JP2004246278A - 投射表示装置 - Google Patents

投射表示装置 Download PDF

Info

Publication number
JP2004246278A
JP2004246278A JP2003038536A JP2003038536A JP2004246278A JP 2004246278 A JP2004246278 A JP 2004246278A JP 2003038536 A JP2003038536 A JP 2003038536A JP 2003038536 A JP2003038536 A JP 2003038536A JP 2004246278 A JP2004246278 A JP 2004246278A
Authority
JP
Japan
Prior art keywords
display device
projection
projection display
image forming
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038536A
Other languages
English (en)
Other versions
JP4272446B2 (ja
Inventor
Kazuya Miyagaki
一也 宮垣
Ikuo Kato
幾雄 加藤
Keishin Aisaka
敬信 逢坂
Atsushi Takaura
淳 高浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003038536A priority Critical patent/JP4272446B2/ja
Publication of JP2004246278A publication Critical patent/JP2004246278A/ja
Application granted granted Critical
Publication of JP4272446B2 publication Critical patent/JP4272446B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】画像形成手段の近傍に縮小光学系を配置して、投射画素のサイズを隣接画素に重ならない程度に縮小する構成とした場合にも、光源の配向分布の影響を低減し、高解像性能を維持することができ、良好な投射画像を得ることができる構成の投射表示装置を提供する。
【解決手段】放射光を放出する光源11と、光源からの放射光を入射させる複数の画素を有する画像形成手段15a,15bと、画像形成手段近傍に設置され正の屈折パワーを有する光学素子16a,16bと、投射レンズ17で構成される投射表示装置において、前記投射レンズ17の物体面が前記光学素子16a,16bの焦点面より画像形成手段側に位置するように構成した。これにより高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さ(シャープさ)を低減することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、プロジェクタ等の画像表示装置や露光装置等に応用される投射表示装置に関する。
【0002】
【従来の技術】
投射表示装置の一つであるプロジェクタ機器の多くは、画像形成手段として液晶ライトバルブと呼ばれる液晶空間光変調素子を用いている。液晶ライトバルブは微細な画素を多数配列させた一種の画像表示素子で、プロジェクタは上記液晶ライトバルブにより画像を形成し、これを投射レンズによりスクリーンに投射するものである。液晶ライトバルブが備える画素の形状は正方形あるいは矩形をしており、サイズは1辺が数十μmから10数μmあるいは数十μmである。この画素サイズが投影画像の精細度を決定しており、画素が微細であればあるほど、より高精細な投影画像を得ることができる。しかし、画素の微細化すなわち小サイズ化には、液晶ライトバルブの製造プロセス上の問題がある。また、大画面化に対応するには画素数を増大させる必要がある。
【0003】
液晶空間光変調素子である液晶ライトバルブは、透過型ライトバルブと反射型ライトバルブに大別される。透過型ライトバルブでは、画素を微細化したとしても、画素制御用薄膜トランジスタ(TFT)等の画像形成に寄与しない部分の微細化が困難であり、画素を微細化しても、上記画像形成に寄与しない部分の面積が画素の面積に対して相対的に大きくなり、開口率が低下する難点がある。これに対して、反射型ライトバルブ(多くはシリコン基板上に形成されるので、LCoS(Liquid Crystal on Silicon)と呼ばれている)では、画素電極(反射電極)の下に配線部を形成することが可能であるため、開口率あるいは反射率を向上させることができる。
【0004】
しかしながら、強誘電性液晶を用いて表面安定化構造とした場合や、ネマチック液晶を用いて垂直配向モードにした場合は、液晶層がスイッチングするためには1μm程度の液晶層が必要であり、10μm程度の画素サイズを実現することはできる。しかし、コントラスト、階調性及び均一性などで評価される画像品質を保持したまま、それより小さい5〜7μm以下の画素を実現することは非常に困難である。また、液晶ライトバルブ自体のサイズを増大させて、画素数を増大する方法もあるが、これは液晶ライトバルブのコストが指数的に増大すると同時に、光学系の大きさも増大し、より一層高コストの投射表示装置となる。
【0005】
近年、プロジェクタや画像表示装置等に応用される投射表示装置としては、大画面化や高解像度化が増々要求されているが、液晶ライトバルブ等の画像形成手段の画素数を増大する方法では、上記のように製造コストの増大や装置の大型化の問題がある。
そこで、複数のライトバルブからの投射画素をスクリーン上で適宜位置をずらして表示することによって高解像度の投射表示装置を実現することが提案されている(例えば、非特許文献1参照)。
【0006】
また、光軸のシフトや偏向を行う素子(例えば、ウォブリング素子)を使って投射画素位置を高速に移動させ、見かけ上、ライトバルブの画素数以上の投射画素数にする表示装置が提案されている。例えば、下記の特許文献1には、液晶ライトバルブからの出射光を投射するときに、光軸をシフトさせる素子を設けることにより、時分割で画素を増加させ、高解像度を実現する画像表示装置が提案されている。この画像表示装置では、偏光方向を旋回できる光学素子と、複屈折効果を有する透明素子とを、光軸シフト方向を直交させて2組用いることにより、縦2倍、横2倍で合計4倍に画像を高解像度化している。また、下記の特許文献2には、光軸をシフトすることにより、画素を実質的にΔ(デルタ)配列することが可能な装置が提案されている。尚、光軸のシフトや偏向を行うウォブリング素子としては、例えば、下記の特許文献3に記載の光学素子等がある。
【0007】
【特許文献1】
特開平4−113308号公報
【特許文献2】
特開平9−230329号公報
【特許文献3】
特許第3239969号公報
【非特許文献1】
SID International Symposium Digest of Technical Papers (Vol.XXXIII,No.II)2002年、1254〜1257頁
【0008】
【発明が解決しようとする課題】
前述の画素ずらしを行う投射表示装置のように、複数個のライトバルブを用いて投射位置で画素をずらして高解像化を図る場合でも、ウォブリング素子等を使って画素をずらして高解像度化を図る場合でも、隣接投射画素同士の重なりが生じる。このため、1ラインを表示させるような投射画像であれば、画像のにじみが発生するという問題がある。
【0009】
そこで、この問題を解消するには、画像形成手段であるライトバルブの近傍に縮小光学系を配置して、投射画素のサイズを隣接画素に重ならない程度に縮小する必要がある。この場合、ライトバルブの全画素を各々縮小させる光学系を通すため、例えば、マイクロレンズアレイ等の正の屈折パワーを有する光学素子を用いて一旦画素を小さくし、この画素縮小された画像を投射レンズでスクリーンに拡大投影する光学系が考えられる。
【0010】
しかし、本発明者らがモンテカルロ法によるノンシーケンシャル光線追跡シミュレーションを行った結果、マイクロレンズアレイ等の正の屈折パワーを有する光学素子の焦点面付近に投射レンズのバックフォーカスを合わせると、投射画素はランプ光源の配向分布を反映したプロファイルとなってしまい、良好な投射画像が得られないことが分かった。
【0011】
本発明は上記事情に鑑みなされたものであり、画像形成手段であるライトバルブの近傍に縮小光学系を配置して、投射画素のサイズを隣接画素に重ならない程度に縮小する構成とした場合にも、光源の配向分布の影響を低減し、高解像性能を維持することができ、良好な投射画像を得ることができる構成の投射表示装置を提供することを目的とする。
【0012】
より詳しく述べると、請求項1,2に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さ(シャープさ)を低減することができる構成の投射表示装置を提供することを目的とする。
請求項3に係る発明は、画像形成手段の画素以上を表示することができ、光源の配向分布の影響を低減し、かつ高解像性能を維持し、画像の硬さを低減することができる構成の投射表示装置を提供することを目的とする。
請求項4に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減することができる構成の投射表示装置を提供することを目的とする。
請求項5に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減することができ、さらに、反射型表示素子で画像形成手段を構成することにより高解像度化に適すことができる構成の投射表示装置を提供することを目的とする。
請求項6に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減することができ、さらに、正の屈折パワーを有する光学素子をコンパクトにすることができる構成の投射表示装置を提供することを目的とする。
請求項7に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減することができ、さらに、正の屈折パワーを有する光学素子をより一層コンパクトにすることができる構成の投射表示装置を提供することを目的とする。
請求項8に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減することができ、さらに、正の屈折パワーを有する光学素子の集光性能を高めることができる構成の投射表示装置を提供することを目的とする。
請求項9に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減し、さらに、光利用効率を高めることができる構成の投射表示装置を提供することを目的とする。
請求項10に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減することができ、さらに、サブフィールドごとで投射画素の解像性能を揃えることができる構成の投射表示装置を提供することを目的とする。
請求項11に係る発明は、光源の配向分布の影響を低減し、高解像性能を維持し、かつ、画像の硬さを低減することができる構成の投射表示装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記目的を達成するための手段として、請求項1に係る発明は、放射光を放出する光源と、光源からの放射光を入射させる複数の画素を有する画像形成手段と、画像形成手段近傍に設置され正の屈折パワーを有する光学素子と、投射レンズで構成される投射表示装置において、前記投射レンズの物体面が前記光学素子の焦点面より画像形成手段側に位置することを特徴とするものである。
【0014】
請求項2に係る発明は、放射光を放出する光源と、光源からの放射光を入射させる複数の画素を有する画像形成手段と、画像形成手段近傍に設置され正の屈折パワーを有する光学素子と、投射レンズで構成される投射表示装置において、前記投射レンズから投射レンズ物体面までのバックフォーカス長が、前記投射レンズから前記画像形成手段までの光学的距離よりも長いことを特徴とするものである。
【0015】
請求項3に係る発明は、請求項1または2記載の投射表示装置において、前記光学素子と前記投射レンズの間にウォブリング素子を配置したことを特徴とするものである。
また、請求項4に係る発明は、請求項1〜3のいずれか一つに記載の投射表示装置において、前記画像形成手段が透過型表示素子であることを特徴とするものである。
さらに、請求項5に係る発明は、請求項1〜3のいずれか一つに記載の投射表示装置において、前記画像形成手段が反射型表示素子であることを特徴とするものである。
【0016】
請求項6に係る発明は、請求項1〜5のいずれか一つに記載の投射表示装置において、前記光学素子が前記画像形成手段の各画素に対応したマイクロレンズアレイであることを特徴とするものである。
また、請求項7に係る発明は、請求項1〜5のいずれか一つに記載の投射表示装置において、前記光学素子が前記画像形成手段の各画素に対応したマイクロミラーアレイであることを特徴とするものである。
さらに、請求項8に係る発明は、請求項1〜5のいずれか一つに記載の投射表示装置において、前記光学素子が前記画像形成手段の各画素に対応し、かつ光軸方向に沿って複数の曲面を有するマイクロレンズアレイであることを特徴とするものである。
【0017】
請求項9に係る発明は、請求項3〜8のいずれか一つに記載の投射表示装置において、前記光源からの放射光を画像形成手段に均一照明させる照明光学系が付加され、前記ウォブリング素子によって少なくとも1方向以上に光軸がシフトまたは偏向され、かつ一方向当たりのウォブリング段数の最大値をmとし、前記照明光学系のFナンバーをF1とし、投射レンズのFナンバーをF2とするとき、
F2≦F1/m
であることを特徴とするものである。
また、請求項10に係る発明は、請求項3〜9のいずれか一つに記載の投射表示装置において、前記ウォブリング素子として、少なくとも2枚の透明基板によって挟持された強誘電性液晶を用いており、前記強誘電性液晶は透明基板に設置された電極に印加する電圧の切り換えによって基板法線方向に対して対称性を有することを特徴とするものである。
さらに、請求項11に係る発明は、請求項3〜9のいずれか一つに記載の投射表示装置において、前記ウォブリング素子内の位相分布が鋸歯形状となる瞬間があることを特徴とするものである。
【0018】
【発明の実施の形態】
高解像な投射表示装置を実現するため、複数のライトバルブの投射画素の相対位置をずらすように配置し、ライトバルブの画素ピッチと投射レンズの投射倍率の積よりも小さくなる投射画素ピッチとする投射表示装置や、光軸のシフトや偏向を行うウォブリング素子等を使って投射画素位置を高速に移動させ、見かけ上、ライトバルブの画素数以上の投射画素数にする投射表示装置が提案されている。これらの高解像な投射表示装置において、ライトバルブの一画素をそのまま投射レンズでスクリーン上に投影すると、投射された隣接画素と重ね合わさる領域が生じ、細い線を投影した場合、画素のにじみが発生する。このため、画素ピッチを変化させずに画素ごとのサイズを縮小し、これらの画像を投射レンズでスクリーンに投影すれば隣接投射画像とのにじみを減らすことができる。
【0019】
画素のサイズを縮小するにはライトバルブの画素ピッチに対応して、かつ正の屈折パワーを有する光学系を用いる必要がある。正の屈折パワーを有する光学系としては、マイクロレンズアレイや凹面反射ミラーなどを用いることができる。これらの光学系の焦点面では、ライトバルブの照明角度分布が強度分布となって現れる。現在、投射表示装置の光源としてはメタルハライドランプや超高圧水銀ランプなどの放電ランプが用いられることが多い。これらのランプの光強度の配向分布は、ランプ管球内の電極の影のため、放射角が0度の方向でピークにはならず、図4に示すような光強度の配向分布を示す。したがって、投射レンズの物体面を正の屈折パワーを有する光学系の焦点面に一致させると、投射画素の強度分布も図4に似た分布となってしまうという問題があった。
【0020】
そこで請求項1に係る発明では、投射レンズの物体面を正の屈折パワーを有する光学系(光学素子)の焦点面よりも画像形成手段側に位置させる構成としたものであり、これによって、投射ピッチに対して投射画素サイズを小さくできるにもかかわらず、投射画素プロファイルはランプ配向分布の影響を低減することができる。さらに、隣接投射画素へは小さい相対強度で重なっており、投射画像の硬さ(シャープさ)が低減されるので、見やすい画像になる。
また、請求項2に係る発明では、投射レンズから投射レンズ物体面までのバックフォーカス長が、投射レンズから画像形成手段までの光学的距離よりも長いことを特徴としており、投射レンズ側から見た物体面位置を、正の屈折パワーを有する光学系の奥側に配置されている画像形成手段よりさらに遠方にすることで光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さを低減している。
【0021】
さらに請求項3に係る発明では、請求項1または請求項2記載の光学系を採用した投射表示装置に、画素ずらし手段としてウォブリング素子を採用し、正の屈折パワーを有する光学素子と投射レンズの間にウォブリング素子を配置したことにより、画像形成手段の画素以上の画素を表示することができるので、光源の配向分布の影響を低減し、かつ高解像性能を維持し、かつ画像の硬さを低減することができる。
【0022】
【実施例】
以下、本発明の構成、動作および作用を、図示の実施例に基づいて詳細に説明する。
【0023】
(実施例1)
まず、請求項1,2,4,6に対応する実施例を説明する。
図1は本発明の一実施例を示す投射表示装置の概略構成図である。図1において、この投射表示装置は、ランプ光源11と、照明光学系12と、ビームスプリッタ13a,13bと、折り返しミラー14a,14bと、画像形成手段15a,15bと、正の屈折パワーを有する光学素子16a,16bと、投射レンズ17で構成されており、符号18は画像が投射される投射面であるスクリーンを表している。ランプ光源11としては、メタルハライドランプや超高圧水銀ランプなどの放電ランプが用いられる。照明光学系12としては、フライアイレンズとコンデンサレンズを使うフライアイインテグレータや、内部反射を利用したロッドレンズもしくはカライドスコープとリレーレンズを用いることができる。第一のビームスプリッタ13aは、照明光を2つの光束に分離するために用いられ、第二のビームスプリッタ13bは分離された光束を合波するために用いられる。これらのビームスプリッタ13a,13bはハーフミラーでも偏光ビームスプリッタでも良い。正の屈折パワーを有する光学素子16a,16bとしては、例えば、画像形成手段(例えば透過型表示素子である透過型ライトバルブ)15a,15bの画素ピッチに対応してマイクロレンズが二次元配列されたマイクロレンズアレイを用いることができる。
【0024】
図2は、図1に示す投射表示装置の画像形成手段15a,15bと正の屈折パワーを有する光学素子16a,16bとして用いられる、透過型ライトバルブ50と正の屈折パワーを有する光学素子(一例としてマクロレンズアレイ)54の一例を説明するための図である。図2は透過型ライトバルブ50とマイクロレンズアレイ54の要部を拡大した断面図で表しており、紙面上下方向に3つのアレイ分だけ記載した。実際の構成では数百から千を超えるアレイ数である。透過型ライトバルブ50は2枚の透明基板52a,52bに液晶53が挟まれ、各透明基板52a,52bの外側にはそれぞれ偏光板51a,51bが配置されている。また、図2では図示を省略しているが、透明基板52a,52bと液晶53との間には配向膜、透明電極などが設置されている。透過型ライトバルブ50からの画素の光は照明光の入射角分布に従って広がりを持った透過光として出射される。マイクロレンズアレイ54はこの光を屈折し、集める働きを有する。
【0025】
次に、正の屈折パワーを有する光学素子(例えばマイクロレンズアレイ)16a,16bの動作について図3を用いて説明する。光学素子16a,16bが無い場合の投射表示装置では、スクリーン18上の投射画像は図3(a)に示すように一方のライトバルブ15aからの投射画像21の各投射画素の境界付近に、もう一方のライトバルブ15bからの投射画像22の画素の中心が来るようにライトバルブの位置を調整する。この構成は、ライトバルブ1枚(例えば15aのみ)の投射表示装置に比べると、ほぼ同じ投射領域で2倍の画素数を実現できる。しかし、図3(a)に示すように2つの投射画像21,22を重ねた場合、投射隣接画素が重なる領域があるために、画素のにじみが発生する。このにじみを低減するために正の屈折パワーを有する光学素子(例えばマイクロレンズアレイ)16a,16bが用いられる。例えば、図3(b)に示すように、ライトバルブ15a,15bからの投射画像21,22の投射画素ピッチを変えずに光学素子16a,16bで投射画素サイズを1/2にすると、隣接画素間でにじみは全く発生しなくなる。また、図3(b)に示すサイズまで画素サイズを縮小しなくても、図3(a)の画素サイズと比較して0.5倍以上、1.0倍未満にすることによって、にじみを減らす効果は発現される。
【0026】
さらに、非特許文献1に記載された投射表示装置(ただし、非特許文献1ではライトバルブは反射型である)のように、2台の投射表示装置のうち、1台を本実施例(反射型ライトバルブの直前に正の屈折パワーを有する光学素子を配置する(図示せず))のように構成することによって、にじみを低減することができる。また、2台の投射表示装置ともに、正の屈折パワーを有する光学素子を配置すれば、全3色の投射画素間でにじみを低減することができる。
【0027】
(実施例2)
次に請求項2,3,5,6に対応する実施例を説明する。
図5は本発明の別の実施例を示す投射表示装置の概略構成図である。図5において、この投射表示装置は、ランプ光源31と、ランプ光源31からの放射光を画像形成手段に均一照明させるための照明光学系32と、照明光と投射光を分離するための偏光ビームスプリッタ33と、正の屈折パワーを有する光学素子34と、画像形成手段である反射型表示素子35と、ウォブリング素子36と、投射レンズ37で構成されており、符号38は画像が投射される投射面であるスクリーンを表している。ランプ光源31には例えば超高圧水銀ランプやメタルハライドランプを用いることができる。また、照明光学系32にはフライアイレンズと呼ばれるレンズアレイとコンデンサレンズを組み合わせることによって画像形成手段35の面を均一照明することができる。さらに、本実施例では画像形成手段35として反射型表示素子の一つである反射型ライトバルブを用いている。
【0028】
次に図5に示す投射表示装置の正の屈折パワーを有する光学素子34を画像形成手段35と一体に構成した光学部材の一例を図6に示す。図6は正の屈折パワーを有する光学素子を反射型ライトバルブと一体化した構成の反射型表示素子(レンズ付反射型ライトバルブ)60の拡大断面図である。図6では正の屈折パワーを有する光学素子(例えばマイクロレンズアレイ)61が反射型ライトバルブ60の構成要素に含まれている。このレンズ付反射型ライトバルブ60では、液晶64は透明基板63とバックプレーン65の間に挟まれている。そして透明基板63には正の屈折パワーを有する光学素子としてマイクロレンズアレイ61が接着層62を介して接着されている。透明基板63と液晶64の間には配向膜や透明電極が、また、液晶64とバックプレーン65の間には配向膜、反射膜もしくはアルミミラーが設置されているが、これらの図示は省略する。尚、マイクロレンズアレイ62の各アレイ(マイクロレンズ)は液晶画素に対応して配置されている。
【0029】
図5において、ウォブリング素子36としては、例えば、前記特許文献3に記載の光学素子を利用することができる。しかし、ウォブリング素子の方式は本発明の効果に影響を与えないため、特許文献3に記載の光学素子以外の方式のものでも良い。ウォブリング素子36によって、例えば、水平・鉛直方向にそれぞれ2段のサブフィールド画像を得ることができる。本実施例では水平・鉛直方向にそれぞれ2段のウォブリングを行う投射表示装置の場合について説明する。しかし、本発明はウォブリングの段数に発明の効果が影響されることは無い。
【0030】
図6に示すレンズ付反射型ライトバルブ60のバックプレーン65の液晶層側には画素表示のための反射板がアレイ状に配列されている(図示せず)。このアレイピッチに対応するマイクロレンズアレイ61は、平行平板からなる透明基板63と接着層62を介して貼り合わされている。マイクロレンズアレイ61および透明基板(平行平板)63の屈折率を1.52、接着層62の屈折率を1.40とし、マイクロレンズアレイ61の各マイクロレンズのFナンバーは1.37、接着層62の厚さ(最短距離)は4μm、透明基板(平行平板)63の厚さは10μmとした。そして、モンテカルロ法によるノンシーケンシャル光線追跡を行い、投射面(スクリーン)38での画素プロファイルを計算した。投射画像が最大空間周波数となる連続した画素が明、暗、明、暗、・・・となるとき、解像性能を示すCTF(Contrast Transfer Function)は59%であった。また、投射画素縮小率(ライトバルブ1枚のみを投射したときの投射画素ピッチに対する投射画素サイズの割合)は44%であった。この場合、CTFが50%を超えており、高解像と言える。
【0031】
本実施例の構成で、投射レンズ37の物体面(バックフォーカス位置)は画像形成手段35である反射型ライトバルブ60の画像形成面(図6の反射型ライトバルブ60の液晶64の面)よりさらに奥(図6では液晶64よりさらに右側)で、液晶面から奥に12μmの位置であった。これは、投射レンズ37側から見た時、反射型ライトバルブ35(60)の反射面よりさらに先の照明光路(ランプ光源31から反射型ライトバルブ35(60)の液晶面までの経路)中、より具体的には接着層62の中に投射レンズ物体面があることを意味している。したがって、本実施例の構成では、投射レンズ37から投射レンズ物体面までのバックフォーカス長が、投射レンズ37から画像形成手段35(反射型ライトバルブ60の液晶面)までの光学的距離よりも長いことになる。このような構成とすることにより、高解像性能を維持しながらランプ光源の配向分布に起因する画像劣化を低減することができ、画像の硬さ(シャープさ)を低減することができる。また、本実施例では、画像形成手段35として図6に示すような構成の反射型ライトバルブを用いるため、高画素数、高解像度化に適している。
【0032】
(実施例3)
次に請求項1,3,5,6に対応する実施例を説明する。
本実施例では投射表示装置の全体構成は図5と同様であり、正の屈折パワーを有する光学素子34と画像形成手段35は図6と同様に一体化されている構成である。そして実施例2と同様に正の屈折パワーを有する光学素子はマイクロレンズアレイ61で構成され、このマイクロレンズアレイ61が反射型ライトバルブ60の透明基板(平行平板)63に接着層62により接着されている。ここで、マイクロレンズアレイ61と透明基板(平行平板)63の屈折率を1.63、接着層62の屈折率を1.40とし、マイクロレンズアレイ61の各マイクロレンズのFナンバーを1.13、接着層の厚さ(最短距離)を4μm、透明基板(平行平板)63の厚さを10μmとした。本実施例の構成でモンテカルロ法によるノンシーケンシャル光線追跡を行い、投射面(スクリーン)38での画素プロファイルを計算した結果、投射画像のCTFは83%と十分高解像であった。また、縮小率は65%であった。この場合、縮小率が50%より大きい値であるため、隣接投射画素と重なる領域が存在する。しかし、この投射画素サイズは投射画像性能を劣化するほど大きくはない。
【0033】
本実施例の構成では、投射レンズ37の物体面(バックフォーカス位置)は図6の液晶層64から投射レンズ側、すなわち図6で液晶64から左側に8μm程度であった。マイクロレンズアレイ61と接着層62と透明基板(平行平板)63によって正の屈折パワーを有する光学系を形成しているが、この光学系の焦点位置はマイクロレンズアレイ61の曲面より投射レンズ側に存在する。従って、投射レンズ37の物体面は、この焦点面より画像形成手段側(反射型ライトバルブ60の液晶面側)に位置することになる。このような構成とすることにより、高解像性能を維持しながらランプ光源の配向分布に起因する画像劣化を低減することができ、画像の硬さ(シャープさ)を低減することができる。
【0034】
(実施例4)
次に請求項7に対応する実施例を説明する。
本実施例の投射表示装置の全体構成は図5と同様であるが、光学素子34と画像形成手段35の構成が実施例2,3とは異なっている。図7は本実施例で画像形成手段35として用いるミラー付反射型ライトバルブ70を説明するための図であり、この反射型ライトバルブ70は、光学素子として液晶72の各画素に対応したマイクロミラーアレイ基板74を背面側に設けた構成となっている。図7において、液晶72は、透明基板71と、マイクロミラーアレイ基板74の凹面形状を平坦化するための平坦化層73に挟まれて配置される。透明基板71と液晶72との間には配向膜や透明電極が、また、液晶72と平坦化層73との間には配向膜が配置されるが、これらの図示は省略する。マイクロミラーアレイ基板74の凹面形状の各マイクロミラーの曲率半径をアレイピッチPの13.6倍とし、透明基板71と平坦化層73の屈折率は1.83とした。本実施例の構成で、マイクロミラーアレイ基板74の各アレイ(凹面マイクロミラー)の焦点位置は液晶72の位置から投射レンズ側、すなわち、図7で左側に6.7P(Pはアレイピッチの長さ)である。しかし、投射レンズ37のバックフォーカス位置を液晶72位置から投射レンズ側に3.6Pとした。
【0035】
本実施例で、モンテカルロ法によるノンシーケンシャル光線追跡を行い、投射面(スクリーン)38での画素プロファイルを計算した結果、投射画像のCTFは83%であり、投射された一画素の幅(半値全幅)は投射画素ピッチに対して50%であった。この場合、投射解像性能を表すCTFが50%を大幅に越えており、高解像性能であることを示している。また、投射画素幅は隣接投射画像の半分になっており、ウォブリング素子36で水平・鉛直方向にそれぞれ2段のサブフィールド画像を表示させる場合、良好な投射画像が得られる。尚、投射画素幅を半値全幅で示しており、画素ピーク強度の半分以下の強度となる画素領域は隣接画素と交わることになる。しかし、相対強度が低いため、解像性能を劣化させることは無く、かつ適度な強度で重ね合わさるため画像の硬さ(シャープさ)が低減される効果を有する。従って本実施例では、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、正の屈折パワーを有する光学素子としてマイクロミラーアレイを用いるため光学素子をより一層コンパクトにすることができる。
【0036】
(実施例5)
次に請求項8に対応する実施例を説明する。
本実施例の投射表示装置の全体構成は図5と同様であるが、光学素子34と画像形成手段35の構成が実施例2〜4とは異なっている。図8は、本実施例の画像形成手段と正の屈折率パワーを有する光学系を説明するための図であり、本実施例では、正の屈折率パワーを有する光学系が画像形成手段の構成要素の一部と共通化されており、レンズ付反射型ライトバルブ80となっている。正の屈折率パワーを有する光学系は、2つのマイクロレンズアレイ81,83が接着層82を介して接着されており、一方のマイクロレンズアレイ83は画像形成手段80の液晶84を挟むための透明基板として利用される。液晶84はマイクロレンズアレイ83と、主にシリコンで構成されるバックプレーン85とで挟まれている。また、マイクロレンズアレイ基板83と液晶84との間には配向膜と透明電極が、液晶84とバックプレーン85との間には配向膜と画素電極が施されるが、これらの図示は省略する。
【0037】
本実施例の構成では、画像形成手段80の各画素の光軸方向に沿って複数の曲面を有したマイクロレンズアレイ構造になっている。曲面数が多くなれば、同じ正の屈折パワーをマイクロレンズアレイ部に機能させる際、設計自由度が高くなる。また、焦点位置が同じになるようにマイクロレンズアレイ部分を設計すれば、一枚のマイクロレンズに比べて曲率半径を大きくすることができ、加工しやすくなる。本実施例では、投射レンズ37の物体位置が2つのマイクロレンズアレイ81,83の組合せレンズの焦点位置よりも液晶側にすることによって良好な投射性能が得られる(尚、この動作は、実施例2と同等であるため説明を省略する)。従って、本実施例では、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、光軸方向に沿って複数の曲面を有するマイクロレンズアレイとすることによって、正の屈折パワーを有する光学素子の集光性能を高めることができる。
【0038】
(実施例6)
次に請求項9に対応する実施例を説明する。
本実施例では、画像形成手段として図1,2に示したような透過型ライトバルブを用いた構成の投射表示装置で説明する。図1,2に示すような構成の投射表示装置では、正の屈折パワーを有する光学素子16a,16bの倍率が1/2の場合、角度倍率は逆数の2倍となる。ここで、画像形成手段15a,15bを図2に示すような構成の透過型ライトバルブ50とした場合に、図2の透過型ライトバルブ50への照明光の入射角広がりをθ(入射角0度から最大θまで)とする。透過型ライトバルブ50からの出射光の光線角度の広がりは、同じく、0度から最大θである。これらの光線がマイクロレンズアレイ54で屈折され、マイクロレンズアレイ54の倍率が1/2の場合、角度倍率が2倍となるため、マイクロレンズアレイ54を出射する光線の広がりは0度から2θとなる。したがって、投射表示装置の照明光学系12のFナンバーをF1とし、投射レンズ17のFナンバーをF2と定義すると、照明光学系12のFナンバーF1と投射レンズ17のFナンバーF2は、
F2≦F1/2
を満たすと効率良く、スクリーン18まで光線が届く。
【0039】
さらに、光学素子16a,16bと投射レンズ17の間にウォブリング素子などを配置し、ウォブリング素子などによる水平方向もしくは鉛直方向のウォブリング段数の最大値をmとすれば、
F2≦F1/m
を満たすことで投射表示装置の光利用効率を高くすることができる。また、前述の実施例に記載されたように、本実施例においても、投射レンズ17の物体面位置を正の屈折パワーを有する光学素子16a,16bの焦点面位置より画像形成手段15a,15b側に、もしくは、画像形成手段面よりさらに奥側に設置することによって解像性能を高くすることができる。従って本実施例では、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、装置全体の光利用効率を高めることができる。
【0040】
(実施例7)
次に請求項10に対応する実施例を説明する。
本実施例の投射表示装置の全体構成は図5と同様とする。図9は、図5の投射表示装置のウォブリング素子36として用いられるウォブリング素子の構成例を示す図である。このウォブリング素子90は、短冊状の複数の電極92a,92b,92c,92d,92e,92f,92gが形成された2枚の透明基板91a,91bと、この2枚の透明基板91a,91bに挟まれた強誘電性液晶からなる液晶層93で構成される。透明基板91aと液晶層93の間、および透明基板91bと液晶層93の間にはそれぞれ配向膜が設置されるが、図示を省略している。透明基板91a,91bの法線をZ軸とし、図9のようにX軸,Y軸を定める。電圧が無印加のときに強誘電性液晶の分子がZ軸を向くように配向する。電圧印加方向はZ軸に垂直な方向、すなわち、XY平面内とする。図9の場合には、電極の方向をY軸とし、これら電極がX軸方向にアレイ化されている。これらの電極は金属でも透明電極(ITO)でも良い。電極92a,92b,92c,92d,92e,92f,92gの順に印加電圧を高く(または低く)することによって、X軸に沿って電圧勾配を発生させることができる。そして、この電圧勾配の極性を切り替えることによって、液晶分子94a(94b)の分子方向を+θから−θ、−θから+θに高速にスイッチングすることができる。尚、本実施例の電極構造は一例であって、Z軸に垂直な面内で電圧勾配を切り替えることが可能であれば、どのような電極構造であっても本発明の効果に影響を与えない。
【0041】
このような電圧制御によって液晶分子94a(94b)は、XZ面内でZ軸からの分子方向を+θから−θ、−θから+θへと高速にスイッチングでき、液晶分子94a(94b)がZ軸から傾く。このとき、X方向に偏光方向を有する直線偏光がウォブリング素子90に入射すると、液晶分子94aの場合、複屈折効果で+X方向に光路が偏向される。また、液晶分子94bの状態では、−X方向に光路が偏向される。本実施例の構成では液晶分子の2通りの配向状態94a,94bで光軸(Z軸)に対して対称性を有するため、どちらの光路偏向状態も対称性を持つ。このため、投射画像においても対称性が保たれることになる。さらに、水平・鉛直方向それぞれに2段、合計4サブフィールドのウォブリングを行うには、ウォブリング素子90を2個用意して、前段のウォブリング素子と後段のウォブリング素子の電極方向を直交させるように配置すれば良い。
【0042】
以上の説明の様に、本実施例では、強誘電性液晶を用いたウォブリング素子90を請求項3〜請求項9に記載の投射表示装置に組み込むことによって、光源の配向分布の影響を低減し、高解像性能を維持し、かつ、画像の硬さ(シャープさ)を低減することができる。さらに、強誘電性液晶の特性によって高速なウォブリングが可能であるため、サブフィールド間のチラツキを少なくすることができる。
【0043】
(実施例8)
次に請求項11に対応する実施例を説明する。
本実施例の投射表示装置の全体構成は図5と同様とする。図10は、図5の投射表示装置のウォブリング素子36として用いられるウォブリング素子100の構成例を示す図である。このウォブリング素子100は、鋸歯状基板101aと平行平板101bとの間に強誘電性液晶からなる液晶層102を配置した構成である。鋸歯状基板101aと液晶層102、および液晶層102と平行平板101bとの間にはそれぞれ配向膜が設置されるが、図示を省略している。ここで、平行平板101bの法線方向に沿ってZ軸を定め、図10に示すようにX,Y軸を選ぶ。また、鋸歯状基板101aの屈折率をn1、平行平板101bの屈折率をn2とし、液晶層102の常光屈折率noはn1にほぼ等しく、異常光屈折率neはn2にほぼ等しくなるように組み合わせる。尚、液晶102の常光屈折率noと鋸歯状基板101aの屈折率n1の差、および異常光屈折率neと平行平板101bの屈折率n2の差は、ともにne−noの値より小さくすることが望ましい。
【0044】
液晶層102への電界を制御して液晶分子の方向が103aのようにY軸方向に沿って並ぶと、鋸歯状基板101aと液晶層102の界面で屈折率差が生じる。横軸にX位置を、縦軸にウォブリング素子100を通過する光線の位相をとると、図11のように位相分布が鋸歯形状になる。このため、本実施例のウォブリング素子100はブレーズ化回折格子となるため、この鋸歯ピッチと波長の関数で表される回折角で光を偏向する働きを有する。一方、液晶層102への電界を変えて液晶分子の方向を103bのようにX軸方向とすると、鋸歯状基板101aと液晶層102との界面での屈折率差がなくなる。このため、ウォブリング素子90は単なる平行平板と同じ特性となるため、光は直進する。このようにして、液晶層102への印加電界のスイッチングによって、ウォブリング素子内の位相分布が鋸歯形状となる瞬間があるようにすることによって、ウォブリング素子100からの出射光の進行方向を容易に切り換えることができる。
【0045】
さらに、本実施例のウォブリング素子100を2個用意して、鋸歯状基板101aの溝方向を直交するように配置すれば、水平・鉛直方向に2段の、すなわち4サブフィールドの画像用に光路を切り換えることができる。尚、本実施例のウォブリング素子100は鋸歯状基板101aを用いた液晶機能素子で形成したが、液晶層内で液晶分子の配向角を場所ごとで周期的に変化させる構造であっても良い。
【0046】
以上の説明の様に、本実施例では、素子内で位相分布が鋸歯形状となる瞬間があるウォブリング素子100を請求項3〜請求項9に記載の投射表示装置に組み込むことによって、光源の配向分布の影響を低減し、高解像性能を維持し、かつ画像の硬さ(シャープさ)を低減することができる。さらに、液晶として強誘電性液晶を用いれば、高速にウォブリングすることができて投射画像のチラツキを低減することができる。
【0047】
【発明の効果】
以上説明したように、請求項1、請求項2に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さ(シャープさ)を低減することができる。
また、請求項3に記載の投射表示装置においては、ウォブリング素子を用いて画像形成手段の画素数以上の画素を表示することができ、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができる。
【0048】
請求項4に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、透過型の画像形成手段を用いるため、画素縮小素子の設計自由度を高めることができる。
また、請求項5に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、反射型の画像形成手段を用いるため、高画素数、高解像度化に適する。
【0049】
請求項6に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、正の屈折パワーを有する光学素子としてマイクロレンズアレイを用いるため光学素子をコンパクトにすることができる。
また、請求項7に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、正の屈折パワーを有する光学素子としてマイクロミラーアレイを用いるため光学素子をより一層コンパクトにすることができる。
さらに、請求項8に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、光軸方向に沿って複数の曲面を有するマイクロレンズアレイとすることによって、正の屈折パワーを有する光学素子の集光性能を高めることができる。
【0050】
請求項9に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、装置全体の光利用効率を高めることができる。
また、請求項10に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、サブフィールドごとの投射画素の解像性能を揃えることができる。
さらに、請求項11に記載の投射表示装置においては、高解像性能を維持しながら光源の配向分布に起因する画像劣化を低減することができ、画像の硬さを低減することができ、さらに、ウォブリング素子の駆動電圧を低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す投射表示装置の概略構成図である。
【図2】図1に示す投射表示装置の画像形成手段と正の屈折パワーを有する光学素子として用いられる、透過型ライトバルブと正の屈折パワーを有するマクロレンズアレイの断面図である。
【図3】2つのライトバルブからの投射画像を重ね合わせて投射領域で画素数を2倍にする方法の説明図である。
【図4】ランプ光源の光強度の配向分布(放射角度と強度の関係)を示す図である。
【図5】本発明の別の実施例を示す投射表示装置の概略構成図である。
【図6】正の屈折パワーを有する光学素子を画像形成手段と一体化した構成のレンズ付反射型ライトバルブの拡大断面図である。
【図7】マイクロミラーアレイを反射型ライトバルブと一体化した構成のミラー付反射型ライトバルブの拡大断面図である。
【図8】正の屈折率パワーを有する光学系(2つのマイクロレンズアレイ)が画像形成手段の構成要素の一部と共通化されている構成のレンズ付反射型ライトバルブの拡大断面図である。
【図9】本発明の投射表示装置に用いられるウォブリング素子の一構成例を示す概略要部斜視図である。
【図10】本発明の投射表示装置に用いられるウォブリング素子の別の構成例を示す概略要部斜視図である。
【図11】図10に示すウォブリング素子を通過する光線の位相分布を示す図である。
【符号の説明】
11:ランプ光源
12:照明光学系
13a,13b:ビームスプリッタ
14a,14b:折り返しミラー
15a,15b:透過型ライトバルブ(画像形成手段)
16a,16b:正の屈折パワーを有する光学素子
17:投射レンズ
18:スクリーン(投射面)
21,22:投射画像
31:ランプ光源
32:照明光学系
33:偏光ビームスプリッタ
34:正の屈折パワーを有する光学素子
35:反射型ライトバルブ
36:ウォブリング素子
37:投射レンズ
38:スクリーン(投射面)
50:透過型ライトバルブ
51a.51b:偏光板
52a,52b:透明基板
53:液晶
54:マイクロレンズアレイ
60:レンズ付反射型ライトバルブ
61:マイクロレンズアレイ
62:接着層
63:透明基板(平行平板)
64:液晶
65:バックプレーン
70:ミラー付反射型ライトバルブ
71:透明基板
72:液晶
73:平坦化層
74:ミラーアレイ基板(マイクロミラーアレイ)
80:レンズ付反射型ライトバルブ
81,83:マイクロレンズアレイ
82:接着層
84:液晶
85:バックプレーン
90:ウォブリング素子
91a,91b:透明基板
92a,92b,92c,92d,92e,92f,92g:電極
93:液晶層
100:ウォブリング素子
101a:鋸歯状基板
101b:平行平板
102:液晶層

Claims (11)

  1. 放射光を放出する光源と、光源からの放射光を入射させる複数の画素を有する画像形成手段と、画像形成手段近傍に設置され正の屈折パワーを有する光学素子と、投射レンズで構成される投射表示装置において、
    前記投射レンズの物体面が前記光学素子の焦点面より画像形成手段側に位置することを特徴とする投射表示装置。
  2. 放射光を放出する光源と、光源からの放射光を入射させる複数の画素を有する画像形成手段と、画像形成手段近傍に設置され正の屈折パワーを有する光学素子と、投射レンズで構成される投射表示装置において、
    前記投射レンズから投射レンズ物体面までのバックフォーカス長が、前記投射レンズから前記画像形成手段までの光学的距離よりも長いことを特徴とする投射表示装置。
  3. 請求項1または2記載の投射表示装置において、
    前記光学素子と前記投射レンズの間にウォブリング素子を配置したことを特徴とする投射表示装置。
  4. 請求項1〜3のいずれか一つに記載の投射表示装置において、
    前記画像形成手段が透過型表示素子であることを特徴とする投射表示装置。
  5. 請求項1〜3のいずれか一つに記載の投射表示装置において、
    前記画像形成手段が反射型表示素子であることを特徴とする投射表示装置。
  6. 請求項1〜5のいずれか一つに記載の投射表示装置において、
    前記光学素子が前記画像形成手段の各画素に対応したマイクロレンズアレイであることを特徴とする投射表示装置。
  7. 請求項1〜5のいずれか一つに記載の投射表示装置において、
    前記光学素子が前記画像形成手段の各画素に対応したマイクロミラーアレイであることを特徴とする投射表示装置。
  8. 請求項1〜5のいずれか一つに記載の投射表示装置において、
    前記光学素子が前記画像形成手段の各画素に対応し、かつ光軸方向に沿って複数の曲面を有するマイクロレンズアレイであることを特徴とする投射表示装置。
  9. 請求項3〜8のいずれか一つに記載の投射表示装置において、
    前記光源からの放射光を画像形成手段に均一照明させる照明光学系が付加され、前記ウォブリング素子によって少なくとも1方向以上に光軸がシフトまたは偏向され、かつ一方向当たりのウォブリング段数の最大値をmとし、前記照明光学系のFナンバーをF1とし、投射レンズのFナンバーをF2とするとき、
    F2≦F1/m
    であることを特徴とする投射表示装置。
  10. 請求項3〜9のいずれか一つに記載の投射表示装置において、
    前記ウォブリング素子として、少なくとも2枚の透明基板によって挟持された強誘電性液晶を用いており、前記強誘電性液晶は透明基板に設置された電極に印加する電圧の切り換えによって基板法線方向に対して対称性を有することを特徴とする投射表示装置。
  11. 請求項3〜9のいずれか一つに記載の投射表示装置において、
    前記ウォブリング素子内の位相分布が鋸歯形状となる瞬間があることを特徴とする投射表示装置。
JP2003038536A 2003-02-17 2003-02-17 投射表示装置 Expired - Fee Related JP4272446B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038536A JP4272446B2 (ja) 2003-02-17 2003-02-17 投射表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038536A JP4272446B2 (ja) 2003-02-17 2003-02-17 投射表示装置

Publications (2)

Publication Number Publication Date
JP2004246278A true JP2004246278A (ja) 2004-09-02
JP4272446B2 JP4272446B2 (ja) 2009-06-03

Family

ID=33023044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038536A Expired - Fee Related JP4272446B2 (ja) 2003-02-17 2003-02-17 投射表示装置

Country Status (1)

Country Link
JP (1) JP4272446B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023732A (ja) * 2004-06-11 2006-01-26 Ricoh Co Ltd 微小光学素子、この微小光学素子を用いた空間光変調装置及びプロジェクタ装置
JP2014032299A (ja) * 2012-08-03 2014-02-20 Seiko Epson Corp プロジェクター

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023732A (ja) * 2004-06-11 2006-01-26 Ricoh Co Ltd 微小光学素子、この微小光学素子を用いた空間光変調装置及びプロジェクタ装置
WO2006132004A1 (en) * 2005-06-10 2006-12-14 Ricoh Company, Ltd. Micro-optical device, spatial optical modulator and projector utilizing the micro-optical device
US7561336B2 (en) 2005-06-10 2009-07-14 Ricoh Company, Ltd. Micro-optical device, spatial optical modulator and projector utilizing the micro-optical device
JP2014032299A (ja) * 2012-08-03 2014-02-20 Seiko Epson Corp プロジェクター

Also Published As

Publication number Publication date
JP4272446B2 (ja) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4059066B2 (ja) プロジェクタ
JP2007011248A (ja) 投射型表示装置
JP2867529B2 (ja) 投写型表示装置
US20060262233A1 (en) Liquid crystal projector
JP2006215536A (ja) 投影表示用光学システム及び該投影表示用光学システムを備えるプロジェクタ
JP2006209004A (ja) 中間結像光学系、それを用いた画像表示装置、および中間結像光学系に用いられる電圧印加方法
JP5509904B2 (ja) プロジェクター
JP4846940B2 (ja) 画像表示装置
JP3692653B2 (ja) 投写型表示装置
KR20040106445A (ko) 프로젝터
JP2005352392A (ja) マイクロレンズアレイ、空間光変調装置及びプロジェクタ装置
JP4598409B2 (ja) 表示装置及び投射表示装置
JP2004233442A (ja) 照明装置およびプロジェクタ
JP4272446B2 (ja) 投射表示装置
JP2007094390A (ja) 液晶表示装置
KR20080077443A (ko) 듀얼 모드 기능을 갖는 투사형 디스플레이 장치
JP4030357B2 (ja) 画像表示装置
CN113296340B (zh) 一种投影显示装置
JP4653416B2 (ja) 画像表示装置
JP3610804B2 (ja) 照明装置及び投写型表示装置
JP2001305485A (ja) プロジェクタ
JP2007248721A (ja) 画像表示装置
JP3633361B2 (ja) 投写型液晶表示装置
JP2007264245A (ja) プロジェクタ
JP4568533B2 (ja) 背面投射型画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees