JP4783193B2 - Coating film forming method - Google Patents

Coating film forming method Download PDF

Info

Publication number
JP4783193B2
JP4783193B2 JP2006100775A JP2006100775A JP4783193B2 JP 4783193 B2 JP4783193 B2 JP 4783193B2 JP 2006100775 A JP2006100775 A JP 2006100775A JP 2006100775 A JP2006100775 A JP 2006100775A JP 4783193 B2 JP4783193 B2 JP 4783193B2
Authority
JP
Japan
Prior art keywords
substrate
coated
resin
curable resin
smooth substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006100775A
Other languages
Japanese (ja)
Other versions
JP2007179716A (en
Inventor
省蔵 村田
清人 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006100775A priority Critical patent/JP4783193B2/en
Publication of JP2007179716A publication Critical patent/JP2007179716A/en
Application granted granted Critical
Publication of JP4783193B2 publication Critical patent/JP4783193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、機能形状(例えば光ディスクのプリグルーブ)を有する部材の被覆膜形成方法に関する。 This invention relates to coating film formation how the member having the function shape (e.g. an optical disc of the pre-groove).

近年、大容量のデジタルデータを記録するための記録媒体として、結晶状態と非晶質(アモルファス)状態の可逆的相変化を利用した、いわゆる相変化型光記録媒体が実用化されている。記録材料としては、GeTe−SbTe擬似2元系組成を有する、GeSbTeなどの化合物組成に代表されるGe−Sb−Te3元合金材料、及びSb70Te30共晶組成近傍の材料を主成分とする、Ag−In−Sb−Teに代表されるSbTe共晶系材料がある。前者のGeSbTe系材料はDVD−RAMとして、後者のAgInSbTe共晶系材料は、CD−RW、DVD−RW及びDVD+RWとして広く実用化されている。これらの相変化型光記録媒体は、何れも螺旋状又は同心円状の溝を有するプラスチック基板(光透過層)上に、下部保護層、記録層、上部保護層、反射層などを積層した構造を有し、記録層の結晶とアモルファスにおける光学定数変化及び前記積層構造の多重干渉を利用して反射率を制御し、2値情報の記録・再生を行うものである。 In recent years, a so-called phase change type optical recording medium using a reversible phase change between a crystalline state and an amorphous state has been put to practical use as a recording medium for recording a large volume of digital data. As a recording material, a Ge—Sb—Te ternary alloy material represented by a compound composition such as Ge 2 Sb 2 Te 5 having a GeTe—Sb 2 Te 3 pseudo binary system composition, and an Sb 70 Te 30 eutectic composition There are SbTe eutectic materials typified by Ag-In-Sb-Te, which are mainly composed of nearby materials. The former GeSbTe material is widely used as DVD-RAM, and the latter AgInSbTe eutectic material is widely used as CD-RW, DVD-RW, and DVD + RW. Each of these phase change optical recording media has a structure in which a lower protective layer, a recording layer, an upper protective layer, a reflective layer, etc. are laminated on a plastic substrate (light transmission layer) having a spiral or concentric groove. And recording / reproducing binary information by controlling the reflectivity by utilizing the optical constant change in the crystal and amorphous of the recording layer and the multiple interference of the laminated structure.

一方、デジタル化の進展やブロードバンドの普及に伴って扱う情報量が増大し、高密度かつ高速でデータを記録・再生できる新たな記録システムが求められている。このような背景から、記録再生波長の短波長化や開口数NA(Numerical Aperture)の増大により、集光ビーム径を小さくし、記録されるマークのサイズを小さくして、高密度化及び高速化を狙った光記録システムが提案されている。例えば現行の記録型DVDは、記録再生波長λ=650〜660nm、開口数NA=0.65で、記録容量が4.7GBであるが、記録再生波長λを400nm程度まで短波長化し、開口数NAを0.85とした記録容量20GB以上の光記録システムが提案されている(特許文献1、2)。
このように、開口数が大きい光記録システムでは、光情報記録媒体の反りや傾きに対する許容度、即ちチルトマージンが小さくなるため、十分なチルトマージンを確保するために光透過層の厚さを薄くする必要がある。例えば、NA=0.85、λ=405nmとした上記システムの場合、十分なチルトマージンを確保するためには、光透過層を100μm程度まで薄くすることが要求される。
On the other hand, with the progress of digitization and the spread of broadband, the amount of information handled has increased, and a new recording system capable of recording and reproducing data at high density and high speed has been demanded. Against this background, by shortening the recording / reproducing wavelength and increasing the numerical aperture NA (Numerical Aperture), the focused beam diameter is reduced, the recorded mark size is reduced, and the recording density is increased and the speed is increased. An optical recording system aimed at the above has been proposed. For example, the current recordable DVD has a recording / reproducing wavelength λ = 650 to 660 nm, a numerical aperture NA = 0.65, and a recording capacity of 4.7 GB. However, the recording / reproducing wavelength λ is shortened to about 400 nm and the numerical aperture is increased. An optical recording system having a recording capacity of 20 GB or more with an NA of 0.85 has been proposed (Patent Documents 1 and 2).
As described above, in an optical recording system having a large numerical aperture, the tolerance for warping and tilting of the optical information recording medium, that is, the tilt margin is small. Therefore, the thickness of the light transmission layer is reduced in order to secure a sufficient tilt margin. There is a need to. For example, in the case of the above system with NA = 0.85 and λ = 405 nm, in order to ensure a sufficient tilt margin, it is required to make the light transmission layer as thin as about 100 μm.

しかしながら、光透過層の厚さが100μm程度になると、従来のように、ポリカーボネート等の射出成形法によってこれを成形した場合、十分な機械的強度、板厚分布、光学特性の面内均一性等が確保できなくなるという問題が生じる。このため、特許文献1及び2では、従来の基板とは反対側に光透過層を設ける構造が提案されている。即ち、ポリカーボネート等からなる基板上に反射層、誘電体層、相変化記録層、誘電体層及び光透過層をこの順に形成することによって、光透過層が薄膜化された相変化記録媒体を作製する。かかる方法においては、まずスタンパを用いてプリグルーブを有する基板を射出成形し、次に、プリグルーブが形成されている基板表面に、スパッタリング法等によって反射層、第1誘電体層、相変化記録層、第2誘電体層をこの順に成膜する。そして、第2誘電体層の表面に紫外線硬化型樹脂のスピンコートや、フィルムシートの貼り合わせによって光透過層を形成する。このようにして作製された光記録媒体においては、基板の反対側から記録・再生レーザが入射するため、基板を十分に厚くすることができる。したがって、このようなタイプの光記録媒体を用いれば、基板の機械的強度を十分に確保しつつ、高NAの光記録媒体用ヘッドを利用することが可能となる。   However, when the thickness of the light transmission layer is about 100 μm, when it is molded by an injection molding method such as polycarbonate as in the prior art, sufficient mechanical strength, plate thickness distribution, in-plane uniformity of optical characteristics, etc. There arises a problem that it becomes impossible to secure the. For this reason, Patent Documents 1 and 2 propose a structure in which a light transmission layer is provided on the side opposite to a conventional substrate. That is, a reflective layer, a dielectric layer, a phase change recording layer, a dielectric layer, and a light transmission layer are formed in this order on a substrate made of polycarbonate or the like to produce a phase change recording medium in which the light transmission layer is thinned. To do. In such a method, a substrate having a pregroove is first injection molded using a stamper, and then a reflective layer, a first dielectric layer, a phase change recording are formed on the surface of the substrate on which the pregroove is formed by a sputtering method or the like. A layer and a second dielectric layer are formed in this order. Then, a light transmission layer is formed on the surface of the second dielectric layer by spin coating of an ultraviolet curable resin or bonding of a film sheet. In the optical recording medium manufactured in this way, the recording / reproducing laser is incident from the opposite side of the substrate, so that the substrate can be made sufficiently thick. Therefore, if such an optical recording medium is used, it is possible to use a high NA optical recording medium head while sufficiently securing the mechanical strength of the substrate.

ところで、公知のスピンコーティング法は、ディスクの中心付近に紫外線硬化樹脂等の液状材料を供給し、ディスクを回転させて遠心力で該液状材料を展延し、ディスク表面に該液状材料の被膜を均一な厚さで形成するという技術である。しかし、スピンコーティング法により光透過層を形成する特許文献1の技術においては、以下2点の問題があった。
第1の問題点は、生産性の良い方法で膜厚分布の均一性を得るのが困難なことである。例えば、前記記録再生波長が400nm程度のブルーレーザー対応ディスクの光透過層の場合、球面収差を抑えるために、記録エリアにおいて100±2μmの膜厚分布が要求される。そこで、これを実現するために、特許文献2では、ディスクの中心に設けられた中心孔を塞ぐスピンコート法が提案されている。
しかしながら、この方法では、中心孔を塞ぐキャップ状治具を有機溶剤等で洗浄し再利用する必要があるため、治具の清浄度を保つのに多量の有機溶剤が必要となり、コストアップの原因となるばかりでなく、環境への負荷が高くなってしまう欠点があった。また、後述する第2の問題点で示すように、スピンコート中に部分的に紫外線を照射するようなプロセスを応用した場合、回り込んだ紫外線によりキャップ上の樹脂が硬化してしまい、有機溶剤等での除去が困難になる。そして部分的に樹脂が残留した洗浄不十分なキャップ治具でスピンコートを行うと、樹脂残留部を基点として膜厚の薄い部分が放射状に発生して歩留まりを落とす原因になっていた。
By the way, in the known spin coating method, a liquid material such as an ultraviolet curable resin is supplied near the center of the disk, the disk is rotated and the liquid material is spread by centrifugal force, and a coating of the liquid material is applied to the disk surface. This is a technique of forming with a uniform thickness. However, the technique of Patent Document 1 in which the light transmission layer is formed by the spin coating method has the following two problems.
The first problem is that it is difficult to obtain a uniform film thickness distribution by a method with good productivity. For example, in the case of the light transmission layer of a blue laser compatible disc having a recording / reproducing wavelength of about 400 nm, a film thickness distribution of 100 ± 2 μm is required in the recording area in order to suppress spherical aberration. In order to realize this, Patent Document 2 proposes a spin coating method that closes a central hole provided in the center of the disk.
However, in this method, it is necessary to clean and reuse the cap-shaped jig that closes the center hole with an organic solvent, etc., so a large amount of organic solvent is required to maintain the cleanliness of the jig, resulting in an increase in cost. In addition to this, there is a drawback that the load on the environment becomes high. In addition, as shown in the second problem described later, when a process of partially irradiating ultraviolet rays during spin coating is applied, the resin on the cap is cured by the wrapping ultraviolet rays, and the organic solvent It becomes difficult to remove by such as. When spin coating is performed with a capping jig that is partially washed with resin and is not sufficiently cleaned, thin portions with the resin remaining portion as a starting point are generated radially, which causes a decrease in yield.

第2の問題点は、スキージャンプと呼ばれるディスク外周端での樹脂の盛り上がりである。スピンコーティング法により、ディスク中央付近に滴下された液状樹脂は、遠心力によりディスク全体に均一な膜厚で塗布されるが、回転が止まり遠心力がなくなると、液体の表面張力によりディスクの外周端で塗膜が盛り上がるなどの膜厚不均一を生ずる。このような現象は、コーティングされる液状材料の粘度が高いほど顕著になる。例えば、前記ブルーレーザー対応ディスクの光透過膜においては、スキージャンプがディスク外周部の記録領域にまで及んでしまい、外周付近でのトラッキング不良や信号品質の悪化を招いてしまう問題があった。このため、外周端でのスキージャンプの高さは、10μm未満が望ましいとされている。
そこで特許文献3では、スピンコーティング工程でディスクの回転を止める前に紫外線等を照射し、ディスク上に塗布されている液状材料の流動性を低下させる方法が提案されている。この方法によれば外周端のスキージャンプを軽減することができるが十分ではない。しかも、この方法の場合、照射した紫外線がスピンコート装置内のディスク周囲に配置された樹脂回収トレイにも照射されてしまうため、トレイ内に付着した樹脂が硬化して樹脂の再生利用が困難になるという問題があった。そのため、回収トレイの洗浄が必要になったり、樹脂の利用率が悪くなって、記録媒体のコストアップの原因になっていた。
The second problem is the rise of the resin at the outer peripheral edge of the disk called ski jump. The liquid resin dripped near the center of the disc by spin coating is applied to the entire disc by centrifugal force with a uniform film thickness. However, when the rotation stops and the centrifugal force disappears, the outer peripheral edge of the disc is affected by the surface tension of the liquid. This causes film thickness non-uniformity such as the coating film rising. Such a phenomenon becomes more prominent as the viscosity of the liquid material to be coated is higher. For example, in the light-transmitting film of the blue laser compatible disc, ski jumps reach the recording area on the outer periphery of the disc, leading to a problem of tracking failure and signal quality deterioration near the outer periphery. For this reason, the height of the ski jump at the outer peripheral end is preferably less than 10 μm.
Therefore, Patent Document 3 proposes a method of reducing the fluidity of the liquid material applied on the disk by irradiating ultraviolet light or the like before stopping the rotation of the disk in the spin coating process. Although this method can reduce ski jump at the outer peripheral edge, it is not sufficient. In addition, in the case of this method, the irradiated ultraviolet light is also irradiated to the resin recovery tray disposed around the disk in the spin coater, so that the resin adhering to the tray is cured and it is difficult to recycle the resin. There was a problem of becoming. Therefore, it becomes necessary to clean the collection tray, and the utilization rate of the resin deteriorates, which causes an increase in the cost of the recording medium.

一般に、情報記録媒体の基板は、フォトリソグラフィーにより凹凸微細パターンを形成したスタンパ(型)を用いて、射出成形法により作製する。そして基板の上に磁性膜又は相変化膜を記録層として形成した後、保護のために記録層表面を樹脂で被覆する。光ディスクに対するコーティング方式は、前述したようにスピンコートが一般的であるが、スピンコートの場合、円周方向の厚みは極めて均一に形成可能であるが、半径方向は厚みのばらつきが発生しやすい。記録層の最表面である誘電体膜(例えばZnS・SiO)上にスピンコートすると、その膜厚差が光学位相差となって干渉縞が顕著に現われ、記録再生特性に悪影響を及ぼすことが確認されている。更に、スピンコートされる樹脂液の下面は記録層表面を滑っていくが、上面は空気と触れているため、クリーンルーム内やHEPAフィルターを搭載したクリーンブース内であっても、浮遊する僅かなパーティクルが欠陥又はハレーションの核となって機能してしまい、低欠陥な被覆膜の形成が困難である。 In general, a substrate of an information recording medium is manufactured by an injection molding method using a stamper (mold) on which an uneven fine pattern is formed by photolithography. Then, after forming a magnetic film or phase change film on the substrate as a recording layer, the surface of the recording layer is covered with a resin for protection. As described above, spin coating is generally used as a coating method for an optical disc. In the case of spin coating, the thickness in the circumferential direction can be formed extremely uniformly, but the thickness tends to vary in the radial direction. When spin coating is performed on a dielectric film (for example, ZnS · SiO 2 ) which is the outermost surface of the recording layer, the difference in film thickness becomes an optical phase difference, and interference fringes appear remarkably, which may adversely affect recording / reproduction characteristics. It has been confirmed. Furthermore, the bottom surface of the resin liquid to be spin-coated slides on the surface of the recording layer, but since the top surface is in contact with air, even a small particle floating in a clean room or a clean booth equipped with a HEPA filter. Functions as a nucleus of defects or halation, and it is difficult to form a low-defect coating film.

平滑な被覆膜を形成する従来技術としては、光ディスクのセンターのフタをしてセンターから樹脂をスピンコートするもの(特許文献4〜9)、中心穴のないシートを載置し、スピンコートしてカバー層を形成するもの(特許文献10)、スピンコート済みの樹脂にシートを貼り合わせるもの(特許文献11)がある。特許文献5〜9の方法によれば、閉塞手段の円板部上に予め一様に塗布した樹脂を、スピンコートによりそのまま円板部上からディスク基板上へ放出させることで厚みムラを抑えることができるとされているが、この方法でもやはり、上面が開放されたディスク基板上に、遠心力のみで樹脂を展延させることに変わりはないため、塗布厚みの精度を高めるには、厚みを決定する樹脂の粘度やディスク基板の回転速度・回転時間などの条件設定が複雑となり、更に製造工程の管理も厳密にしなければならないという問題がある。特許文献10の方法は、穴無しシートを載置してカバー層を形成するもので、シートと樹脂が一体化するものであり、いわゆる媒体の被覆層とは概念が異なる。   As a conventional technique for forming a smooth coating film, the center lid of an optical disk is covered and resin is spin-coated from the center (Patent Documents 4 to 9), and a sheet without a center hole is placed and spin-coated. A cover layer is formed (Patent Document 10), and a sheet is bonded to a spin-coated resin (Patent Document 11). According to the methods of Patent Documents 5 to 9, the unevenness of thickness is suppressed by discharging the resin uniformly applied on the disk part of the blocking means in advance from the disk part onto the disk substrate by spin coating. However, even with this method, it is still the same that the resin is spread only by centrifugal force on the disk substrate whose upper surface is open. There are problems that the setting of conditions such as the viscosity of the resin to be determined and the rotation speed and rotation time of the disk substrate are complicated, and that the manufacturing process must be strictly controlled. The method of Patent Document 10 is to form a cover layer by placing a holeless sheet, and the sheet and the resin are integrated, and the concept is different from a so-called medium covering layer.

また、特許文献12には、ディスク基板の板面に光硬化型樹脂を供給し、その上にダミー基板をセットして回転させ、次いで紫外線照射して樹脂を硬化させた後、ダミー基板を剥離することでカバー層を得る方法が開示されている。そして、ダミー基板の材料としては請求項にガラス材料が記載されており、実施の形態として、離型剤を塗布したガラス製のダミー基板が示されている。しかし、離型剤を均一な厚さで塗布することは極めて難しく、厚さのばらつきの影響を緩和するために離型剤の厚さを薄くするとアイランド状になりやすく、離型剤のないエリアは密着してしまうため、カバー層(本発明における被覆層に相当)がダミー基板の方へ持っていかれてしまう。また、好ましい態様として、カバー層の厚みを規定するため間隔設定部を設けているが、内周側の設定部に接触することにより光硬化型樹脂が放射状に均等に展延しなかったり、外周側の設定部に接触することにより光硬化型樹脂の記録エリア内への跳ね返りが発生し、ハレーションなどの欠陥を生じる。更に、ガラス自身は元々溌液性が強いので、振り切り後に内外周でエアーが入り込み、樹脂の戻りが発生しやすく、被覆層の形成されない記録エリアが発生する可能性もある。しかも離型剤処理することは、この溌液性を加速することとなり、本発明で想定しているような高度に均一な厚さのカバー層を全面に形成することは困難である。また、ガラス自身が高剛性なので、剥離の際に割れを生じやすいという欠点もある。   In Patent Document 12, a photocurable resin is supplied to the plate surface of a disk substrate, a dummy substrate is set and rotated on the disk substrate, and then the resin is cured by irradiation with ultraviolet rays, and then the dummy substrate is peeled off. Thus, a method for obtaining a cover layer is disclosed. And as a material of the dummy substrate, a glass material is described in the claims, and a glass dummy substrate coated with a release agent is shown as an embodiment. However, it is extremely difficult to apply a release agent with a uniform thickness. To reduce the effect of thickness variation, reducing the release agent thickness tends to form islands, leaving no release agent area. Will adhere, so the cover layer (corresponding to the coating layer in the present invention) will be taken toward the dummy substrate. In addition, as a preferable aspect, although the interval setting portion is provided to regulate the thickness of the cover layer, the photo-curing resin does not spread radially evenly by contacting the setting portion on the inner periphery side, or the outer periphery The contact with the setting portion on the side causes the photocurable resin to bounce back into the recording area, resulting in defects such as halation. Furthermore, since the glass itself is originally liquid-tight, air enters the inner and outer peripheries after being shaken off, so that the resin is likely to return and a recording area where no coating layer is formed may occur. Moreover, the treatment with the release agent accelerates the liquid repellency, and it is difficult to form a cover layer with a highly uniform thickness as envisioned in the present invention over the entire surface. In addition, since the glass itself is highly rigid, there is also a drawback in that it tends to crack during peeling.

特許第3241560号公報Japanese Patent No. 3241560 特開平11−213459号公報Japanese Patent Application Laid-Open No. 11-213459 特開2002−319192号公報JP 2002-319192 A 特開2005−141816号公報JP-A-2005-141816 特開2005−108375号公報JP 2005-108375 A 特開2005−85403号公報JP-A-2005-85403 特開2003−326535号公報JP 2003-326535 A 特開2003−16702号公報JP 2003-16702 A 特開2003−22586号公報JP 2003-22586 A 特開2003−242694号公報JP 2003-242694 A 特開2002−288895号公報JP 2002-288895 A 特開2004−134050号公報JP 2004-134050 A

本発明は、被覆対象となる部材、特に機能形状(例えば光ディスクのプリグルーブ)を有する部材を被覆するための光又は熱硬化性樹脂層の厚みを均一かつ平滑化し、気泡を発生させることなく、高品質な被覆膜を形成できる被覆膜形成方法、更に、被覆対象となる部材の両面を被覆し硬化時の収縮の影響を緩和させることにより大きな反りを発生させない被覆膜形成方法の提供を目的とする。ここで、厚みを均一かつ平滑化するとは、任意の半径位置において、円周方向の任意の1/100周区間における厚みのばらつきが0.1μm以下であるようにすることを意味する。 The present invention uniformly and smoothes the thickness of a light or thermosetting resin layer for covering a member to be coated, particularly a member having a functional shape (for example, a pregroove of an optical disk), without generating bubbles, coating film forming method capable of forming a high-quality coating film, further, the does not generate large warp by covering both sides of the member to be coated target mitigate the effects of shrinkage during curing the coating film formed how For the purpose of provision . Here, uniform and smoothing the thickness means that the variation in thickness in an arbitrary 1/100 circumferential section in the circumferential direction is 0.1 μm or less at an arbitrary radial position.

上記課題は次の1)〜)の発明(以下、本発明1〜という)によって解決される。
1) 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板を載置して接液させ、遠心力をかけて、該平滑基板を平坦化させつつ、該硬化性樹脂を被覆対象となる部材の周端まで展延させたのち硬化させ、次いで該平滑基板を剥離することを特徴とする被覆膜形成方法。
2) 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板を載置して接液させ、遠心力をかけて、該平滑基板を平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板に設けた展延拘束部まで展延させたのち遠心力により振り切り、次いで該硬化性樹脂を硬化させたのち該平滑基板を剥離することを特徴とする被覆膜形成方法。
3) 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Aを載置して接液させ、遠心力をかけて、平滑基板Aを平坦化させつつ、該硬化性樹脂を被覆対象となる部材の周端まで展延させ、硬化させない状態で反対側の面にも同様に液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Bを載置して接液させ、遠心力をかけて、平滑基板Bを平坦化させつつ、該硬化性樹脂を被覆対象となる部材の周端まで展延させたのち、両面の硬化性樹脂を硬化させ、次いで平滑基板A、Bを剥離することを特徴とする被覆膜形成方法。
4) 両面の硬化性樹脂を同時に硬化させ、次いで平滑基板A、Bを剥離することを特徴とする請求項3記載の被覆膜形成方法。
5) 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Aを載置して接液させ、遠心力をかけて、平滑基板Aを平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板Aに設けた展延拘束部まで展延させ、遠心力により振り切った後、硬化させない状態で反対側の面にも同様に液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Bを載置して接液させ、遠心力をかけて、平滑基板Bを平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板Bに設けた展延拘束部まで展延させ、遠心力により振り切ったのち、両面の硬化性樹脂を硬化させ、次いで平滑基板A、Bを剥離することを特徴とする被覆膜形成方法。
6) 熱又は光硬化性樹脂の塗工前、塗工中、展延中の少なくとも一つの段階において、被覆対象となる部材、該硬化性樹脂、平滑基板のうちの少なくとも一つに対し、該硬化性樹脂を円環状に塗工する際の回転中心に対して同心円状に熱エネルギーを付与する工程を含むことを特徴とする1)〜5)の何れかに記載の被覆膜形成方法。
The above problems are solved by the following inventions 1) to 6 ) (hereinafter referred to as the present inventions 1 to 6 ).
1) Applying liquid heat or photo-curing resin in an annular shape to a member to be coated, and then applying a centrifugal force to the curable resin to form a flat surface A smooth substrate made of a material having rigidity to be placed is placed in contact with liquid, and a centrifugal force is applied to flatten the smooth substrate, while spreading the curable resin to the peripheral edge of the member to be coated. A method for forming a coating film, which is then cured and then peeled off the smooth substrate.
2) Applying liquid heat or photo-curing resin in an annular shape to the member to be coated, and flattening it by applying centrifugal force to the curable resin. A flat substrate made of a material having rigidity to be placed is placed in contact with the liquid, and a centrifugal force is applied to flatten the smooth substrate, while the curable resin is provided on the member to be coated or the smooth substrate. A coating film forming method, comprising: spreading to a stretch restraining portion; shaking off by centrifugal force; then curing the curable resin; and then peeling the smooth substrate.
3) Apply a liquid heat or photo-curing resin in an annular shape to the member to be coated, and then apply a centrifugal force to the curable resin to make it flat. A smooth substrate A made of a material having rigidity to be placed is placed and contacted, and a centrifugal force is applied to flatten the smooth substrate A while spreading the curable resin to the peripheral edge of the member to be coated. In the same manner, apply a liquid heat or photo-curing resin in an annular shape to the opposite surface in a state where it is not cured, and then apply a centrifugal force to the curable resin so that it is peelable. By placing a smooth substrate B made of a material having a rigidity to be flattened and bringing it into contact with liquid and applying a centrifugal force to flatten the smooth substrate B, the peripheral edge of a member to be coated with the curable resin After spreading the film, the curable resin on both sides is cured, and then the smooth substrates A and B are peeled off. A coating film forming method characterized by the above.
4) The coating film forming method according to claim 3, wherein the curable resins on both sides are simultaneously cured, and then the smooth substrates A and B are peeled off.
5) Apply a liquid heat or photo-curing resin in an annular shape to the member to be coated, and then apply a centrifugal force to the curable resin to make it flat. A smooth substrate A made of a material having rigidity to be placed is placed in contact with the liquid, and a centrifugal force is applied to flatten the smooth substrate A, while the curable resin is provided on the member to be coated or the smooth substrate A. After spreading to the spread restraint part and shaking off by centrifugal force, liquid heat or photo-curing resin is similarly applied in an annular shape on the opposite surface in a state where it is not cured, and the curing is performed thereon. A smooth substrate B made of a material having a releasability with respect to the conductive resin and having a rigidity that is flattened by applying a centrifugal force is placed on and in contact with the liquid, and a centrifugal force is applied to flatten the smooth substrate B. While, the curable resin to the member to be coated or the spread restraint provided on the smooth substrate B A coating film forming method, comprising: spreading and shaking off by centrifugal force; curing the curable resins on both sides; and then peeling off the smooth substrates A and B.
6) At least one of the member to be coated, the curable resin, and the smooth substrate in at least one of the stages before coating, during coating, and spreading of the heat or photocurable resin, The method for forming a coating film according to any one of 1) to 5), further comprising a step of applying heat energy concentrically with respect to the rotation center when the curable resin is applied in an annular shape.

以下、上記本発明について詳しく説明する。
本発明の重要な特徴は、遠心力をかけることにより平坦化する剛性を有する平滑基板を、遠心力をかけて平坦化した状態で用いた点にあり、これにより被覆対象となる部材(以下、部材と略称する)と平滑基板を略平行に対向させることが可能となり、その平行な空間を利用して円環状に塗工された熱又は光硬化性樹脂を部材の周端又は展延拘束部まで展延させることが可能となる。そして本発明1のように、熱又は光を照射して樹脂を硬化させたのち平滑基板を剥離すると、欠陥の少ない、厚みの均一な被覆膜が形成できる。しかし、部材のもう一方の面にも被覆層を形成する場合や、フレキシブルな部材の場合は、樹脂の硬化収縮によりディスク形状の部材に撓みが発生し、サーボ特性が悪化することが懸念される。
そこで、本発明3のように、本発明1の場合と同様にして平滑基板Aを載置して接液させ、遠心力をかけて、平滑基板Aを平坦化させつつ、硬化性樹脂を被覆対象となる部材の周端まで展延させたのち、硬化させない状態で反対側の面にも同様に液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Bを載置して接液させ、遠心力をかけて、平滑基板Bを平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板Bに設けた展延拘束部まで展延させ、遠心力により振り切った後、熱又は光エネルギーを照射して両面の硬化性樹脂を硬化させ、次いで平滑基板A、Bを剥離するようにすれば、被覆膜の厚みを均一かつ平滑化させ、硬化時の収縮の影響を緩和させることで、大きな反りを発生させず且つ気泡を発生させることなく、高品質な被覆膜を形成できる。
Hereinafter, the present invention will be described in detail.
An important feature of the present invention is that a smooth substrate having rigidity that is flattened by applying a centrifugal force is used in a state of being flattened by applying a centrifugal force . It is possible to make the smooth substrate and the smooth substrate face each other substantially in parallel, and the heat or photo-curing resin applied in an annular shape using the parallel space is used as the peripheral end of the member or the spreading restraint portion. It is possible to extend to. And like this invention 1, when a smooth substrate is peeled after irradiating a heat | fever or light and hardening resin, a coating film with few defects and uniform thickness can be formed. However, in the case of forming a coating layer on the other surface of the member, or in the case of a flexible member, there is a concern that the disk-shaped member may bend due to the curing shrinkage of the resin and the servo characteristics may be deteriorated. .
Therefore, as in the case of the present invention 3, as in the case of the present invention 1, the smooth substrate A is placed and brought into contact with liquid, and a centrifugal force is applied to flatten the smooth substrate A while covering the curable resin . After spreading to the peripheral edge of the member to be covered, liquid heat or photo-curing resin is similarly applied in an annular shape to the opposite surface without being cured, and the curable resin is further coated thereon. While placing a smooth substrate B made of a material that has a releasability and has a rigidity that flattens by applying centrifugal force, the liquid is placed in contact with the solution, and centrifugal force is applied to flatten the smooth substrate B. The curable resin is spread to a member to be coated or a spread restraint provided on the smooth substrate B, and after being shaken off by centrifugal force, heat or light energy is irradiated to cure the curable resin on both sides, Next, if the smooth substrates A and B are peeled off, the thickness of the coating film can be made uniform and smooth. , By mitigating the effects of curing shrinkage upon, without and to generate a bubble without significant warping, it can form a high-quality coating.

平滑基板の大きさは、通常の場合、部材と同じにする。平滑基板には熱又は光硬化性樹脂に対して剥離性を有するものを用いる必要があるが、ここでいう剥離性とは、例えばセロハンテープを用いて容易に剥離できる程度のレベルとする。また、本発明でいう平坦化とは、例えば光ディスクであれば、中心部と周辺部の高さの差Hと半径Rとの比(H/R)が0.1以下である程度に平坦であることを意味する。また、本発明でいう剛性とは、材料力学の片持ち梁で定義される、ヤング率×(厚み/半径)のことであり、平滑基板の剛性が5〜5000Paの範囲であることが望ましい。この範囲であれば、振り切り時の遠心力により、基板自身に適度なテンションが供給されるので平坦化が促進される。
平滑基板の平滑度は、任意の半径位置において、円周方向の任意の1/100周区間における厚みのばらつきが0.1μm以下であるようにする。
上記のような諸々の要件を満足する平滑基板の材料としては、東洋紡のコスモシャインPETなどが挙げられる。また、熱硬化性樹脂としては、液状のポリエステル樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、及びそれらの混合物が挙げられる。光硬化性樹脂としては、エポキシアクリレート、ウレタンアクリオレート等のオリゴマー(低重合体)などが挙げられる。
The size of the smooth substrate is usually the same as that of the member. Although it is necessary to use what has peelability with respect to a heat | fever or photocurable resin for a smooth substrate, the peelability here is a level which can be easily peeled, for example using a cellophane tape. In the present invention, the term “flattening” refers to, for example, an optical disc, which is flat to some extent when the ratio (H / R) between the height difference H between the central portion and the peripheral portion and the radius R is 0.1 or less. Means that. The rigidity in the present invention means Young's modulus x (thickness / radius) 3 defined by a material dynamics cantilever, and the rigidity of the smooth substrate is preferably in the range of 5 to 5000 Pa. . Within this range, an appropriate tension is supplied to the substrate itself due to the centrifugal force at the time of swinging, and thus flattening is promoted.
The smoothness of the smooth substrate is such that the thickness variation in an arbitrary 1/100 circumferential section in the circumferential direction is 0.1 μm or less at an arbitrary radial position.
Examples of the material for the smooth substrate that satisfies the various requirements as described above include Toyobo Cosmo Shine PET. Examples of thermosetting resins include liquid polyester resins, epoxy resins, acrylic resins, urethane resins, melamine resins, and mixtures thereof. Examples of the photocurable resin include oligomers (low polymer) such as epoxy acrylate and urethane acrylate.

一般に2P(フォトポリマー)などの硬化性樹脂を、バレルやバルブタンクを用いて塗工すると、内容量の減量に応じて圧力が変動しやすく、圧力変動に準じて塗工量が変動するので、常に均一な塗工幅(量)を有する硬化性樹脂を円環状に塗工することは困難であり、厚みのばらつきを均一にすることができない。そこで塗工樹脂の円環の幅を均一にするためプランジャーポンプを利用する。プランジャーが常に一定ストロークで前進、後退するので所望の塗工量を安定供給でき、常に均一な塗工幅を有する円環状塗工が可能で、硬化樹脂膜の厚みを均一化できる。部材上に塗工する場合、部材とディスペンサーニードルとの距離を0.1〜30mmにすることが望ましい。この範囲であれば、常に1周で円環の幅が均一な塗工が可能である。0.1mmより近接すると、部材の厚みのばらつきなどによりディスペンサーニードルの先端が部材と干渉し、機能形状が損傷する危険性がある。30mmを越えると塗出初期の硬化性樹脂の塗工幅が本来の円環の幅以上に大きくなってしまい、1周で円環の幅がばらつくことにより均一な厚みを得にくく、気泡の巻き込みも起きやすい。   In general, when a curable resin such as 2P (photopolymer) is applied using a barrel or a valve tank, the pressure tends to fluctuate according to the decrease in the internal volume, and the coating amount fluctuates according to the pressure fluctuation. It is difficult to apply a curable resin having a uniform coating width (amount) in an annular shape, and thickness variations cannot be made uniform. Therefore, a plunger pump is used to make the ring width of the coating resin uniform. Since the plunger always moves forward and backward with a constant stroke, a desired coating amount can be stably supplied, annular coating having a uniform coating width is always possible, and the thickness of the cured resin film can be made uniform. When coating on a member, it is desirable that the distance between the member and the dispenser needle is 0.1 to 30 mm. If it is this range, the coating | coated with the uniform width | variety of an annular ring is always possible in 1 round. If the distance is closer than 0.1 mm, the tip of the dispenser needle may interfere with the member due to variations in the thickness of the member, and the functional shape may be damaged. If it exceeds 30 mm, the coating width of the curable resin in the initial stage of coating becomes larger than the width of the original ring, and it is difficult to obtain a uniform thickness due to variations in the width of the ring in one round, and bubbles are involved. It is easy to get up.

本発明2及び5のように、被覆対象となる部材又は平滑基板に展延拘束部を設けると、接液後に樹脂の展延最内周を真円に保持することが容易になるので好ましい。展延した樹脂が表面張力により展延拘束部で一時的に拘束されるので真円となる。その後、一気に振り切れば、樹脂の展延が高速で同心円状に広がるので厚みの均一な被覆膜の形成が可能となる。展延拘束部を設ける位置は、樹脂を展延させる範囲に合わせて適宜決定すればよいが、例えば光ディスクの場合には、記録エリアよりも内側とする。展延拘束部の形状としては、同心円状の溝やリソグラフィーで形成した微小突起パターンなどが挙げられる(図1〜図3、図19〜図20参照)。
被覆膜が気泡を巻き込みにくいプロセスとしては、塗工樹脂と接液する平滑基板の接触面積を小さくする工夫が挙げられる。一般に樹脂材料に対して外部から電圧を印加すると樹脂自身に分極が起こり樹脂の先端が尖ってくる。鋭意研究の結果、2.5kV以上印加すると平滑基板との接液面積を小さくでき、気泡を巻き込みにくいことが分かっている。
熱又は光硬化性樹脂の粘度は、10〜10000mPa・s程度とする。この範囲であれば回転停止後、硬化までの間、遠心力により平坦化した平滑基板を平坦のまま保持でき、硬化、平滑基板剥離後の被覆膜の厚みを均一化しやすいので好ましい。更に好ましい粘度範囲は、円環状塗工後の展延時に、熱エネルギーの付与によるアシストなしに均一展延が可能となることから10〜1000mPa・sである。
As in the present inventions 2 and 5, it is preferable to provide a spread restraining portion on a member to be coated or a smooth substrate because the innermost circumference of the spread of the resin can be easily held in a perfect circle after the liquid contact. Since the spread resin is temporarily restrained by the spread restraint portion by the surface tension, it becomes a perfect circle. After that, if swung all at once, the spread of the resin spreads concentrically at a high speed, so that a coating film having a uniform thickness can be formed. The position where the spreading restraint portion is provided may be determined as appropriate in accordance with the range in which the resin is spread. For example, in the case of an optical disc, the position is inside the recording area. Examples of the shape of the spread restricting portion include concentric grooves and microprojection patterns formed by lithography (see FIGS. 1 to 3 and FIGS. 19 to 20).
An example of the process in which the coating film hardly entraps bubbles is a technique for reducing the contact area of the smooth substrate in contact with the coating resin. In general, when a voltage is applied to the resin material from the outside, the resin itself is polarized and the tip of the resin becomes sharp. As a result of intensive studies, it has been found that when a voltage of 2.5 kV or more is applied, the liquid contact area with the smooth substrate can be reduced and bubbles are not easily involved.
The viscosity of the heat or photocurable resin is about 10 to 10,000 mPa · s. Within this range, the smooth substrate flattened by the centrifugal force can be held flat until it is cured after the rotation is stopped, and this is preferable because the thickness of the coating film after curing and peeling off the smooth substrate can be easily made uniform. A more preferable viscosity range is 10 to 1000 mPa · s because uniform stretching is possible without assisting by application of thermal energy at the time of spreading after the annular coating.

本発明は、記録再生波長405±15nm、対物レンズの開口数NA=0.85±0.5の高NA光学系を用いて記録再生を行う光情報記録媒体の光透過層形成方法として好適である。一般に、高NAの光学系では、コマ収差(NAの3乗と光透過層厚さの積に反比例する)が大きくなってしまうため、光透過層の厚さを薄くする必要がある。このような光ディスクシステムの例としてBlu−ray disc規格がある。この規格では、光透過層の膜厚分布として100±2μmが要求される。このような厚さ100μmの光透過層を本発明1〜の方法で形成する場合、熱又は光硬化性樹脂の粘度を1000〜数1000mPa・sと高くする必要があり、遠心力と載置した平滑基板の剛性のみによって100±2μmの膜厚均一性を得るのが困難になってしまう。 The present invention 6 is suitable as a method for forming a light transmission layer of an optical information recording medium for recording / reproducing using a high NA optical system having a recording / reproducing wavelength of 405 ± 15 nm and a numerical aperture NA = 0.85 ± 0.5 of an objective lens. It is. In general, in a high NA optical system, coma aberration (inversely proportional to the product of the third power of NA and the thickness of the light transmission layer) becomes large, and thus it is necessary to reduce the thickness of the light transmission layer. An example of such an optical disc system is the Blu-ray disc standard. In this standard, 100 ± 2 μm is required as the film thickness distribution of the light transmission layer. When such a light-transmitting layer having a thickness of 100 μm is formed by the methods of the present invention 1 to 5 , it is necessary to increase the viscosity of the heat or photo-curing resin to 1000 to several thousand mPa · s. It becomes difficult to obtain a film thickness uniformity of 100 ± 2 μm only by the rigidity of the smooth substrate.

そこで、熱又は光硬化性樹脂を塗工する前、塗工中、展延中の少なくとも一つの段階において、被覆対象となる部材である光ディスク、該硬化性樹脂、平滑基板のうちの少なくとも一つに対し、該硬化性樹脂を円環状に塗工する際の回転中心に対して同心円状に熱エネルギーを付与するとよい。これにより、加熱部分の樹脂温度を上げて粘度を下げ、この部分よりも外周部の膜厚を薄くすることができる。熱エネルギーの付与は、樹脂を塗工する前、塗工中、展延中の何れのタイミングでもよく、これらを併用しても構わない。例えば、樹脂を塗工しながら光ディスク基板の中周付近に熱エネルギーを付与すると、平滑基板を載置して樹脂をスピンコートで展延する際に、光ディスク基板からの熱伝導によって、この部分を通過する樹脂の温度が内周よりも高くなり粘度が低くなるため、熱エネルギーを付与しない場合に比べて、中周から外周にかけての膜厚を平坦化(薄く)することができる。また、前述のスキージャンプに関しても、載置した平滑基板の平坦化作用により、樹脂の盛り上がりが残留しない。熱エネルギーを付与する対象は、光ディスク(基板)、熱又は光硬化性樹脂、平滑基板の何れでもよく、必要に応じて二つ以上同時に加熱してもよい。   Therefore, at least one of the optical disk, the curable resin, and the smooth substrate, which is a member to be coated, in at least one stage of coating or spreading before applying the heat or photocurable resin. On the other hand, it is preferable to apply heat energy concentrically with respect to the center of rotation when the curable resin is coated in an annular shape. Thereby, the resin temperature of a heating part can be raised, a viscosity can be lowered | hung, and the film thickness of an outer peripheral part can be made thinner than this part. The application of thermal energy may be performed at any timing before coating the resin, during coating, or during spreading, and these may be used in combination. For example, if thermal energy is applied to the vicinity of the center of the optical disk substrate while coating the resin, this portion is caused by heat conduction from the optical disk substrate when the smooth substrate is placed and the resin is spread by spin coating. Since the temperature of the resin passing therethrough is higher than the inner circumference and the viscosity is lowered, the film thickness from the middle circumference to the outer circumference can be flattened (thinned) compared to the case where no thermal energy is applied. Also, with respect to the above-described ski jump, the resin swell does not remain due to the flattening action of the placed smooth substrate. The target to which thermal energy is applied may be any of an optical disk (substrate), heat or photo-curing resin, and a smooth substrate, and two or more may be heated simultaneously as necessary.

上記同心円状に熱エネルギーを付与する方法について説明する。
光透過層の膜厚分布は、特に光ディスク駆動装置のピックアップの走査方向に均一であることが望ましい。このため理想的には、グルーブ溝の円周方向に均一で、円中心に対して同心円状に所望の温度分布を有することが望ましい。しかしながら、実際の生産においては、時間的照度変化のない熱エネルギー源を光ディスク基板の周方向に相対的に移動させ、光ディスク基板の回転中心に対してほぼ同心円状の温度分布を光ディスク基板に付与すればよい。したがって、本発明における同心円状とは、文字通り同心円状でなくてもよく、ほぼ同心円状の温度分布を付与できる程度であればよい。より簡易的には、赤外線ランプやハロゲンランプのような熱エネルギー源を光ディスク基板上に固定し、光ディスク基板を回転しながら、光ディスク基板を周方向に加熱すればよい。この際、周方向の温度分布を無くすために、加熱時間(照射時間)に対し、エネルギー照射部分が十分に平均的に加熱されるような回転数で光ディスク基板を回転させたり、熱エネルギー源を周方向に複数配置するのがよい。光ディスク基板にどのような温度分布を与えればよいかは、樹脂の粘度やその温度−粘度特性、載置する平滑基板の剛性、振り切り時間、回転数等を考慮して、最適なエネルギー照射条件を選択する。
A method of applying thermal energy in the above concentric manner will be described.
It is desirable that the film thickness distribution of the light transmission layer is uniform particularly in the scanning direction of the pickup of the optical disk drive device. Therefore, ideally, it is desirable to have a desired temperature distribution that is uniform in the circumferential direction of the groove groove and concentrically with respect to the center of the circle. However, in actual production, a thermal energy source with no temporal illuminance change is moved relatively in the circumferential direction of the optical disk substrate, and a substantially concentric temperature distribution is applied to the optical disk substrate with respect to the rotation center of the optical disk substrate. That's fine. Therefore, the concentric shape in the sixth aspect of the present invention does not necessarily have to be concentric as long as it is literally, as long as it can provide a substantially concentric temperature distribution. More simply, a thermal energy source such as an infrared lamp or a halogen lamp may be fixed on the optical disk substrate, and the optical disk substrate may be heated in the circumferential direction while rotating the optical disk substrate. At this time, in order to eliminate the temperature distribution in the circumferential direction, the optical disk substrate is rotated at a rotation speed such that the energy irradiation portion is sufficiently averagely heated with respect to the heating time (irradiation time), or the thermal energy source is turned on. It is good to arrange a plurality in the circumferential direction. What temperature distribution should be given to the optical disk substrate depends on the viscosity of the resin and its temperature-viscosity characteristics, the rigidity of the smooth substrate to be placed, the swing-off time, the number of revolutions, etc. select.

上記のような光ディスク基板の回転と熱エネルギー源の相対運動により得られる温度分布は、光ディスク基板の回転中心に対してほぼ同心円状となり、周方向の光透過層膜厚分布として100±2μm以下が容易に得られ、周方向の反射率変動やジッターの周内変動が実用上問題のない範囲にある光記録媒体が得られる。
なお、熱エネルギー源は上記ランプ類に限られるものではなく、加熱気体のような流体を吹き付けてもよく、マイクロ波のような電磁波等を用いてもよい。
上記の方法によれば、光透過層の膜厚不均一、特に媒体外周部のスキージャンプが無い高品位で高密度記録再生が可能な光ディスクを、従来のセンターマスク法などに比べて歩留まりよく安価に提供できる。
The temperature distribution obtained by the rotation of the optical disk substrate and the relative movement of the thermal energy source as described above is substantially concentric with respect to the rotation center of the optical disk substrate, and the thickness of the light transmission layer in the circumferential direction is 100 ± 2 μm or less. An optical recording medium can be obtained that can be easily obtained and in which the reflectance fluctuation in the circumferential direction and the fluctuation in the inner circumference of the jitter are in a range where there is no practical problem.
Note that the thermal energy source is not limited to the lamps described above, and a fluid such as a heated gas may be sprayed, or an electromagnetic wave such as a microwave may be used.
According to the above method, an optical disc capable of high-quality high-density recording / reproduction with a non-uniform thickness of the light-transmitting layer, in particular, no ski jumps on the outer periphery of the medium, is inexpensive and has a higher yield than conventional center mask methods. Can be provided.

本発明の被覆膜形成方法により形成された光透過層を有する光情報記録媒体の構成例を図6に示す。
基板は、ポリカーボネート、アクリル、ポリオレフィンなどの樹脂の射出成形により製造され、情報記録層積層側に螺旋状のグルーブ溝を有する。図6の記録媒体では、記録再生用のレーザビームの入射が光透過層側から行われるので、基板材料は必ずしも透光性である必要はなく、グルーブ溝の転写性や反り等の機械特性の良好な成形材料から選択しうるが、通常はCDやDVDにおいて実績があり安価なポリカーボネート樹脂を用いる。
情報記録層は、相変化型記録材料を含む相変化型情報記録層、あるいは色素材料や無機材料を含む追記型情報記録層である。相変化型情報記録層の場合、基板上に反射層、第1誘電体層、記録層、第2誘電体層を公知のスパッタ法等によりこの順に形成する。
反射層にはAgを主成分とするAg合金が好ましく、十分な冷却能を有するため、その膜厚は100〜250nm程度とする。Ag合金の具体例としては、Ag−Bi、Ag−In、Ag−Pd−Cu、Ag−Nd−Cu等が挙げられる。添加元素は、Ag膜の高温環境下での凝集や結晶粒成長を抑制するために添加されるが、Agの良好な熱伝導率を損ねることのないよう、その総含有量は3原子%以下であることが望ましい。
FIG. 6 shows a configuration example of an optical information recording medium having a light transmission layer formed by the coating film forming method of the present invention.
The substrate is manufactured by injection molding of a resin such as polycarbonate, acrylic, or polyolefin, and has a spiral groove on the information recording layer lamination side. In the recording medium of FIG. 6, since the recording / reproducing laser beam is incident from the light transmitting layer side, the substrate material does not necessarily need to be light-transmitting, and has mechanical characteristics such as groove groove transferability and warpage. A good molding material can be selected, but usually a polycarbonate resin that has a proven record in CDs and DVDs is used.
The information recording layer is a phase change information recording layer containing a phase change recording material, or a write-once information recording layer containing a dye material or an inorganic material. In the case of the phase change type information recording layer, a reflective layer, a first dielectric layer, a recording layer, and a second dielectric layer are formed on a substrate in this order by a known sputtering method.
The reflective layer is preferably an Ag alloy containing Ag as a main component, and has a sufficient cooling ability, so that the film thickness is about 100 to 250 nm. Specific examples of the Ag alloy include Ag-Bi, Ag-In, Ag-Pd-Cu, and Ag-Nd-Cu. The additive element is added to suppress aggregation and crystal grain growth under high temperature environment of the Ag film, but the total content is 3 atomic% or less so as not to impair the good thermal conductivity of Ag. It is desirable that

第1誘電体層及び第2誘電体層には、金属や半導体の酸化物、硫化物、窒化物、炭化物等の透明性が高い高融点材料を用いる。具体的には、SiOx、ZnO、SnO、Al、TiO、In、MgO、ZrO、Ta等の酸化物、Si、AlN、TiN、BN、ZrN等の窒化物、ZnS、TaS等の硫化物、SiC、TaC、BC、WC、TiC、ZrC等の炭化物が挙げられ、単体又は混合物として、或いは2層以上からなる多層構造として用いることができる。好ましい材料は、屈折率、熱伝導率、化学的安定性、機械的強度、密着性等に留意して決定される。中でも、ZnSを60〜90モル%含むSiOとの混合膜は、繰り返し記録、高温環境下での膜自身の結晶化や化学変化、膜変形がないため望ましい。また、熱伝導率が0.5W/mK以下と低いため、記録層の溶融ピーク温度を高く保ち、変調度の高いアモルファスマークの形成に有利である点などからも、記録層に接する誘電体膜として最も適している。 For the first dielectric layer and the second dielectric layer, a high melting point material such as a metal or semiconductor oxide, sulfide, nitride, carbide or the like having high transparency is used. Specifically, SiOx, ZnO, SnO 2, Al 2 O 3, TiO 2, In 2 O 3, MgO, ZrO 2, Ta oxides such 2 O 5, Si 3 N 4 , AlN, TiN, BN, Examples include nitrides such as ZrN, sulfides such as ZnS and TaS 4 , and carbides such as SiC, TaC, B 4 C, WC, TiC, and ZrC, and they are used as a single body or a mixture, or as a multilayer structure composed of two or more layers. be able to. Preferred materials are determined taking into account refractive index, thermal conductivity, chemical stability, mechanical strength, adhesion, and the like. Among these, a mixed film with SiO 2 containing 60 to 90 mol% of ZnS is preferable because it does not cause repeated recording, crystallization of the film itself in a high temperature environment, chemical change, and film deformation. In addition, since the thermal conductivity is as low as 0.5 W / mK or less, the dielectric film in contact with the recording layer is also advantageous in that the melting peak temperature of the recording layer is kept high and it is advantageous for forming an amorphous mark with a high degree of modulation. As the most suitable.

相変化記録層には、GeSbTeに代表される公知のGeTe−SbTe擬似二元系材料や、AgInSbTeGeに代表されるSbTe共晶系材料を用いることができる。特に、記録再生波長405±15nm、対物レンズの開口数NA=0.85±0.5の光学系を用いる場合は、Ge、Sb、Sn及びMnからなる合金を主成分とする相変化記録材料が、再生光安定性と保存信頼性(アモルファスマークの安定性)に優れており好ましい。各元素の好ましい組成範囲は、5≦Ge≦20原子%、45≦Sb≦70原子%、10≦Sn≦20原子%、0<Mn≦20原子%である。Geは、結晶化温度を上げて保存性を高める一方で、繰り返し記録特性を悪化させるので、20原子%を越えないことが望ましい。逆に、高温高湿環境下での保存信頼性を確保するためには、5原子%以上が必要である。Snは、波長405nmにおける十分な反射率とコントラストを得るために、10原子%以上含む必要がある。しかし、Snが多すぎると、Ge同様、繰り返し記録特性を損ねるため、20原子%を越えないことが望ましい。Mnは、反射率低下や記録ジッターへの悪影響がGeよりも小さいため、結晶化速度を遅くする際にGeに代替して添加される。Mnの添加量は、Ge同様繰り返し記録特性を悪化させるので、20原子%を越えないことが望ましい。SnとSbは結晶化速度を速め、GeとMnは結晶化速度を遅くする元素なので、総合的な記録特性と狙いの記録線速を考慮して、各元素の組成比が最適化される。基本的には、狙いの記録線速をGe−Sb系で設計し、Geに対してMn、Sbに対してSnを適量に置換する。Sb+Snが90原子%を超えると、結晶化速度が速くなり過ぎ、アモルファスマークの形成が困難になるので、Sbの上限はSb≦70原子%が望ましい。また、10≦Sn≦20原子%において記録線速5〜30m/sとするには45原子%≦Sbが好ましい。また、Ge、Sb、Sn及びMnの総量が95原子%以上で、記録特性や保存信頼性等を改善するための5原子%以下の第五元素を含む構成としてもよい。 For the phase change recording layer, a well-known GeTe—Sb 2 Te 3 pseudo binary material represented by Ge 2 Sb 2 Te 5 or an SbTe eutectic material represented by AgInSbTeGe can be used. In particular, when an optical system having a recording / reproducing wavelength of 405 ± 15 nm and an objective lens numerical aperture NA = 0.85 ± 0.5 is used, a phase change recording material mainly composed of an alloy of Ge, Sb, Sn and Mn However, it is preferable because of excellent reproduction light stability and storage reliability (amorphous mark stability). Preferred composition ranges of the respective elements are 5 ≦ Ge ≦ 20 atomic%, 45 ≦ Sb ≦ 70 atomic%, 10 ≦ Sn ≦ 20 atomic%, and 0 <Mn ≦ 20 atomic%. Since Ge raises the crystallization temperature and improves the storage stability, but repeatedly deteriorates the recording characteristics, it is desirable not to exceed 20 atomic%. On the contrary, in order to ensure the storage reliability in a high temperature and high humidity environment, 5 atomic% or more is required. Sn needs to be contained in an amount of 10 atomic% or more in order to obtain sufficient reflectance and contrast at a wavelength of 405 nm. However, if there is too much Sn, the recording characteristics are impaired as in the case of Ge, so it is desirable that it does not exceed 20 atomic%. Since Mn has a smaller adverse effect on reflectivity reduction and recording jitter than Ge, Mn is added in place of Ge when the crystallization speed is reduced. The amount of Mn added is preferably not more than 20 atomic% because it deteriorates the repeated recording characteristics like Ge. Since Sn and Sb are elements that increase the crystallization speed and Ge and Mn are elements that decrease the crystallization speed, the composition ratio of each element is optimized in consideration of the overall recording characteristics and the target recording linear velocity. Basically, the target recording linear velocity is designed by the Ge—Sb system, and Mn is substituted for Ge and Sn is substituted for Sb by appropriate amounts. If Sb + Sn exceeds 90 atomic%, the crystallization speed becomes too fast and it becomes difficult to form an amorphous mark. Therefore, the upper limit of Sb is preferably Sb ≦ 70 atomic%. Further, in order to obtain a recording linear velocity of 5 to 30 m / s at 10 ≦ Sn ≦ 20 atomic%, 45 atomic% ≦ Sb is preferable. Alternatively, the total amount of Ge, Sb, Sn, and Mn may be 95 atomic% or more, and may include a fifth element that is 5 atomic% or less for improving recording characteristics, storage reliability, and the like.

光透過層は、本発明の被覆膜形成方法を用いた紫外線硬化性樹脂層等からなる。光透過層の上に、スピンコート法等によりハードコート層を設けてもよい。記録再生波長405±15nm、対物レンズの開口数NA=0.85±0.5の光学系を用いて記録再生を行う場合、十分なチルトマージンを確保するための光透過層の厚みは、5〜200μmが好ましく、より好ましくは5〜120μmである。
以上、相変化型光情報記録媒体の構成例を示したが、情報記録層は、相変化記録層以外にライトワンス用の色素記録層や無機記録層であってもよい。また、中間層を介して情報記録層を2層以上有する多層記録媒体であってもよい。
The light transmission layer is composed of an ultraviolet curable resin layer or the like using the coating film forming method of the present invention. A hard coat layer may be provided on the light transmission layer by a spin coat method or the like. When recording / reproducing is performed using an optical system having a recording / reproducing wavelength of 405 ± 15 nm and an objective lens numerical aperture NA = 0.85 ± 0.5, the thickness of the light transmission layer for securing a sufficient tilt margin is 5 -200 micrometers is preferable, More preferably, it is 5-120 micrometers.
The configuration example of the phase change optical information recording medium has been described above, but the information recording layer may be a write-once dye recording layer or an inorganic recording layer in addition to the phase change recording layer. Further, it may be a multilayer recording medium having two or more information recording layers via an intermediate layer.

本発明によれば、被覆対象となる部材、特に機能形状(例えば光ディスクのプリグルーブ)を有する部材を被覆するための光又は熱硬化性樹脂膜の厚みを均一かつ平滑化し、気泡を発生させることなく、高品質な被覆膜を形成できる被覆膜形成方法、更に、被覆対象となる部材の両面を被覆し硬化時の収縮の影響を緩和させることにより大きな反りを発生させない被覆膜形成方法を提供できる。
According to the present invention, the thickness of a light or thermosetting resin film for covering a member to be coated, particularly a member having a functional shape (for example, a pregroove of an optical disk) is made uniform and smooth, and bubbles are generated. Coating film forming method that can form a high quality coating film, and further, a coating film forming method that does not generate a large warp by covering both surfaces of a member to be coated and reducing the effect of shrinkage during curing Can provide law .

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、これらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.

実施例1
フォトリソグラフィーによりプリグルーブ形状が形成されたスタンパを用いて射出成形により直径120mmの転写ディスク基板を得た。
このディスク基板の転写面にスパッタリング法で、膜厚120nmのAg反射層、膜厚12nmのZnS−SiOからなる第1誘電体層、膜厚14nmのSbTeからなる相変化記録層、膜厚45nmのZnS−SiOからなる第2誘電体層を順に成膜し、その上に、プランジャーポンプ(ユニコントロールズ製;ハイバーポンプCV)を用いて光硬化性樹脂(大日本化学製ダイキュアクリアSD−715、粘度43mPa・s)を円環状に0.5cc塗工した。
次いで、塗工面上に、平滑基板である直径120mm、厚さ0.1mmのPET(ポリエチレンテレフタレート)基板(東洋紡コスモシャインA4100、内周から外周までの基板剛性は、31〜339mPa・sの範囲となる)を載置接液して、3000rpmで20秒間振り切ったのち、フュージョン社製UVランプを5秒間照射して光硬化性樹脂を硬化させた。
その後、光硬化性樹脂膜とPET基板を剥離したところ、図12(写真)に示すように表面が滑らかな被覆膜を有する光ディスクが得られた。
また、相変化記録層を初期化したところ、全面で初期化できた。
得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキングも良好で、再生信号特性も図18(写真)にRF信号を示したように良好であった。
Example 1
A transfer disk substrate having a diameter of 120 mm was obtained by injection molding using a stamper having a pre-groove shape formed by photolithography.
On the transfer surface of the disk substrate, an Ag reflective layer having a thickness of 120 nm, a first dielectric layer made of ZnS—SiO 2 having a thickness of 12 nm, a phase change recording layer made of Sb 3 Te having a thickness of 14 nm, and a film are formed by sputtering. A second dielectric layer made of ZnS—SiO 2 having a thickness of 45 nm is formed in order, and a photocurable resin (Dainippon Chemical Die, manufactured by Unicontrols; Hiberpump CV) is used on the second dielectric layer. Cure Clear SD-715, viscosity 43 mPa · s) was applied in an annular shape to 0.5 cc.
Next, on the coated surface, a smooth substrate, a PET (polyethylene terephthalate) substrate having a diameter of 120 mm and a thickness of 0.1 mm (Toyobo Cosmo Shine A4100, the substrate rigidity from the inner periphery to the outer periphery is in the range of 31 to 339 mPa · s. And was shaken off at 3000 rpm for 20 seconds, and then irradiated with a UV lamp made by Fusion for 5 seconds to cure the photocurable resin.
Then, when the photocurable resin film and the PET substrate were peeled off, an optical disk having a coating film with a smooth surface as shown in FIG. 12 (photograph) was obtained.
Further, when the phase change recording layer was initialized, it was initialized over the entire surface.
The appearance of the surface of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were good as shown in the RF signal in FIG. 18 (photograph).

実施例2
実施例1の転写ディスク基板に代えて、プリグルーブ形状の他に基板の記録エリアより内周にYAGレーザーにより硬化性樹脂展延拘束用の同心円状の溝を形成した転写ディスク基板を用い、実施例1と同様にして、転写面に相変化記録層を成膜し、その上に光硬化性樹脂を塗工した(図2参照)。
次いで、塗工面と、平滑基板として載置するPET基板(東洋紡コスモシャインA4100)との間に直流電圧2.5kVを印加した。塗工樹脂に分極が起こり頂点が盛り上がったところでPET基板を載置接液した。
毛細管現象により光硬化性樹脂が同心円状の溝まで到達したら、3000rpmで20秒間振り切りフュージョン製UVランプを5秒照射して光硬化性樹脂を硬化させた。
その後、光硬化性樹脂膜とPET基板を剥離したところ、実施例1と同様に表面が滑らかで、図4に示すような展延最内周が真円である被覆膜を有する光ディスクが得られた。
また、相変化記録層を初期化したところ、全面で初期化できた。
得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキングも良好で、再生信号特性も実施例1と同様に良好であった。
なお、同心円状の溝は、図3に示すように、硬化性樹脂に載置接液する平滑基板に形成されていても同様の機能を発揮する。
Example 2
In place of the transfer disk substrate of Example 1, a transfer disk substrate in which concentric grooves for constraining curable resin spread were formed by YAG laser in the inner periphery from the recording area of the substrate in addition to the pregroove shape was used. In the same manner as in Example 1, a phase change recording layer was formed on the transfer surface, and a photocurable resin was applied thereon (see FIG. 2).
Next, a DC voltage of 2.5 kV was applied between the coated surface and a PET substrate (Toyobo Cosmo Shine A4100) placed as a smooth substrate. When the coating resin was polarized and the apex was raised, the PET substrate was placed and contacted.
When the photocurable resin reached the concentric grooves due to the capillary phenomenon, the photocurable resin was cured by irradiating at 3000 rpm for 20 seconds and irradiating with a fusion UV lamp for 5 seconds.
Thereafter, when the photocurable resin film and the PET substrate were peeled off, an optical disk having a coating film with a smooth surface as shown in FIG. 4 and a perfect inner circle as shown in FIG. 4 was obtained. It was.
Further, when the phase change recording layer was initialized, it was initialized over the entire surface.
The appearance of the surface of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were good as in Example 1.
As shown in FIG. 3, the concentric grooves exhibit the same function even if they are formed on a smooth substrate placed on and in contact with the curable resin.

実施例3
平滑基板として剛性の異なるPET基板を用いた点以外は、実施例1と同様にして被覆膜を形成した。表1に平滑基板の厚みと剛性の関係を示すが、厚みが0.05〜0.3mmの間において、半径位置25〜55mmにおける剛性が灰色に塗った部分にある場合、即ち、基板剛性が凡そ5〜5000Paの範囲において、遠心力により、段落0013に記載した本発明における平坦化が可能であった。そして、この範囲であれば、実施例1と同様の被覆膜を有する光ディスクが得られた。また、この範囲であれば、相変化記録層を全面で初期化でき、得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキング、再生信号特性も実施例1と同様に良好であった。
更には、光硬化性樹脂の粘度が10〜10000mPa・sの範囲であることにより、回転停止後、硬化させるまでの間、遠心力により平坦化した平滑基板を平坦のまま保持でき、硬化、平滑基板剥離後の被覆膜の厚みを均一化できた。
相変化記録層を初期化したところ、全面で初期化でき、得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキングも良好で、再生信号特性も、実施例1の場合(図18参照)と同様に、RF信号は良好であった。
Example 3
A coating film was formed in the same manner as in Example 1 except that a PET substrate having different rigidity was used as the smooth substrate. Table 1 shows the relationship between the thickness and the rigidity of the smooth substrate. When the thickness is between 0.05 and 0.3 mm, the rigidity at the radial position of 25 to 55 mm is in a grayed portion, that is, the substrate rigidity is In the range of about 5 to 5000 Pa, flattening in the present invention described in paragraph 0013 was possible by centrifugal force. And if it was this range, the optical disk which has the same coating film as Example 1 was obtained. Within this range, the phase change recording layer can be initialized over the entire surface, the appearance of the surface of the obtained coating film is smooth, and the focus, tracking, and reproduction signal characteristics are also good as in the first embodiment. there were.
Furthermore, since the viscosity of the photo-curing resin is in the range of 10 to 10,000 mPa · s, the smooth substrate flattened by centrifugal force can be held flat until it is cured after the rotation is stopped. The thickness of the coating film after peeling off the substrate could be made uniform.
When the phase change recording layer was initialized, it could be initialized over the entire surface, the appearance of the surface of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were also the case of Example 1 (FIG. As in (18), the RF signal was good.

実施例4
光硬化性樹脂を、熱硬化性樹脂である尿素樹脂(松下電工製:ナショナルライトユリア樹脂 Aタイプ)に変え、5000rpmで20秒間振り切ったのち、160℃で30分間加熱して熱硬化性樹脂を硬化させた点以外は実施例1と同様にして被覆膜を有する光ディスクを作製した。
その結果、実施例1と同様に、得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキング、再生信号特性も良好であった。
Example 4
Change photocurable resin to urea resin (Matsushita Electric Works: National Light Urea Resin A type) which is thermosetting resin, shake it off at 5000rpm for 20 seconds, and then heat at 160 ° C for 30 minutes to heat the thermosetting resin. An optical disc having a coating film was produced in the same manner as in Example 1 except for the cured point.
As a result, as in Example 1, the surface appearance of the obtained coating film was smooth, and the focus, tracking, and reproduction signal characteristics were good.

実施例5
フォトリソグラフィーにより、プリグルーブと同時にプリグルーブエリアよりも内周に硬化性樹脂展延拘束用スパイラルパターンが形成されたスタンパを用いて転写成形基板を得た点以外は実施例2と同様にして被覆膜を有する光ディスクを作製した(図1参照)。
その結果、実施例2と同様に、得られた被覆膜の表面外観は平滑であり、フォーカス、トラッキング、再生信号特性も良好であった。
Example 5
Except that the transfer molding substrate was obtained by photolithography using a stamper in which a curable resin spreading restraint spiral pattern was formed at the inner periphery of the pregroove area at the same time as the pregroove, the same as in Example 2. An optical disc having a covering film was produced (see FIG. 1).
As a result, as in Example 2, the surface appearance of the obtained coating film was smooth, and the focus, tracking, and reproduction signal characteristics were good.

比較例1
PET基板を載置接液させることなく、光硬化性樹脂を塗工したのち直ちに振り切り、紫外線照射して被覆膜を形成した点以外は、実施例1と同様にして被覆膜を有する光ディスクを作製した。
その結果、図13(写真)に示すように、被覆膜には、半径方向に厚みばらつきに依存する干渉縞が見られ、図5に示すように、展延最内周が真円とならなかった。
また、記録層に初期化不能なエリアが発生し、ディスク全面での記録再生ができなかった。
Comparative Example 1
An optical disk having a coating film in the same manner as in Example 1 except that the photocurable resin was applied without placing the PET substrate on the substrate and then immediately shaken off and irradiated with ultraviolet rays to form a coating film. Was made.
As a result, as shown in FIG. 13 (photograph), interference fringes depending on thickness variation in the radial direction are seen in the coating film, and if the innermost circumference of the spread is a perfect circle as shown in FIG. There wasn't.
In addition, an area that cannot be initialized occurred in the recording layer, and recording / reproduction on the entire surface of the disk could not be performed.

比較例2
PET基板に代えて、PC(ポリカーボネート)基板(帝人製ピュアーエース)を載置接液して被覆膜を形成した点以外は、実施例1と同様にして被覆膜を有する光ディスクを作製した。
この場合、光硬化性樹脂を硬化した後、PC基板を剥離しようとすると、密着性が強く、図14(写真)に示すように、半面で被覆膜がPC基板側へ持っていかれ、品質のよい被覆膜形成ができなかった。
Comparative Example 2
An optical disk having a coating film was prepared in the same manner as in Example 1 except that a coating film was formed by placing and contacting a PC (polycarbonate) substrate (Teijin Pure Ace) instead of the PET substrate. .
In this case, if the PC substrate is peeled after curing the photo-curable resin, the adhesion is strong, and as shown in FIG. 14 (photo), the coating film is brought to the PC substrate side on one side, and the quality A good coating film could not be formed.

比較例3
PET基板に代えて、PE(ポリエチレン)基板を載置接液して被覆膜を形成した点以外は、実施例1と同様にして被覆膜を有する光ディスクを作製した。
この場合、光硬化性樹脂を硬化した後、PE基板を剥離しようとすると、密着性が強く、図15(写真)に示すように、半面で被覆膜がPEフィルム基板側へ持っていかれ、品質のよい被覆膜を形成できなかった。
Comparative Example 3
An optical disk having a coating film was prepared in the same manner as in Example 1 except that a coating film was formed by placing and contacting a PE (polyethylene) substrate instead of the PET substrate.
In this case, after curing the photocurable resin, when the PE substrate is to be peeled off, the adhesion is strong, and as shown in FIG. 15 (photo), the coating film is brought to the PE film substrate side on one side, A coating film with good quality could not be formed.

比較例4
PET基板に代えて、ガラス基板を載置接液して被覆膜を形成した点以外は、実施例1と同様にして被覆膜を有する光ディスクを作製した。
この場合、光硬化性樹脂がガラス基板をはじきやすく、回転停止すると、展延した樹脂が内径では外周へ向かって、外径では内周に向かって移動し、ディスク全面に被覆膜を形成することが困難であった。また、剥離のバランスも安定せず、一部記録層がガラス基板側へ持っていかれた(即ち、はじきと密着過多が共存した)。これは、適度な剛性を有する本発明の基板のように反らせながら剥離することができないため、剥離時に記録層が被覆膜に強く引っ張られて剥離したものと思われ、品質のよい被覆膜を形成できなかった(図16〜図17=写真参照)。
Comparative Example 4
An optical disk having a coating film was produced in the same manner as in Example 1 except that a coating film was formed by placing and contacting the glass substrate instead of the PET substrate.
In this case, the photocurable resin easily repels the glass substrate, and when the rotation is stopped, the spread resin moves toward the outer periphery at the inner diameter and toward the inner periphery at the outer diameter to form a coating film on the entire surface of the disk. It was difficult. Further, the balance of peeling was not stable, and a part of the recording layer was brought to the glass substrate side (that is, repellency and excessive adhesion coexisted). This is because the recording layer cannot be peeled off while being warped like the substrate of the present invention having an appropriate rigidity, so it is considered that the recording layer was peeled off by being strongly pulled by the coating film at the time of peeling. Could not be formed (see FIGS. 16 to 17 = photographs).

実施例6
溝深さ21nm、溝幅0.16μm、トラックピッチ0.32μmのグルーブ溝を有する厚さ1.1mm、直径120mmのポリカーボネート基板(製品名ST3000、帝人バイエルポリテック社製)を用意し、その上に、以下の積層膜をスパッタリング法により順次形成した(カッコ内の数字は膜厚)。
・反射層 Ag−0.5原子%Bi(140nm)
・第1誘電体層 ZnS・20モル%SiO(8nm)
・相変化記録層 Ge11Sb62.5Sn20Mn6.5(14nm)
・第2誘電体層 ZnS・30モル%SiO(40nm)
次に、紫外線硬化樹脂(日本化薬BRD−130)を円環状に供給し、実施例1と同様の方法でPET基板(東洋紡コスモシャインA4100)を載置接液し、赤外線ランプ装置で媒体中周付近を加熱しながら、回転数1700rpmで6秒間樹脂を振り切った。赤外線ランプ装置は、図11に示したように、円周上に赤外線ランプを等間隔に複数配置し、ディスク基板中央部への照度が相対的に小さくなるように、基板の回転中心上に遮光部を設ける構造とした。
次に、1000mJ/cmの紫外線を照射して樹脂を硬化させた後、PET基板を剥離して図6に示す構造の光ディスクを得た。
干渉膜厚測定器ETA−RT(STEAG ETA−Optik社製)により、光透過層の膜厚分布を調べると、半径r=22.0〜58.5mm全面で、図7に示すように、Blu−ray disc規格内の100±2.0μm未満であり、図8に示すように、外周端の樹脂の盛り上がり、即ちスキージャンプは全く生じていなかった。なお、図8における基板外周端のダレのような形状は、成型時に面取り加工された形状を反映したものであり、光透過層の膜厚変動等によるものではない。
更に、記録再生装置(Pulstek社製ODU−1000)で信号評価を行ったところ、周内の反射率変動が無く、全面で記録ジッタが6.5%以下であった。
Example 6
Prepare a polycarbonate substrate (product name ST3000, manufactured by Teijin Bayer Polytech) having a groove depth of 21 mm, a groove width of 0.16 μm, a groove groove having a track pitch of 0.32 μm, a thickness of 1.1 mm, and a diameter of 120 mm. The following laminated films were sequentially formed by sputtering (numbers in parentheses are film thicknesses).
Reflective layer Ag-0.5 atomic% Bi (140 nm)
First dielectric layer ZnS 20 mol% SiO 2 (8 nm)
Phase change recording layer Ge 11 Sb 62.5 Sn 20 Mn 6.5 (14 nm)
Second dielectric layer ZnS / 30 mol% SiO 2 (40 nm)
Next, an ultraviolet curable resin (Nippon Kayaku BRD-130) is supplied in an annular shape, and a PET substrate (Toyobo Cosmo Shine A4100) is placed and wetted in the same manner as in Example 1, and is placed in the medium with an infrared lamp device. While heating around the circumference, the resin was shaken off at a rotation speed of 1700 rpm for 6 seconds. In the infrared lamp device, as shown in FIG. 11, a plurality of infrared lamps are arranged at equal intervals on the circumference, and the light is shielded on the rotation center of the substrate so that the illuminance to the central portion of the disk substrate becomes relatively small. A structure is provided in which a portion is provided.
Next, the resin was cured by irradiating with 1000 mJ / cm 2 of ultraviolet rays, and then the PET substrate was peeled off to obtain an optical disk having the structure shown in FIG.
When the film thickness distribution of the light transmission layer was examined with an interference film thickness measuring device ETA-RT (manufactured by STEAG ETA-Optik), as shown in FIG. It was less than 100 ± 2.0 μm within the -ray disc standard, and as shown in FIG. 8, there was no bulge of the resin at the outer peripheral edge, that is, no ski jump. Note that the shape of the sag at the outer peripheral edge of the substrate in FIG. 8 reflects the shape that has been chamfered at the time of molding, and is not due to fluctuations in the film thickness of the light transmission layer.
Furthermore, when signal evaluation was performed with a recording / reproducing apparatus (ODU-1000 manufactured by Pulstek), there was no fluctuation in reflectance within the circumference, and recording jitter was 6.5% or less over the entire surface.

比較例5
赤外線ランプを用いなかった点以外は実施例6と同様にして光ディスクを作製し、光透過層の膜厚分布を調べたところ、図9のように外周で2割ほど厚くなってしまい、Blu−ray disc規格を満足することはできなかった。
なお、この比較例は、光透過層の膜厚分布が100±2.0μm以内というBlu−ray disc規格を満足する光ディスクを作製するには、本発明の熱エネルギーを付与する工程が必要であるということを示すものであって、前述した実施例1〜5からも分るように、通常の場合には熱エネルギーを付与する必要はない。
Comparative Example 5
Except that the infrared lamp was not used, an optical disk was manufactured in the same manner as in Example 6 and the film thickness distribution of the light transmission layer was examined. As a result, as shown in FIG. The ray disc standard could not be satisfied.
In this comparative example, in order to manufacture an optical disc that satisfies the Blu-ray disc standard in which the film thickness distribution of the light transmission layer is within 100 ± 2.0 μm, the step of applying the thermal energy of the present invention 6 is required. This indicates that there is, and as is apparent from Examples 1 to 5 described above, it is not necessary to apply thermal energy in a normal case.

比較例6
実施例1と同じ基板と情報記録層を用意し、基板の中心孔に直径22.5mmのセンターマスクを勘合して配置し、マスクの上から紫外線硬化樹脂BRD−130を滴下して、回転数1800rpmで5秒間樹脂を振り切った。このとき、回転を止める前の1秒間、センターマスク部を遮光しながら500mJ/cmの紫外線をディスク全面に照射した。次に、センターマスクを取り外し、600mJ/cmの紫外線を照射して樹脂を完全に硬化させ、図6に示す構造の光ディスクを得た。
実施例6と同様にして膜厚分布を調べたところ、図10に示すように、基板最外周端に幅約0.8mm、高さ約30μmのスキージャンプが残存してしまった。
Comparative Example 6
The same substrate and information recording layer as in Example 1 were prepared, and a center mask with a diameter of 22.5 mm was fitted into the center hole of the substrate, and UV curable resin BRD-130 was dropped from above the mask. The resin was shaken off at 1800 rpm for 5 seconds. At this time, the entire surface of the disk was irradiated with ultraviolet rays of 500 mJ / cm 2 while shielding the center mask portion for 1 second before stopping the rotation. Next, the center mask was removed, and the resin was completely cured by irradiating with 600 mJ / cm 2 of ultraviolet rays to obtain an optical disk having the structure shown in FIG.
When the film thickness distribution was examined in the same manner as in Example 6, as shown in FIG. 10, a ski jump having a width of about 0.8 mm and a height of about 30 μm remained at the outermost peripheral edge of the substrate.

実施例7
フォトリソグラフィーによりプリグルーブ形状が形成されたスタンパを用いて射出成形により直径120mmの転写ディスク基板を得た。
このディスク基板の転写面にスパッタリング法で、膜厚120nmのAg反射層、膜厚12nmのZnS−SiOからなる第1誘電体層、膜厚14nmのSbTeからなる相変化記録層、膜厚45nmのZnS−SiOからなる第2誘電体層を順に成膜し、その上に、プランジャーポンプ(ユニコントロールズ製;ハイバーポンプCV)を用いて光硬化性樹脂(大日本化学製ダイキュアクリアSD−715、粘度43mPa・s)を円環状に0.5cc塗工した。
次いで、塗工面上に、直径120mm、厚さ0.1mmのPET(ポリエチレンテレフタレート)基板(東洋紡コスモシャインA4100、内周から外周までの基板剛性は、31〜339Paの範囲となる)を平滑基板Aとして載置接液して、3000rpmで20秒間振り切った。
その状態で、光ディスクの反対面にも、同様にして光硬化性樹脂を円環状に塗工したのち、塗工面上にPET基板を平滑基板Bとして載置接液し、3000rpmで20秒間振り切った。
次いで、フュージョン社製UVランプを両面に5秒間ずつ照射して各々の光硬化性樹脂を硬化させた。
その後、PET基板を剥離したところ、実施例1の場合(図12参照)と同様の表面が滑らかな被覆膜を両面に有する光ディスクが得られた。光ディスクの機械特性(反り)は図21に示すよう良好であった。なお、図21の横軸はディスク一周を表し、縦軸は面振れを表す。この図21と後述する比較例8の図22を対比すると、図21の方が明らかに面振れが小さいことが分る。これは光硬化性樹脂の硬化工程の相違に基づくものであり、本実施例の場合には、光硬化性樹脂の硬化収縮などの影響が光ディスクの両面で相殺されることによるものである。
また、相変化記録層を初期化したところ、全面で初期化できた。
得られた被覆膜の表面の外観は何れも平滑であり、フォーカス、トラッキングも良好で、再生信号特性も実施例1の場合(図18参照)と同様に良好であった。
Example 7
A transfer disk substrate having a diameter of 120 mm was obtained by injection molding using a stamper having a pre-groove shape formed by photolithography.
On the transfer surface of the disk substrate, an Ag reflective layer having a thickness of 120 nm, a first dielectric layer made of ZnS—SiO 2 having a thickness of 12 nm, a phase change recording layer made of Sb 3 Te having a thickness of 14 nm, and a film are formed by sputtering. A second dielectric layer made of ZnS—SiO 2 having a thickness of 45 nm is formed in order, and a photocurable resin (Dainippon Chemical Die, manufactured by Unicontrols; Hiberpump CV) is used on the second dielectric layer. Cure Clear SD-715, viscosity 43 mPa · s) was applied in an annular shape to 0.5 cc.
Next, a 120 mm diameter, 0.1 mm thick PET (polyethylene terephthalate) substrate (Toyobo Cosmo Shine A4100, the substrate rigidity from the inner periphery to the outer periphery is in the range of 31 to 339 Pa) on the coated surface is a smooth substrate A. As a result, the solution was shaken for 20 seconds at 3000 rpm.
In that state, the photo-curing resin was similarly applied to the opposite surface of the optical disk in an annular shape, and then the PET substrate was placed on the coated surface as a smooth substrate B, and was shaken off at 3000 rpm for 20 seconds. .
Subsequently, each photocurable resin was hardened by irradiating both surfaces with a UV lamp manufactured by Fusion for 5 seconds.
Thereafter, when the PET substrate was peeled off, an optical disk having a coating film with smooth surfaces similar to that in Example 1 (see FIG. 12) was obtained. The mechanical properties (warpage) of the optical disk were good as shown in FIG. Note that the horizontal axis in FIG. 21 represents one round of the disk, and the vertical axis represents surface runout. When FIG. 21 is compared with FIG. 22 of Comparative Example 8 which will be described later, it can be seen that the surface shake is clearly smaller in FIG. This is based on the difference in the curing process of the photocurable resin, and in the case of this embodiment, the influence of the curing shrinkage of the photocurable resin is offset on both sides of the optical disk.
Further, when the phase change recording layer was initialized, it was initialized over the entire surface.
The surface appearance of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were good as in Example 1 (see FIG. 18).

実施例8
図19−(1)(2)に示す工程により両面に被覆膜を有する光ディスクを作製した。
まず、フォトリソグラフィーにより、プリグルーブと同時にプリグルーブエリアよりも内周に硬化性樹脂展延拘束用スパイラルパターンが形成されたスタンパを用いて射出成形により直径120mmの転写ディスク基板を得た。
このディスク基板の転写面に、実施例7と同様にして、スパッタリング法で、反射層、第1誘電体層、相変化記録層、第2誘電体層を順に成膜し、その上に、光硬化性樹脂を円環状に0.5cc塗工した。
次いで、塗工面と、平滑基板Aとして載置する実施例7と同じPET基板との間に直流電圧2.5kVを印加した。塗工樹脂に分極が起こり頂点が盛り上がったところでPET基板を載置接液し、3000rpmで20秒間振り切った。
その状態で、ディスク基板の反対面にも、同様にして光硬化性樹脂を円環状に塗工し、直流電圧を印加したのち、実施例7と同じ材質のPET基板を平滑基板Bとして載置接液した。但し、平滑基板Bとしては、転写ディスク基板の記録エリアよりも内周に相当する位置に、YAGレーザーで硬化性樹脂展延拘束用の同心円状の溝を形成したものを用いた。そして、毛細管現象により光硬化性樹脂が同心円状の溝まで到達したら、3000rpmで20秒間振り切った。
次いで、フュージョン製UVランプを両面に5秒間ずつ照射して各々の光硬化性樹脂を硬化させた。
その後、PET基板を剥離したところ、実施例1の場合(図12参照)と同様の表面が滑らかで、図4に示すような展延最内周が真円である被覆膜を両面に有する光ディスクが得られた。
また、相変化記録層を初期化したところ、全面で初期化できた。
得られた被覆膜の表面の外観は何れも平滑であり、フォーカス、トラッキングも良好で、再生信号特性も実施例1の場合と同様に良好であった。
なお、図20に示す工程により、塗工形成された光硬化性樹脂膜を両面同時に5秒間照射しても同様の結果が得られた。
Example 8
An optical disc having coating films on both sides was produced by the steps shown in FIGS. 19- (1) and (2).
First, a transfer disk substrate having a diameter of 120 mm was obtained by injection molding using a stamper in which a curable resin spreading restraint spiral pattern was formed on the inner periphery of the pregroove area simultaneously with the pregroove by photolithography.
A reflective layer, a first dielectric layer, a phase change recording layer, and a second dielectric layer are formed in this order on the transfer surface of the disk substrate by sputtering in the same manner as in Example 7. 0.5 cc of curable resin was applied in an annular shape.
Next, a DC voltage of 2.5 kV was applied between the coated surface and the same PET substrate as that of Example 7 placed as the smooth substrate A. When polarization occurred in the coating resin and the apex was raised, the PET substrate was placed in contact with the solution and shaken off at 3000 rpm for 20 seconds.
In this state, a photo-curing resin is similarly applied to the opposite surface of the disk substrate in an annular shape and a DC voltage is applied, and then a PET substrate made of the same material as in Example 7 is placed as a smooth substrate B. Wetted. However, as the smooth substrate B, a substrate in which concentric grooves for restraining the spreading of the curable resin were formed with a YAG laser at a position corresponding to the inner periphery of the recording area of the transfer disk substrate was used. When the photocurable resin reached the concentric grooves by capillary action, it was shaken off at 3000 rpm for 20 seconds.
Subsequently, each photocurable resin was hardened by irradiating both surfaces with a fusion UV lamp for 5 seconds.
Thereafter, when the PET substrate was peeled off, the same surface as in the case of Example 1 (see FIG. 12) was smooth, and the coating innermost circumference as shown in FIG. An optical disc was obtained.
Further, when the phase change recording layer was initialized, it was initialized over the entire surface.
The appearance of the surface of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were good as in the case of Example 1.
In addition, the same result was obtained even if the photocurable resin film formed by coating was irradiated simultaneously on both sides for 5 seconds by the process shown in FIG.

実施例9
平滑基板として剛性の異なるPET基板を用いた点以外は、実施例7と同様にして両面に被覆膜を有する光ディスクを作製した。平滑基板の厚みと剛性の関係は実施例3で示した通りであるが、本実施例においても、平滑基板の剛性が5〜5000Paの範囲において、実施例7と同様の被覆膜が得られた。また、この範囲であれば、相変化記録層を全面で初期化でき、得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキング、再生信号特性も実施例7と同様に良好であった。
更には、光硬化性樹脂の粘度が10〜10000mPa・sの範囲であることにより、回転停止後、硬化させるまでの間、遠心力により平坦化した平滑基板を平坦のまま保持でき、硬化、平滑基板剥離後の被覆膜の厚みを均一化できた。
相変化記録層を初期化したところ、全面で初期化でき、得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキングも良好で、再生信号特性も、実施例1の場合(図18参照)と同様に、RF信号は良好であった。
Example 9
An optical disc having coating films on both sides was prepared in the same manner as in Example 7 except that a PET substrate having different rigidity was used as the smooth substrate. The relationship between the thickness and the rigidity of the smooth substrate is as shown in Example 3, but also in this example, the same coating film as in Example 7 is obtained when the smooth substrate has a rigidity of 5 to 5000 Pa. It was. Within this range, the phase change recording layer can be initialized over the entire surface, the appearance of the surface of the obtained coating film is smooth, and the focus, tracking, and reproduction signal characteristics are also good as in Example 7. there were.
Furthermore, since the viscosity of the photo-curing resin is in the range of 10 to 10,000 mPa · s, the smooth substrate flattened by centrifugal force can be held flat until it is cured after the rotation is stopped. The thickness of the coating film after peeling off the substrate was made uniform.
When the phase change recording layer was initialized, it could be initialized over the entire surface, the appearance of the surface of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were also the case of Example 1 (FIG. As in (18), the RF signal was good.

実施例10
光硬化性樹脂を、熱硬化性樹脂である尿素樹脂(松下電工製:ナショナルライトユリア樹脂 Aタイプ)に変え、5000rpmで20秒間振り切るという条件で、実施例7と同様にして両面に被覆膜を有する光ディスクを得た。両面塗工後の加熱条件は120℃で30分間とした。
その結果、実施例7と同様に、得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキング、再生信号特性も良好であった。
Example 10
The photo-curing resin was changed to urea resin (Matsushita Electric Works: National Light Urea Resin A type), which is a thermosetting resin, and coated on both sides in the same manner as in Example 7 under the condition of shaking off at 5000 rpm for 20 seconds. An optical disc having The heating condition after double-sided coating was 120 ° C. for 30 minutes.
As a result, as in Example 7, the surface appearance of the obtained coating film was smooth, and the focus, tracking, and reproduction signal characteristics were good.

実施例11
ホットインプリント工法によりスタンパのプリグルーブを170℃、10MPaで10分間保持して、厚み95μmのPC(ポリカーボネート)フィルム(帝人製ピュアーエース)に転写した。グルーブ転写面にスパッタリング法で、膜厚14nmのSbTeからなる相変化記録層を成膜し、その両面に実施例7と同様にして被覆膜を形成したところ、反りの小さい被覆膜を両面に有する光ディスクが得られた。
また、相変化記録層を初期化したところ、全面で初期化できた。
得られた被覆膜の表面の外観は平滑であり、フォーカス、トラッキングも良好で、再生信号特性も、実施例1の場合(図18参照)と同様に、RF信号は良好であった。
Example 11
The stamper pregroove was held at 170 ° C. and 10 MPa for 10 minutes by a hot imprinting method, and transferred to a 95 μm thick PC (polycarbonate) film (Teijin Pure Ace). A phase change recording layer made of Sb 3 Te with a film thickness of 14 nm was formed on the groove transfer surface by sputtering, and a coating film was formed on both surfaces in the same manner as in Example 7. Was obtained on both sides.
Further, when the phase change recording layer was initialized, it was initialized over the entire surface.
The appearance of the surface of the obtained coating film was smooth, the focus and tracking were good, and the reproduction signal characteristics were good in the RF signal as in Example 1 (see FIG. 18).

比較例7
PET基板に代えて、PC(ポリカーボネート)基板(帝人製ピュアーエース)を載置接液して被覆膜を形成した点以外は、実施例7と同様にして被覆膜を形成した。
この場合、光硬化性樹脂を硬化した後、PC基板を剥離しようとすると、密着性が強く、比較例4の場合(図17参照)と同様に、半面で被覆膜がPC基板側へ持っていかれ、品質のよい被覆膜形成ができなかった。
Comparative Example 7
Instead of the PET substrate, a coating film was formed in the same manner as in Example 7 except that a PC (polycarbonate) substrate (Teijin Pure Ace) was placed and contacted to form a coating film.
In this case, when the PC substrate is peeled off after the photocurable resin is cured, the adhesion is strong, and the coating film is held on the PC substrate side in the same manner as in Comparative Example 4 (see FIG. 17). As a result, it was not possible to form a coating film with good quality.

比較例8
実施例7と同様にして、塗工面上に平滑基板A(PET基板)を載置接液し、3000rpmで20秒間振り切ったのち、フュージョン社製UVランプを5秒間照射して光硬化性樹脂を硬化させた。同様にしてディスク基板の反対面にも光硬化性樹脂を円環状に塗工し、平滑基板B(同様のPET基板)を載置接液し、3000rpmで20秒間振り切ったのち、フュージョン社製UVランプを5秒間照射して光硬化性樹脂を硬化させた。
即ち、実施例7とは、平滑基板Bを載置する作業に入る前に、平滑基板Aに係る光硬化性樹脂を硬化させた点が異なる。
その後、PET基板を剥離したところ、実施例1の場合(図12参照)と同様の表面が滑らかな被覆膜を両面に有する光ディスクが得られたが、光ディスクの機械特性は実施例7と比べて悪化した(図22参照、縦軸と横軸は実施例7と同じ)。その結果、再生信号特性品質が低下した。
Comparative Example 8
In the same manner as in Example 7, a smooth substrate A (PET substrate) was placed on the coated surface and wetted at 3000 rpm for 20 seconds, and then irradiated with a UV lamp made by Fusion for 5 seconds to give a photocurable resin. Cured. Similarly, a photo-curing resin is coated in an annular shape on the opposite surface of the disk substrate, and a smooth substrate B (similar PET substrate) is placed on the surface and shaken for 20 seconds at 3000 rpm. The photocurable resin was cured by irradiating the lamp for 5 seconds.
That is, the seventh embodiment is different from the seventh embodiment in that the photocurable resin related to the smooth substrate A is cured before the operation of placing the smooth substrate B is started.
Thereafter, when the PET substrate was peeled off, an optical disk having a smooth coating film on both surfaces similar to that in Example 1 (see FIG. 12) was obtained. The mechanical properties of the optical disk were compared with Example 7. (See FIG. 22, vertical axis and horizontal axis are the same as in Example 7). As a result, the quality of the reproduction signal characteristic is degraded.

実施例5の被覆膜形成工程を示す図。(a)光硬化性樹脂を塗工する工程、(b)塗工面に平滑基板を載置接液し展延する工程、(c)光硬化性樹脂を振り切り、硬化する工程、(d)平滑基板を剥離する工程。FIG. 10 is a diagram showing a coating film forming process of Example 5. (A) a step of coating a photocurable resin, (b) a step of placing and contacting a smooth substrate on the coated surface and spreading, (c) a step of shaking off and curing the photocurable resin, and (d) a smoothing step. A step of peeling the substrate. 実施例2の被覆膜形成工程を示す図。(a)光硬化性樹脂を塗工する工程、(b)塗工面に平滑基板を載置接液し展延する工程、(c)光硬化性樹脂を振り切り、硬化する工程、(d)平滑基板を剥離する工程。The figure which shows the coating film formation process of Example 2. FIG. (A) a step of coating a photocurable resin, (b) a step of placing and contacting a smooth substrate on the coated surface and spreading, (c) a step of shaking off and curing the photocurable resin, and (d) a smoothing step. A step of peeling the substrate. 展延拘束用パターン(同心円状の溝)を平滑基板に設けた場合の被覆膜形成工程を示す図。(a)光硬化性樹脂を塗工する工程、(b)塗工面に平滑基板を載置接液し展延する工程、(c)光硬化性樹脂を振り切り、硬化する工程、(d)平滑基板を剥離する工程。The figure which shows the coating film formation process at the time of providing the pattern for constriction (a concentric groove | channel) on a smooth substrate. (A) a step of coating a photocurable resin, (b) a step of placing and contacting a smooth substrate on the coated surface and spreading, (c) a step of shaking off and curing the photocurable resin, and (d) a smoothing step. A step of peeling the substrate. 実施例2及び実施例8で展延最内周が真円である被覆膜が得られた状態を示す図。The figure which shows the state from which the coating film whose extension innermost periphery is a perfect circle was obtained in Example 2 and Example 8. FIG. 比較例1で被覆膜の展延最内周が真円とならなかった状態を示す図。The figure which shows the state which the spreading innermost periphery of the coating film did not become a perfect circle in the comparative example 1. FIG. 相変化型光情報記録媒体の構成例を示す図。The figure which shows the structural example of a phase change type | mold optical information recording medium. 実施例6の光ディスクの光透過層の膜厚分布を調べた結果を示す図。FIG. 10 is a diagram showing the result of examining the film thickness distribution of the light transmission layer of the optical disc of Example 6. 実施例6の光ディスクの外周端にスキージャンプが全く生じていないことを示す図。FIG. 10 is a diagram showing that no ski jump occurs at the outer peripheral edge of the optical disc of Example 6. 比較例5の光ディスクがBlu−ray disc規格を満足できなかったことを示す図。The figure which shows that the optical disk of the comparative example 5 was not satisfying the Blu-ray disc specification. 比較例6の光ディスクの外周端にスキージャンプが残存してしまったことを示す図。The figure which shows that the ski jump remained in the outer periphery edge of the optical disk of the comparative example 6. FIG. 実施例6で用いた赤外線ランプ装置の構成を示す図。FIG. 10 is a diagram showing a configuration of an infrared lamp device used in Example 6. 実施例1の被覆膜の状態を示す図(写真)。The figure (photograph) which shows the state of the coating film of Example 1. FIG. 比較例1の被覆膜の状態を示す図(写真)。The figure (photograph) which shows the state of the coating film of the comparative example 1. FIG. 比較例2の被覆膜の状態を示す図(写真)。The figure (photograph) which shows the state of the coating film of the comparative example 2. FIG. 比較例3の被覆膜の状態を示す図(写真)。The figure (photograph) which shows the state of the coating film of the comparative example 3. FIG. 比較例4の被覆膜の状態を示す図(写真)。The figure (photograph) which shows the state of the coating film of the comparative example 4. 比較例4の被覆膜の状態を示す図(写真)。The figure (photograph) which shows the state of the coating film of the comparative example 4. 実施例1で作製した光ディスクのRF信号を示す図(写真)。FIG. 2 is a diagram (photograph) showing an RF signal of an optical disk manufactured in Example 1. 実施例8の被覆膜形成工程を示す図。(a)光ディスクの一方の面に光硬化性樹脂を塗工する工程、(b)塗工面に平滑基板Aを載置接液し展延する工程、(c)光硬化性樹脂を振り切る工程、(d)光ディスクの反対面に光硬化性樹脂を塗工する工程。FIG. 10 shows a coating film forming process of Example 8. (A) a step of applying a photocurable resin to one surface of the optical disk, (b) a step of placing and contacting the smooth substrate A on the coated surface and spreading, (c) a step of shaking off the photocurable resin, (D) A step of applying a photocurable resin to the opposite surface of the optical disk. 実施例8の被覆膜形成工程を示す図(続き)。(e)塗工面に、硬化性樹脂展延拘束用の同心円状の溝を形成した平滑基板Bを載置接液し展延する工程、(f)光硬化性樹脂を振り切る工程、(g)平滑基板A側、平滑基板B側の順に光硬化性樹脂膜を硬化させたのち、平滑基板Aを剥離する工程、(h)平滑基板Bを剥離する工程。The figure which shows the coating film formation process of Example 8 (continuation). (E) A step of placing and contacting and spreading the smooth substrate B on which the concentric grooves for constraining the spreading of the curable resin are formed on the coated surface, (f) a step of shaking off the photocurable resin, (g) A step of peeling the smooth substrate A after curing the photocurable resin film in order of the smooth substrate A side and the smooth substrate B side; and (h) a step of peeling the smooth substrate B. 実施例8において、塗工形成された光硬化性樹脂膜を両面同時に光照射する場合の工程を示す図。(f′)平滑基板B側の光硬化性樹脂を振り切る工程、(g′)両面同時に光硬化性樹脂膜を硬化させた後、平滑基板Aを剥離する工程、(h′)平滑基板Bを剥離する工程。In Example 8, the figure in the process in the case of light-irradiating the photocurable resin film formed by coating simultaneously on both surfaces. (F ′) a step of shaking off the photocurable resin on the smooth substrate B side, (g ′) a step of peeling the smooth substrate A after curing the photocurable resin film simultaneously on both sides, and (h ′) the smooth substrate B. The process of peeling. 実施例7のディスクの機械特性を示す図。FIG. 10 is a diagram showing mechanical characteristics of the disc of Example 7. 比較例8のディスクの機械特性を示す図。The figure which shows the mechanical characteristic of the disk of the comparative example 8. FIG.

Claims (6)

被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板を載置して接液させ、遠心力をかけて、該平滑基板を平坦化させつつ、該硬化性樹脂を被覆対象となる部材の周端まで展延させたのち硬化させ、次いで該平滑基板を剥離することを特徴とする被覆膜形成方法。   The member to be coated is coated with a liquid heat or photo-curing resin in an annular shape, and is flattened by applying a centrifugal force to the curable resin having a peelability thereon. After placing a smooth substrate made of rigid material in contact with the liquid and applying a centrifugal force to flatten the smooth substrate, the curable resin is spread to the peripheral edge of the member to be coated. A method for forming a coating film, comprising curing and then peeling off the smooth substrate. 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板を載置して接液させ、遠心力をかけて、該平滑基板を平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板に設けた展延拘束部まで展延させたのち遠心力により振り切り、次いで該硬化性樹脂を硬化させたのち該平滑基板を剥離することを特徴とする被覆膜形成方法。   The member to be coated is coated with a liquid heat or photo-curing resin in an annular shape, and is flattened by applying a centrifugal force to the curable resin having a peelability thereon. A flat substrate made of rigid material is placed and contacted, and centrifugal force is applied to flatten the smooth substrate, while the curable resin is applied to a member to be coated or a smoothing restraint provided on the smooth substrate. A coating film forming method, comprising: spreading to a part, shaking off by centrifugal force, then curing the curable resin, and then peeling the smooth substrate. 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Aを載置して接液させ、遠心力をかけて、平滑基板Aを平坦化させつつ、該硬化性樹脂を被覆対象となる部材の周端まで展延させ、硬化させない状態で反対側の面にも同様に液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Bを載置して接液させ、遠心力をかけて、平滑基板Bを平坦化させつつ、該硬化性樹脂を被覆対象となる部材の周端まで展延させたのち、両面の硬化性樹脂を硬化させ、次いで平滑基板A、Bを剥離することを特徴とする被覆膜形成方法。   The member to be coated is coated with a liquid heat or photo-curing resin in an annular shape, and is flattened by applying a centrifugal force to the curable resin having a peelability thereon. Placing the smooth substrate A made of a rigid material to make liquid contact, applying a centrifugal force, flattening the smooth substrate A, and spreading the curable resin to the peripheral edge of the member to be coated, By applying a liquid heat or photo-curing resin in an annular shape to the opposite surface in the same manner without curing, and applying a centrifugal force to the curable resin on the opposite surface. A smooth substrate B made of a material having flattening rigidity is placed and contacted, and centrifugal force is applied to flatten the smooth substrate B while spreading the curable resin to the peripheral edge of the member to be coated. After stretching, the curable resin on both sides is cured, and then the smooth substrates A and B are peeled off. Coating film forming method according to. 両面の硬化性樹脂を同時に硬化させ、次いで平滑基板A、Bを剥離することを特徴とする請求項3記載の被覆膜形成方法。   The method for forming a coating film according to claim 3, wherein the curable resins on both sides are simultaneously cured, and then the smooth substrates A and B are peeled off. 被覆対象となる部材に対して、液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Aを載置して接液させ、遠心力をかけて、平滑基板Aを平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板Aに設けた展延拘束部まで展延させ、遠心力により振り切った後、硬化させない状態で反対側の面にも同様に液状の熱又は光硬化性樹脂を円環状に塗工し、その上に該硬化性樹脂に対して剥離性を有し且つ遠心力をかけることにより平坦化する剛性を有する材質の平滑基板Bを載置して接液させ、遠心力をかけて、平滑基板Bを平坦化させつつ、該硬化性樹脂を被覆対象となる部材又は平滑基板Bに設けた展延拘束部まで展延させ、遠心力により振り切ったのち、両面の硬化性樹脂を硬化させ、次いで平滑基板A、Bを剥離することを特徴とする被覆膜形成方法。   The member to be coated is coated with a liquid heat or photo-curing resin in an annular shape, and is flattened by applying a centrifugal force to the curable resin having a peelability thereon. A smooth substrate A made of a rigid material is placed and brought into contact with liquid, and a centrifugal force is applied to flatten the smooth substrate A, while the curable resin is provided on the member to be coated or the smooth substrate A. After spreading to the extension restraint part, shaking off by centrifugal force, and applying the liquid heat or photo-curing resin in an annular shape to the opposite surface in a state where it is not cured, on the curable resin While placing a smooth substrate B made of a material that has a releasability and has a rigidity that flattens by applying centrifugal force, the liquid is placed in contact with the solution, and centrifugal force is applied to flatten the smooth substrate B. The curable resin is spread to a member to be coated or a spreading restraint provided on the smooth substrate B Was, after throwing off by centrifugal force, the coating film forming method characterized in that curing the both surfaces of a curable resin and then peeling off the smooth substrate A, B. 熱又は光硬化性樹脂の塗工前、塗工中、展延中の少なくとも一つの段階において、被覆対象となる部材、該硬化性樹脂、平滑基板のうちの少なくとも一つに対し、該硬化性樹脂を円環状に塗工する際の回転中心に対して同心円状に熱エネルギーを付与する工程を含むことを特徴とする請求項1〜5の何れかに記載の被覆膜形成方法。   At least one of the member to be coated, the curable resin, and the smooth substrate in at least one stage before coating, during coating, and spreading before the application of the heat or photo-curable resin, the curability The method for forming a coating film according to any one of claims 1 to 5, further comprising a step of applying heat energy concentrically with respect to a rotation center when the resin is coated in an annular shape.
JP2006100775A 2005-12-01 2006-03-31 Coating film forming method Expired - Fee Related JP4783193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100775A JP4783193B2 (en) 2005-12-01 2006-03-31 Coating film forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005348382 2005-12-01
JP2005348382 2005-12-01
JP2006100775A JP4783193B2 (en) 2005-12-01 2006-03-31 Coating film forming method

Publications (2)

Publication Number Publication Date
JP2007179716A JP2007179716A (en) 2007-07-12
JP4783193B2 true JP4783193B2 (en) 2011-09-28

Family

ID=38304733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100775A Expired - Fee Related JP4783193B2 (en) 2005-12-01 2006-03-31 Coating film forming method

Country Status (1)

Country Link
JP (1) JP4783193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353091B2 (en) * 2008-07-02 2013-11-27 株式会社リコー Transfer substrate and substrate manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888705B2 (en) * 1996-01-11 2007-03-07 三井化学株式会社 Optical disc bonding method and bonded optical disc
JPH09259466A (en) * 1996-03-21 1997-10-03 Sony Corp Optical recording medium
JP2003123330A (en) * 2001-10-17 2003-04-25 Pioneer Electronic Corp Method for manufacturing optical disk
JP2003233936A (en) * 2002-02-07 2003-08-22 Pioneer Electronic Corp Method of manufacturing optical disk and apparatus for manufacturing the same
JP2004134050A (en) * 2002-08-14 2004-04-30 Fuji Photo Film Co Ltd Method for forming cover layer of optical disk
JP2004220634A (en) * 2003-01-09 2004-08-05 Fuji Photo Film Co Ltd Optical information recording medium and method for manufacturing the same
JP3955867B2 (en) * 2004-02-09 2007-08-08 松下電器産業株式会社 Manufacturing method of optical information recording medium
JP2005317053A (en) * 2004-04-26 2005-11-10 Victor Co Of Japan Ltd Manufacturing method of optical disk, and optical disk device

Also Published As

Publication number Publication date
JP2007179716A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4338688B2 (en) Manufacturing method of optical information recording medium
USRE43967E1 (en) Information recording medium and method of manufacturing resinous substrate for use in the recording medium
JP2003067986A (en) Optical recording disk manufacturing stamper, forming method of information recording region and light transmissive layer, and optical recording medium
TW200421292A (en) Method of manufacturing an optical data storage medium, optical data storage medium and apparatus for performing said method
US20050271856A1 (en) Optical recording medium and method for producing the same
JP4514582B2 (en) Method of manufacturing optical recording medium and light transmissive stamper
JP4783193B2 (en) Coating film forming method
JP4618111B2 (en) Optical recording medium and manufacturing method thereof
JP2007226911A (en) Manufacturing method of optical information recording medium, manufacturing apparatus and optical information recording medium
US9196288B2 (en) Process and apparatus for producing optical recording medium
US8795805B2 (en) Optical disc recording medium and method of manufacturing optical disc
TWI395218B (en) Method and apparatus for producing optical recording medium
KR100853427B1 (en) Apparatus for attaching and detaching cap for optical disc spin-coating, apparatus for optical disc spin-coating using the same and method for preparing an optical disc using the same
JP4649395B2 (en) Optical recording medium manufacturing method and manufacturing apparatus
JP5108434B2 (en) Optical recording medium manufacturing method and manufacturing apparatus
JP2007250055A (en) Optical recording medium and manufacturing method thereof
JP2007265515A (en) Optical recording medium and its manufacturing method
TW200401284A (en) Optical recording medium, production method and production device for optical recording medium
KR100922428B1 (en) Apparatus for attaching and detaching cap for optical disc spin-coating, apparatus for optical disc spin-coating using the same and method for preparing an optical disc using the same
KR20100043761A (en) Optical recording medium
JP2010134978A (en) Method and device for manufacturing optical recording medium
JP2003085834A (en) Method of manufacturing optical information medium
JP2004164727A (en) Method for manufacturing optical recording medium
JP2007149148A (en) Manufacturing method of optical recording medium
JP2003016701A (en) Producing method of optical information medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees