JP2004309506A - Optical semiconductor element storage package, and optical semiconductor device - Google Patents

Optical semiconductor element storage package, and optical semiconductor device Download PDF

Info

Publication number
JP2004309506A
JP2004309506A JP2003084280A JP2003084280A JP2004309506A JP 2004309506 A JP2004309506 A JP 2004309506A JP 2003084280 A JP2003084280 A JP 2003084280A JP 2003084280 A JP2003084280 A JP 2003084280A JP 2004309506 A JP2004309506 A JP 2004309506A
Authority
JP
Japan
Prior art keywords
mounting portion
optical semiconductor
semiconductor element
spherical lens
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003084280A
Other languages
Japanese (ja)
Inventor
Takahiro Kihara
隆裕 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003084280A priority Critical patent/JP2004309506A/en
Publication of JP2004309506A publication Critical patent/JP2004309506A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical semiconductor element storage package in which optical coupling efficiency between an optical semiconductor element and an optical fiber is excellently maintained and optical signals are efficiently transmitted. <P>SOLUTION: The optical semiconductor element storage package is provided with: a base body 1, which has a mounting section 1c that has a rectangular parallelepiped shape projecting part to mount an optical semiconductor element 2 on the bottom surface of a recessed part 1a formed on a top side main surface; and a fitting section 1b which has a through-hole formed on the side wall section of the body 1 to fit an optical fiber 5. On the body 1, a lens mounting section 1d, whose cross section is a circular shape, is formed at a portion between the sections 1b and 1c of the top side main surface and a spherical lens 3 having a diameter, which is greater than the opening of the section 1d, is mounted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野等に用いられ、光半導体素子を収納するための光半導体素子収納用パッケージおよび光半導体装置に関する。
【0002】
【従来の技術】
従来、光通信分野に使用され、電気信号を光信号に変換する半導体レーザ(LD)や光信号を電気信号に変換するフォトダイオード(PD)等の光半導体素子を収容するための光半導体素子収納用パッケージ(以下、単にパッケージともいう)の一例を図3に示す。図3は従来のパッケージの断面図である。
【0003】
図3において、11は上面に凹部11aを有する基体、12は光半導体素子、16は光半導体素子12を搭載するサブマウント、16aはサブマウント16の上面に形成されたレンズ取付部、13はレンズ取付部16aに載置固定された球状レンズ、14は蓋体である。
【0004】
基体11は、アルミナ(Al)質セラミックス,窒化アルミニウム(AlN)質セラミックス,ムライト(3Al・2SiO)質セラミックス等の誘電体より形成されており、その底面に光半導体素子12を搭載するためのサブマウント16が載置固定されている。また、外部から駆動信号を取り入れて内部に収納する光半導体素子12を駆動させるため、または光半導体素子12から出力された電気信号を外部に取り出すためのメタライズ層や金属製の端子(図示せず)が設けられている。
【0005】
サブマウント16は、シリコン(Si)等から成る基板から成り、その上面をエッチング等で加工することにより断面形状がV字形のV溝から成るレンズ取付部16aが上面の光半導体素子12の近傍から側面にかけて形成されている。そして、レンズ取付部16aに球状レンズ13が載置固定されている。
【0006】
これにより、サブマウント16に搭載される光半導体素子12と球状レンズ13との位置精度を良好にすることができ、その結果、球状レンズ13と光半導体素子12との光学的結合を良好なものとすることができる(例えば、下記の特許文献1参照)。
【0007】
このようなパッケージのサブマウント16の上面に光半導体素子12が接着剤等により搭載固定され、光ファイバ15の一端部が基体11の側壁部に形成した貫通穴からなる取付部11bに挿通されるとともに取付部11bの内面に支持固定されることにより、光半導体素子12と光ファイバ15とが球状レンズ13を介して光学的に結合される。そして、基体11の上面に樹脂接着剤,ロウ材等を介して蓋体14が取着されて内部が気密に封止されることにより光半導体装置となる。
【0008】
この光半導体装置は、基体11内部の光半導体素子12から光信号を発光させ、この光信号を取付部11bに取りつけられた光ファイバ15を通して外部へ出力することにより、または、光ファイバ15を伝達してくる光信号を光半導体素子12に受光させ、この受光した光信号を光半導体素子12で電気信号に変換することにより、高速光通信分野等で用いられる光半導体装置として機能する。
【0009】
【特許文献1】
特開平7−199006号公報
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来のパッケージにおいては、作動時に光半導体素子12が発熱すると、サブマウント16と基体11との間で熱膨張差が生じてサブマウント16が反り、光ファイバ15と光半導体素子12との光結合効率が劣化するという問題点があった。
【0011】
また、球状レンズ13はサブマウント16の上面に形成されたV溝から成るレンズ取付部16aに載置固定されるため、球状レンズ13をレンズ取付部16aに取着する際、球状レンズ13がレンズ取付部16aに沿ってずれ易く、球状レンズ13をレンズ取付部16aの所定の位置に精度よく載置固定するのが困難であった。また、球状レンズ13とレンズ取付部16aとの接点が2点しかなく非常に小さいため、球状レンズ13をレンズ取付部16aに低融点のガラスやロウ材で強固に固定することができず、球状レンズ13とレンズ取付部16aとの取着部が剥離し易くなり、その結果、光半導体素子12と球状レンズ13との光学的結合が劣化するという問題点もあった。
【0012】
従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、光半導体素子と光ファイバとの光結合効率を良好にし、光信号を効率よく伝送し得る光半導体素子収納用パッケージおよび光半導体装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明の光半導体素子収納用パッケージは、上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、該基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、前記基体は、前記上側主面の前記取付部と前記載置部との間の部位に横断面形状が円形状の凹部から成るレンズ取付部が形成されており、該レンズ取付部の開口に該開口よりも大きな直径の球状レンズが取着されていることを特徴とする。
【0014】
本発明の光半導体素子収納用パッケージは、上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、この基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、基体は、上側主面の取付部と載置部との間の部位に横断面形状が円形状の凹部から成るレンズ取付部が形成されており、このレンズ取付部の開口にこの開口よりも大きな直径の球状レンズが取着されていることから、載置部と基体とが一体となっているため、これらの熱膨張差が要因となって載置部や基体に反りが発生するということはなく、作動時に光半導体素子が発熱しても載置部の位置精度が維持され、その結果、光ファイバと光半導体素子との光結合効率を良好に維持することができる。
【0015】
また、基体の上側主面に形成したレンズ取付部の開口が全周にわたって球状レンズに接して支持することができるため、球状レンズをレンズ取付部に取着する際、球状レンズがずれるのを有効に防止し、球状レンズを位置精度良く固定することができる。さらに、球状レンズとレンズ取付部との取着部分を大きくすることができるため、球状レンズとレンズ取付部との取着強度が大きくなって取着部が剥離することもなく、球状レンズをレンズ取付部に長期にわたって確実に載置固定することができる。その結果、光半導体素子と球状レンズとの光学的結合を良好なものとし、光ファイバと光半導体素子と間の光信号の伝送効率を向上させることができる。
【0016】
本発明の光半導体素子収納用パッケージは、上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、該基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、前記基体は、前記上側主面の前記取付部と前記載置部との間の部位に環状部材が接合されており、該環状部材の開口に該開口よりも大きな直径の球状レンズが取着されていることを特徴とする。
【0017】
本発明の光半導体素子収納用パッケージは、上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、この基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、基体は、上側主面の取付部と載置部との間の部位に環状部材が接合されており、この環状部材の開口にこの開口よりも大きな直径の球状レンズが取着されていることから、載置部と基体とが一体となっているため、これらの熱膨張差が要因となって載置部や基体に反りが発生するということはなく、作動時に光半導体素子が発熱しても載置部の位置精度が維持され、その結果、光ファイバと光半導体素子との光結合効率を良好に維持することができる。
【0018】
また、基体の上側主面に接合した環状部材の開口が全周にわたって球状レンズに接して支持することができるため、球状レンズを環状部材に取着する際、球状レンズがずれるのを有効に防止し、球状レンズを位置精度良く固定することができる。さらに、球状レンズと環状部材との取着部分を大きくすることができるため、球状レンズと環状部材との取着強度が大きくなって取着部が剥離することもなく、球状レンズを環状部材に長期にわたって確実に載置固定することができる。その結果、光半導体素子と球状レンズとの光学的結合を良好なものとし、光ファイバと光半導体素子と間の光信号の伝送効率を向上させることができる。
【0019】
さらに、基体が歪んだとしても環状部材で歪みによる応力を吸収することができるため、球状レンズに応力によってクラックが生じるのを有効に抑制することができる。
【0020】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、前記取付部に一端部が挿通されて固定された光ファイバと、前記載置部に搭載固定されるとともに前記球状レンズを介して前記光ファイバと光学的に結合された光半導体素子と、前記側壁部の上面に取着された蓋体とを具備していることを特徴とする。
【0021】
本発明の光半導体装置は、上記の構成により、上記本発明の光半導体素子収納用パッケージを用いた、光信号の伝送効率に優れたものとなる。
【0022】
【発明の実施の形態】
本発明の光半導体素子収納用パッケージについて以下に詳細を説明する。図1は本発明のパッケージについて実施の形態の例を示す断面図であり、図2は本発明のパッケージの要部拡大断面図である。
【0023】
図1,図2において、1は基体、1bは光ファイバ5の取付部、1cは載置部、1dはレンズ取付部、2は光半導体素子、3は球状レンズ、4は蓋体である。基体1と蓋体4とで内部に光半導体素子2を収容するための容器が構成される。
【0024】
本発明のパッケージは、上側主面に形成された凹部1aの底面に光半導体素子2を載置するための直方体状の凸部から成る載置部1cを有する誘電体から成る基体1と、この基体1の側壁部に形成された貫通孔から成る光ファイバ5の取付部1bとを具備しており、基体1は、上側主面の取付部1bと載置部1cとの間の部位に横断面形状が円形状の凹部から成るレンズ取付部1dが形成されており、このレンズ取付部1dの開口にこの開口よりも大きな直径の球状レンズ3が取着されている。
【0025】
基体1は、凸部から成る載置部1cが一体となっており、アルミナ(Al)質セラミックス,窒化アルミニウム(AlN)質セラミックス,ムライト(3Al・2SiO)質セラミックス等の誘電体よりなる。また、外部から駆動信号を取り入れて内部に収納する光半導体素子2を駆動させるため、または光半導体素子2から出力された電気信号を外部に取り出すためのメタライズ層や金属製の端子等の導体層(図示せず)が設けられている。
【0026】
このような基体1は、セラミックグリーンシートに金型等によって打ち抜き加工を施すとともに、基体1の内外を導通させ、光半導体素子2に駆動信号を入力したり光半導体素子2から出力された電気信号を外部へ取り出したりするための導体層となるW,Mo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを塗布し、これらのセラミックグリーンシートを積層,焼成することによって作製される。
【0027】
また、基体1は樹脂から成っていてもよく、エポキシ系熱硬化性樹脂を用いたトランスファモールド成型法や、ポリフェニレンサルファイト(PPS),液晶ポリマー(LCP)等の熱可塑性樹脂を用いたインジェクション成型法等によって作製される。この場合、基体1の側壁部には、光半導体素子2に駆動信号を入力したり光半導体素子2から出力された電気信号を取り出したりするための鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金やFe−Ni合金等の金属製の端子(図示せず)が取り付けられている。
【0028】
この金属製の端子は、例えば、Fe−Ni−Co合金等から成るインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定形状に形成される。また端子は、その露出する表面に良導電性で耐蝕性に優れたNiや金(Au)等の金属をめっき法により所定厚み(1〜20μm程度)に被着させておくのがよく、端子の酸化腐蝕を有効に防止できるとともに端子とボンディングワイヤ等の電気的な接続手段との接続を信頼性の高いものとなすことができる。
【0029】
球状レンズ3は、ガラスやサファイア等の透光性部材からなり、図2に示すように、基体1の上側主面の取付部1bと載置部1cとの間の部位に形成された横断面形状が円形状の凹部から成るレンズ取付部1dの開口に低融点ガラス(融点350〜550℃)やロウ材、樹脂接着材等の接着剤を介して全周にわたって取着されている。なお、球状レンズ3の材質や大きさは、光信号のスポット径や、焦点距離等によって適宜選定される。
【0030】
球状レンズ3は以下のようにしてレンズ取付部1dの開口に取着される。先ず、レンズ取付部1dの開口付近にリング状に低融点ガラスをあらかじめ被着しておき、その上に球状レンズ3を設置する。その後、熱を加えて低融点ガラスを溶融させることにより球状レンズ3を取着させる。または、球状レンズ3の取着部分に、例えばチタン(Ti)層またはクロム(Cr)層を下地として、白金(Pt)層やAu層を順次蒸着して金属膜を施す。そして、レンズ取付部1dの開口にリング状にAu−錫(Sn)ロウ,Au−ゲルマニウム(Ge)ロウ等の低融点のロウ材をあらかじめ被着し、その上に球状レンズ3を設置した後、ロウ材を溶融させることで球状レンズ3を取着させる。なお、球状レンズ3がサファイア等の高融点のものであれば、Agロウ等を用いて取着してもよい。
【0031】
レンズ取付部1dは、横断面形状が円形状の凹部からなり、円柱状(図1)や球面状、逆円錐状等の形状とされる。
【0032】
レンズ取付部1dが円柱状である場合、球状レンズ3の直径をa1,レンズ取付部1dの直径をa2としたとき、0.5×a1≦a2≦0.85×a1であるのがよい。この構成により、球状レンズ3とレンズ取付部1dとの取着強度を強固にすることができるとともに、球状レンズ3のレンズ取付部1dの内側に入り込んで光透過が妨げられる部分の割合を最小限に抑え、光信号の損失が生じるのをより有効に抑制することができる。a2<0.5×a1であると、レンズ取付部1dの開口の外周の長さが短くなり、球状レンズ3とレンズ取付部1dとの取着強度が小さくなり易い。また、a2>0.85×a1であると、球状レンズ3のレンズ取付部1dの内側に入り込む部分の割合が大きくなり、球状レンズ3を透過する光信号の損失が大きくなり易い。
【0033】
また、レンズ取付部1dが円柱状である場合、レンズ取付部1dの深さは球状レンズ3がレンズ取付部1dの開口に取着されたときに底面に接触する深さ以上である。この構成により、レンズ取付部1dの開口に球状レンズ3を嵌め込むことにより精度良く球状レンズ3を固定することができる。また、レンズ取付部1dの内面と球面レンズ3との間の接合材の体積が大きくなり、球状レンズ3と基体1との熱膨張差によって生じる応力をこの接合材により有効に吸収することができる。
【0034】
レンズ取付部1dが球面状である場合、その曲率半径が球状レンズ3の曲率半径以下である。レンズ取付部1dの曲率半径が球状レンズ3の曲率半径と同じである場合、レンズ取付部1dの内面全体で球状レンズ3を取着することができ、取着強度がより強固になる。また、レンズ取付部1dの曲率半径が球状レンズ3の曲率半径よりも小さい場合、レンズ取付部1dの内面と球面レンズ3との間の接合材の体積が大きくなり、球状レンズ3と基体1との熱膨張差によって生じる応力をこの接合材により有効に吸収することができる。
【0035】
また、レンズ取付部1dが逆円錐状である場合、球面レンズ3の下側に大きな体積の接合材を溜めることができ、球状レンズ3と基体1との熱膨張差によって生じる応力をこの接合材により有効に吸収することができる。
【0036】
次に第2の発明のパッケージについて以下に詳細を説明する。図4は本発明のパッケージについて実施の形態の例を示す断面図であり、図5は本発明のパッケージの要部拡大断面図である。
【0037】
図4,図5において、1は基体、1bは光ファイバ5の取付部、1cは載置部、2は光半導体素子、3は球状レンズ、4は蓋体、6は環状部材である。基体1と蓋体4とで内部に光半導体素子2を収容するための容器が構成される。
【0038】
本発明のパッケージは、上側主面に形成された凹部1aの底面に光半導体素子2を載置するための直方体状の凸部から成る載置部1cを有する誘電体から成る基体1と、この基体1の側壁部に形成された貫通孔から成る光ファイバの取付部1bとを具備しており、基体1は、上側主面の取付部1bと載置部1cとの間の部位に環状部材6が接合されており、この環状部材6の開口にこの開口よりも大きな直径の球状レンズ3が取着されている
基体1は、凸部から成る載置部1cが一体となっており、アルミナ(Al)質セラミックス,窒化アルミニウム(AlN)質セラミックス,ムライト(3Al・2SiO)質セラミックス等の誘電体よりなる。また、外部から駆動信号を取り入れて内部に収納する光半導体素子2を駆動させるため、または光半導体素子2から出力された電気信号を外部に取り出すためのメタライズ層や金属製の端子等の導体層(図示せず)が設けられている。
【0039】
このような基体1は、セラミックグリーンシートに金型等によって打ち抜き加工を施すとともに、基体1の内外を導通させ、光半導体素子2に駆動信号を入力したり光半導体素子2から出力された電気信号を外部へ取り出したりするための導体層となるW,Mo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを塗布し、これらのセラミックグリーンシートを積層,焼成することによって作製される。
【0040】
また、基体1は樹脂から成っていてもよく、エポキシ系熱硬化性樹脂を用いたトランスファモールド成型法や、ポリフェニレンサルファイト(PPS),液晶ポリマー(LCP)等の熱可塑性樹脂を用いたインジェクション成型法等によって作製される。この場合、基体1の側壁部には、光半導体素子2に駆動信号を入力したり光半導体素子2から出力された電気信号を取り出したりするための鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金やFe−Ni合金等の金属製の端子(図示せず)が取り付けられている。
【0041】
この金属製の端子は、例えば、Fe−Ni−Co合金等から成るインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定形状に形成される。また端子は、その露出する表面に良導電性で耐蝕性に優れたNiや金(Au)等の金属をめっき法により所定厚み(1〜20μm程度)に被着させておくのがよく、端子の酸化腐蝕を有効に防止できるとともに端子とボンディングワイヤ等の電気的な接続手段との接続を信頼性の高いものとなすことができる。
【0042】
環状部材6は、Fe−Ni−Co合金等の金属からなり、図4に示すように、基体1の上側主面の取付部1bと載置部1cとの間の部位に、ロウ材や、樹脂接着剤などの接着剤を介して接合される。
【0043】
球状レンズ3は、ガラスやサファイア等の透光性部材からなり、図4に示すように、基体1の上側主面の取付部1bと載置部1cとの間の部位に形成された環状部材6の開口に低融点ガラス(融点350〜550℃)やロウ材、樹脂接着材等の接着剤を介して全周にわたって取着されている。なお、球状レンズ3の材質や大きさは、光信号のスポット径や、焦点距離等によって適宜選定される。
【0044】
球状レンズ3は以下のようにして環状部材6の開口に取着される。先ず、環状部材6の開口付近にリング状に低融点ガラスをあらかじめ被着しておき、その上に球状レンズ3を設置する。その後、熱を加えて低融点ガラスを溶融させることにより球状レンズ3を取着させる。または、球状レンズ3の取着部分に、例えばチタン(Ti)層またはクロム(Cr)層を下地として、白金(Pt)層やAu層を順次蒸着して金属膜を施す。そして、環状部材6の開口にリング状にAu−錫(Sn)ロウ,Au−ゲルマニウム(Ge)ロウ等の低融点のロウ材をあらかじめ被着し、その上に球状レンズ3を設置した後、ロウ材を溶融させることで球状レンズ3を取着させる。なお、球状レンズ3がサファイア等の高融点のものであれば、Agロウ等を用いて取着してもよい。
【0045】
環状部材6の大きさは、球状レンズ3の直径をa1,環状部材6の開口の直径をa3としたとき、0.5×a1≦a3≦0.85×a1であるのがよい。この構成により、球状レンズ3と環状部材6との取着強度を強固にすることができるとともに、球状レンズ3の環状部材6の内側に入り込んで光透過が妨げられる部分の割合を最小限に抑え、光信号の損失が生じるのをより有効に抑制することができる。a3<0.5×a1であると、環状部材6の開口の外周長さが短くなり、球状レンズ3と環状部材6との取着強度が小さくなり易い。また、a3>0.85×a1であると、球状レンズ3の環状部材6の内側に入り込む部分の割合が大きくなり、球状レンズ3を透過する光信号の損失が大きくなり易い。
【0046】
また環状部材6は、横断面形状が円形状の貫通孔を有する板状部材であればよく、外形は円形状や四角形状等の種々の形状とすることができる。環状部材6の高さは球状レンズ3が環状部材6の開口に取着されたときに底面に接触する高さ以上である。この構成により、環状部材6の開口に球状レンズ3を嵌め込むことにより精度良く球状レンズ3を固定することができる。また、環状部材6の内面と球面レンズ3との間の接合材の体積が大きくなり、球状レンズ3と基体1との熱膨張差によって生じる応力をこの接合材により有効に吸収することができる。
【0047】
さらに環状部材6は、球状レンズ3が取着される開口部が全周にわたって、直線状や上に凸になった曲面状、中央部が凹んだ曲面状等の形状に面取りされているのがよい。これにより、環状部材6の開口部の角に熱応力が集中して球状レンズ3にクラックが発生するのを有効に抑制することができる。
【0048】
また環状部材6は、完全に環状でなくともよく、好ましくは、側部に縦に1つまたはそれ以上の切断部を有しているのがよい。これにより、環状部材6に熱応力が加わった場合に環状部材6が適度に動くことができるので応力を緩和することが可能となり、その結果、球状レンズ3にクラックを生じたり、球状レンズ3の位置がずれたりするのを有効に抑制することができる。
【0049】
本発明の光半導体装置は、上記本発明のパッケージと、取付部1bに一端部が挿通されて接着剤やロウ材等で固定された光ファイバ5と、載置部1cに接着剤などで搭載固定されるとともに球状レンズ3を介して光ファイバ5と光学的に結合された光半導体素子2と、基体1の側壁部の上面に樹脂製接着剤等から成る封止材で取着された金属やセラミックス、樹脂等から成る蓋体4とを具備している。
【0050】
なお、光ファイバ5は、その一端部に光ファイバ5を固定するためのフェルール等の固定部材を設け、この固定部材を介して取付部1bに取着されてもよい。
【0051】
本発明の光半導体装置は、基体1内部の光半導体素子2から光信号が発光され、この光信号がレンズ取付部1dに載置固定された球状レンズ3で集光されて取付部1bに設置固定された光ファイバ5に伝送され、光ファイバ5を介して外部へ出力されることにより、または、光ファイバ5を伝達してくる光信号がレンズ取付部1dに載置固定された球状レンズ3で集光されて光半導体素子2に受光され、受光された光信号に対応する電気信号を光半導体素子2により出力させることにより、高速光通信分野等で用いられる光半導体装置として機能する。
【0052】
かくして、本発明のパッケージは、凸部から成る載置部1c,レンズ取付部1dを基体1と一体成型することにより、作動時に光半導体素子2が発熱しても凸部1cと基体1とが同じ材質から成るため、基体1との熱膨張差によって凸部1cに反りが発生することがなく、その結果、光ファイバ5と光半導体素子2との光結合効率を良好に維持できる。または、環状部材6を接合することによる球状レンズ3を基体1の正確な位置に強固に固定でき、光ファイバ5と光半導体素子2との光結合効率を良好に維持できる。
【0053】
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更は可能である。
【0054】
【発明の効果】
本発明の光半導体素子収納用パッケージは、上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、この基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、基体は、上側主面の取付部と載置部との間の部位に横断面形状が円形状の凹部から成るレンズ取付部が形成されており、このレンズ取付部の開口にこの開口よりも大きな直径の球状レンズが取着されていることから、載置部と基体とが一体となっているため、これらの熱膨張差が要因となって載置部や基体に反りが発生するということはなく、作動時に光半導体素子が発熱しても載置部の位置精度が維持され、その結果、光ファイバと光半導体素子との光結合効率を良好に維持することができる。
【0055】
また、基体の上側主面に形成したレンズ取付部の開口が全周にわたって球状レンズを支持することができるため、球状レンズをレンズ取付部に取着する際、球状レンズがずれるのを防止し、球状レンズを位置精度良く固定することができる。さらに、球状レンズとレンズ取付部との取着面積を大きくすることができるため、球状レンズとレンズ取付部との取着強度が大きくなって取着部が剥離することもなく、球状レンズをレンズ取付部に長期にわたって確実に載置固定することができる。その結果、光半導体素子と球状レンズとの光学的結合を良好なものとし、光ファイバと光半導体素子と間の光信号の伝送効率を向上させることができる。
【0056】
本発明の光半導体素子収納用パッケージは、上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、この基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、基体は、上側主面の取付部と載置部との間の部位に環状部材が接合されており、この環状部材の開口にこの開口よりも大きな直径の球状レンズが取着されていることから、載置部と基体とが一体となっているため、これらの熱膨張差が要因となって載置部や基体に反りが発生するということはなく、作動時に光半導体素子が発熱しても載置部の位置精度が維持され、その結果、光ファイバと光半導体素子との光結合効率を良好に維持することができる。
【0057】
また、基体の上側主面に接合した環状部材の開口が全周にわたって球状レンズに接して支持することができるため、球状レンズを環状部材に取着する際、球状レンズがずれるのを有効に防止し、球状レンズを位置精度良く固定することができる。さらに、球状レンズと環状部材との取着部分を大きくすることができるため、球状レンズと環状部材との取着強度が大きくなって取着部が剥離することもなく、球状レンズを環状部材に長期にわたって確実に載置固定することができる。その結果、光半導体素子と球状レンズとの光学的結合を良好なものとし、光ファイバと光半導体素子と間の光信号の伝送効率を向上させることができる。
【0058】
さらに、基体が歪んだとしても環状部材で歪みによる応力を吸収することができるため、球状レンズに応力によってクラックが生じるのを有効に抑制することができる。
【0059】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、取付部に一端部が挿通されて固定された光ファイバと、載置部に搭載固定されるとともに球状レンズを介して光ファイバと光学的に結合された光半導体素子と、側壁部の上面に取着された蓋体とを具備していることにより、上記本発明の光半導体素子収納用パッケージを用いた、光信号の伝送効率に優れたものとなる。
【図面の簡単な説明】
【図1】本発明の光半導体素子収納用パッケージについて実施の形態の例を示す断面図である。
【図2】図1の光半導体素子収納用パッケージの要部拡大断面図である。
【図3】従来の光半導体素子収納用パッケージの例を示す断面図である。
【図4】本発明の他の発明による光半導体素子収納用パッケージについて実施の形態の例を示す断面図である。
【図5】図4の光半導体素子収納用パッケージの要部拡大断面図である。
【符号の説明】
1:基体
1a:凹部
1b:取付部
1c:載置部
1d:レンズ取付部
2:光半導体素子
3:球状レンズ
4:蓋体
5:光ファイバ
6:環状部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element and an optical semiconductor device used in an optical communication field or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, optical semiconductor element housings for housing optical semiconductor elements such as a semiconductor laser (LD) that converts an electric signal into an optical signal and a photodiode (PD) that converts an optical signal into an electric signal are used in the optical communication field. FIG. 3 shows an example of an application package (hereinafter simply referred to as a package). FIG. 3 is a sectional view of a conventional package.
[0003]
3, reference numeral 11 denotes a base having a concave portion 11a on the upper surface, 12 denotes an optical semiconductor element, 16 denotes a submount on which the optical semiconductor element 12 is mounted, 16a denotes a lens mounting portion formed on the upper surface of the submount 16, and 13 denotes a lens. The spherical lens 14 mounted and fixed on the mounting portion 16a is a lid.
[0004]
The substrate 11 is made of alumina (Al 2 O 3 ) -Based ceramics, aluminum nitride (AlN) -based ceramics, mullite (3Al 2 O 3 ・ 2SiO 2 A) A submount 16 for mounting the optical semiconductor element 12 is mounted and fixed on the bottom surface thereof. Further, a metallization layer or a metal terminal (not shown) for taking in a drive signal from the outside to drive the optical semiconductor element 12 housed therein or for taking out an electric signal output from the optical semiconductor element 12 to the outside. ) Is provided.
[0005]
The submount 16 is formed of a substrate made of silicon (Si) or the like, and the upper surface thereof is processed by etching or the like so that a lens mounting portion 16a having a V-shaped cross section is formed near the optical semiconductor element 12 on the upper surface. It is formed over the side. The spherical lens 13 is mounted and fixed on the lens mounting portion 16a.
[0006]
Thereby, the positional accuracy between the optical semiconductor element 12 and the spherical lens 13 mounted on the submount 16 can be improved, and as a result, the optical coupling between the spherical lens 13 and the optical semiconductor element 12 can be improved. (For example, see Patent Document 1 below).
[0007]
The optical semiconductor element 12 is mounted and fixed on the upper surface of the submount 16 of such a package with an adhesive or the like, and one end of the optical fiber 15 is inserted into a mounting portion 11 b formed of a through hole formed in a side wall of the base 11. The optical semiconductor element 12 and the optical fiber 15 are optically coupled via the spherical lens 13 by being supported and fixed on the inner surface of the mounting portion 11b. Then, a lid 14 is attached to the upper surface of the base 11 via a resin adhesive, a brazing material, or the like, and the inside is hermetically sealed, thereby forming an optical semiconductor device.
[0008]
The optical semiconductor device emits an optical signal from the optical semiconductor element 12 inside the base body 11 and outputs the optical signal to the outside through the optical fiber 15 attached to the mounting portion 11b, or transmits the optical fiber 15. The received optical signal is received by the optical semiconductor element 12, and the received optical signal is converted into an electric signal by the optical semiconductor element 12, thereby functioning as an optical semiconductor device used in a high-speed optical communication field or the like.
[0009]
[Patent Document 1]
JP-A-7-199006
[0010]
[Problems to be solved by the invention]
However, in the above-mentioned conventional package, when the optical semiconductor element 12 generates heat during operation, a difference in thermal expansion occurs between the submount 16 and the base 11, and the submount 16 warps, and the optical fiber 15 and the optical semiconductor element 12 However, there is a problem that the optical coupling efficiency is deteriorated.
[0011]
Further, since the spherical lens 13 is placed and fixed on the lens mounting portion 16a formed of a V-groove formed on the upper surface of the submount 16, when the spherical lens 13 is mounted on the lens mounting portion 16a, the spherical lens 13 is It is easy to shift along the mounting portion 16a, and it is difficult to accurately mount and fix the spherical lens 13 at a predetermined position of the lens mounting portion 16a. Also, since there are only two points of contact between the spherical lens 13 and the lens mounting portion 16a, which are extremely small, the spherical lens 13 cannot be firmly fixed to the lens mounting portion 16a with low melting point glass or brazing material. The attachment portion between the lens 13 and the lens mounting portion 16a is easily peeled off, and as a result, the optical coupling between the optical semiconductor element 12 and the spherical lens 13 is deteriorated.
[0012]
Accordingly, the present invention has been completed in view of the above problems, and has as its object to improve the optical coupling efficiency between an optical semiconductor element and an optical fiber, and to accommodate an optical semiconductor element capable of efficiently transmitting an optical signal. It is to provide a package and an optical semiconductor device.
[0013]
[Means for Solving the Problems]
An optical semiconductor element housing package of the present invention includes a base body made of a dielectric having a mounting portion formed of a rectangular parallelepiped convex portion for mounting an optical semiconductor element on a bottom surface of a concave portion formed on an upper main surface; A mounting portion for an optical fiber comprising a through hole formed in a side wall portion of the base, wherein the base has a cross section at a position between the mounting portion and the mounting portion on the upper main surface. A lens mounting portion having a circular concave portion is formed, and a spherical lens having a larger diameter than the opening is attached to an opening of the lens mounting portion.
[0014]
An optical semiconductor element housing package of the present invention includes a base body made of a dielectric having a mounting portion formed of a rectangular parallelepiped convex portion for mounting an optical semiconductor element on a bottom surface of a concave portion formed on an upper main surface; An optical fiber mounting portion comprising a through hole formed in a side wall portion of the base; and the base has a circular cross-sectional shape at a portion between the mounting portion and the mounting portion on the upper main surface. Is formed, and a spherical lens having a diameter larger than this opening is attached to the opening of the lens attaching portion, so that the mounting portion and the base are integrated. Therefore, warping does not occur in the mounting portion or the base body due to the difference in thermal expansion, and the positioning accuracy of the mounting portion is maintained even when the optical semiconductor element generates heat during operation, and as a result, Maintain good optical coupling efficiency between optical fiber and optical semiconductor device It is possible.
[0015]
Also, since the opening of the lens mounting portion formed on the upper main surface of the base can be in contact with and support the spherical lens over the entire circumference, it is effective to displace the spherical lens when the spherical lens is mounted on the lens mounting portion. And the spherical lens can be fixed with high positional accuracy. Furthermore, since the attachment portion between the spherical lens and the lens attachment portion can be enlarged, the attachment strength between the spherical lens and the lens attachment portion increases, and the attachment portion does not peel off. It can be securely mounted and fixed to the mounting portion for a long time. As a result, the optical coupling between the optical semiconductor element and the spherical lens can be improved, and the transmission efficiency of the optical signal between the optical fiber and the optical semiconductor element can be improved.
[0016]
An optical semiconductor element housing package of the present invention includes a base body made of a dielectric having a mounting portion formed of a rectangular parallelepiped convex portion for mounting an optical semiconductor element on a bottom surface of a concave portion formed on an upper main surface; An optical fiber mounting portion comprising a through hole formed in a side wall portion of the base, wherein the base is provided with an annular member at a position between the mounting portion and the mounting portion on the upper main surface. Are joined, and a spherical lens having a diameter larger than the opening is attached to the opening of the annular member.
[0017]
An optical semiconductor element housing package of the present invention includes a base body made of a dielectric having a mounting portion formed of a rectangular parallelepiped convex portion for mounting an optical semiconductor element on a bottom surface of a concave portion formed on an upper main surface; An optical fiber mounting portion comprising a through hole formed in a side wall portion of the base; an annular member is joined to the base at a portion between the mounting portion and the mounting portion on the upper main surface; Since a spherical lens having a diameter larger than the opening is attached to the opening of the annular member, the mounting portion and the base are integrated with each other. There is no warping of the mounting part or the base, and the positional accuracy of the mounting part is maintained even if the optical semiconductor element generates heat during operation, and as a result, the optical coupling efficiency between the optical fiber and the optical semiconductor element is improved. It can be maintained well.
[0018]
In addition, since the opening of the annular member joined to the upper main surface of the base can be in contact with and support the spherical lens over the entire circumference, when the spherical lens is attached to the annular member, the spherical lens is effectively prevented from shifting. In addition, the spherical lens can be fixed with high positional accuracy. Furthermore, since the attachment portion between the spherical lens and the annular member can be enlarged, the attachment strength between the spherical lens and the annular member increases, and the attachment portion does not peel off, and the spherical lens is attached to the annular member. It can be securely mounted and fixed for a long time. As a result, the optical coupling between the optical semiconductor element and the spherical lens can be improved, and the transmission efficiency of the optical signal between the optical fiber and the optical semiconductor element can be improved.
[0019]
Furthermore, even if the base is distorted, since the stress caused by the distortion can be absorbed by the annular member, it is possible to effectively suppress the occurrence of cracks in the spherical lens due to the stress.
[0020]
The optical semiconductor device according to the present invention includes the package for storing an optical semiconductor element according to the present invention, an optical fiber having one end portion inserted through the mounting portion and fixed, and the spherical lens mounted and fixed on the mounting portion. And an optical semiconductor device optically coupled to the optical fiber through the optical fiber, and a lid attached to the upper surface of the side wall portion.
[0021]
According to the optical semiconductor device of the present invention having the above configuration, the optical signal transmission efficiency using the optical semiconductor element housing package of the present invention is excellent.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The optical semiconductor element storage package of the present invention will be described in detail below. FIG. 1 is a sectional view showing an embodiment of the package of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the package of the present invention.
[0023]
1 and 2, reference numeral 1 denotes a base, 1b denotes a mounting portion of the optical fiber 5, 1c denotes a mounting portion, 1d denotes a lens mounting portion, 2 denotes an optical semiconductor element, 3 denotes a spherical lens, and 4 denotes a lid. The base 1 and the lid 4 constitute a container for housing the optical semiconductor element 2 inside.
[0024]
The package according to the present invention includes a substrate 1 made of a dielectric having a mounting portion 1c formed of a rectangular parallelepiped convex portion for mounting the optical semiconductor element 2 on the bottom surface of a concave portion 1a formed on the upper main surface; And a mounting portion 1b for an optical fiber 5 formed of a through hole formed in a side wall portion of the base 1. The base 1 traverses a portion of the upper main surface between the mounting portion 1b and the mounting portion 1c. A lens mounting portion 1d formed of a concave portion having a circular surface shape is formed, and a spherical lens 3 having a diameter larger than the opening is attached to an opening of the lens mounting portion 1d.
[0025]
The base 1 has a mounting portion 1c formed of a convex portion integrated with alumina (Al). 2 O 3 ) -Based ceramics, aluminum nitride (AlN) -based ceramics, mullite (3Al 2 O 3 ・ 2SiO 2 ) It is made of a dielectric such as ceramics. Further, a conductor layer such as a metallized layer or a metal terminal for driving the optical semiconductor element 2 housed therein by taking in a drive signal from the outside, or for taking out an electric signal output from the optical semiconductor element 2 to the outside. (Not shown) is provided.
[0026]
Such a base 1 is formed by punching a ceramic green sheet with a mold or the like, and conducting inside and outside of the base 1 to input a drive signal to the optical semiconductor element 2 or to output an electric signal output from the optical semiconductor element 2. A metal paste obtained by adding and mixing an appropriate organic binder, a plasticizer, a solvent, and the like to a high melting point metal powder such as W or Mo serving as a conductor layer for taking out the ceramic green sheet, and applying these ceramic green sheets Are produced by stacking and firing.
[0027]
The base 1 may be made of a resin, such as a transfer molding method using an epoxy-based thermosetting resin, or an injection molding method using a thermoplastic resin such as polyphenylene sulfide (PPS) or liquid crystal polymer (LCP). It is produced by a method or the like. In this case, iron (Fe) -nickel (Ni) -cobalt () for inputting a drive signal to the optical semiconductor element 2 and extracting an electric signal output from the optical semiconductor element 2 is provided on the side wall of the base 1. A metal terminal (not shown) such as a Co) alloy or an Fe-Ni alloy is attached.
[0028]
The metal terminal is formed into a predetermined shape by applying a conventionally known metal working method such as a rolling method or a punching method to an ingot made of, for example, an Fe—Ni—Co alloy. The terminal is preferably coated with a metal such as Ni or gold (Au) having good conductivity and excellent corrosion resistance to a predetermined thickness (about 1 to 20 μm) by a plating method on the exposed surface. Can be effectively prevented, and the connection between the terminal and an electrical connection means such as a bonding wire can be made highly reliable.
[0029]
The spherical lens 3 is made of a translucent member such as glass or sapphire, and as shown in FIG. 2, a cross section formed at a portion between the mounting portion 1b and the mounting portion 1c on the upper main surface of the base 1. A low-melting glass (melting point: 350 to 550 ° C.), a brazing material, a resin adhesive, or another adhesive is attached to the entire periphery of the opening of the lens mounting portion 1d formed of a circular concave portion. The material and size of the spherical lens 3 are appropriately selected according to the spot diameter of the optical signal, the focal length, and the like.
[0030]
The spherical lens 3 is attached to the opening of the lens mounting portion 1d as follows. First, a low-melting glass is previously attached in the form of a ring near the opening of the lens mounting portion 1d, and the spherical lens 3 is placed thereon. Thereafter, the spherical lens 3 is attached by applying heat to melt the low-melting glass. Alternatively, a metal film is formed by sequentially depositing a platinum (Pt) layer or an Au layer on the attachment portion of the spherical lens 3 with, for example, a titanium (Ti) layer or a chromium (Cr) layer as a base. Then, a low-melting-point brazing material such as Au-tin (Sn) brazing or Au-germanium (Ge) brazing is applied in advance to the opening of the lens mounting portion 1d in a ring shape, and the spherical lens 3 is placed thereon. Then, the spherical lens 3 is attached by melting the brazing material. If the spherical lens 3 has a high melting point such as sapphire, it may be attached using Ag wax or the like.
[0031]
The lens mounting portion 1d is formed of a concave portion having a circular cross section, and has a columnar shape (FIG. 1), a spherical shape, an inverted conical shape, or the like.
[0032]
When the lens mounting portion 1d has a cylindrical shape, it is preferable that when the diameter of the spherical lens 3 is a1 and the diameter of the lens mounting portion 1d is a2, 0.5 × a1 ≦ a2 ≦ 0.85 × a1. With this configuration, the attachment strength between the spherical lens 3 and the lens mounting portion 1d can be strengthened, and the ratio of the portion that enters the inside of the lens mounting portion 1d of the spherical lens 3 and prevents light transmission is minimized. And the occurrence of optical signal loss can be more effectively suppressed. If a2 <0.5 × a1, the outer peripheral length of the opening of the lens mounting portion 1d becomes short, and the attachment strength between the spherical lens 3 and the lens mounting portion 1d tends to be small. If a2> 0.85 × a1, the ratio of the portion of the spherical lens 3 that enters the inside of the lens mounting portion 1d increases, and the loss of the optical signal transmitted through the spherical lens 3 tends to increase.
[0033]
When the lens mounting portion 1d has a cylindrical shape, the depth of the lens mounting portion 1d is equal to or greater than the depth at which the spherical lens 3 contacts the bottom surface when the spherical lens 3 is mounted on the opening of the lens mounting portion 1d. With this configuration, the spherical lens 3 can be accurately fixed by fitting the spherical lens 3 into the opening of the lens mounting portion 1d. Further, the volume of the bonding material between the inner surface of the lens mounting portion 1d and the spherical lens 3 increases, and the stress generated by the difference in thermal expansion between the spherical lens 3 and the base 1 can be effectively absorbed by the bonding material. .
[0034]
When the lens mounting portion 1 d is spherical, the radius of curvature is equal to or smaller than the radius of curvature of the spherical lens 3. When the radius of curvature of the lens mounting portion 1d is the same as the radius of curvature of the spherical lens 3, the spherical lens 3 can be mounted on the entire inner surface of the lens mounting portion 1d, and the mounting strength becomes stronger. When the radius of curvature of the lens mounting portion 1d is smaller than the radius of curvature of the spherical lens 3, the volume of the bonding material between the inner surface of the lens mounting portion 1d and the spherical lens 3 increases, and the spherical lens 3 and the base 1 Can be effectively absorbed by the bonding material.
[0035]
When the lens mounting portion 1d has an inverted conical shape, a large volume of the bonding material can be stored under the spherical lens 3, and the stress generated due to the difference in thermal expansion between the spherical lens 3 and the base 1 can be reduced. Can be absorbed more effectively.
[0036]
Next, the package of the second invention will be described in detail below. FIG. 4 is a sectional view showing an example of the embodiment of the package of the present invention, and FIG. 5 is an enlarged sectional view of a main part of the package of the present invention.
[0037]
4 and 5, reference numeral 1 denotes a base, 1b denotes a mounting portion of the optical fiber 5, 1c denotes a mounting portion, 2 denotes an optical semiconductor element, 3 denotes a spherical lens, 4 denotes a lid, and 6 denotes an annular member. The base 1 and the lid 4 constitute a container for housing the optical semiconductor element 2 inside.
[0038]
The package according to the present invention includes a substrate 1 made of a dielectric having a mounting portion 1c formed of a rectangular parallelepiped convex portion for mounting the optical semiconductor element 2 on the bottom surface of a concave portion 1a formed on the upper main surface; An optical fiber attachment portion 1b formed of a through hole formed in a side wall portion of the base 1; and the base 1 is provided with an annular member at a position between the attachment portion 1b and the mounting portion 1c on the upper main surface. 6, a spherical lens 3 having a diameter larger than that of the opening is attached to the opening of the annular member 6.
The base 1 has a mounting portion 1c formed of a convex portion integrated with alumina (Al). 2 O 3 ) -Based ceramics, aluminum nitride (AlN) -based ceramics, mullite (3Al 2 O 3 ・ 2SiO 2 ) It is made of a dielectric such as ceramics. Further, a conductor layer such as a metallized layer or a metal terminal for driving the optical semiconductor element 2 housed therein by taking in a drive signal from the outside, or for taking out an electric signal output from the optical semiconductor element 2 to the outside. (Not shown) is provided.
[0039]
Such a base 1 is formed by punching a ceramic green sheet with a mold or the like, and conducting inside and outside of the base 1 to input a drive signal to the optical semiconductor element 2 or to output an electric signal output from the optical semiconductor element 2. A metal paste obtained by adding and mixing an appropriate organic binder, a plasticizer, a solvent, and the like to a high melting point metal powder such as W or Mo serving as a conductor layer for taking out the ceramic green sheet, and applying these ceramic green sheets Are produced by stacking and firing.
[0040]
The base 1 may be made of a resin, such as a transfer molding method using an epoxy-based thermosetting resin, or an injection molding method using a thermoplastic resin such as polyphenylene sulfide (PPS) or liquid crystal polymer (LCP). It is produced by a method or the like. In this case, iron (Fe) -nickel (Ni) -cobalt () for inputting a drive signal to the optical semiconductor element 2 and extracting an electric signal output from the optical semiconductor element 2 is provided on the side wall of the base 1. A metal terminal (not shown) such as a Co) alloy or an Fe-Ni alloy is attached.
[0041]
The metal terminal is formed into a predetermined shape by applying a conventionally known metal working method such as a rolling method or a punching method to an ingot made of, for example, an Fe—Ni—Co alloy. The terminal is preferably coated with a metal such as Ni or gold (Au) having good conductivity and excellent corrosion resistance to a predetermined thickness (about 1 to 20 μm) by a plating method on the exposed surface. Can be effectively prevented, and the connection between the terminal and an electrical connection means such as a bonding wire can be made highly reliable.
[0042]
The annular member 6 is made of a metal such as an Fe—Ni—Co alloy, and as shown in FIG. 4, a brazing material or the like is provided at a portion between the mounting portion 1 b and the mounting portion 1 c on the upper main surface of the base 1. It is joined via an adhesive such as a resin adhesive.
[0043]
The spherical lens 3 is made of a translucent member such as glass or sapphire, and as shown in FIG. 4, an annular member formed at a portion between the mounting portion 1b and the mounting portion 1c on the upper main surface of the base 1. 6 is attached over the entire circumference via an adhesive such as low-melting glass (melting point: 350 to 550 ° C.), brazing material, resin adhesive, or the like. The material and size of the spherical lens 3 are appropriately selected according to the spot diameter of the optical signal, the focal length, and the like.
[0044]
The spherical lens 3 is attached to the opening of the annular member 6 as follows. First, a low-melting glass is attached in a ring shape in the vicinity of the opening of the annular member 6 in advance, and the spherical lens 3 is placed thereon. Thereafter, the spherical lens 3 is attached by applying heat to melt the low-melting glass. Alternatively, a metal film is formed by sequentially depositing a platinum (Pt) layer or an Au layer on a portion where the spherical lens 3 is attached, for example, using a titanium (Ti) layer or a chromium (Cr) layer as a base. Then, a low-melting-point brazing material such as Au-tin (Sn) brazing or Au-germanium (Ge) brazing is applied in advance to the opening of the annular member 6 in a ring shape, and the spherical lens 3 is placed thereon. The spherical lens 3 is attached by melting the brazing material. If the spherical lens 3 has a high melting point such as sapphire, it may be attached using Ag wax or the like.
[0045]
The size of the annular member 6 is preferably 0.5 × a1 ≦ a3 ≦ 0.85 × a1, where the diameter of the spherical lens 3 is a1 and the diameter of the opening of the annular member 6 is a3. With this configuration, the attachment strength between the spherical lens 3 and the annular member 6 can be strengthened, and the ratio of the part that enters the inside of the annular member 6 of the spherical lens 3 and hinders light transmission is minimized. In addition, it is possible to more effectively suppress the occurrence of optical signal loss. If a3 <0.5 × a1, the outer peripheral length of the opening of the annular member 6 becomes short, and the attachment strength between the spherical lens 3 and the annular member 6 tends to be small. If a3> 0.85 × a1, the ratio of the portion of the spherical lens 3 entering the inside of the annular member 6 increases, and the loss of the optical signal transmitted through the spherical lens 3 tends to increase.
[0046]
Further, the annular member 6 may be a plate-like member having a through hole having a circular cross-sectional shape, and the outer shape may be various shapes such as a circular shape and a square shape. The height of the annular member 6 is equal to or greater than the height at which the spherical lens 3 contacts the bottom surface when the spherical lens 3 is attached to the opening of the annular member 6. With this configuration, the spherical lens 3 can be accurately fixed by fitting the spherical lens 3 into the opening of the annular member 6. Further, the volume of the joining material between the inner surface of the annular member 6 and the spherical lens 3 increases, and the stress caused by the difference in thermal expansion between the spherical lens 3 and the base 1 can be effectively absorbed by the joining material.
[0047]
Further, the annular member 6 is chamfered in a shape such as a straight line, a curved surface which is convex upward, and a curved surface whose central portion is depressed, over the entire periphery of the opening where the spherical lens 3 is attached. Good. Thereby, it is possible to effectively suppress the occurrence of cracks in the spherical lens 3 due to the concentration of thermal stress at the corners of the opening of the annular member 6.
[0048]
Also, the annular member 6 need not be completely annular, and preferably has one or more cuts vertically on the side. Thereby, when thermal stress is applied to the annular member 6, the annular member 6 can move moderately, so that the stress can be alleviated. As a result, cracks occur in the spherical lens 3 or the spherical lens 3 The displacement can be effectively suppressed.
[0049]
The optical semiconductor device of the present invention includes the package of the present invention, an optical fiber 5 having one end inserted into the mounting portion 1b and fixed with an adhesive or brazing material, and mounted on the mounting portion 1c with an adhesive or the like. An optical semiconductor element 2 fixed and optically coupled to an optical fiber 5 via a spherical lens 3; and a metal attached to a top surface of a side wall of the base 1 with a sealing material made of a resin adhesive or the like. And a lid 4 made of ceramic, resin, or the like.
[0050]
The optical fiber 5 may be provided with a fixing member such as a ferrule for fixing the optical fiber 5 at one end thereof, and attached to the mounting portion 1b via the fixing member.
[0051]
In the optical semiconductor device of the present invention, an optical signal is emitted from the optical semiconductor element 2 inside the base 1, and the optical signal is condensed by the spherical lens 3 mounted and fixed on the lens mounting portion 1d and installed on the mounting portion 1b. An optical signal transmitted to the fixed optical fiber 5 and output to the outside via the optical fiber 5 or an optical signal transmitted through the optical fiber 5 is fixed on the lens mounting portion 1d. The optical semiconductor device 2 functions as an optical semiconductor device used in the field of high-speed optical communication by causing the optical semiconductor device 2 to output an electric signal corresponding to the received optical signal.
[0052]
Thus, in the package of the present invention, the mounting portion 1c and the lens mounting portion 1d formed of the convex portion are integrally molded with the base 1, so that the convex portion 1c and the base 1 are formed even when the optical semiconductor element 2 generates heat during operation. Since the protrusions 1c are made of the same material, the protrusion 1c does not warp due to a difference in thermal expansion from the base 1, and as a result, the optical coupling efficiency between the optical fiber 5 and the optical semiconductor element 2 can be favorably maintained. Alternatively, the spherical lens 3 by joining the annular members 6 can be firmly fixed at an accurate position on the base 1, and the optical coupling efficiency between the optical fiber 5 and the optical semiconductor element 2 can be maintained well.
[0053]
The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
[0054]
【The invention's effect】
An optical semiconductor element housing package of the present invention includes a base body made of a dielectric having a mounting portion formed of a rectangular parallelepiped convex portion for mounting an optical semiconductor element on a bottom surface of a concave portion formed on an upper main surface; An optical fiber mounting portion comprising a through hole formed in a side wall portion of the base; and the base has a circular cross-sectional shape at a portion between the mounting portion and the mounting portion on the upper main surface. Is formed, and a spherical lens having a diameter larger than this opening is attached to the opening of the lens attaching portion, so that the mounting portion and the base are integrated. Therefore, warping does not occur in the mounting portion or the base body due to the difference in thermal expansion, and the positioning accuracy of the mounting portion is maintained even when the optical semiconductor element generates heat during operation, and as a result, Maintain good optical coupling efficiency between optical fiber and optical semiconductor device It is possible.
[0055]
In addition, since the opening of the lens mounting portion formed on the upper main surface of the base can support the spherical lens over the entire circumference, when the spherical lens is attached to the lens mounting portion, the spherical lens is prevented from shifting, The spherical lens can be fixed with high positional accuracy. Further, since the mounting area between the spherical lens and the lens mounting portion can be increased, the mounting strength between the spherical lens and the lens mounting portion increases, and the mounting portion does not peel off, and the spherical lens can be used as a lens. It can be securely mounted and fixed to the mounting portion for a long time. As a result, the optical coupling between the optical semiconductor element and the spherical lens can be improved, and the transmission efficiency of the optical signal between the optical fiber and the optical semiconductor element can be improved.
[0056]
An optical semiconductor element housing package of the present invention includes a base body made of a dielectric having a mounting portion formed of a rectangular parallelepiped convex portion for mounting an optical semiconductor element on a bottom surface of a concave portion formed on an upper main surface; An optical fiber mounting portion comprising a through hole formed in a side wall portion of the base; an annular member is joined to the base at a portion between the mounting portion and the mounting portion on the upper main surface; Since a spherical lens having a diameter larger than the opening is attached to the opening of the annular member, the mounting portion and the base are integrated with each other. There is no warping of the mounting part or the base, and the positional accuracy of the mounting part is maintained even if the optical semiconductor element generates heat during operation, and as a result, the optical coupling efficiency between the optical fiber and the optical semiconductor element is improved. It can be maintained well.
[0057]
In addition, since the opening of the annular member joined to the upper main surface of the base can be in contact with and support the spherical lens over the entire circumference, when the spherical lens is attached to the annular member, the spherical lens is effectively prevented from shifting. In addition, the spherical lens can be fixed with high positional accuracy. Furthermore, since the attachment portion between the spherical lens and the annular member can be enlarged, the attachment strength between the spherical lens and the annular member increases, and the attachment portion does not peel off, and the spherical lens is attached to the annular member. It can be securely mounted and fixed for a long time. As a result, the optical coupling between the optical semiconductor element and the spherical lens can be improved, and the transmission efficiency of the optical signal between the optical fiber and the optical semiconductor element can be improved.
[0058]
Furthermore, even if the base is distorted, since the stress caused by the distortion can be absorbed by the annular member, it is possible to effectively suppress the occurrence of cracks in the spherical lens due to the stress.
[0059]
The optical semiconductor device of the present invention includes the above-described optical semiconductor element housing package of the present invention, an optical fiber having one end portion inserted through the mounting portion and fixed, and a fixed and mounted spherical member through the mounting portion. By providing an optical semiconductor device optically coupled to an optical fiber and a lid attached to the upper surface of the side wall, an optical signal using the optical semiconductor device housing package of the present invention is provided. It has excellent transmission efficiency.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of an optical semiconductor element housing package of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the package for housing an optical semiconductor element of FIG. 1;
FIG. 3 is a sectional view showing an example of a conventional package for housing an optical semiconductor element.
FIG. 4 is a cross-sectional view showing an example of an embodiment of an optical semiconductor element housing package according to another invention of the present invention.
5 is an enlarged sectional view of a main part of the package for housing an optical semiconductor element of FIG. 4;
[Explanation of symbols]
1: Substrate
1a: recess
1b: mounting part
1c: receiver
1d: lens mounting part
2: Optical semiconductor device
3: Spherical lens
4: Lid
5: Optical fiber
6: annular member

Claims (3)

上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、該基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、前記基体は、前記上側主面の前記取付部と前記載置部との間の部位に横断面形状が円形状の凹部から成るレンズ取付部が形成されており、該レンズ取付部の開口に該開口よりも大きな直径の球状レンズが取着されていることを特徴とする光半導体素子収納用パッケージ。A base made of a dielectric material having a mounting portion formed of a rectangular parallelepiped projection for mounting an optical semiconductor element on a bottom surface of a recess formed in the upper main surface, and a through hole formed in a side wall of the base. A mounting portion for an optical fiber comprising: a lens mounting portion having a circular cross-sectional shape at a portion of the upper main surface between the mounting portion and the mounting portion. And a spherical lens having a larger diameter than the opening is attached to the opening of the lens mounting portion. 上側主面に形成された凹部の底面に光半導体素子を載置するための直方体状の凸部から成る載置部を有する誘電体から成る基体と、該基体の側壁部に形成された貫通孔から成る光ファイバの取付部とを具備しており、前記基体は、前記上側主面の前記取付部と前記載置部との間の部位に環状部材が接合されており、該環状部材の開口に該開口よりも大きな直径の球状レンズが取着されていることを特徴とする光半導体素子収納用パッケージ。A base made of a dielectric material having a mounting portion formed of a rectangular parallelepiped projection for mounting an optical semiconductor element on a bottom surface of a recess formed in the upper main surface, and a through hole formed in a side wall of the base. An optical fiber attaching portion comprising: an annular member joined to a portion of the upper main surface between the attaching portion and the mounting portion; and an opening of the annular member. A spherical lens having a diameter larger than the opening is attached to the optical semiconductor element housing package. 請求項1または請求項2記載の光半導体素子収納用パッケージと、前記取付部に一端部が挿通されて固定された光ファイバと、前記載置部に搭載固定されるとともに前記球状レンズを介して前記光ファイバと光学的に結合された光半導体素子と、前記側壁部の上面に取着された蓋体とを具備していることを特徴とする光半導体装置。3. The package for storing an optical semiconductor element according to claim 1 or 2, an optical fiber having one end inserted through the mounting portion and fixed, and the optical fiber mounted and fixed on the mounting portion and via the spherical lens. An optical semiconductor device, comprising: an optical semiconductor element optically coupled to the optical fiber; and a lid attached to an upper surface of the side wall.
JP2003084280A 2003-02-17 2003-03-26 Optical semiconductor element storage package, and optical semiconductor device Withdrawn JP2004309506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084280A JP2004309506A (en) 2003-02-17 2003-03-26 Optical semiconductor element storage package, and optical semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003038792 2003-02-17
JP2003084280A JP2004309506A (en) 2003-02-17 2003-03-26 Optical semiconductor element storage package, and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2004309506A true JP2004309506A (en) 2004-11-04

Family

ID=33477941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084280A Withdrawn JP2004309506A (en) 2003-02-17 2003-03-26 Optical semiconductor element storage package, and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2004309506A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043594A (en) * 2009-08-20 2011-03-03 Sumitomo Electric Ind Ltd Optical module
WO2013054547A1 (en) * 2011-10-11 2013-04-18 ハリソン東芝ライティング株式会社 Light-emitting device
WO2016171103A1 (en) * 2015-04-24 2016-10-27 京セラ株式会社 Package for mounting optical element, electronic device, and electronic module
JP2017055056A (en) * 2015-09-11 2017-03-16 京セラ株式会社 Package for mounting optical element and electronic device
WO2017183638A1 (en) * 2016-04-18 2017-10-26 京セラ株式会社 Light-emitting-element accommodating member, array member, and light emitting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043594A (en) * 2009-08-20 2011-03-03 Sumitomo Electric Ind Ltd Optical module
WO2013054547A1 (en) * 2011-10-11 2013-04-18 ハリソン東芝ライティング株式会社 Light-emitting device
US8897334B2 (en) 2011-10-11 2014-11-25 Toshiba Lighting & Technology Corporation Light emitting device
KR20170125095A (en) * 2015-04-24 2017-11-13 쿄세라 코포레이션 Packages for mounting optical devices, electronic devices and electronic modules
WO2016171103A1 (en) * 2015-04-24 2016-10-27 京セラ株式会社 Package for mounting optical element, electronic device, and electronic module
CN107534268A (en) * 2015-04-24 2018-01-02 京瓷株式会社 Optical element package for mounting part, electronic installation and electronic module
JPWO2016171103A1 (en) * 2015-04-24 2018-02-15 京セラ株式会社 Optical device mounting package, electronic device and electronic module
US20180145478A1 (en) * 2015-04-24 2018-05-24 Kyocera Corporation Optical element mounting package, electronic device, and electronic module
KR102031573B1 (en) * 2015-04-24 2019-10-14 쿄세라 코포레이션 Optical device package, electronic device and electronic module
US10554012B2 (en) 2015-04-24 2020-02-04 Kyocera Corporation Optical element mounting package, electronic device, and electronic module
CN114204405A (en) * 2015-04-24 2022-03-18 京瓷株式会社 Package for mounting optical element, electronic device, and electronic module
JP2017055056A (en) * 2015-09-11 2017-03-16 京セラ株式会社 Package for mounting optical element and electronic device
WO2017183638A1 (en) * 2016-04-18 2017-10-26 京セラ株式会社 Light-emitting-element accommodating member, array member, and light emitting device
JP6298225B1 (en) * 2016-04-18 2018-03-20 京セラ株式会社 Light emitting element housing member, array member, and light emitting device
US10862264B2 (en) 2016-04-18 2020-12-08 Kyocera Corporation Light-emitting element housing member, array member, and light-emitting device

Similar Documents

Publication Publication Date Title
JP5537306B2 (en) Electronic component storage package and electronic device
JP2019067809A (en) Light source device
JP2007073711A (en) Airtight sealing package and optical submodule
JP2004309506A (en) Optical semiconductor element storage package, and optical semiconductor device
JP2019009376A (en) Optical semiconductor device housing package and optical semiconductor apparatus
WO2012043623A1 (en) Element containing package, module, and semiconductor device
JP4931438B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP6051095B2 (en) Optical semiconductor element storage package and mounting structure including the same
JP2007048937A (en) Semiconductor laser and manufacturing method thereof
JP3898521B2 (en) Optical semiconductor element storage package
JP2004246218A (en) Package for housing optical semiconductor element and optical semiconductor system
JP5969317B2 (en) Optical semiconductor element storage package and mounting structure
JP4688632B2 (en) Subcarrier and semiconductor device
JP2004031378A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2012008265A (en) Element housing package, and optical module and optical semiconductor device equipped with the same
JP3825337B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004253409A (en) Optical semiconductor element accommodating package and optical semiconductor device
JP2006013358A (en) Package for storing therein optical semiconductor element, and optical semiconductor device
JP2002141596A (en) Package for containing optical semiconductor element
JP2004259860A (en) Package for containing optical semiconductor element and optical semiconductor device
JP2004146753A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP2004111406A (en) Package for housing optical semiconductor device and optical semiconductor device
JP2004087726A (en) Optical semiconductor device and package for storing the same
JP2002368322A (en) Package for housing optical semiconductor element and optical semiconductor device
JP6039482B2 (en) Optical semiconductor element storage package and mounting structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061120