。   Here, the storage elastic modulus E ′ is measured as follows. First, as in the case of the curing rate measurement, a strip-shaped film of about several mm × 40 to 60 mm is cut out as a test piece from the resin film of the light transmission layer peeled from the interface with the information recording layer. Next, using a commercially available tensile rheometer, a dynamic viscoelastic analysis was performed at a tensile frequency of about 10 Hz while raising the test piece from room temperature at a rate of temperature increase of about 2 ° C./min. Is the storage elastic modulus E ′ treated in the present invention. As shown in FIG. 3, the dynamic viscoelastic analysis is a viscoelastic physical property of a cured resin, more specifically, storage elastic modulus E ′, loss elastic modulus E ″, glass transition temperature Tg (usually loss tangent tan δ = E ”/ E ′ peak temperature). For example, in FIG. 3, the glass transition temperature is 58 ° C. and the storage elastic modulus E ′ is about 1700 MPa.

上記のような研究結果に基づき、本発明では、硬化率xと貯蔵弾性率E′について次の式を満足するようにする。
E′×(1−x/100)≦50
E′×(1−x/100)と経時的な機械特性の劣化程度を示すラジアルチルト変化量ΔRDとは、図2のようなバラツキを持った対応関係があり、ΔRD≦0.6deg.を満たすE′×(1−x/100)の臨界的な範囲を明確に規定するのは困難である。
しかし、図4の(1)で示したバラツキの最大値を通る線を用いると、E′×(1−x/100)≦50であることが望ましい。即ち、この式を満足する範囲は、図4の(2)で示す範囲である。E′×(1−x/100)が50以下の場合、ΔRDは図4の(2)の範囲のΔRD≦0.6deg.となり、経時的な機械特性の劣化が小さい媒体となる。逆に、E′×(1−x/100)が50を越える場合、安定してΔRDを0.6deg.以下に抑えられなくなる。
Based on the above research results, in the present invention, the following formulas are satisfied for the curing rate x and the storage elastic modulus E ′.
E ′ × (1−x / 100) ≦ 50
E ′ × (1−x / 100) and the radial tilt change amount ΔRD indicating the degree of deterioration of the mechanical characteristics over time have a correspondence relationship having a variation as shown in FIG. 2, and ΔRD ≦ 0.6 deg. It is difficult to clearly define the critical range of E ′ × (1−x / 100) that satisfies the above.
However, it is desirable that E ′ × (1−x / 100) ≦ 50 when using a line passing through the maximum value of variation shown in FIG. That is, the range satisfying this expression is the range shown by (2) in FIG. When E ′ × (1−x / 100) is 50 or less, ΔRD is ΔRD ≦ 0.6 deg. In the range of (2) in FIG. Thus, the medium is less deteriorated in mechanical properties over time. Conversely, when E ′ × (1−x / 100) exceeds 50, ΔRD is stably set to 0.6 deg. It becomes impossible to suppress below.

更に好ましくは、硬化率xと貯蔵弾性率E′について次の式を満足するようにする。
E′×(1−x/100)≦30
この式を満足するのは図5の(3)の範囲であり、これを満たす樹脂膜を有する光記録媒体は、ラジアルチルト変化量Δが0.4deg.以下と機械特性の劣化が特に小さい。即ち、光硬化性樹脂の機械的強度(剛性率)と硬化率のバランスが優れているため、駆動装置側の経時変動やシステム全体の急激な温湿度変化等に対しても、十分な記録再生マージンを有した高品位な媒体である。
貯蔵弾性率E′の望ましい範囲は、500≦E′≦1500(MPa)である。樹脂膜の貯蔵弾性率E′が500MPaより小さいと、情報記録層の保護膜としての十分な保護性能を得にくい。また、1500MPaより大きいと、硬化収縮に伴う反り量が大きくなり、製造初期の機械特性を損ねてしまうため好ましくない。
硬化率xの望ましい範囲は、98≦x≦100である。硬化率が98%以上の場合、E′×(1−x/100)≦30を満たす貯蔵弾性率E′が、E′≦1500(MPa)となり、製造初期の機械特性に優れた媒体が得られる。硬化率xは98%以上であることが好ましいが、理論的に100%を越えることはない。
More preferably, the following formula is satisfied with respect to the curing rate x and the storage elastic modulus E ′.
E ′ × (1-x / 100) ≦ 30
This formula is satisfied within the range of (3) in FIG. 5, and an optical recording medium having a resin film satisfying this formula has a radial tilt variation Δ of 0.4 deg. The deterioration of mechanical properties is particularly small as follows. In other words, because the balance between mechanical strength (rigidity) and curing rate of photo-curing resin is excellent, sufficient recording / reproduction is possible even with time-dependent fluctuations on the drive unit side, sudden changes in temperature and humidity of the entire system, etc. It is a high quality medium with a margin.
A desirable range of the storage elastic modulus E ′ is 500 ≦ E ′ ≦ 1500 (MPa). When the storage elastic modulus E ′ of the resin film is smaller than 500 MPa, it is difficult to obtain sufficient protection performance as a protective film of the information recording layer. On the other hand, if it is greater than 1500 MPa, the amount of warpage accompanying curing shrinkage increases, and the mechanical properties at the initial stage of production are impaired, which is not preferable.
A desirable range of the curing rate x is 98 ≦ x ≦ 100. When the curing rate is 98% or more, the storage elastic modulus E ′ satisfying E ′ × (1−x / 100) ≦ 30 becomes E ′ ≦ 1500 (MPa), and a medium having excellent mechanical properties at the initial stage of manufacture is obtained. It is done. The curing rate x is preferably 98% or more, but theoretically does not exceed 100%.

本発明の光情報記録媒体の具体的層構成について、図6に示す相変化型光情報記録媒体を例に挙げて説明する。
基板には、ポリカーボネート、アクリル、ポリオレフィンなどの樹脂の射出成形により製造され、情報記録層積層側に螺旋状のグルーブ溝を有するものを用いる。
本発明の光情報記録媒体では、記録再生用のレーザビームの入射が光透過層側から行われるので、基板材料は必ずしも透光性である必要はなく、グルーブ溝の転写性や反り等の機械特性の良好な成形材料から選択しうるが、通常は、CDやDVDにおいて実績があり安価なポリカーボネート樹脂が選択される。
A specific layer structure of the optical information recording medium of the present invention will be described by taking the phase change optical information recording medium shown in FIG. 6 as an example.
The substrate is manufactured by injection molding of a resin such as polycarbonate, acrylic or polyolefin, and has a spiral groove on the information recording layer lamination side.
In the optical information recording medium of the present invention, since the recording / reproducing laser beam is incident from the light transmission layer side, the substrate material does not necessarily have to be light-transmitting, and the groove groove transferability, warpage, etc. A molding material having good characteristics can be selected, but usually, a polycarbonate resin that has a proven record in CDs and DVDs and is inexpensive is selected.

情報記録層は相変化記録層を含む。図6では、基板上に反射層、第1誘電体層、相変化記録層、第2誘電体層を公知のスパッタ法等によりこの順に形成する。
反射層には、通常、Agを主成分とするAg合金を用い、十分な冷却能を有するため、その膜厚は100〜250nm程度とする。Ag合金の具体例としては、Ag−Bi、Ag−In、Ag−Pd−Cu、Ag−Nd−Cu等が挙げられる。これらの合金元素は、Ag膜の高温環境下での凝集や結晶粒成長を抑制するために添加されるが、Agの良好な熱伝導率を損ねることのないよう、その総含有量は3原子%以下であることが望ましい。
The information recording layer includes a phase change recording layer. In FIG. 6, a reflective layer, a first dielectric layer, a phase change recording layer, and a second dielectric layer are formed on a substrate in this order by a known sputtering method or the like.
In general, an Ag alloy containing Ag as a main component is used for the reflective layer, and the film has a thickness of about 100 to 250 nm because it has sufficient cooling ability. Specific examples of the Ag alloy include Ag-Bi, Ag-In, Ag-Pd-Cu, and Ag-Nd-Cu. These alloy elements are added in order to suppress aggregation and crystal grain growth in a high temperature environment of the Ag film, but the total content is 3 atoms so as not to impair the good thermal conductivity of Ag. % Or less is desirable.

第1誘電体層及び第2誘電体層には、金属や半導体の酸化物、硫化物、窒化物、炭化物等の透明性が高い高融点材料を用いることができる。具体例としては、SiOx、ZnO、SnO、Al、TiO、In、MgO、ZrO、Ta等の金属酸化物、Si、AlN、TiN、BN、ZrN等の窒化物、ZnS、TaS等の硫化物、SiC、TaC、BC、WC、TiC、ZrC等の炭化物が挙げられ、単体又は混合物として、また2層以上からなる多層構造として用いることができる。これらの中から、屈折率、熱伝導率、化学的安定性、機械的強度、密着性等に留意して最適な材料が選択される。中でも、ZnSを60〜90モル%含むSiOとの混合膜は、繰り返し記録、高温環境下での膜自身の結晶化や化学変化、膜変形がないため望ましい。また、熱伝導率が〜0.5W/mKと低いため、記録層の溶融ピーク温度を高く保ち、変調度の高いアモルファスマークの形成に有利である点などからも、記録層に接する誘電体膜として最適である。 For the first dielectric layer and the second dielectric layer, a high-melting-point material having high transparency such as an oxide, sulfide, nitride, or carbide of metal or semiconductor can be used. Specific examples, SiOx, ZnO, SnO 2, Al 2 O 3, TiO 2, In 2 O 3, MgO, ZrO 2, Ta 2 O metal oxide such as 5, Si 3 N 4, AlN , TiN, BN Nitrides such as ZrN, sulfides such as ZnS and TaS 4 , carbides such as SiC, TaC, B 4 C, WC, TiC, and ZrC, and as a single layer or a mixture, and as a multilayer structure composed of two or more layers Can be used. Among these, an optimal material is selected in consideration of refractive index, thermal conductivity, chemical stability, mechanical strength, adhesion, and the like. Among these, a mixed film with SiO 2 containing 60 to 90 mol% of ZnS is preferable because it does not cause repeated recording, crystallization of the film itself in a high temperature environment, chemical change, and film deformation. In addition, since the thermal conductivity is as low as .about.0.5 W / mK, the dielectric film in contact with the recording layer is also advantageous in that the melting peak temperature of the recording layer is kept high and it is advantageous for forming an amorphous mark having a high degree of modulation. As best.

相変化記録層としては、GeSbTeに代表される公知のGeTe−SbTe擬似2元系材料や、AgInSbTeGeに代表されるSbTe共晶系材料を用いることができる。特に、記録再生波長として405±15nm、対物レンズの開口数NA=0.85±0.5の光学系を用いる場合は、Ge、Sb、Sn及びMnからなる合金を主成分とした相変化記録材料が、再生光安定性と保存信頼性(アモルファスマークの安定性)に優れており好ましい。
各元素の好ましい組成(原子%)は、5≦Ge≦20、45≦Sb≦70、10≦Sn≦20、0<Mn≦20である。Geは、結晶化温度を上げて保存性を高める一方で、繰り返し記録特性を悪化させるので、20原子%を越えないことが望ましい。逆に、高温高湿環境下での保存信頼性を確保するためには、5原子%以上含む必要がある。Snは、波長405nmにおける十分な反射率とコントラストを得るために、10原子%以上含む必要がある。しかし、Snが多すぎると、Ge同様、繰り返し記録特性を損ねるため、20原子%を越えないことが望ましい。Mnは、反射率低下や記録ジッターへの悪影響がGeよりも小さいため、結晶化速度を遅くする際にGeの代りに添加される。Mnは、Geと同様に繰り返し記録特性を悪化させるので、20原子%を越えないことが望ましい。SnとSbは結晶化速度を速め、GeとMnは結晶化速度を遅くする元素なので、総合的な記録特性と狙いの記録線速を考慮して、各元素の組成比が最適化される。基本的には、狙いの記録線速をGe−Sb系で設計し、Geに対してMn、Sbに対してSnを適量に置換する。Sb+Snが90原子%を超えると、結晶化速度が速くなり過ぎ、アモルファスマークの形成が困難になるので、Sbの上限は70原子%が望ましい。また、10≦Sn≦20原子%において記録線速を5〜30m/sとするには、Sbを45原子%以上とすることが好ましい。また、Ge、Sb、Sn及びMnの総量が95原子%以上で、記録特性や保存信頼性等を改善するための第五元素を5原子%以下含む構成としてもよい。
As the phase change recording layer, a known GeTe—Sb 2 Te 3 pseudo binary material represented by Ge 2 Sb 2 Te 5 or an SbTe eutectic material represented by AgInSbTeGe can be used. In particular, when an optical system having a recording / reproducing wavelength of 405 ± 15 nm and an objective lens numerical aperture NA = 0.85 ± 0.5 is used, phase change recording mainly composed of an alloy of Ge, Sb, Sn, and Mn. The material is preferable because of excellent reproduction light stability and storage reliability (amorphous mark stability).
The preferred composition (atomic%) of each element is 5 ≦ Ge ≦ 20, 45 ≦ Sb ≦ 70, 10 ≦ Sn ≦ 20, and 0 <Mn ≦ 20. Since Ge raises the crystallization temperature and improves the storage stability, but repeatedly deteriorates the recording characteristics, it is desirable not to exceed 20 atomic%. Conversely, in order to ensure storage reliability in a high temperature and high humidity environment, it is necessary to contain 5 atomic% or more. Sn needs to be contained in an amount of 10 atomic% or more in order to obtain sufficient reflectance and contrast at a wavelength of 405 nm. However, if there is too much Sn, the recording characteristics are impaired as in the case of Ge, so it is desirable that it does not exceed 20 atomic%. Since Mn has a smaller adverse effect on reflectivity reduction and recording jitter than Ge, Mn is added instead of Ge when slowing down the crystallization rate. Since Mn repeatedly deteriorates the recording characteristics like Ge, it is desirable that Mn does not exceed 20 atomic%. Since Sn and Sb are elements that increase the crystallization speed and Ge and Mn are elements that decrease the crystallization speed, the composition ratio of each element is optimized in consideration of the overall recording characteristics and the target recording linear velocity. Basically, the target recording linear velocity is designed by the Ge—Sb system, and Mn is substituted for Ge and Sn is substituted for Sb by appropriate amounts. If Sb + Sn exceeds 90 atomic%, the crystallization speed becomes too fast and it becomes difficult to form an amorphous mark. Therefore, the upper limit of Sb is preferably 70 atomic%. In order to set the recording linear velocity to 5 to 30 m / s at 10 ≦ Sn ≦ 20 atomic%, it is preferable to set Sb to 45 atomic% or more. Further, the total amount of Ge, Sb, Sn, and Mn may be 95 atomic% or more and may include 5 atomic% or less of a fifth element for improving recording characteristics, storage reliability, and the like.

第2誘電体層の上には、前述した紫外線硬化性樹脂等の光硬化性樹脂からなる光透過層を、スピンコート法などにより設ける。更に光透過層の上に、スピンコート法などによりハードコート層を設けてもよい。
波長405±15nm、対物レンズの開口数NA=0.85±0.5の光学系を用いて記録・再生を行う場合、十分なチルトマージンを確保するための光透過層の厚みは、5〜200μmが好ましく、より好ましくは5〜120μmである。
以上、本発明による相変化型光情報記録媒体の層構成例を示したが、記録層は追記用の色素記録層や無機記録層であってもよい。
追記型光情報記録媒体の無機記録層としては、記録レーザーの吸収によって屈折率や吸収係数の非可逆変化を生じる材料が用いられ、Bi−B−O、Bi−Fe−O、Te−Pd−O等の酸化物系材料が好適である。
また、中間層を介して情報記録層を2層以上有する多層記録媒体であってもよい。
On the second dielectric layer, a light transmission layer made of a photocurable resin such as the above-described ultraviolet curable resin is provided by a spin coat method or the like. Further, a hard coat layer may be provided on the light transmission layer by spin coating or the like.
When recording / reproducing is performed using an optical system having a wavelength of 405 ± 15 nm and a numerical aperture NA = 0.85 ± 0.5 of the objective lens, the thickness of the light transmission layer for securing a sufficient tilt margin is 5 to 5. 200 micrometers is preferable, More preferably, it is 5-120 micrometers.
As described above, the example of the layer structure of the phase change optical information recording medium according to the present invention has been shown. However, the recording layer may be a dye recording layer or an inorganic recording layer for additional recording.
As the inorganic recording layer of the write-once type optical information recording medium, a material that causes an irreversible change in refractive index or absorption coefficient by absorption of a recording laser is used. Bi-B-O, Bi-Fe-O, Te-Pd- An oxide-based material such as O is preferable.
Further, it may be a multilayer recording medium having two or more information recording layers via an intermediate layer.

本発明によれば、光硬化性樹脂からなる光透過層の機械的強度(剛性率)と硬化率(ゲル分率)のバランスが優れていることにより、製造直後のチルト特性に優れ、かつ経時的なチルト特性の変化が0.4〜0.6deg.以下に抑えられた高品位な光情報記録媒体を提供できる。   According to the present invention, the light transmission layer made of a photocurable resin has an excellent balance of mechanical strength (rigidity) and curing rate (gel fraction), so that it has excellent tilt characteristics immediately after production and Change in tilt characteristics is 0.4 to 0.6 deg. A high-quality optical information recording medium suppressed as follows can be provided.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、これらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.

実施例1〜2、比較例1〜3
まず、溝深さ22nm、溝幅0.16μm、トラックピッチ0.32μmのグルーブ溝を有する厚さ1.1mm、直径120mmのポリカーボネート基板(製品名ST3000、帝人バイエルポリテック社製)を用意し、以下の積層膜をスパッタリング法により順次形成して情報記録層とした。
(1)反射層 :Ag−0.5原子%Bi 膜厚140nm
(2)第1誘電体層:ZnS・20モル%SiO 膜厚8nm
(3)相変化記録層:Ge11Sb62.5Sn20Mn6.5 膜厚14nm
(4)第2誘電体層:ZnS・30モル%SiO 膜厚40nm
次に、図7(a)に示すように、媒体の中心孔をφ19mmのマスク材で閉塞し、マスクの中心付近に表2の割合で調合した紫外線硬化樹脂を供給して、硬化後の膜厚が約100μmになるように900〜1300回転で振り切った。樹脂を振り切る際、図7(b)に示すように、集光光学系によりハロゲンランプ光を媒体外周に集光して部分的な加熱を行い、リム部分の樹脂溜り(スキージャンプ)を平坦化した。
次に、中心孔マスクを取り外し、図7(c)のように、フュージョンUVシステム社製のUVランプHP−6(Hバルブ)を用い、照度700〜1000mJ/cmで樹脂層を硬化させ、図6に示す層構造の相変化型光情報記録媒体を得た。
次に、これらの光情報記録媒体を、波長800nm、ビーム径200μm×1μm(半径方向×トラック方向)の大口径LDを備えた初期化装置により、盤面パワー600mW、線速3m/s、送り量36μm/回転で送りながら、初期化(記録層の結晶化)した。
Examples 1-2 and Comparative Examples 1-3
First, a polycarbonate substrate (product name: ST3000, manufactured by Teijin Bayer Polytech Co., Ltd.) having a groove depth of 22 mm, a groove width of 0.16 μm, a groove groove having a track pitch of 0.32 μm, a thickness of 1.1 mm, and a diameter of 120 mm is prepared. The information recording layer was sequentially formed by the sputtering method.
(1) Reflective layer: Ag-0.5 atomic% Bi, film thickness 140 nm
(2) First dielectric layer: ZnS · 20 mol% SiO 2 film thickness 8 nm
(3) Phase change recording layer: Ge 11 Sb 62.5 Sn 20 Mn 6.5 film thickness 14 nm
(4) Second dielectric layer: ZnS / 30 mol% SiO 2 film thickness 40 nm
Next, as shown in FIG. 7A, the center hole of the medium is closed with a mask material of φ19 mm, and an ultraviolet curable resin prepared in the ratio of Table 2 is supplied near the center of the mask to form a film after curing. It was shaken off by 900-1300 rotation so that thickness might be set to about 100 micrometers. When the resin is shaken off, as shown in FIG. 7B, the condensing optical system condenses the halogen lamp light on the outer periphery of the medium and performs partial heating to flatten the resin pool (ski jump) at the rim portion. did.
Next, the center hole mask is removed, and the resin layer is cured at an illuminance of 700 to 1000 mJ / cm 2 using a UV lamp HP-6 (H bulb) manufactured by Fusion UV System, as shown in FIG. A phase change optical information recording medium having a layer structure shown in FIG. 6 was obtained.
Next, these optical information recording media were subjected to a disk surface power of 600 mW, a linear velocity of 3 m / s, and a feed amount by an initialization apparatus equipped with a large aperture LD having a wavelength of 800 nm and a beam diameter of 200 μm × 1 μm (radial direction × track direction). Initialization (crystallization of the recording layer) was performed while feeding at 36 μm / rotation.

続いて、樹脂膜の硬化物性と高温高湿試験(80℃、85%RH、300時間)前後のチルト変化量ΔRDを評価した。樹脂膜の硬化物性は、情報記録層との界面から剥離した光透過層の樹脂膜から、5mm×50mmの短冊状フィルムを試験片として切り出し、セイコーインスツルメント社製の高分子熱特性測定装置:EXSTR6000を用い、昇温速度=2℃/min、引っ張り周波数=10Hzで動的粘弾性を評価し、25℃での貯蔵弾性率E′を求めた。また、残った樹脂膜について、メチルエチルケトン8時間浸漬前後の質量変化から硬化率xを求めた。
チルト変化量ΔRDは、Dr.Shenk社製MT−200を用い、(高温高湿試験後の最大ラジアルチルト角)−(製造直後の最大ラジアルチルト角)で求めた。
これらの評価結果とE′×(1−x/100)の値を表2に合わせて示した。判定は、ラジアルチルト変化量が0.6deg.以下の場合を「○」、0.4deg.以下の場合を「◎」、0.6deg.を越えた場合を「×」とした。
Subsequently, the cured physical properties of the resin film and the tilt change ΔRD before and after the high temperature and high humidity test (80 ° C., 85% RH, 300 hours) were evaluated. The cured physical property of the resin film is a polymer thermal property measuring apparatus manufactured by Seiko Instruments Inc., cut out from a resin film of a light transmission layer peeled off from the interface with the information recording layer as a 5 mm × 50 mm strip film. : Using EXSTR6000, the dynamic viscoelasticity was evaluated at a heating rate = 2 ° C./min and a tensile frequency = 10 Hz, and a storage elastic modulus E ′ at 25 ° C. was obtained. Moreover, about the remaining resin film, the hardening rate x was calculated | required from the mass change before and behind the methyl ethyl ketone 8-hour immersion.
The amount of tilt change ΔRD is equal to Dr. Using a MT-200 manufactured by Shenk, the maximum radial tilt angle after the high temperature and high humidity test- (maximum radial tilt angle immediately after production) was obtained.
These evaluation results and the value of E ′ × (1−x / 100) are shown together in Table 2. The determination is that the radial tilt change amount is 0.6 deg. In the following cases, “◯”, 0.4 deg. In the following cases, “◎”, 0.6 deg. The case where the value was exceeded was defined as “×”.

Figure 2008071439
Figure 2008071439

上記実施例1〜2及び比較例1〜3の光情報記録媒体については次のことが言える。
実施例1の光情報記録媒体は、E ×(1−x/100)が50以下なので、環境試験後のラジアルチルト変化量が0.6deg.以下と小さく高品位な媒体であった。更に、実施例2の光情報記録媒体は、E×(1−x/100)が30以下なので、環境試験後のラジアルチルト変化量が特に小さく高品位な媒体であった。
比較例1〜3の光情報記録媒体は、E×(1−x/100)が50を超えているので、チルト変化が0.6deg.を越えてしまった。比較例3は、実施例1と同じ組成の樹脂を用いたが、紫外線照度が不十分なため硬化率が低く、E×(1−x/100)が特に大きく、チルト変化量も非常に大きくなってしまった。
The following can be said for the optical information recording media of Examples 1-2 and Comparative Examples 1-3.
Since the optical information recording medium of Example 1 has E × (1-x / 100) of 50 or less, the radial tilt variation after the environmental test is 0.6 deg. It was a small and high-quality medium as follows. Furthermore, since the optical information recording medium of Example 2 had E × (1-x / 100) of 30 or less, the amount of change in radial tilt after the environmental test was particularly small, and was a high quality medium.
In the optical information recording media of Comparative Examples 1 to 3, since E × (1−x / 100) exceeds 50, the tilt change is 0.6 deg. It has exceeded. In Comparative Example 3, a resin having the same composition as in Example 1 was used, but the curing rate was low because of insufficient UV illumination, particularly E × (1−x / 100), and the amount of tilt change was also very large. It is had.

紫外線硬化樹脂の構成成分や硬化方法を変えたときの、紫外線硬化樹脂の硬化率xと、信頼性加速試験後の光透過層の光学膜厚変化量Δnd及び重量変化量ΔWの関係を示す図。The figure which shows the relationship between the hardening rate x of an ultraviolet curable resin, the optical film thickness variation | change_quantity (DELTA) nd of a light transmissive layer after a reliability acceleration test, and the weight variation | change_quantity (DELTA) W when the structural component and curing method of an ultraviolet curable resin are changed. . E′×(1−x/100)と、信頼性試験後(80℃、85%RHで300時間保存後)のラジアルチルト変化量Δ(Angular dev.rad.)の関係を調べた結果を示す図。The result of investigating the relationship between E ′ × (1−x / 100) and the radial tilt change Δ (Angular dev. Rad.) After the reliability test (after storage at 80 ° C. and 85% RH for 300 hours) is shown. Figure. 動的粘弾性測定結果の一例を示す図。The figure which shows an example of a dynamic viscoelasticity measurement result. 図2中の、E′×(1−x/100)≦50の部分を示す図。The figure which shows the part of E'x (1-x / 100) <= 50 in FIG. 図2中の、E′×(1−x/100)≦30の部分を示す図。The figure which shows the part of E'x (1-x / 100) <= 30 in FIG. 相変化型光情報記録媒体の層構成例を示す図。The figure which shows the layer structural example of a phase change type | mold optical information recording medium. 光透過層の形成工程を示す図。(a)媒体の中心孔をマスク材で閉塞し、マスクの中心付近に紫外線硬化樹脂を供給して振り切る工程、(b)集光光学系によりハロゲンランプ光を媒体外周に集光して部分的な加熱を行い、この部分の樹脂溜りを平坦化する工程、(c)中心孔マスクを取り外し、2kWキセノンフラッシュランプ光源で樹脂層を硬化させる工程。The figure which shows the formation process of a light transmissive layer. (A) Blocking the center hole of the medium with a mask material, supplying UV-curing resin near the center of the mask and shaking it off, (b) Condensing halogen lamp light to the periphery of the medium by a condensing optical system and partially (C) removing the center hole mask and curing the resin layer with a 2 kW xenon flash lamp light source. 紫外線照度と硬化率の関係を示す図。The figure which shows the relationship between ultraviolet illumination intensity and a cure rate.

Claims (4)

基板上に、情報記録層と光硬化性樹脂膜からなる光透過層とを備え、光透過層を介して情報記録層にレーザ光を照射することにより、データの記録・再生が行われる光情報記録媒体において、光硬化性樹脂膜の硬化率をx(%)、10Hzの動的粘弾性測定から得られる貯蔵弾性率をE′(MPa)として、次の式を満足することを特徴とする光情報記録媒体。
E′×(1−x/100)≦50
Optical information that includes an information recording layer and a light transmissive layer made of a photocurable resin film on a substrate, and that records and reproduces data by irradiating the information recording layer with laser light through the light transmissive layer. The recording medium is characterized in that the following equation is satisfied, where the curing rate of the photocurable resin film is x (%), and the storage modulus obtained from the dynamic viscoelasticity measurement at 10 Hz is E ′ (MPa). Optical information recording medium.
E ′ × (1−x / 100) ≦ 50
E′×(1−x/100)≦30である請求項1記載の光情報記録媒体。   2. The optical information recording medium according to claim 1, wherein E ′ × (1−x / 100) ≦ 30. 500≦E′≦1500である請求項1又は2記載の光情報記録媒体。   3. The optical information recording medium according to claim 1, wherein 500 ≦ E ′ ≦ 1500. 98≦x≦100である請求項1〜3の何れかに記載の光情報記録媒体。
The optical information recording medium according to claim 1, wherein 98 ≦ x ≦ 100.
JP2006249933A 2006-09-14 2006-09-14 Optical information recording medium Pending JP2008071439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249933A JP2008071439A (en) 2006-09-14 2006-09-14 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249933A JP2008071439A (en) 2006-09-14 2006-09-14 Optical information recording medium

Publications (1)

Publication Number Publication Date
JP2008071439A true JP2008071439A (en) 2008-03-27

Family

ID=39292888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249933A Pending JP2008071439A (en) 2006-09-14 2006-09-14 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP2008071439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060368A (en) * 2009-09-09 2011-03-24 Sony Corp Optical recording medium and method of manufacturing the optical recording medium
JP2012164375A (en) * 2011-02-03 2012-08-30 Sony Corp Optical information recording medium
WO2012114885A1 (en) * 2011-02-24 2012-08-30 太陽誘電株式会社 Recordable optical recording medium
WO2012114886A1 (en) * 2011-02-24 2012-08-30 太陽誘電株式会社 Recordable optical recording medium
US8945697B2 (en) 2011-02-24 2015-02-03 Taiyo Yuden Co., Ltd. Optical recording medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060368A (en) * 2009-09-09 2011-03-24 Sony Corp Optical recording medium and method of manufacturing the optical recording medium
US8709569B2 (en) 2009-09-09 2014-04-29 Sony Corporation Optical recording medium, and method for producing optical recording medium
JP2012164375A (en) * 2011-02-03 2012-08-30 Sony Corp Optical information recording medium
WO2012114885A1 (en) * 2011-02-24 2012-08-30 太陽誘電株式会社 Recordable optical recording medium
WO2012114886A1 (en) * 2011-02-24 2012-08-30 太陽誘電株式会社 Recordable optical recording medium
CN103392205A (en) * 2011-02-24 2013-11-13 太阳诱电株式会社 Recordable optical recording medium
CN103477391A (en) * 2011-02-24 2013-12-25 太阳诱电株式会社 Recordable optical recording medium
JPWO2012114885A1 (en) * 2011-02-24 2014-07-07 太陽誘電株式会社 Write-once optical recording medium
JPWO2012114886A1 (en) * 2011-02-24 2014-07-07 太陽誘電株式会社 Write-once optical recording medium
US8945697B2 (en) 2011-02-24 2015-02-03 Taiyo Yuden Co., Ltd. Optical recording medium
US8993086B2 (en) 2011-02-24 2015-03-31 Taiyo Yuden Co., Ltd. Recordable optical recording medium

Similar Documents

Publication Publication Date Title
KR100770768B1 (en) Optical recording medium and method of recording using such optical recording medium
JP2000322770A (en) Optical information recording medium
JP2008071439A (en) Optical information recording medium
KR20040058306A (en) Multi-stack optical data storage medium and use of such medium
JP2004090610A (en) Optical recording medium
JP2005153496A (en) Two-layer phase-change information recording medium and its recording method
TW200415639A (en) Optical recording disk, method for manufacturing optcial recording disk and optical recording and reproducing method for optical recording disk
KR20030024817A (en) Rewritable optical data storage medium and use of such a medium
JP2005339687A (en) Optical recording medium
US8241834B2 (en) Optical recording medium and production method therefor, and sputtering target and production method therefor
KR20050098764A (en) Optical recording medium and method for manufacturing same
JP4783193B2 (en) Coating film forming method
JP2006035618A (en) Optical information recording medium and its manufacturing method
JP3852420B2 (en) Optical recording medium
JP4308866B2 (en) Information recording medium
JP2011060368A (en) Optical recording medium and method of manufacturing the optical recording medium
JP4533276B2 (en) Two-layer phase change information recording medium
JP2002074747A (en) Optical recording medium
EP1695839A1 (en) Optical recoding medium and its manufacturing method, sputtering target, usage of optical recording medium, and optical recording/reproducing apparatus
JP4322719B2 (en) Optical information recording medium, method for producing the same, and sputtering target
JPH10134415A (en) Recordable and reproducible optical recording medium and optical recording method
JP2005524922A (en) Multi-layer optical data storage media and use of such media
JP2006066003A (en) Rom type optical recording medium
JP4132060B2 (en) Optical information recording medium and method for manufacturing optical information recording medium
TWI233614B (en) Optically recording medium and optically recording rewritable device