JP2004245484A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004245484A
JP2004245484A JP2003034973A JP2003034973A JP2004245484A JP 2004245484 A JP2004245484 A JP 2004245484A JP 2003034973 A JP2003034973 A JP 2003034973A JP 2003034973 A JP2003034973 A JP 2003034973A JP 2004245484 A JP2004245484 A JP 2004245484A
Authority
JP
Japan
Prior art keywords
ice
ice tray
refrigerator according
heating element
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034973A
Other languages
Japanese (ja)
Other versions
JP3910544B2 (en
Inventor
Katsumasa Sakamoto
克正 坂本
Keiji Oya
恵司 大矢
Mariko Nakano
真理子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003034973A priority Critical patent/JP3910544B2/en
Publication of JP2004245484A publication Critical patent/JP2004245484A/en
Application granted granted Critical
Publication of JP3910544B2 publication Critical patent/JP3910544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator requiring no mechanism for removing cloudy ice and inexpensively producing highly transparent ice with less components. <P>SOLUTION: The refrigerator is provided with an ice making device having separate shapes provided in block shapes of an ice tray for vertically separating ice blocks while leaving connections, in which the cloudy portion is moved to the lower part of the ice tray with downward cooling applied from an upper part to produce transparent ice at the upper part, the connections are cut off in an ice separating process after completing ice making to separate the transparent ice, remaining cloudy ice is melted by water newly supplied to the ice tray and mixed, and then ice is made again. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、製氷装置において氷を生成する際に、給水された水分中の気体成分やイオン成分等による氷の白濁部を一部に集中させることでそれ以外を透明化し、かつ各々を分離させることにより高い透明度の氷を得る製氷装置を備えた冷蔵庫に関するものである。
【0002】
【従来の技術】
従来の冷蔵庫における製氷装置は、氷を生成する際、給水した水分中に含まれる気体成分が製氷過程において水周囲の温度の低い部分から凍っていくため、白濁の要因となる気体成分は水が外郭から凍っていく際に中心部の未凍結部分に追われていき氷粒内に閉じ込められて白濁部を形成し透明度の低い氷粒となっていた。
【0003】
透明度の高い氷を生成する実現手段として、冷蔵庫等の自動製氷装置が、冷却器の一面に備えた排水口付の貯水槽の内面に重合される底面を開口した製氷皿と、この製氷皿を回転反転させる駆動装置を備えるとともに貯水槽及び排水口は断熱材で包囲した上でその外壁にはヒータを密着して設け、排水口には排水装置及び排水管を連結させる。そして、これとは別に着脱自在の給水タンクと給水ポンプとを設け、貯水槽まで給水管を導くように構成したものがある。
【0004】
そのように構成することにより、給水タンク内に満たされた水が給水ポンプによって給水管を介して貯水槽内に所定量給水されると、貯水槽の内面に重合した製氷皿は底面の開口部を介して所定水位まで浸水される。そして貯水槽の外周は断熱材で包囲、且つヒータで保温されるために冷却室内の冷気によって水表面から下方に向けて一方向の凍結作用が行われて水中の気体成分や不純物を下方の水中に排出しながら氷結晶が生成されていく。次に氷が適当な厚さになる時点で排水装置を作動させると気体成分や不純物の濃度が高くなった未凍結水が排水装置、排水管を通じて排水され、製氷皿には透明度及び純度の高い氷が残される。そして、貯水槽と製氷皿との重合部はヒータの加熱作用で氷結は防止されており、駆動装置による回動作用で製氷皿は貯水槽より離脱して反転し離氷が行われる(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−18627号公報
【0006】
【発明が解決しようとする課題】
従来の冷蔵庫等の自動製氷装置の場合、構成部品であるヒータが貯水層を常に水にしておくだけの大きなヒータ容量が必要となっていただけでなく、高価でかつ周囲への温度影響で消費電力の悪化や他室への冷却の悪影響も懸念されていた。
【0007】
また、排水後には製氷皿内の濡れた氷粒を乾燥させる工程が必要で製氷時間が長時間化していた。
【0008】
また、貯水槽や排水口、排水弁等の構成が必要であり、透明氷を得るためのシステムがかなり大掛かりになっており高価になってしまうだけなく、アクチュエータ等に代表されるモータ駆動音や水の流音といった動作音が発生したり、排水弁に対する異物の混入による動作不良等の信頼性等品質面でも問題点があった。
【0009】
さらに、透明氷の生成に際し氷粒の数倍の水量が必要で水道代等経済面でも問題点があった。
【0010】
この発明は、以上のような問題点を解決するためになされたもので、白濁氷を排除する機構が不要で、透明度の高い氷を少ない構成部品で安価に生成できる冷蔵庫を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明に係る冷蔵庫は、製氷皿の各粒形状内に、連結部を残して氷粒を上下に分割するセパレート形状を設け、上方からの冷却により白濁部を製氷皿の下部に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えたことを特徴とする。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照して説明する。
実施の形態1.
図1〜3は実施の形態1を示す図で、冷蔵庫の構成説明図、図2は製氷システム説明図、図3は製氷皿構造説明図である。
図1において、冷蔵庫本体1は、最上部に開閉ドアを備えて配置される冷蔵室100と、冷蔵室100の下方に冷凍温度帯(−18℃)から冷蔵、野菜、チルドの温度帯に切り替えることの出来る引き出しドアを備える切替室400と、切替室400と並列に引き出しドアを備える製氷室500と、最下部に配置される引き出しドアを備えた冷凍室200と、冷凍室200と切替室400、製氷室500との間に引き出しドアを備える野菜室300とから構成される。
【0013】
冷却器3で冷却された冷気は、ファン2によって冷蔵庫本体1に循環される。
その冷却された冷気は冷蔵室100、切替室400、製氷室500、冷凍室200に各々設けられた冷気送風ダクト4により送風されて各部屋を冷却した後に、各部屋からの帰還ダクト5にて冷却器3に再び帰還して再度熱交換され冷気循環される。また、野菜室300においては、冷蔵室100の戻り冷気で輻射冷却している。また各部屋の温度コントロールは各部屋に設置された温度センサ6により各冷気送風ダクト4内に設置された風量調整器7を制御し実施する。
【0014】
ここでは、例として製氷室500が、冷蔵室100と野菜室300との間で切替室400と並列に配置されたレイアウトを示したが、その構成に限定されない。例えば製氷室500が野菜室300と冷凍室200との間で切替室400と並列に配置されたレイアウトでも、製氷室500が冷凍室200の一部になっているものでもよい。
図1の他の構成部分については、後述する。
【0015】
図2に示すように、冷蔵室100に設置された給水タンク8から、給水タンク8内の給水ポンプ9により水が汲み上げられて、冷蔵室100と製氷室500とを連通させた給水パイプ10内を介して氷を生成する製氷皿11へ給水される。
製氷室500用の冷気送風ダクト4を通過した冷気は、製氷皿11と製氷皿11を捻る製氷駆動装置12を固定する枠体13内に供給されて製氷を実施する。
【0016】
製氷完了の判断は製氷皿11下部に固定された製氷サーミスタ14がある設定温度以下になったことにより製氷完了と判断し、製氷駆動装置12に組み込まれた貯氷量を検知する検氷レバー15を動作させて貯氷量を検知し、製氷皿11の回転軌跡よりも低い位置に設定された満氷量に達していない場合には、製氷駆動装置12が回転動作を開始し製氷皿11を回転させて捻ることにより氷が製氷皿11から離氷される。
【0017】
図3により、本発明の製氷皿構造の一例を説明する。氷の生成メカニズムは水周囲の温度の低い部分から凍っていくため白濁の要因となる気体成分は水が外郭から凍っていく際に中心部の未凍結部分に追われていき、それが白濁する。本発明の透明製氷システムにおいては製氷皿11の開口部すなわち上方から冷却を与えることにより白濁部を下方に追い込み、氷内の白濁部と透明部の分離を促進させる。
【0018】
上方からの冷却を行うためには、冷気の量を製氷皿11上下の冷気送風ダクトの開口面積を製氷皿11下方よりも上方の比率を増やしたり、冷気送風用のファン2の回転数制御を実施したり、風量調整器7の開角度を調整して風向きを変えたりして行う手段等がある。
【0019】
そして製氷皿11内に設けられたセパレータ形状16により氷の白濁部と透明部を分離させる。このセパレータ形状16には透明氷部17と白濁氷部18を連結させる開口部が形成され、例えば直径2〜5mm程度の穴形状19を少なくとも2ヶ所以上設けるのが好ましい。但し、穴形状19は1ヶ所でも構わない。
【0020】
この穴形状19は直径2mmよりも小さいと、水の上下層間の水の往来が困難であり、また直径5mmよりも大きいと上下層間の氷の結び付きが強固になり製氷皿11を捻っても透明部と白濁部が離れなくなってしまうため、直径2〜5mmが望ましい。
【0021】
但しセパレータ形状16の開口部は、上下層間の水の往来が可能でかつ上下層の氷を離氷時に分割できれば必ずしも丸穴形状でなくてもよい。
【0022】
また、穴形状19の配置は極力複数個が等ピッチで対称に配置された方が水の往来や皿の捻り時においても氷が離氷し易い。
【0023】
また、このセパレータ形状16は製氷皿11底面からの深さ寸法が氷粒体積の5〜30%の容量を確保している寸法ならよい。寸法でいうと、例えば、2〜10mmである。これは氷粒体積の約30%を超えると透明部分の必要大きさを確保した場合に、製氷皿11が大型化してしまうので30%以下が良い。
【0024】
そしてこのセパレータ形状16の上部に完成した透明度の高い氷のみを離氷し、その後新しく給水された水によりセパレータ形状16にある穴形状19を介して下面にある白濁氷を融解して氷中の空気成分を脱気して再び透明氷を生成する。このことにより排水機構が不要で安価な透明氷生成が実現できる。
【0025】
実施の形態2.
図4、5は実施の形態2を示す図で、図4はガスインジェクション方式によるセパレータ一体化の製氷皿の成形方法を示す図、図5はダイスライド方式による製氷皿のの成形方法を示す図である。
通常、水から氷になる際には体積膨張が生じるが、それだけでなく上下2層を2部品で構成すると捻り動作等によりさらに上部品と下部品が離れる現象が起こる。そこで上下2層の製氷皿11を一体化することにより前述の2部品間の浮き上がり、ズレ等が防止できると同時に、離氷時の捻りトルク伝達が良く離氷性も良くすることが出来る。
【0026】
このセパレータ一体化の製氷皿の成形方法としては、図4に示すように、金型の製氷皿形状に樹脂を充填後、各粒形状に設けられたガス封入ノズルから製氷皿下部の準密閉空間にガスを注入することにより中空形状を形成するガスインジェクション方式がある。
【0027】
また、図5に示すように、アンダーカットによる成形不可能形状を複数部品化して分割し、その複数部品を1次成形にて同時に樹脂充填した後、同金型内で可動できる側の型をスライドさせてその複数部品の形状を合体させた後、結合部に2次成形を実施しパーツを連結させるダイスライド方式が挙げられる。本方式においては製氷皿の捻り性と成形による接合強度を考慮した場合はポリプロピレン系の樹脂が望ましい。
【0028】
またセパレータ形状16部分のみをインサート成形する方法でも良いが、前述の一体成形と比較すると若干捻り等に対する強度が弱いため大きな応力の掛かる製氷皿11においては若干不利となる。
【0029】
上述の実施の形態によれば、製氷皿11の2層構造を一体化成形することにより2部品構成時に発生する部品の浮き上がりやズレ等が防止できると共に、離氷時の捻りトルク伝達が良く離氷性がいい透明氷生成が実現できる。
【0030】
実施の形態3.
図6は実施の形態3を示す図で、製氷皿の構成を示す図である。実施の形態1では、製氷皿上方からファン等で冷却する方法を述べたが、ここでは製氷皿下方からヒータ等の発熱体で若干の熱を与える。このことにより製氷皿上下間の温度差はより明確となり効率良く白濁部を下方へ追い込むことが出来る。
【0031】
この発熱体であるヒータにおいては、製氷皿底面や側面下部に固定すれば効率良く熱を与えられるがその時は製氷皿の捻り動作に耐えるべくフレキシブルなヒータ線である方が望ましい。例えば芯線にニクロム線を巻き付け絶縁被覆で覆った構造などが挙げられる。その絶縁被覆は塩化ビニルやフッソ樹脂、シリコン樹脂等の耐熱が確保できて比較的柔らかいものであれば良い。一例としては塩ビ被覆のコードヒータをアルミ箔で覆ったものであれば製氷皿捻り時に問題なく捻ることが出来る。さらにヒータ形状はコード状でなくても、例えば発熱線を埋め込んでシート状にしたものでも良い。
【0032】
また、フレキシブルな発熱体でなくても抵抗体を埋め込んだ小型の発熱体を製氷皿の各氷粒形状の下部に個々設置できれば良い。またその発熱体の取付け方法としては発熱体を粘着材付のアルミテープ等で製氷皿に貼り付けたりしてもよい。またその際に剥れ等を防止する落下防止用カバーを用いて製氷皿にヒータを固定してもよい。さらに発熱体からの絶縁距離が不足している場合にはカバーもしくば絶縁物を介在して絶縁距離を保つようにしてもよい。
【0033】
実施の形態4.
図7、8は実施の形態4を示すで、図7は発熱体制御を示す図、図8は製氷皿の清掃方法を示すフローチャートである。
実施の形態3で述べた発熱体においては、連続通電でも良いが発熱体制御を実施することにより更なる製氷能力を向上させることができる。例えば、図7(a)に示すように、製氷皿11に給水後からある設定の時間のみ通電させて、途中から発熱体をオフさせることにより製氷スピードを短縮することができる。
【0034】
この方法としては、図7(b)に示すように、製氷開始後の経過時間で制御したり、図7(c)に示すように、製氷皿の下部に取り付けた温度センサにて製氷皿下部の温度を測定して設定温度に達したら発熱体への通電を停止させるなどといった制御がある。この場合製氷皿の上層部すなわち透明氷部を製氷中は発熱体をオンさせて、製氷皿下層部すなわち白濁部を製氷する際には発熱体をオフさせると透明氷生成の製氷最短スピードになる。
【0035】
また、発熱体オンでも通電率を変えて発熱量を変化させることによりさらに透明氷の生成に対して最適化が可能となる。通電率制御とは、例えば1周期のサイクルタイムを10sとしてその区間を各1s毎の10区間に分割し通電時間を設定する。例えば、図7(d)に示すように、10Wヒータの通電率50%制御の場合5Wヒータとなる。
【0036】
例えば、図7(e)に示すように、最適化制御の例としては製氷皿下部に固定された温度センサの値により発熱体入力を増減させても良い。このことにより製氷室内の急な温度変動に対しても対応可能となる。またヒータ入力の最適化を実施する場合にはヒータ発熱必要量からヒータ定格を決定し小さな入力が必要な時は通電率を制御する。
【0037】
本透明氷生成にあたり下層部の氷を融解する時に最も大きなヒータ入力が必要となるが、融解を促進する場合はヒータ入力だけでなく給水も同時に行うことにより融解が促進されて発熱体の必要容量は少なくすることが出来る。
【0038】
また、図7(f)に示すように、この発熱体を製氷完了後の離氷動作前にONさせることにより、氷粒が製氷皿表面から僅かに分離されて離氷しやすくなり氷の形状、例えばロック氷のような意匠製のある氷の割れ・欠け等なく離氷することが出来る。
【0039】
また、図1に示した冷蔵庫扉表面等に設置された冷蔵室温度等を調整する操作パネル22において、透明氷と表示させたりLED25を点灯表示をすることにより切換えSWでエンドユーザが透明氷か、もしくは通常の氷を選択することによりヒータ通電の有無を制御することにより、通常氷の生成時にはヒータをオフさせて速氷との両立を図ることも可能である。
【0040】
次に図8のフローチャートにより、製氷皿の清掃方法について説明する。前述の操作パネル22において、製氷皿のお掃除モードSWを設定しても良い。図2に示したように、自動製氷機は制御基板23内のマイコン24は操作パネル22と接続されており、製氷した回数をマイコン24等の記憶装置で回数を記憶する。そしてある設定された回数に達すると、マイコン24から操作部に指令が行きLED25を点灯させる。そしてその操作パネル22内にあるお掃除SWをエンドユーザが操作することにより強制的に製氷皿下の発熱体をONさせて氷を融解し、その後製氷皿を回転させて排水させることが出来る機能を設けておく。このことにより製氷皿の2層下部分に不純物等が残存したとしても清掃することが出来ていつまでも清潔に保つことが可能となる。
【0041】
さらに製氷皿等の構成部品に抗菌剤を添加することにより雑菌類の繁殖も防ぐことが出来る。
【0042】
実施の形態5.
図9は実施の形態5を示す図で、製氷皿の斜視図である。実施の形態1〜4においては、セパレータ形状16により分離された白濁部を融解して給水された水と混ぜ合わせることにより排水処理を不要としていたが、本実施の形態5においては、製氷皿は2層の粒形状の部分と1層の粒形状の部分との両方を備えており、透明氷と通常の氷の両方を同時に生成することができる。
【0043】
また、この場合2層の粒形状の部分と1層の粒形状の部分とを製氷皿底部にてつなげておくことにより、製氷皿の一部に白濁部の氷を集中させることができ排水不要のシステムを実現している。
【0044】
例えば10粒の製氷皿において、8粒においては実施の形態1〜4に記載のセパレータ形状16が設置してあり、残りの2粒にはセパレータ形状16を設けない。最初の給水で8粒の透明氷と2粒の通常氷ができる。その後給水と同時に8粒の下部に設置されたヒータで白濁部を融解する。そして製氷皿下面を残り2粒の方にすくなくとも7度以上傾斜させておき融解された水を流して集約してから給水を実施して再度8粒の透明氷と2粒の通常氷を生成する。
【0045】
このことにより白濁する成分を集中させることによりそれ以外の8粒の透明度が安定して高く出来るだけでなく下方に溜まりがちなイオン成分を集中させてミネラル分が豊富な氷を透明氷と同時に生成することができる。
【0046】
またこのとき氷が落下して氷を貯蔵するケースの透明氷と通常氷の位置の境界に仕切り形状を設けておくと氷が自動的に分別され使い勝手が良い。
【0047】
【発明の効果】
この発明に係る冷蔵庫は、製氷皿の各粒形状内に、連結部を残して氷粒を上下に分割するセパレート形状を設け、上方からの冷却により白濁部を製氷皿の下部に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えたことにより、残った氷をドレン等に排除する機構等も不要で透明度の高い氷の生成が少ない構成部品で安価に実現できる。
【図面の簡単な説明】
【図1】実施の形態1を示す図で、冷蔵庫の構成説明図である。
【図2】実施の形態1を示す図で、製氷システム説明図である。
【図3】実施の形態1を示す図で、製氷皿構造説明図である。
【図4】実施の形態2を示す図で、ガスインジェクション方式によるセパレータ一体化の製氷皿の成形方法を示す図である。
【図5】実施の形態2を示す図で、ダイスライド方式による製氷皿のの成形方法を示す図である。
【図6】実施の形態3を示す図で、製氷皿の構成を示す図である。
【図7】実施の形態4を示すで、発熱体制御を示す図である。
【図8】実施の形態4を示すで、製氷皿の清掃方法を示すフローチャート図である。
【図9】実施の形態5を示す図で、製氷皿の斜視図である。
【符号の説明】
1 冷蔵庫本体、2 ファン、3 冷却器、4 冷気送風ダクト、5 帰還ダクト、6 温度センサ、7 風量調節器、8 給水タンク、9 給水ポンプ、10 給水パイプ、11 製氷皿、12 製氷駆動装置、13 枠体、14 製氷サーミスタ、15 検氷レバー、16 セパレータ形状、17 透明氷部、18白濁氷部、19 穴形状、20 コードヒータ、21 アルミ箔、22 操作パネル、23 制御基板、24 マイコン、25 LED、100 冷蔵室、200冷凍室、300 野菜室、400 切替室、500 製氷室。
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, when ice is generated in an ice making device, the cloudy portion of the ice due to the gas component or the ionic component in the supplied water is partially concentrated to make the other transparent and separate each other. The present invention relates to a refrigerator provided with an ice making device for obtaining ice with high transparency.
[0002]
[Prior art]
When ice is generated in a conventional refrigerator, the gas component contained in the supplied water freezes from a low temperature around the water during the ice making process. When frozen from the outer shell, it was chased by the unfrozen portion in the center and was confined within the ice grains to form a cloudy part, resulting in ice grains with low transparency.
[0003]
As a means for realizing highly transparent ice, an automatic ice maker such as a refrigerator is provided with an ice tray having an open bottom surface that is superimposed on an inner surface of a water storage tank with a drain port provided on one side of a cooler, A drive device for reversing the rotation is provided, and the water storage tank and the drain port are surrounded by a heat insulating material, and a heater is provided in close contact with the outer wall thereof, and the drain port is connected to a drain device and a drain pipe. In addition, there is a configuration in which a detachable water supply tank and a water supply pump are separately provided to guide a water supply pipe to a water storage tank.
[0004]
With such a configuration, when a predetermined amount of water filled in the water supply tank is supplied to the water storage tank through the water supply pipe by the water supply pump, the ice tray superposed on the inner surface of the water storage tank has an opening at the bottom. The water is flooded to a predetermined water level via the. The outer periphery of the water storage tank is surrounded by a heat insulating material, and is kept warm by a heater, so that the cold air in the cooling chamber performs a one-way freezing operation from the surface of the water downward so that gas components and impurities in the water are removed from the lower water. Ice crystals are generated while discharging to the surface. Next, when the drainage device is activated when the ice reaches the appropriate thickness, the unfrozen water with high concentration of gaseous components and impurities is drained through the drainage device and drainage pipe, and the ice tray has high transparency and purity. Ice is left. The overlapping portion of the water storage tank and the ice tray is prevented from freezing by the heating action of the heater, and the ice tray is separated from the water storage tank by the rotating action of the driving device, and the ice tray is inverted and ice is removed (for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-18627
[Problems to be solved by the invention]
In the case of a conventional automatic ice making device such as a refrigerator, the heater as a component requires a large heater capacity to keep the water in the reservoir at all times, and is expensive and consumes power due to the temperature influence on the surroundings. There was also concern about the deterioration of air conditioners and the adverse effect of cooling other rooms.
[0007]
Further, after draining, a step of drying wet ice particles in the ice tray is required, and the ice making time is lengthened.
[0008]
In addition, the construction of a water storage tank, a drain port, a drain valve, and the like are required, and the system for obtaining transparent ice is considerably large and not only expensive, but also a motor driving noise represented by an actuator or the like. There are also problems in terms of quality such as reliability such as operation noises such as flowing sound of water and malfunction due to foreign matter entering the drain valve.
[0009]
In addition, the production of transparent ice requires a water volume several times larger than the size of ice particles, and there is also a problem in terms of economics such as water supply.
[0010]
The present invention has been made in order to solve the above-described problems, and has as its object to provide a refrigerator that does not require a mechanism for removing cloudy ice and that can generate highly transparent ice at low cost with a small number of components. And
[0011]
[Means for Solving the Problems]
The refrigerator according to the present invention is provided with a separate shape for dividing ice particles into upper and lower portions while leaving a connecting portion in each grain shape of the ice tray, and moving the cloudy portion to the lower portion of the ice tray by cooling from above. After clear ice is generated, the connection is cut in the ice release process after ice making is completed, the clear ice is released, the remaining cloudy ice is thawed with the water supplied to the new ice tray, mixed, and then mixed again. An ice-making device for making ice is provided.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 to 3 show a first embodiment, in which a configuration of a refrigerator is illustrated, FIG. 2 is an illustration of an ice making system, and FIG. 3 is an explanatory view of an ice tray structure.
In FIG. 1, the refrigerator main body 1 has a refrigerating compartment 100 arranged with an opening / closing door at the top, and switches from a freezing temperature zone (−18 ° C.) below the refrigerating compartment 100 to a refrigerating, vegetable, chilled temperature zone. Switching room 400 having a drawer door capable of operating the same, an ice making room 500 having a drawer door in parallel with the switching room 400, a freezing room 200 having a drawer door arranged at the bottom, a freezing room 200 and a switching room 400 And an ice making room 500, and a vegetable room 300 provided with a drawer door.
[0013]
The cool air cooled by the cooler 3 is circulated to the refrigerator body 1 by the fan 2.
The cooled cold air is blown by the cool air blowing ducts 4 provided in the refrigerator compartment 100, the switching compartment 400, the ice making compartment 500, and the freezing compartment 200, respectively, to cool each compartment, and then returns to the return duct 5 from each compartment. It returns to the cooler 3 again and exchanges heat again to circulate cool air. Further, in the vegetable room 300, radiation cooling is performed by returning cold air from the refrigerator room 100. The temperature of each room is controlled by controlling the air volume regulator 7 installed in each cool air blow duct 4 by the temperature sensor 6 installed in each room.
[0014]
Here, as an example, the layout in which the ice making room 500 is arranged in parallel with the switching room 400 between the refrigerator room 100 and the vegetable room 300 is shown, but the configuration is not limited to this. For example, the ice making room 500 may be arranged in parallel with the switching room 400 between the vegetable room 300 and the freezing room 200, or the ice making room 500 may be a part of the freezing room 200.
Other components in FIG. 1 will be described later.
[0015]
As shown in FIG. 2, water is pumped up from a water supply tank 8 installed in the refrigeration room 100 by a water supply pump 9 in the water supply tank 8, and inside a water supply pipe 10 that connects the refrigeration room 100 and the ice making room 500. The water is supplied to the ice tray 11 that produces ice via the.
The cool air that has passed through the cool air blowing duct 4 for the ice making chamber 500 is supplied into a frame 13 that fixes the ice tray 11 and an ice making driving device 12 that twists the ice tray 11, and performs ice making.
[0016]
When the ice making thermistor 14 fixed to the lower portion of the ice making tray 11 becomes lower than a certain set temperature, the ice making is judged to be completed, and the ice detecting lever 15 incorporated in the ice making driving device 12 for detecting the amount of ice storage is determined. The ice storage amount is detected by operating the ice tray, and if the full ice amount set at a position lower than the rotation trajectory of the ice tray 11 has not been reached, the ice making drive device 12 starts rotating to rotate the ice tray 11. The ice is separated from the ice tray 11 by twisting.
[0017]
An example of the ice tray structure of the present invention will be described with reference to FIG. Since the ice formation mechanism freezes from the low temperature part around the water, the gas component causing white turbidity is chased by the unfrozen part in the center when the water freezes from the outer shell, and it becomes cloudy . In the transparent ice making system of the present invention, the white turbid portion is driven downward by applying cooling from the opening of the ice tray 11, that is, from above, and the separation of the white turbid portion and the transparent portion in the ice is promoted.
[0018]
In order to perform cooling from above, the amount of cool air is increased by increasing the ratio of the opening area of the cold air blow ducts above and below the ice tray 11 to the ratio above the ice tray 11 or by controlling the rotation speed of the fan 2 for blowing cool air. For example, there is a means for changing the wind direction by adjusting the opening angle of the air volume regulator 7 or the like.
[0019]
Then, a cloudy portion and a transparent portion of ice are separated by a separator shape 16 provided in the ice tray 11. An opening for connecting the transparent ice part 17 and the cloudy ice part 18 is formed in the separator shape 16, and it is preferable to provide at least two or more hole shapes 19 having a diameter of about 2 to 5 mm, for example. However, the hole shape 19 may be at one place.
[0020]
If the hole shape 19 is smaller than 2 mm in diameter, it is difficult for water to flow between the upper and lower layers of water. If the hole shape 19 is larger than 5 mm, the connection of ice between the upper and lower layers becomes strong and the ice tray 11 is transparent even if the ice tray 11 is twisted. The diameter is preferably 2 to 5 mm because the part and the cloudy part will not separate.
[0021]
However, the opening of the separator shape 16 does not necessarily have to have a round hole shape as long as water can flow between the upper and lower layers and the ice of the upper and lower layers can be divided at the time of ice removal.
[0022]
In addition, as for the arrangement of the hole shapes 19, when a plurality of holes are symmetrically arranged at the same pitch as much as possible, ice is easily released even when water is flowing or the dish is twisted.
[0023]
The separator shape 16 may be any size as long as its depth from the bottom of the ice tray 11 secures a capacity of 5 to 30% of the volume of ice particles. In terms of dimensions, for example, it is 2 to 10 mm. When the volume exceeds about 30% of the volume of the ice particles, the size of the ice tray 11 is increased when the required size of the transparent portion is secured.
[0024]
Then, only the highly transparent ice completed on the upper part of the separator shape 16 is de-iced, and then the cloudy ice on the lower surface is melted by newly supplied water through the hole shape 19 in the separator shape 16 to remove the ice in the ice. Degas the air component to produce clear ice again. This makes it possible to produce inexpensive transparent ice without a drainage mechanism.
[0025]
Embodiment 2 FIG.
4 and 5 are views showing Embodiment 2, FIG. 4 is a view showing a method of forming an ice tray integrated with a separator by a gas injection method, and FIG. 5 is a view showing a method of forming an ice tray by a die slide method. It is.
Normally, when water is changed from water to ice, volume expansion occurs. In addition to this, when the upper and lower two layers are composed of two parts, a phenomenon occurs in which the upper part and the lower part further separate due to a twisting operation or the like. Thus, by integrating the upper and lower two layers of ice tray 11, floating and displacement between the above-mentioned two parts can be prevented, and at the same time, the transmission of the torsional torque at the time of ice removal can be improved, and the ice separating property can be improved.
[0026]
As shown in FIG. 4, as a method of forming an ice tray integrated with a separator, a resin is filled in an ice tray shape of a mold, and then a semi-enclosed space below the ice tray is supplied through a gas sealing nozzle provided in each particle shape. There is a gas injection method in which a hollow shape is formed by injecting a gas into a gas.
[0027]
Also, as shown in FIG. 5, the unmoldable shape due to the undercut is divided into a plurality of parts, and the plurality of parts are simultaneously filled with resin by primary molding, and then the mold on the movable side in the same mold is removed. After sliding and combining the shapes of the plurality of parts, a die-sliding method is used in which secondary molding is performed on the joint portion to connect the parts. In this method, a polypropylene-based resin is preferable in consideration of the twisting property of the ice tray and the joining strength by molding.
[0028]
Although a method of insert-molding only the separator shape 16 may be used, it is slightly disadvantageous in the ice tray 11 in which a large stress is applied because the strength against torsion and the like is slightly weaker than the above-described integral molding.
[0029]
According to the above-described embodiment, the two-layer structure of the ice tray 11 is integrally formed, so that the floating or displacement of the parts generated when the two parts are formed can be prevented, and the transmission of the torsional torque at the time of ice separation is improved. Transparent ice formation with good icy properties can be realized.
[0030]
Embodiment 3 FIG.
FIG. 6 is a view showing the third embodiment, and is a view showing a configuration of an ice tray. In the first embodiment, the method of cooling with a fan or the like from above the ice tray is described, but here, a small amount of heat is applied from below the ice tray by a heating element such as a heater. As a result, the temperature difference between the upper and lower portions of the ice tray becomes clearer, and the cloudy portion can be efficiently driven downward.
[0031]
In the heater, which is a heating element, heat can be efficiently applied if the heater is fixed to the bottom of the ice tray or the lower part of the side surface. At that time, it is preferable that the heater wire be flexible so as to withstand the twisting operation of the ice tray. For example, a structure in which a nichrome wire is wound around a core wire and covered with an insulating coating may be used. The insulating coating may be made of vinyl chloride, fluorine resin, silicon resin or the like as long as heat resistance can be ensured and relatively soft. For example, if a cord heater coated with PVC is covered with aluminum foil, it can be twisted without any problem when twisting an ice tray. Further, the shape of the heater is not limited to the cord shape, but may be, for example, a sheet shape in which a heating wire is embedded.
[0032]
In addition, a small heating element having a resistor embedded therein may be installed under each ice particle shape of the ice tray, even if it is not a flexible heating element. As a method of attaching the heating element, the heating element may be attached to an ice tray with an aluminum tape or the like with an adhesive. At this time, the heater may be fixed to the ice tray using a fall prevention cover for preventing peeling or the like. Further, when the insulation distance from the heating element is insufficient, the insulation distance may be maintained by interposing a cover or an insulator.
[0033]
Embodiment 4 FIG.
7 and 8 show the fourth embodiment. FIG. 7 is a diagram showing control of a heating element, and FIG. 8 is a flowchart showing a method of cleaning an ice tray.
In the heating element described in the third embodiment, continuous energization may be performed, but by controlling the heating element, the ice-making ability can be further improved. For example, as shown in FIG. 7A, the ice making speed can be reduced by supplying electricity to the ice tray 11 only for a certain period of time after water is supplied, and turning off the heating element halfway.
[0034]
As shown in FIG. 7 (b), the method is controlled by the elapsed time after the start of the ice making, or as shown in FIG. 7 (c), by the temperature sensor attached to the lower part of the ice making tray. And the control of stopping the energization of the heating element when the temperature reaches the set temperature. In this case, the heating element is turned on during the ice making of the upper part of the ice tray, ie, the transparent ice part, and the heating element is turned off at the time of making the ice in the lower part of the ice tray, ie, the cloudy part. .
[0035]
Further, even when the heating element is turned on, the generation rate of the transparent ice can be further optimized by changing the heat generation amount by changing the duty ratio. The duty ratio control refers to, for example, setting a cycle time of one cycle to 10 s and dividing the interval into ten intervals of 1 s to set the energization time. For example, as shown in FIG. 7D, the heater is a 5 W heater when the duty ratio of the 10 W heater is controlled to 50%.
[0036]
For example, as shown in FIG. 7E, as an example of the optimization control, the input of the heating element may be increased or decreased according to the value of a temperature sensor fixed at the lower part of the ice tray. This makes it possible to cope with sudden temperature fluctuations in the ice making chamber. When optimizing the heater input, the heater rating is determined from the required amount of heat generated by the heater, and when a small input is required, the duty ratio is controlled.
[0037]
The largest heater input is required to melt the ice in the lower part of the formation of the transparent ice, but in order to promote the melting, not only the heater input but also the water supply is performed at the same time to promote the melting and the required capacity of the heating element Can be reduced.
[0038]
Also, as shown in FIG. 7 (f), by turning on this heating element before the ice-releasing operation after the ice-making is completed, the ice particles are slightly separated from the surface of the ice-making tray, so that the ice is easily separated and the shape of the ice is improved. For example, it is possible to remove ice without cracking, chipping or the like of ice made of a design such as rock ice.
[0039]
Further, in the operation panel 22 for adjusting the temperature of the refrigerator compartment installed on the surface of the refrigerator door and the like shown in FIG. Alternatively, by controlling the energization of the heater by selecting normal ice, it is also possible to turn off the heater when normal ice is generated to achieve compatibility with fast ice.
[0040]
Next, a method of cleaning the ice tray will be described with reference to the flowchart of FIG. On the operation panel 22, the ice tray cleaning mode SW may be set. As shown in FIG. 2, in the automatic ice maker, the microcomputer 24 in the control board 23 is connected to the operation panel 22, and the number of times of ice making is stored in a storage device such as the microcomputer 24. When a certain number of times is reached, a command is sent from the microcomputer 24 to the operation unit to turn on the LED 25. The end user operates the cleaning SW in the operation panel 22 to forcibly turn on the heating element below the ice tray to melt the ice, and then rotate the ice tray to drain the water. Is provided. As a result, even if impurities and the like remain in the lower portion of the two layers of the ice tray, it can be cleaned and kept clean forever.
[0041]
Further, by adding an antibacterial agent to components such as an ice tray, the propagation of various germs can be prevented.
[0042]
Embodiment 5 FIG.
FIG. 9 shows the fifth embodiment, and is a perspective view of an ice tray. In the first to fourth embodiments, the white turbid portion separated by the separator shape 16 is melted and mixed with the supplied water to eliminate the wastewater treatment. In the fifth embodiment, the ice tray is It has both a two-layer grain-shaped part and a one-layer grain-shaped part, and can produce both transparent ice and ordinary ice at the same time.
[0043]
Also, in this case, by connecting the two-layer grain-shaped part and the one-layer grain-shaped part at the bottom of the ice tray, the ice in the cloudy part can be concentrated on a part of the ice tray, and drainage is unnecessary. System is realized.
[0044]
For example, in 10 ice trays, the separator shape 16 described in the first to fourth embodiments is provided for eight particles, and the separator shape 16 is not provided for the remaining two particles. The first water supply produces 8 clear ice cubes and 2 regular ice cubes. Then, at the same time as the water supply, the turbid portion is melted by a heater installed below the eight grains. Then, the lower surface of the ice tray is tilted at least 7 degrees toward the remaining two grains, and the melted water is flown and concentrated, and then water is supplied to produce eight transparent ice grains and two normal ice grains again. .
[0045]
By concentrating the cloudy components, the transparency of the other eight grains can be increased stably, and the ionic components that tend to accumulate below are concentrated to produce mineral-rich ice at the same time as clear ice. can do.
[0046]
At this time, if a partition shape is provided at the boundary between the position of the transparent ice and the position of the normal ice in the case where the ice falls and stores the ice, the ice is automatically separated and the usability is good.
[0047]
【The invention's effect】
The refrigerator according to the present invention is provided with a separate shape for dividing ice particles into upper and lower portions while leaving a connecting portion in each grain shape of the ice tray, and moving the cloudy portion to the lower portion of the ice tray by cooling from above. After clear ice is generated, the connection is cut off in the ice release process after the ice making is completed, the clear ice is released, the remaining cloudy ice is melted and mixed with the water supplied to the ice tray, and then mixed again. By providing an ice making device for making ice, a mechanism for removing the remaining ice into a drain or the like is not required, and it can be realized at low cost with components that generate less highly transparent ice.
[Brief description of the drawings]
FIG. 1 is a view showing a first embodiment and is an explanatory view of a configuration of a refrigerator.
FIG. 2 shows the first embodiment and is an explanatory diagram of an ice making system.
FIG. 3 shows the first embodiment and is an explanatory diagram of an ice tray structure.
FIG. 4 is a view showing the second embodiment and is a view showing a method of forming an ice tray integrated with a separator by a gas injection method.
FIG. 5 is a view showing the second embodiment, and is a view showing a method of forming an ice tray by a die slide method.
FIG. 6 shows the third embodiment and is a view showing the configuration of an ice tray.
FIG. 7 is a diagram illustrating a heating element control according to the fourth embodiment.
FIG. 8 is a flowchart showing a method for cleaning an ice tray according to the fourth embodiment.
FIG. 9 shows the fifth embodiment and is a perspective view of an ice tray.
[Explanation of symbols]
1 Refrigerator body, 2 fans, 3 coolers, 4 cool air ventilation duct, 5 return duct, 6 temperature sensor, 7 air volume controller, 8 water tank, 9 water pump, 10 water pipe, 11 ice tray, 12 ice making device, 13 frame body, 14 ice making thermistor, 15 ice detecting lever, 16 separator shape, 17 transparent ice portion, 18 white muddy ice portion, 19 hole shape, 20 code heater, 21 aluminum foil, 22 operation panel, 23 control board, 24 microcomputer, 25 LED, 100 refrigeration room, 200 freezer room, 300 vegetable room, 400 switching room, 500 ice making room.

Claims (35)

製氷皿の各粒形状内に、連結部を残して氷粒を上下に分割するセパレート形状を設け、上方からの冷却により白濁部を製氷皿の下部に移動させて上部に透明氷を生成し、製氷完了後の離氷過程において前記連結部を切断して透明氷を離氷し、残りの白濁氷を新しく製氷皿に給水された水で融解して混ぜた後、再び製氷を行う製氷装置を備えたことを特徴とする冷蔵庫。Within each grain shape of the ice tray, a separate shape is provided to divide the ice grains up and down leaving the connecting part, and the cloudy part is moved to the lower part of the ice tray by cooling from above to generate transparent ice at the top, An ice making device that cuts the connecting portion in the ice removing process after completion of ice making, separates the clear ice, melts and mixes the remaining cloudy ice with water supplied to a new ice tray, and then makes ice again. A refrigerator comprising: 前記氷粒の連結部を生成する前記セパレート形状の開口部は、直径2〜5mmの円相当の穴形状としたことを特徴とする請求項1に記載の冷蔵庫。2. The refrigerator according to claim 1, wherein the separate opening that forms the connection part of the ice particles has a hole shape corresponding to a circle having a diameter of 2 to 5 mm. 3. 前記氷粒の連結部を生成する前記セパレート形状の開口部は、複数個が等ピッチで対称に配置されたことを特徴とする請求項1に記載の冷蔵庫。2. The refrigerator according to claim 1, wherein a plurality of the separate openings that form the connection part of the ice particles are symmetrically arranged at a constant pitch. 3. 前記セパレート形状は、製氷皿底面からの深さ寸法が氷粒体積の5〜30%の体積を確保する寸法としたことを特徴とする請求項1に記載の冷蔵庫。The refrigerator according to claim 1, wherein the separate shape has a depth from the bottom of the ice tray that secures a volume of 5 to 30% of the volume of ice particles. 前記製氷皿の氷粒形状の部分が2層に仕切られていることを特徴とする請求項1に記載の冷蔵庫。2. The refrigerator according to claim 1, wherein an ice particle-shaped portion of the ice tray is divided into two layers. 前記製氷皿上下の冷気ダクトの開口面積を、該製氷皿下方よりも上方を大きくして、上方からの冷却することを特徴とする請求項1に記載の冷蔵庫。2. The refrigerator according to claim 1, wherein an opening area of the cold air duct above and below the ice tray is made larger than below the ice tray, and cooling is performed from above. 3. 冷気ダクトに設けられた風量調整器の開角度を調整して風向きを変えて、前記製氷皿の上方から冷却することを特徴とする請求項1に記載の冷蔵庫。2. The refrigerator according to claim 1, wherein cooling is performed from above the ice tray by adjusting an opening angle of an air volume adjuster provided in the cool air duct to change a wind direction. 3. 前記製氷皿の2層構造が1部品で構成されていることを特徴とする請求項5に記載の冷蔵庫。The refrigerator according to claim 5, wherein the two-layer structure of the ice tray is constituted by one part. 前記製氷皿は、金型の製氷皿形状に樹脂を充填後、各粒形状に設けられたガス封入ノズルから製氷皿下部の準密閉空間にガスを注入することにより中空形状を形成するガスインジェクション方式により成形されることを特徴とする請求項8に記載の冷蔵庫。The above-mentioned ice tray is a gas injection method in which a resin is filled in a mold ice tray shape, and a gas is injected from a gas filling nozzle provided in each grain shape into a semi-closed space under the ice tray to form a hollow shape. The refrigerator according to claim 8, wherein the refrigerator is formed by: 前記製氷皿は、アンダーカットによる成形不可能形状を複数部品化して分割し、その複数部品を1次成形にて同時に樹脂充填した後、同金型内で可動できる側の型をスライドさせてその複数部品の形状を合体させた後、結合部に2次成形を実施しパーツを連結させるダイスライド方式により成形されることを特徴とする請求項8に記載の冷蔵庫。The ice tray is formed by dividing an unmoldable shape by undercut into a plurality of parts, dividing the plurality of parts into a resin at the same time by primary molding, and then sliding the movable mold in the same mold. 9. The refrigerator according to claim 8, wherein after the shapes of the plurality of parts are combined, a secondary molding is performed on the connecting part and the parts are connected by a die slide method. 樹脂として、ポリプロピレン系のものを用いたことを特徴とする請求項10に記載の冷蔵庫。The refrigerator according to claim 10, wherein a polypropylene resin is used as the resin. 前記製氷皿の下部温度を上部温度より高くすることを特徴とする請求項1に記載の冷蔵庫。The refrigerator according to claim 1, wherein a lower temperature of the ice tray is higher than an upper temperature. 前記製氷皿の下方に発熱体を設けたことを特徴とする請求項12に記載の冷蔵庫。The refrigerator according to claim 12, wherein a heating element is provided below the ice tray. 前記製氷皿の底面、又は側面下部に発熱体を設けたことを特徴とする請求項13に記載の冷蔵庫。The refrigerator according to claim 13, wherein a heating element is provided on a bottom surface or a lower portion of a side surface of the ice tray. 前記発熱体を前記製氷皿の捻り動作に耐えるフレキシブルなヒータ線としたことを特徴とする請求項13に記載の冷蔵庫。14. The refrigerator according to claim 13, wherein the heating element is a flexible heater wire that withstands the twisting operation of the ice tray. 前記発熱体を、芯線にニクロム線を巻き付け絶縁被覆で覆った構造としたことを特徴とする請求項15に記載の冷蔵庫。The refrigerator according to claim 15, wherein the heating element has a structure in which a nichrome wire is wound around a core wire and covered with an insulating coating. 前記絶縁被覆に、塩化ビニル又はフッソ樹脂又はシリコン樹脂を用いたことを特徴とする請求項16に記載の冷蔵庫。17. The refrigerator according to claim 16, wherein the insulating coating is made of vinyl chloride, fluorine resin, or silicon resin. 前記発熱体を、塩ビ被覆のコードヒータをアルミ箔で覆った構成としたことを特徴とする請求項15に記載の冷蔵庫。The refrigerator according to claim 15, wherein the heating element has a configuration in which a cord heater coated with PVC is covered with aluminum foil. 前記ヒータ線は、発熱線を埋め込んだシート状にしたもので構成したことを特徴とする請求項15に記載の冷蔵庫。The refrigerator according to claim 15, wherein the heater wire is formed in a sheet shape in which a heating wire is embedded. 抵抗体を埋め込んだ小型の発熱体を製氷皿の各氷粒形状の下部に個々設置したことを特徴とする請求項15に記載の冷蔵庫。16. The refrigerator according to claim 15, wherein a small heating element in which a resistor is embedded is individually installed below each ice particle of the ice tray. 前記発熱体を粘着材付のアルミテープ等で製氷皿に貼り付け、剥れ等を防止する落下防止用カバーを用いて製氷皿に発熱体を固定することを特徴とする請求項15に記載の冷蔵庫。16. The heating element according to claim 15, wherein the heating element is attached to an ice tray with an aluminum tape or the like having an adhesive material, and the heating element is fixed to the ice tray using a fall prevention cover for preventing peeling or the like. refrigerator. 前記発熱体と前記製氷皿との間に、絶縁距離を確保する絶縁物を介在させたことを特徴とする請求項15に記載の冷蔵庫。The refrigerator according to claim 15, wherein an insulator that secures an insulation distance is interposed between the heating element and the ice tray. 製氷時又は離氷時に、前記発熱体の熱量を制御することを特徴とする請求項15に記載の冷蔵庫。The refrigerator according to claim 15, wherein the amount of heat of the heating element is controlled at the time of ice making or at the time of ice separation. 前記製氷皿に給水後からある設定時間のみ通電し、途中から前記発熱体をオフすることを特徴とする請求項23に記載の冷蔵庫。24. The refrigerator according to claim 23, wherein electricity is supplied to the ice tray only for a set time after water is supplied, and the heating element is turned off halfway. 前記製氷皿の下部に取り付けた温度センサにより製氷皿下部の温度を測定し、設定温度に達したら前記発熱体への通電を停止することを特徴とする請求項24に記載の冷蔵庫。25. The refrigerator according to claim 24, wherein the temperature of the lower portion of the ice tray is measured by a temperature sensor attached to a lower portion of the ice tray, and when the temperature reaches a set temperature, the power supply to the heating element is stopped. 前記製氷皿の上層部である透明氷部を製氷中は前記発熱体をオンさせて、前記製氷皿の下層部である白濁部を製氷する際には前記発熱体をオフさせることを特徴とする請求項24に記載の冷蔵庫。The heating element is turned on during the ice making of the transparent ice part which is the upper part of the ice tray, and the heating element is turned off when making the cloudy part which is the lower part of the ice tray. A refrigerator according to claim 24. 前記発熱体の通電率を変えて発熱量を変化させ、最適化制御を行うことを特徴とする請求項23又は請求項24に記載の冷蔵庫。25. The refrigerator according to claim 23, wherein the heat generation amount is changed by changing a duty ratio of the heating element to perform optimization control. 前記製氷皿下部に固定された温度センサの値により発熱体入力を増減させることを特徴とする請求項27に記載の冷蔵庫。The refrigerator according to claim 27, wherein a heating element input is increased or decreased according to a value of a temperature sensor fixed to a lower portion of the ice tray. 下層部の白濁氷を融解する場合に、前記発熱体をオンすると共に、給水を同時に行うことを特徴とする請求項13に記載の冷蔵庫。14. The refrigerator according to claim 13, wherein, when melting the cloudy ice in the lower layer, the heating element is turned on and water is supplied at the same time. 前記発熱体を製氷完了後の離氷動作前にオンさせることを特徴とする請求項13に記載の冷蔵庫。14. The refrigerator according to claim 13, wherein the heating element is turned on before the ice releasing operation after the ice making is completed. 冷蔵庫扉表面等に設置された冷蔵室温度等を調整する操作パネルを設け、該操作パネルに設けられた切換えスイッチにより使用者が透明氷か、もしくは通常氷を選択することにより発熱体通電の有無を制御することを特徴とする請求項13に記載の冷蔵庫。An operation panel for adjusting the temperature of the refrigerator compartment installed on the surface of the refrigerator door or the like is provided, and a user selects transparent ice or normal ice by a changeover switch provided on the operation panel. 14. The refrigerator according to claim 13, wherein the refrigerator is controlled. 冷蔵庫扉表面等に設置された冷蔵室温度等を調整する操作パネルを設け、該操作パネルに製氷皿のお掃除モードスイッチを設定し、製氷回数が所定値に達すると前記操作パネルにそれを表示し、使用者がお掃除スイッチを操作することにより強制的に製氷皿下の発熱体をオンさせて氷を融解し、その後製氷皿を回転させて排水させることを特徴とする請求項1に記載の冷蔵庫。An operation panel for adjusting the temperature of the refrigerator compartment installed on the surface of the refrigerator door or the like is provided, and a cleaning mode switch for an ice tray is set on the operation panel, and when the number of times of ice making reaches a predetermined value, it is displayed on the operation panel. The user operates the cleaning switch to forcibly turn on the heating element below the ice tray to melt the ice, and then rotate the ice tray to drain water. Refrigerator. 前記製氷皿の2層に仕切られていない氷粒形状の部分が少なくとも1ヶ以上あり、透明氷と通常氷を同時に生成することを特徴とする請求項5に記載の冷蔵庫。6. The refrigerator according to claim 5, wherein the ice tray has at least one ice-particle-shaped portion that is not partitioned into two layers, and generates transparent ice and normal ice simultaneously. 2層の氷粒形状の部分と1層の氷粒形状の部分とを製氷皿底部にてつなげておくことを特徴とする請求項33に記載の冷蔵庫。34. The refrigerator according to claim 33, wherein the two-layered ice particle-shaped portion and the one-layered ice particle-shaped portion are connected at the bottom of the ice tray. 製氷皿下面を1層の氷粒形状の部分の方に、少なくとも7度以上傾斜させておくことを特徴とする請求項34に記載の冷蔵庫。35. The refrigerator according to claim 34, wherein the lower surface of the ice tray is inclined at least 7 degrees or more toward the one-layer ice particle-shaped portion.
JP2003034973A 2003-02-13 2003-02-13 refrigerator Expired - Fee Related JP3910544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034973A JP3910544B2 (en) 2003-02-13 2003-02-13 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034973A JP3910544B2 (en) 2003-02-13 2003-02-13 refrigerator

Publications (2)

Publication Number Publication Date
JP2004245484A true JP2004245484A (en) 2004-09-02
JP3910544B2 JP3910544B2 (en) 2007-04-25

Family

ID=33020521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034973A Expired - Fee Related JP3910544B2 (en) 2003-02-13 2003-02-13 refrigerator

Country Status (1)

Country Link
JP (1) JP3910544B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229570A (en) * 1988-07-18 1990-01-31 Matsushita Refrig Co Ltd Ice making device for refrigerator or the like
JPH0395375A (en) * 1989-09-08 1991-04-19 Hitachi Ltd Ice-making device
JPH03282174A (en) * 1990-03-29 1991-12-12 Mitsubishi Electric Corp Automatic ice making device for refrigerator
JPH0490465A (en) * 1990-07-31 1992-03-24 Toshiba Corp Ice maker
JPH06201237A (en) * 1992-12-28 1994-07-19 Toshiba Corp Automatic ice making device
JPH0894223A (en) * 1994-09-22 1996-04-12 Mk Seiko Co Ltd Ice-making vessel
JPH08261627A (en) * 1995-03-22 1996-10-11 Sharp Corp Freezing refrigerator
JPH0949672A (en) * 1995-08-09 1997-02-18 Sharp Corp Ice making apparatus
JPH09178340A (en) * 1995-12-27 1997-07-11 Sanyo Electric Co Ltd Lighting device of low temperature show case
JPH09269172A (en) * 1996-03-29 1997-10-14 Toshiba Corp Icemaker
JP2001041621A (en) * 1999-07-30 2001-02-16 Sanyo Electric Co Ltd Ice maker and deep freezer refrigerator having the same
JP2001041623A (en) * 1999-07-30 2001-02-16 Sanyo Electric Co Ltd Ice maker and deep freezer refrigerator having the same
JP2003106722A (en) * 2001-10-01 2003-04-09 Toshiba Corp Ice making tray structure in automatic ice making device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229570A (en) * 1988-07-18 1990-01-31 Matsushita Refrig Co Ltd Ice making device for refrigerator or the like
JPH0395375A (en) * 1989-09-08 1991-04-19 Hitachi Ltd Ice-making device
JPH03282174A (en) * 1990-03-29 1991-12-12 Mitsubishi Electric Corp Automatic ice making device for refrigerator
JPH0490465A (en) * 1990-07-31 1992-03-24 Toshiba Corp Ice maker
JPH06201237A (en) * 1992-12-28 1994-07-19 Toshiba Corp Automatic ice making device
JPH0894223A (en) * 1994-09-22 1996-04-12 Mk Seiko Co Ltd Ice-making vessel
JPH08261627A (en) * 1995-03-22 1996-10-11 Sharp Corp Freezing refrigerator
JPH0949672A (en) * 1995-08-09 1997-02-18 Sharp Corp Ice making apparatus
JPH09178340A (en) * 1995-12-27 1997-07-11 Sanyo Electric Co Ltd Lighting device of low temperature show case
JPH09269172A (en) * 1996-03-29 1997-10-14 Toshiba Corp Icemaker
JP2001041621A (en) * 1999-07-30 2001-02-16 Sanyo Electric Co Ltd Ice maker and deep freezer refrigerator having the same
JP2001041623A (en) * 1999-07-30 2001-02-16 Sanyo Electric Co Ltd Ice maker and deep freezer refrigerator having the same
JP2003106722A (en) * 2001-10-01 2003-04-09 Toshiba Corp Ice making tray structure in automatic ice making device

Also Published As

Publication number Publication date
JP3910544B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP4362124B2 (en) refrigerator
JP3852607B2 (en) Ice making device, freezer refrigerator, ice making method
US20080156000A1 (en) Ice maker and method for making ice
CN105452785B (en) Refrigerator
JPH09269172A (en) Icemaker
JP4140641B2 (en) Ice making equipment, refrigerator-freezer
JP2003114072A (en) Ice plant and freezing refrigerator equipped with this plant
JP3852609B2 (en) Ice making equipment, refrigerator
JP2006275510A5 (en)
JP2003172564A (en) Ice-making device, and refrigerator-freezer having the device
KR20200111908A (en) Ice maker and refrigerator incuding the same
JP2003279210A (en) Ice making apparatus and refrigerator having the same
JP2008157619A (en) Ice making device and refrigerator-freezer
JP2006226615A (en) Refrigerator
JP4396767B2 (en) Freezer refrigerator
KR101330936B1 (en) Refrigerator
JP2004245484A (en) Refrigerator
JP4197012B2 (en) Freezer refrigerator
JP4211025B2 (en) Ice making apparatus, refrigerator, and ice making method for refrigerator
JP4461857B2 (en) Ice making equipment
JPH0670543B2 (en) How to make transparent ice
JP6995222B2 (en) refrigerator
JP2012097987A (en) Refrigerator
JP2003130510A (en) Ice making device and freezer refrigerator having the device
JP2003279211A (en) Refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3910544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees