JP2004246218A - Package for housing optical semiconductor element and optical semiconductor system - Google Patents

Package for housing optical semiconductor element and optical semiconductor system Download PDF

Info

Publication number
JP2004246218A
JP2004246218A JP2003037555A JP2003037555A JP2004246218A JP 2004246218 A JP2004246218 A JP 2004246218A JP 2003037555 A JP2003037555 A JP 2003037555A JP 2003037555 A JP2003037555 A JP 2003037555A JP 2004246218 A JP2004246218 A JP 2004246218A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
base
metal member
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037555A
Other languages
Japanese (ja)
Inventor
Mitsugi Uratani
貢 浦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003037555A priority Critical patent/JP2004246218A/en
Publication of JP2004246218A publication Critical patent/JP2004246218A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package for housing an optical semiconductor element which can well maintain the position accuracy of a translucent member with respect to the optical semiconductor element and can prevent the flash of a resin produced during molding of a substrate from adhering to the translucent member and can prevent damage, such as cracking, from arising in the translucent member. <P>SOLUTION: The package for housing the optical semiconductor element includes the substrate 1 which is provided with a projecting part 1a to be placed with the optical semiconductor element 8 atop the same on the base surface of the recessed part 1b formed on the top surface of the package, a through-hole 2a which is formed from the recessed part 1b toward the external side face of the substrate 1, a cylindrical metallic member 6 which is fitted into to be attached to the through-hole 2a and is embedded with the protrusion 6d formed on the outer peripheral surface into the substrate 1 and the translucent member 6b which is attached to the inner side 6a of the metallic member 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野等に用いられ、光半導体素子を収納するための光半導体素子収納用パッケージおよび光半導体装置に関する。
【0002】
【従来の技術】
従来、光通信分野に使用されて電気信号を光信号に変換する半導体レーザ(LD)や光信号を電気信号に変換するフォトダイオード(PD)等の光半導体素子を収容するための光半導体素子収納用パッケージ(以下、パッケージともいう)を図3に示す。
【0003】
同図に示すように、パッケージは、アルミナ(Al)質焼結体(アルミナセラミックス)等のセラミックス、またはエポキシ樹脂,ポリフェニレンサルファイト(PPS),液晶ポリマー(LCP)等から成るエンジニアプラスチック等の電気絶縁材料から成り、上面に形成された凹部21bの底面の中央部に光半導体素子28を載置するための凸部21aを有し、側壁部22に貫通孔22aを設けた基体21と、貫通孔22aの内側に取付された集光レンズ等としての透光性部材26と、両端が側壁部22の内外に突出するように取着され、側壁部22の外側に突出する一端が外部電気回路に電気的に接続される複数の外部リード端子24とから基本的に構成される。なお、側壁部22を別体の枠部とし、その枠部を平板状の基体21の上面の外周部に接合する場合もある。
【0004】
また、基体21の側壁部22の上面に樹脂接着材等の封止材を介して取着され、内部を気密に封止する蓋体23を設けることにより光半導体装置となる。即ち、基体21の凸部21a上に光半導体素子28を載置固定するとともに光半導体素子28の各電極を外部リード端子24にボンディングワイヤ25等の接続手段を介して電気的に接続し、しかる後、側壁部22の上面に蓋体23を封止材を介して接合し、基体21と蓋体23とから成る容器内部に光半導体素子28を収容することによって製品としての光半導体装置となる。
【0005】
なお、基体21はエポキシ樹脂やエンジニアプラスチック等を用いてインジェクションモールド法やトランスファモールド法によって一体的に成型され、その際複数の外部リード端子24と貫通孔22aに設けられた透光性部材26は、成型時に基体21に組み込まれた状態で設けることができる。また基体21は、全体をセラミックスで作製する、または底板部をセラミックスで作製し側壁部22をFe−Ni−Co合金等の金属で構成する、または底板部を銅(Cu)−タングステン(W)等で作製し側壁部22をFe−Ni−Co合金等の金属で構成するといった方法で作製することもできる。
【0006】
また透光性部材26は、基体21に組み込まれる代わりに蓋体23に組み込まれる場合もある(例えば、下記の特許文献1参照)。
【0007】
この光半導体装置は、光半導体素子28に外部リード端子24を介して外部電気回路から供給される駆動信号を印加し、光半導体素子28に光を励起させるとともに励起した光を光ファイバ27で伝達させることによって、または光ファイバ27を伝達する光を光半導体素子28に受光させ、光半導体素子28により電気信号を発生させるとともに発生した電気信号を外部リード端子24を介して外部に取り出すことによって作動する。このような光半導体装置は光通信分野に多用される。
【0008】
【特許文献1】
特開2002−94035号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来のパッケージにおいては、基体21と複数の外部リード端子24と貫通孔22aに設けられた透光性部材26とが、あるいは、特許文献1に示されるように蓋体23と透光性部材26とが、エポキシ樹脂等の樹脂を成型することにより一体的に構成されており、光半導体素子28に対する透光性部材26の位置精度は良いのであるが、樹脂に直接透光性部材26を取り付けているため、透光性部材26の表面に樹脂の成型バリが付着し、透光性部材26を入出射する光信号を効率良く伝送できなくなるという問題があった。
【0010】
また、成型時に透光性部材26の位置を固定するためにガラス等から成る透光性部材26を金型で直接押さえなければならず、透光性部材26にクラック等の損傷が発生し易かった。さらに、樹脂と透光性部材26との熱膨張差が大きいため、基体21に取り付けた後にも透光性部材26にクラック等の破損が発生するという問題もあった。
【0011】
また、球状やレンズ状の透光性部材26は、貫通孔22aの内面との接触面積が小さいため、ガラス等から成る透光性部材26と樹脂から成る基体21との熱膨張差によって気密が破れ易いという問題点も有していた。
【0012】
従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、光半導体素子に対する透光性部材の位置精度を良い状態で維持できるようにし、また透光性部材に基体の成型時の樹脂がバリとして付着するのを防止するとともに透光性部材にクラック等の破損が発生するのを防止し、さらに気密性を向上させた光半導体素子収納用パッケージおよび光半導体装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明の光半導体素子収納用パッケージは、上面に形成された凹部の底面に光半導体素子を上面に載置する凸部が設けられている基体と、前記凹部から前記基体の外側面にかけて形成された貫通孔と、該貫通孔に嵌着されるとともに外周面に形成された突部が前記基体の内部に埋め込まれている筒状の金属部材と、該金属部材の内側に取着された透光性部材とを具備していることを特徴とする。
【0014】
本発明の光半導体素子収納用パッケージは、基体の貫通孔に嵌着されるとともに外周面に形成された突部が基体の内部に埋め込まれている筒状の金属部材と、この金属部材の内側に取着された透光性部材とを具備していることから、光半導体素子収納用パッケージの透光性部材の部位における気密性が大幅に向上する。また、例えば基体が樹脂から成る場合、基体を成型する際に透光性部材に樹脂のバリが付着するのを防ぐことができ、また、成型時に透光性部材に金型が直接当接しないことおよび製造後に樹脂から成る基体が透光性部材に直接接していないことから、透光性部材にクラック等の破損が発生するのを防ぐことができる。
【0015】
本発明の光半導体素子収納用パッケージにおいて、好ましくは、前記金属部材は、前記突部の軸方向の厚みが前記金属部材の中心軸から離れるに伴って漸次薄くなっていることを特徴とする。
【0016】
本発明の光半導体素子収納用パッケージは、金属部材は、突部の軸方向の厚みが金属部材の中心軸から離れるに伴って漸次薄くなっていることから、金属部材と基体との熱膨張差による応力を局所的に集中させることなく金属部材と基体との界面全体に分散させ、金属部材に加わる応力によって透光性部材が歪むのを有効に抑えることができ、その結果、透光性部材を透過する光信号にノイズ等を発生させることなく、光信号を正常かつ安定に伝送させることができる。
【0017】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、前記透光性部材に光学的に結合するように前記凸部の上面に載置固定された光半導体素子と、前記基体の上面の前記凹部の周囲に取着された蓋体とを具備していることを特徴とする。
【0018】
本発明の光半導体装置は、上記の構成により、上記本発明の光半導体素子収納用パッケージを用いた光結合効率に優れるとともに気密信頼性の高いものとなる。
【0019】
【発明の実施の形態】
本発明の光半導体素子収納用パッケージおよび光半導体装置を以下に詳細に説明する。図1は、本発明のパッケージについて実施の形態の例を示し、1は基体、1aは光半導体素子8を載置するための凸部、2は基体1の側壁部、2aは基体1の貫通孔、3は蓋体、4は外部リード端子、5は電気的な接続手段としてのボンディングワイヤ、6は金属部材、6bは透光性部材、7は光ファイバ、8は光半導体素子である。そして、上面に形成された凹部1bの底面に光半導体素子8を載置し収容する基体1によって、内部に光半導体素子8を収容するための容器が基本的に構成される。
【0020】
本発明のパッケージは、上面に形成された凹部1bの底面に光半導体素子8を上面に載置する凸部1aが設けられている基体1と、凹部1bから基体1の外側面にかけて形成された貫通孔2aと、貫通孔2aに嵌着されるとともに外周面に形成された突部6dが基体1の内部に埋め込まれている筒状の金属部材6と、金属部材6の内側6aに取着された透光性部材6bとを具備している。
【0021】
本発明の基体1は、光半導体素子8を収容し支持する支持部材であり、その上面の凹部1bの底面の中央部に光半導体素子8を載置するための凸部1aを有しており、凸部1aの上面に光半導体素子8が接着剤等により載置固定される。基体1の側壁部2は、その内側に光半導体素子8を収容するための空所を形成する。また、基体1の側壁部2を別体の枠部とし、その枠部を基体1の底板部の上面の外周部に凸部1aを囲繞するように接合してもよい。
【0022】
この基体1は、エポキシ樹脂、PPSやLCP等から成るエンジニアプラスチック等の電気的に絶縁性の樹脂、アルミナ(Al)質焼結体(アルミナセラミックス)等のセラミックス、セラミックスと樹脂の複合材料、ガラス、ガラスセラミックス、金属等から成る。
【0023】
そして、金属部材6が基体1の貫通孔2aに嵌着されるとともに外周面に形成された突部6dが基体1の内部に埋め込まれた構成は、例えば樹脂から成る基体1をトランスファモールド法またはインジェクションモールド法等によって成型する際に、予め金型の所定位置に金属部材6を設置しておくことによって達成される。
【0024】
また、基体1の側壁部2には両端が側壁部2の内外に突出する複数の外部リード端子4が設けられており、外部リード端子4の側壁部2内側に突出する部位には光半導体素子8の各電極がボンディングワイヤ5を介して電気的に接続されており、外部リード端子4の側壁部2の外側に突出する部位を外部電気回路に電気的に接続することによって、光半導体素子8の各電極は外部リード端子4を介し外部電気回路に電気的に接続されることとなる。
【0025】
外部リード端子4は鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金やFe−Ni合金等の金属から成り、例えばFe−Ni−Co合金等から成るインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定形状に形成される。この外部リード端子4の側壁部2への取着は、基体1をトランスファモールド法またはインジェクションモールド法により形成する際に、予め金型内の所定位置に外部リード端子4をセットしておくことによって、側壁部2の所定位置に両端を側壁部2の内外に突出させた状態で一体的に取着される。
【0026】
また外部リード端子4は、その露出する表面に良導電性で耐蝕性に優れかつロウ材と濡れ性の良いNiやAu(金)等の金属をめっき法により所定厚み(1〜20μm程度)に被着させておくのがよく、外部リード端子4の酸化腐蝕を有効に防止できるとともに、外部リード端子4とボンディングワイヤ5との接続および外部リード端子4と外部電気回路との接続を信頼性の高いものとなすことができる。
【0027】
本発明の透光性部材6bは、ガラス、サファイア等から成るが、透明性およびある程度の硬度が確保できれば樹脂から成っていてもよい。
【0028】
内側6aに透光性部材6bが取着された金属部材6は、光半導体素子8の光入出射部に透光性部材6bが対向する状態で固定され、その外側の端面に、光ファイバ7の光入出射端が金属ホルダ等を介して光半導体素子8と対向するように、樹脂接着剤、Agロウ,Au−Snロウ等のロウ材、半田、YAGレーザ溶接等の溶接法などによって接合され固定される。この金属部材6は、Fe−Ni−Co合金やFe−Ni合金等の金属から成り、Fe−Ni−Co合金等に従来周知の圧延加工法やプレス成形法等の金属加工法を施すことによって、所望の形状になるように製作される。
【0029】
金属部材6は突部6dが外周面に形成された筒状である。これにより、金属部材6の体積を小さくして、透光性部材6bに加わる金属部材6との熱膨張差による応力を最小限に抑えることができ、透光性部材6bにクラック等の破損が生ずるのを防止できる。また、突部6dが基体1に埋め込まれているので、金属部材6と基体1の密着性を向上させ、金属部材6を基体1に強固に固定することができる。以上により、パッケージの透光性部材6bの部位における気密性が大幅に向上する。
【0030】
好ましくは、図2に示すように金属部材6は突部6dの軸方向の厚みが金属部材6の中心軸から離れるに伴って漸次薄くなっているのがよい。この構成により、金属部材6と基体1との熱膨張差による応力を局所的に集中させることなく金属部材6と基体1との界面全体に分散させ、金属部材6に加わる応力によって透光性部材6bが歪むのを有効に抑えることができ、その結果、透光性部材6bを透過する光信号にノイズ等を発生させることなく、光信号を正常かつ安定に伝送させることができる。
【0031】
また、図2のものにおいて、突部6dの先端が円弧状等の曲面となっていることがよく、金属部材6に加わる応力を有効に分散させることができる。また、突部6d全体が曲面状となっていてもよく、その場合も応力を有効に分散させ得る。
【0032】
さらに、図2では、突部6dが金属部材6の筒状部6cの側面全面から突出した形状であるが、突部6dが筒状部6cの側面の一部から突出し、端部に近づくに伴って厚みが漸次薄くなっていてもよい。この場合、金属部材6と基体1との密着性がより向上するとともに、金属部材6に加わる応力を有効に分散させることができる。
【0033】
また、透光性部材6bが取着された金属部材6の側壁部2への取着は、基体1が樹脂から成る場合に基体1をトランスファモールド法またはインジェクションモールド法より成型する際に、予め金型内の所定位置に透光性部材6bが取着された金属部材6をセットしておき、金属部材6の外周端部が側壁部2の貫通孔2aの内周面に埋めこまれるようにして行なわれる。
【0034】
透光性部材6bが取着された金属部材6を金型内にセットする際、金属部材6の筒状部6cを金型で押しつけて位置を固定させれば良く、これにより透光性部材6bに金型が直接接しないことから透光性部材6bにクラック等の破損が発生するのを防止できる。また、透光性部材6bが取着された金属部材6は、基体1を成型する際に同時に側壁部2の所定位置に一体的に取着されることから、パッケージおよび光半導体素子8に対する透光性部材6bの位置精度は良好になり、また透光性部材6bの表面に成型時の樹脂のバリが付着するのを防ぐことができる。
【0035】
また、Fe−Ni−Co合金等の低熱膨張係数を有する金属から成る金属部材6と透光性部材6bとは熱膨張差が小さいため、製造後に熱膨張差に起因して透光性部材6bにクラック等の破損が発生するのを防止できる。さらに、金属部材6は、その外周端部が基体1の貫通孔2aの内周面に埋め込まれて設置されるため、透光性部材6bおよび金属部材6における気密性が大幅に向上する。
【0036】
従って、基体1と蓋体3とで構成される容器の封止が完全となり、容器内部に収納する光半導体素子8を長期にわたり正常かつ安定に作動させることが可能となる。
【0037】
また、透光性部材6bの光軸方向の厚さは、金属部材6の光軸方向の両端面(両主面)間の厚さと略同じであるか、または金属部材6の両端面間の厚さよりも小さい方が好ましい。透光性部材6bの光軸方向の厚さが金属部材6の両端面間の厚さよりも大きくなると、基体1を成型する際に透光性部材6bに樹脂のバリが付着したり、透光性部材6bに金型が当接して透光性部材6bに損傷が発生し易くなる。また、以上より金属部材6の光軸方向の厚さは透光性部材6bの厚さと同程度であり、0.5〜7mm程度である。
【0038】
透光性部材6bが取着された金属部材6に接合されている光ファイバ7は、光半導体素子8が発する光を外部に伝達する、または外部から光を光半導体素子8に伝達するための光の伝達路として機能する。
【0039】
さらに、側壁部2の上面には樹脂接着剤等から成る封止材を介して蓋体3が取着され、蓋体3で基体1の内側を塞ぐことよって基体1と蓋体3とで構成される容器内に光半導体素子8が収容される。
【0040】
また本発明において、基体1が樹脂から成り、基体1の内部に埋め込まれた金属部材6の突部6dの表面粗さが最大高さで1.6〜25μmとされていることが好ましい。突部6dの表面粗さの最大高さ(JIS B 0601)を1.6〜25μmとすることにより、金属部材6を基体1に強固に固定でき、光半導体素子8を気密に封止できる。さらに、基体1の内外に気圧差が生じて金属部材6に圧力が加わった場合でも、金属部材6が基体1の所定の位置からずれることを防止できる。従って、透光性部材6bが取着された金属部材6と光半導体素子8とをより正確に対向させ、透光性部材6bと光半導体素子8との間における光結合効率を高効率に維持できる。
【0041】
金属部材6の突部6dの表面の最大高さが1.6μm未満では、基体1と金属部材6との間で密着性不足が発生し、気密不良が起こり易くなる。25μmを超えると、エポキシ系熱硬化樹脂が逆に流れにくくなり、そのため、成形不良、ボイド等が発生し、気密不良が起こり易くなる。
【0042】
かくして、本発明のパッケージは、透光性部材6bが取着された金属部材6を透光性部材6bが光半導体素子8と対向するように側壁部2に固定している基体1の凸部1aの上面に光半導体素子8を載置固定し、光半導体素子8の各電極を所定の外部リード端子4にボンディングワイヤ5を介して電気的に接続し、光ファイバ7を金属部材6に接合し、しかる後、側壁部2の上面に蓋体3を封止材を介して取着し、基体1と蓋体3とから成る容器内部に光半導体素子8を収容することによって製品としての光半導体装置となる。
【0043】
この光半導体装置は、光半導体素子8に外部リード端子4を介して外部電気回路から供給される駆動信号を入力し、光半導体素子8に光を励起させるとともに励起した光を透光性部材6bを通して光ファイバ7に伝達させることによって、または光ファイバ7を伝達してきた光を透光性部材6bを通して光半導体素子8に受光させ、受光した光に対応する電気信号を光半導体素子8で発生させ、その電気信号を外部リード端子4を介し取り出すことによって作動することとなり、このような光半導体装置は光通信分野等に使用される。
【0044】
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0045】
【発明の効果】
本発明の光半導体素子収納用パッケージは、上面に形成された凹部の底面に光半導体素子を上面に載置する凸部が設けられている基体と、凹部から基体の外側面にかけて形成された貫通孔と、この貫通孔に嵌着されるとともに外周面に形成された突部が基体の内部に埋め込まれている筒状の金属部材と、この金属部材の内側に取着された透光性部材とを具備していることから、光半導体素子収納用パッケージの透光性部材の部位における気密性が大幅に向上する。また、例えば基体が樹脂から成る場合、基体を成型する際に透光性部材に樹脂のバリが付着するのを防ぐことができ、また、成型時に透光性部材に金型が直接当接しないことおよび製造後に樹脂から成る基体が透光性部材に直接接していないことから、透光性部材にクラック等の破損が発生するのを防ぐことができる。
【0046】
本発明の光半導体素子収納用パッケージは、金属部材は、突部の軸方向の厚みが金属部材の中心軸から離れるに伴って漸次薄くなっていることから、金属部材と基体との熱膨張差による応力を局所的に集中させることなく金属部材と基体との界面全体に分散させ、金属部材に加わる応力によって透光性部材が歪むのを有効に抑えることができ、その結果、透光性部材を透過する光信号にノイズ等を発生させることなく、光信号を正常かつ安定に伝送させることができる。
【0047】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、透光性部材に光学的に結合するように凸部の上面に載置固定された光半導体素子と、基体の上面の凹部の周囲に取着された蓋体とを具備していることにより、上記本発明の光半導体素子収納用パッケージを用いた光結合効率に優れるとともに気密信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の光半導体素子収納用パッケージについて実施の形態の例を示す断面図である。
【図2】本発明の光半導体素子収納用パッケージについて実施の形態の他の例を示す断面図である。
【図3】従来の光半導体素子収納用パッケージの例を示す断面図である。
【符号の説明】
1:基体
1a:凸部
1b:凹部
2a:貫通孔
3:蓋体
6:金属部材
6b:透光性部材
6d:突部
8:光半導体素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element and an optical semiconductor device used in an optical communication field or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an optical semiconductor element housing for housing an optical semiconductor element such as a semiconductor laser (LD) that converts an electric signal into an optical signal and a photodiode (PD) that converts an optical signal into an electric signal, which are used in the field of optical communication. FIG. 3 shows a package for use (hereinafter, also referred to as a package).
[0003]
As shown in the figure, the package is made of ceramics such as alumina (Al 2 O 3 ) sintered body (alumina ceramics) or engineered plastic made of epoxy resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), etc. Base 21 having a convex portion 21a for mounting an optical semiconductor element 28 at the center of the bottom surface of the concave portion 21b formed on the upper surface, and having a through hole 22a formed in the side wall portion 22. And a translucent member 26 such as a condensing lens attached to the inside of the through hole 22a, and one end protruding outside the side wall 22 is attached so that both ends protrude inside and outside the side wall 22. It is basically composed of a plurality of external lead terminals 24 electrically connected to an external electric circuit. In some cases, the side wall portion 22 is formed as a separate frame portion, and the frame portion is joined to the outer peripheral portion of the upper surface of the flat substrate 21.
[0004]
An optical semiconductor device is provided by providing a lid 23 attached to the upper surface of the side wall 22 of the base 21 via a sealing material such as a resin adhesive and hermetically sealing the inside. That is, the optical semiconductor element 28 is mounted and fixed on the convex portion 21a of the base 21, and each electrode of the optical semiconductor element 28 is electrically connected to the external lead terminal 24 via the connection means such as the bonding wire 25. Thereafter, a lid 23 is joined to the upper surface of the side wall 22 via a sealing material, and the optical semiconductor element 28 is accommodated in a container formed of the base 21 and the lid 23, whereby an optical semiconductor device as a product is obtained. .
[0005]
The base 21 is integrally molded by an injection molding method or a transfer molding method using an epoxy resin, an engineering plastic, or the like. At this time, the plurality of external lead terminals 24 and the translucent member 26 provided in the through hole 22a are formed. It can be provided in a state of being incorporated into the base 21 at the time of molding. The base 21 is entirely made of ceramics, or the bottom plate is made of ceramics, and the side wall 22 is made of a metal such as an Fe-Ni-Co alloy, or the bottom plate is made of copper (Cu) -tungsten (W). The side wall 22 may be made of a metal such as an Fe-Ni-Co alloy.
[0006]
The translucent member 26 may be incorporated into the lid 23 instead of being incorporated into the base 21 (for example, see Patent Document 1 below).
[0007]
In this optical semiconductor device, a drive signal supplied from an external electric circuit is applied to the optical semiconductor element 28 via the external lead terminal 24 to excite the optical semiconductor element 28 and transmit the excited light through the optical fiber 27. Or by causing the optical semiconductor element 28 to receive light transmitted through the optical fiber 27, generating an electric signal by the optical semiconductor element 28, and extracting the generated electric signal to the outside via the external lead terminal 24. I do. Such an optical semiconductor device is frequently used in the optical communication field.
[0008]
[Patent Document 1]
JP-A-2002-94035
[Problems to be solved by the invention]
However, in the above-described conventional package, the base 21, the plurality of external lead terminals 24, and the light-transmitting member 26 provided in the through hole 22a, or the lid 23 and the light-transmitting member The transparent member 26 is integrally formed by molding a resin such as an epoxy resin, and the positional accuracy of the transparent member 26 with respect to the optical semiconductor element 28 is good. Since the light-transmitting member 26 is attached, resin molding burrs adhere to the surface of the light-transmitting member 26, and there is a problem that an optical signal that enters and exits the light-transmitting member 26 cannot be transmitted efficiently.
[0010]
Further, in order to fix the position of the translucent member 26 at the time of molding, the translucent member 26 made of glass or the like must be directly pressed by a mold, so that the translucent member 26 is easily damaged by cracks or the like. Was. Furthermore, since the difference in thermal expansion between the resin and the translucent member 26 is large, there is also a problem that the translucent member 26 may be damaged such as cracks even after being attached to the base 21.
[0011]
Further, since the spherical or lens-shaped translucent member 26 has a small contact area with the inner surface of the through hole 22a, airtightness is caused by a difference in thermal expansion between the translucent member 26 made of glass or the like and the base 21 made of resin. There was also a problem that it was easily broken.
[0012]
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to maintain the positional accuracy of a light transmitting member with respect to an optical semiconductor element in a good state, and to provide a light transmitting member with a base. Provided is a package for storing an optical semiconductor element and an optical semiconductor device, which prevent the resin at the time of molding from attaching as burrs, prevent the light-transmitting member from being damaged such as cracks, and further improve the airtightness. Is to do.
[0013]
[Means for Solving the Problems]
An optical semiconductor element housing package of the present invention is formed from a base provided with a convex portion on which an optical semiconductor element is mounted on an upper surface on a bottom surface of a concave portion formed on an upper surface, and from the concave portion to an outer surface of the substrate. A through-hole, a cylindrical metal member fitted into the through-hole and having a protrusion formed on the outer peripheral surface embedded in the base, and a through-hole attached to the inside of the metal member. And an optical member.
[0014]
An optical semiconductor element housing package according to the present invention includes a cylindrical metal member fitted into a through hole of a base and having a protrusion formed on an outer peripheral surface embedded inside the base, , The airtightness at the portion of the light transmitting member of the package for storing an optical semiconductor element is greatly improved. Further, for example, when the base is made of a resin, it is possible to prevent burrs of the resin from adhering to the light transmitting member when the base is molded, and the mold does not directly contact the light transmitting member at the time of molding. In addition, since the base made of resin is not in direct contact with the translucent member after manufacturing, it is possible to prevent the translucent member from being damaged such as cracks.
[0015]
In the package for housing an optical semiconductor element according to the present invention, preferably, the metal member is characterized in that an axial thickness of the protrusion gradually decreases with increasing distance from a central axis of the metal member.
[0016]
In the package for housing an optical semiconductor element of the present invention, the metal member has a smaller thermal expansion difference between the metal member and the base since the axial thickness of the protrusion gradually decreases as the distance from the central axis of the metal member increases. The stress caused by the metal member is dispersed over the entire interface between the metal member and the base without locally concentrating, so that the light-transmitting member can be effectively prevented from being distorted by the stress applied to the metal member. As a result, the light-transmitting member The optical signal can be transmitted normally and stably without generating noise or the like in the optical signal transmitted through the optical signal.
[0017]
The optical semiconductor device of the present invention includes the optical semiconductor element housing package of the present invention, an optical semiconductor element mounted and fixed on an upper surface of the convex portion so as to be optically coupled to the translucent member, A lid attached around the recess on the upper surface of the base.
[0018]
With the above configuration, the optical semiconductor device of the present invention has excellent optical coupling efficiency using the optical semiconductor element housing package of the present invention and has high airtight reliability.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The package for storing an optical semiconductor element and the optical semiconductor device of the present invention will be described in detail below. FIG. 1 shows an example of an embodiment of a package of the present invention, wherein 1 is a base, 1a is a projection for mounting the optical semiconductor element 8, 2 is a side wall of the base 1, and 2a is a penetrating base 1. The hole 3, 3 is a cover, 4 is an external lead terminal, 5 is a bonding wire as an electrical connection means, 6 is a metal member, 6b is a translucent member, 7 is an optical fiber, and 8 is an optical semiconductor element. The base 1 for mounting and housing the optical semiconductor element 8 on the bottom surface of the concave portion 1b formed on the upper surface basically forms a container for housing the optical semiconductor element 8 inside.
[0020]
The package of the present invention is formed from a base 1 having a convex portion 1a on which an optical semiconductor element 8 is mounted on the bottom surface of a concave portion 1b formed on the upper surface, and from the concave portion 1b to an outer surface of the base 1. A through-hole 2a, a cylindrical metal member 6 fitted in the through-hole 2a and having a protrusion 6d formed on the outer peripheral surface embedded in the base 1, and attached to the inside 6a of the metal member 6 Light-transmitting member 6b.
[0021]
The base 1 of the present invention is a support member for housing and supporting the optical semiconductor element 8, and has a convex portion 1a for mounting the optical semiconductor element 8 at the center of the bottom surface of the concave portion 1b on the upper surface. The optical semiconductor element 8 is mounted and fixed on the upper surface of the projection 1a with an adhesive or the like. The side wall 2 of the base 1 forms a space inside the side wall 2 for accommodating the optical semiconductor element 8. Alternatively, the side wall 2 of the base 1 may be a separate frame, and the frame may be joined to the outer periphery of the upper surface of the bottom plate of the base 1 so as to surround the protrusion 1a.
[0022]
The base 1 is made of an epoxy resin, an electrically insulating resin such as an engineering plastic made of PPS, LCP, or the like, a ceramic such as an alumina (Al 2 O 3 ) sintered body (alumina ceramic), or a composite of a ceramic and a resin. It consists of materials, glass, glass ceramics, metals and the like.
[0023]
The configuration in which the metal member 6 is fitted into the through hole 2a of the base 1 and the protrusion 6d formed on the outer peripheral surface is embedded in the base 1 is, for example, a transfer mold method or a base made of resin. This is achieved by previously placing the metal member 6 at a predetermined position of the mold when molding by injection molding or the like.
[0024]
A plurality of external lead terminals 4 whose both ends protrude inward and outward of the side wall portion 2 are provided on the side wall portion 2 of the base 1. The electrodes 8 are electrically connected to each other via bonding wires 5, and the portions of the external lead terminals 4 protruding outside the side wall 2 are electrically connected to an external electric circuit, so that the optical semiconductor element 8 is electrically connected. These electrodes are electrically connected to an external electric circuit via the external lead terminals 4.
[0025]
The external lead terminal 4 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or an Fe-Ni alloy. For example, the external lead terminal 4 is rolled into an ingot made of an Fe-Ni-Co alloy or the like. It is formed into a predetermined shape by applying a conventionally known metal working method such as a punching method. The attachment of the external lead terminal 4 to the side wall portion 2 is performed by setting the external lead terminal 4 at a predetermined position in a mold before forming the base 1 by the transfer molding method or the injection molding method. , Are integrally attached to predetermined positions of the side wall portion 2 with both ends protruding into and out of the side wall portion 2.
[0026]
The external lead terminal 4 has a predetermined thickness (about 1 to 20 μm) of a metal such as Ni or Au (gold) having good conductivity, excellent corrosion resistance, and good wettability with a brazing material by plating on the exposed surface. It is preferable that the external lead terminal 4 be oxidized and corroded effectively, and that the connection between the external lead terminal 4 and the bonding wire 5 and the connection between the external lead terminal 4 and the external electric circuit be reliable. Can be expensive.
[0027]
The translucent member 6b of the present invention is made of glass, sapphire, or the like, but may be made of resin as long as transparency and a certain degree of hardness can be ensured.
[0028]
The metal member 6 having the light transmitting member 6b attached to the inner side 6a is fixed in a state where the light transmitting member 6b is opposed to the light input / output portion of the optical semiconductor element 8, and the optical fiber 7 is attached to the outer end face thereof. Bonding with a resin adhesive, a brazing material such as Ag wax, Au-Sn wax, solder, welding method such as YAG laser welding, etc., so that the light input / output end of the device faces the optical semiconductor element 8 via a metal holder or the like. Is fixed. The metal member 6 is made of a metal such as an Fe-Ni-Co alloy or an Fe-Ni alloy. The metal member 6 is formed by subjecting the Fe-Ni-Co alloy or the like to a conventionally known metal working method such as a rolling method or a press forming method. , Are manufactured to have a desired shape.
[0029]
The metal member 6 has a cylindrical shape with a protrusion 6d formed on the outer peripheral surface. Thus, the volume of the metal member 6 can be reduced, and the stress due to the difference in thermal expansion between the metal member 6 and the metal member 6 applied to the light-transmitting member 6b can be minimized. Can be prevented. Further, since the protrusion 6d is embedded in the base 1, the adhesion between the metal member 6 and the base 1 can be improved, and the metal member 6 can be firmly fixed to the base 1. As described above, the airtightness at the portion of the light transmitting member 6b of the package is greatly improved.
[0030]
Preferably, as shown in FIG. 2, the metal member 6 has a thickness gradually reduced with an increase in the axial thickness of the protrusion 6 d from the central axis of the metal member 6. With this configuration, the stress due to the difference in thermal expansion between the metal member 6 and the base 1 is dispersed locally over the entire interface between the metal member 6 and the base 1 without being locally concentrated, and the translucent member is stressed by the stress applied to the metal member 6. Distortion of the optical signal 6b can be effectively suppressed, and as a result, the optical signal can be transmitted normally and stably without generating noise or the like in the optical signal transmitted through the translucent member 6b.
[0031]
In addition, in FIG. 2, the tip of the protrusion 6 d preferably has a curved surface such as an arc shape, and the stress applied to the metal member 6 can be effectively dispersed. In addition, the entire protrusion 6d may be curved, and in this case, the stress can be effectively dispersed.
[0032]
Furthermore, in FIG. 2, the protrusion 6 d has a shape protruding from the entire side surface of the cylindrical portion 6 c of the metal member 6. However, the protrusion 6 d protrudes from a part of the side surface of the cylindrical portion 6 c and approaches the end. Accordingly, the thickness may be gradually reduced. In this case, the adhesion between the metal member 6 and the base 1 is further improved, and the stress applied to the metal member 6 can be effectively dispersed.
[0033]
The attachment of the metal member 6 to which the translucent member 6b is attached to the side wall portion 2 is performed in advance when the base 1 is formed of a resin by the transfer molding method or the injection molding method. A metal member 6 having a light-transmitting member 6b attached thereto is set at a predetermined position in the mold, and the outer peripheral end of the metal member 6 is embedded in the inner peripheral surface of the through hole 2a of the side wall portion 2. It is done in.
[0034]
When the metal member 6 to which the translucent member 6b is attached is set in a mold, the position may be fixed by pressing the cylindrical portion 6c of the metal member 6 with the die. Since the mold does not directly contact the 6b, it is possible to prevent the light transmitting member 6b from being damaged such as a crack. The metal member 6 to which the translucent member 6b is attached is integrally attached to a predetermined position of the side wall 2 at the same time when the base 1 is molded. The positional accuracy of the light-transmitting member 6b is improved, and it is possible to prevent resin burrs from adhering to the surface of the light-transmitting member 6b during molding.
[0035]
Further, since the difference in thermal expansion between the metal member 6 made of a metal having a low coefficient of thermal expansion such as an Fe—Ni—Co alloy and the light transmitting member 6 b is small, the light transmitting member 6 b The occurrence of breakage such as cracks can be prevented. Furthermore, since the metal member 6 is installed with its outer peripheral end buried in the inner peripheral surface of the through hole 2a of the base 1, the airtightness of the translucent member 6b and the metal member 6 is greatly improved.
[0036]
Therefore, the container formed by the base 1 and the lid 3 is completely sealed, and the optical semiconductor element 8 accommodated in the container can be normally and stably operated for a long time.
[0037]
The thickness of the translucent member 6b in the optical axis direction is substantially the same as the thickness between both end surfaces (both main surfaces) in the optical axis direction of the metal member 6, or between the both end surfaces of the metal member 6. It is preferably smaller than the thickness. If the thickness of the translucent member 6b in the optical axis direction is larger than the thickness between both end surfaces of the metal member 6, when molding the base 1, resin burrs adhere to the translucent member 6b, The mold abuts on the transparent member 6b, and the translucent member 6b is easily damaged. As described above, the thickness of the metal member 6 in the optical axis direction is substantially the same as the thickness of the translucent member 6b, and is about 0.5 to 7 mm.
[0038]
The optical fiber 7 bonded to the metal member 6 to which the translucent member 6b is attached is for transmitting light emitted from the optical semiconductor element 8 to the outside or transmitting light from the outside to the optical semiconductor element 8. Functions as a light transmission path.
[0039]
Further, a lid 3 is attached to the upper surface of the side wall 2 via a sealing material made of a resin adhesive or the like, and the lid 1 closes the inside of the substrate 1 to form the base 1 and the lid 3. The optical semiconductor element 8 is accommodated in a container to be manufactured.
[0040]
In the present invention, it is preferable that the base 1 is made of resin, and the surface roughness of the protrusion 6d of the metal member 6 embedded in the base 1 is 1.6 to 25 μm in maximum height. By setting the maximum height (JIS B0601) of the surface roughness of the protrusion 6d to 1.6 to 25 μm, the metal member 6 can be firmly fixed to the base 1, and the optical semiconductor element 8 can be hermetically sealed. Further, even when pressure is applied to the metal member 6 due to a pressure difference between the inside and outside of the base 1, the metal member 6 can be prevented from being displaced from a predetermined position on the base 1. Therefore, the metal member 6 to which the translucent member 6b is attached and the optical semiconductor element 8 are more accurately opposed to each other, and the optical coupling efficiency between the translucent member 6b and the optical semiconductor element 8 is maintained at a high efficiency. it can.
[0041]
If the maximum height of the surface of the protrusion 6d of the metal member 6 is less than 1.6 μm, insufficient adhesion between the base 1 and the metal member 6 occurs, and poor airtightness is likely to occur. When the thickness exceeds 25 μm, the epoxy-based thermosetting resin becomes difficult to flow on the contrary, so that molding defects, voids and the like are generated, and airtight defects are liable to occur.
[0042]
Thus, the package according to the present invention includes the convex portion of the base 1 that fixes the metal member 6 to which the translucent member 6b is attached to the side wall portion 2 such that the translucent member 6b faces the optical semiconductor element 8. The optical semiconductor element 8 is placed and fixed on the upper surface of the semiconductor device 1a, and each electrode of the optical semiconductor element 8 is electrically connected to a predetermined external lead terminal 4 via a bonding wire 5, and the optical fiber 7 is bonded to the metal member 6. Thereafter, the lid 3 is attached to the upper surface of the side wall 2 via a sealing material, and the optical semiconductor element 8 is accommodated in a container formed of the base 1 and the lid 3, whereby light as a product is obtained. It becomes a semiconductor device.
[0043]
In this optical semiconductor device, a drive signal supplied from an external electric circuit is input to the optical semiconductor element 8 via the external lead terminal 4 to excite the optical semiconductor element 8 and transmit the excited light to the translucent member 6b. Or the light transmitted through the optical fiber 7 is received by the optical semiconductor element 8 through the translucent member 6b, and the optical semiconductor element 8 generates an electric signal corresponding to the received light. The optical semiconductor device operates by extracting the electric signal via the external lead terminal 4, and such an optical semiconductor device is used in the field of optical communication and the like.
[0044]
The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present invention.
[0045]
【The invention's effect】
The package for housing an optical semiconductor element of the present invention has a base provided with a convex portion on which the optical semiconductor element is mounted on the bottom surface of the concave portion formed on the upper surface, and a through hole formed from the concave portion to the outer surface of the base. A cylindrical metal member fitted with a hole, a projection formed on the outer peripheral surface and fitted in the through hole, and a translucent member attached inside the metal member Therefore, the airtightness at the portion of the light-transmitting member of the package for housing an optical semiconductor element is greatly improved. Further, for example, when the base is made of a resin, it is possible to prevent burrs of the resin from adhering to the light transmitting member when the base is molded, and the mold does not directly contact the light transmitting member at the time of molding. In addition, since the base made of resin is not in direct contact with the translucent member after manufacturing, it is possible to prevent the translucent member from being damaged such as cracks.
[0046]
In the package for housing an optical semiconductor element of the present invention, the metal member has a smaller thermal expansion difference between the metal member and the base since the axial thickness of the protrusion gradually decreases as the distance from the central axis of the metal member increases. The stress caused by the metal member is dispersed over the entire interface between the metal member and the base without locally concentrating, so that the light-transmitting member can be effectively prevented from being distorted by the stress applied to the metal member. As a result, the light-transmitting member The optical signal can be transmitted normally and stably without generating noise or the like in the optical signal transmitted through the optical signal.
[0047]
The optical semiconductor device of the present invention includes the optical semiconductor element housing package of the present invention, an optical semiconductor element mounted and fixed on the upper surface of the convex portion so as to be optically coupled to the translucent member, and the upper surface of the base. And a lid attached around the concave portion, the optical semiconductor device has excellent optical coupling efficiency and high airtight reliability using the optical semiconductor element housing package of the present invention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of an optical semiconductor element housing package of the present invention.
FIG. 2 is a sectional view showing another example of the embodiment of the package for housing an optical semiconductor element of the present invention.
FIG. 3 is a sectional view showing an example of a conventional package for housing an optical semiconductor element.
[Explanation of symbols]
1: Base 1a: convex portion 1b: concave portion 2a: through hole 3: lid 6: metal member 6b: translucent member 6d: protrusion 8: optical semiconductor element

Claims (3)

上面に形成された凹部の底面に光半導体素子を上面に載置する凸部が設けられている基体と、前記凹部から前記基体の外側面にかけて形成された貫通孔と、該貫通孔に嵌着されるとともに外周面に形成された突部が前記基体の内部に埋め込まれている筒状の金属部材と、該金属部材の内側に取着された透光性部材とを具備していることを特徴とする光半導体素子収納用パッケージ。A base provided with a convex portion for mounting the optical semiconductor element on the upper surface on the bottom surface of the concave portion formed on the upper surface, a through hole formed from the concave portion to the outer surface of the base, and fitted in the through hole; And a projection formed on the outer peripheral surface includes a cylindrical metal member embedded inside the base, and a translucent member attached inside the metal member. Characteristic package for storing optical semiconductor elements. 前記金属部材は、前記突部の軸方向の厚みが前記金属部材の中心軸から離れるに伴って漸次薄くなっていることを特徴とする請求項1記載の光半導体素子収納用パッケージ。2. The package for housing an optical semiconductor element according to claim 1, wherein the metal member has a thickness in the axial direction of the protrusion gradually reduced as the distance from the central axis of the metal member increases. 請求項1または請求項2記載の光半導体素子収納用パッケージと、前記透光性部材に光学的に結合するように前記凸部の上面に載置固定された光半導体素子と、前記基体の上面の前記凹部の周囲に取着された蓋体とを具備していることを特徴とする光半導体装置。3. The package for housing an optical semiconductor element according to claim 1, wherein the optical semiconductor element is mounted and fixed on an upper surface of the projection so as to be optically coupled to the light transmitting member, and an upper surface of the base. And a lid attached around the recess.
JP2003037555A 2003-02-17 2003-02-17 Package for housing optical semiconductor element and optical semiconductor system Pending JP2004246218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037555A JP2004246218A (en) 2003-02-17 2003-02-17 Package for housing optical semiconductor element and optical semiconductor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037555A JP2004246218A (en) 2003-02-17 2003-02-17 Package for housing optical semiconductor element and optical semiconductor system

Publications (1)

Publication Number Publication Date
JP2004246218A true JP2004246218A (en) 2004-09-02

Family

ID=33022320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037555A Pending JP2004246218A (en) 2003-02-17 2003-02-17 Package for housing optical semiconductor element and optical semiconductor system

Country Status (1)

Country Link
JP (1) JP2004246218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2277070B1 (en) * 2008-04-09 2015-02-11 Yazaki Corporation Optical communication module
WO2023226153A1 (en) * 2022-05-24 2023-11-30 成都万应微电子有限公司 Optical chip package structure and optical chip packaging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2277070B1 (en) * 2008-04-09 2015-02-11 Yazaki Corporation Optical communication module
WO2023226153A1 (en) * 2022-05-24 2023-11-30 成都万应微电子有限公司 Optical chip package structure and optical chip packaging method

Similar Documents

Publication Publication Date Title
US8120128B2 (en) Optical device
US7420754B2 (en) Optical module and method for manufacturing the same
US20070205419A1 (en) Semiconductor device and its manufacturing method
JP2021518666A (en) Manufacturing method of optoelectronic parts and optoelectronic parts
JP4454237B2 (en) Light emitting element storage package and light emitting device
US8853933B2 (en) Light emitting device, and method for manufacturing circuit board
JP3869575B2 (en) Semiconductor laser
JP2004246218A (en) Package for housing optical semiconductor element and optical semiconductor system
JP2006332685A (en) Solid-state imaging device
JP2007173271A (en) Package for housing light emitting device
JP2007048937A (en) Semiconductor laser and manufacturing method thereof
JP2004031378A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2004309506A (en) Optical semiconductor element storage package, and optical semiconductor device
JP2004111406A (en) Package for housing optical semiconductor device and optical semiconductor device
JP2008294418A (en) Package and electronic device
JP2004146753A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP5359135B2 (en) Light emitting device
JP2006278607A (en) Surface-mounting resin-made hollow package and semiconductor device using the same
JP2004253409A (en) Optical semiconductor element accommodating package and optical semiconductor device
JP2004146404A (en) Package for housing electronic part, electronic apparatus, optical semiconductor device and package for housing the same
JP2004031815A (en) Lid and optical device containing package employing the same
JP4199486B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004294782A (en) Optical semiconductor element-housing package and optical semiconductor device
JP3898520B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2005142334A (en) Premolding type semiconductor package and semiconductor device using same